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We present an investigation on the onset of Darcy–Bénard instability in a two-
dimensional porous medium saturated with a non-Newtonian fluid and heated
from below in the presence of a uniform horizontal pressure gradient. The fluid
is taken to be of power-law nature with constant rheological index n and temperature-
dependent consistency index µ∗. A two-dimensional linear stability analysis in the
vertical plane yields the critical wavenumber and the generalised critical Rayleigh
number as functions of dimensionless problem parameters, with a non-monotonic
dependence from n and with maxima/minima at given values of γ , a parameter
representing the effects of consistency index variations due to temperature. A series
of experiments are conducted in a Hele-Shaw cell of aspect ratio H/b= 13.3–20 to
provide a verification of the theory. Xanthan Gum mixtures (nominal concentration
from 0.10 % to 0.20 %) are employed as working fluids with a parameter range
n = 0.55–0.72 and µ∗0 = 0.02–0.10 Pa sn. The experimental critical wavenumber
corresponding to incipient instability of the convective cells is derived via image
analysis for different values of the imposed horizontal velocity. Theoretical results
for critical wavenumber favourably compare with experiments, systematically
underestimating their experimental counterparts by 10 % at most. The discrepancy
between experiments and theory is more relevant for the critical Rayleigh number,
with theory overestimating the experiments by a maximum factor less than two.
Discrepancies are attributable to a combination of factors: nonlinear phenomena,
possible subcritical bifurcations, and unaccounted-for disturbing effects such as
approximations in the rheological model, wall slip, ageing and degradation of the
fluid properties.
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1. Introduction

Thermal instability of saturated porous media has been intensively investigated
with analytical tools (for a survey see Rees (2000), Nield & Bejan (2013)) since the
early studies of Horton & Rogers (1945) and Lapwood (1948), subsequently extended
to include parallel horizontal flow (Prats 1966). Different combinations of boundary
conditions are adopted in the literature for heat flux, temperature and permeability
(Nield 1968); the fluid is usually taken to be Newtonian.

Recent literature further broadens the analysis to cover non-Newtonian fluids, from
power law (Hirata & Ouarzazi 2010; Barletta & Nield 2011; Nield 2011a,b; Alloui
et al. 2012; Alves & Barletta 2013; Barletta & Storesletten 2016; Celli et al. 2017),
to Bingham (Rees 2015) or viscoelastic (Hirata et al. 2015); this entails additional
complexity deriving from fluid rheology.

From an experimental viewpoint, Rayleigh–Bénard convection in porous media has
been studied by means of the Hele-Shaw analog model (see, for example, Hartline
& Lister (1977), Cherkaoui & Wilcock (2001) and Letelier et al. (2016)), originally
developed for Newtonian fluids and recently extended to non-Newtonian power-law
fluids (Longo, Di Federico & Chiapponi 2015; Ciriello et al. 2016): the porous
medium is replaced with a small gap between two flat plates; this entails advantages
and disadvantages. On one hand, experiments are easily prepared and the flow
characteristics conveniently measured; on the other hand, simplifying assumptions
on the structure of the simulated porous medium are needed. Direct experiments
were performed simulating the porous medium with glass ballotini (see, for example,
Lister (1990) and Keene & Goldstein (2015)). The onset of convection in viscoplastic
fluids, including the effects of wall slip, was analysed by Métivier & Magnin (2011)
and Darbouli et al. (2013); a more complex scenario, with Carbopol behaving like
a single or a double-phase continuum, has been analysed in Métivier, Li & Magnin
(2017).

Several measurement techniques have been used for detecting the onset of instability,
such as shadography (for example, Darbouli et al. 2013), variation of thermal flux
induced by convection (for example, Schmidt & Milverton 1935), visualisation through
a pH-indicator (Hartline & Lister 1977), magnetic resonance imaging (Shattuck et al.
1995), digital particle image velocimetry (DPIV) (Kebiche, Castelain & Burghelea
2014), holographic real-time interferometry (Koster & Müller 1982). Despite the
accurate set-up and the sophisticated instruments used, the overall accuracy in
detecting instabilities is usually quite limited. This is partly a consequence of the fact
that the dimensionless groups, relevant to describe the physical process of incipient
convection, involve numerous variables, and each of these has its own uncertainty. In
addition, detecting an instability at its onset is, by definition, a challenge: instabilities
are linear at the very beginning, and induce a tiny modulation of velocity, thermal
flux or refraction index. Detection of instabilities, however, takes place in many cases
during the nonlinear stage, whereas many theories refer to incipient linear instability.

For non-Newtonian fluids, additional complexities arise from measurement issues
and uncertainty on rheological parameters, often in the presence of disturbing effects
such as slipping, ageing and deterioration of the fluid under a prolonged thermal
gradient. Further, most of the models adopted to describe non-Newtonian fluids are
a strong simplification of the constituent equations, invariably referred to viscometric
flow fields and subject to distortion in non-viscometric, complex three-dimensional
flow fields. In this respect, there were some attempts to measure the rheological
material properties in non-conventional rheometers, like the experimental apparatus to
be used for the main experiments in this work (Celli et al. 2017).
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FIGURE 1. Sketch of the simulated domain.

The aim of this work is comparing theoretical simulation with experimental results
in Rayleigh–Bénard convection of a non-Newtonian power-law fluid within a vertical
porous layer heated from below and subject to horizontal cross-flow – a configuration
common in several natural settings. The experimental set-up is composed by a
Hele-Shaw cell, and correspondingly the basic solution and linear stability analysis
are derived for a two-dimensional geometry. The manuscript is structured as follows.
Section 2 includes the mathematical formulation of the problem and the linear
stability analysis. The experimental set-up and the measurement techniques are
described in § 3, while § 4 illustrates the experimental results. The discussion and
the conclusions are presented in § 5, together with some perspectives for future
work. Supplementary material available at https://doi.org/10.1017/jfm.2020.84 contains
details on uncertainties of the experimental results.

2. Mathematical model

2.1. Governing equations
The theoretical simulation is focused on the two-dimensional linear stability
analysis of a fluid saturated horizontal porous layer of height H, see figure 1.
The horizontal boundary planes are assumed to be impermeable and isothermal
at temperature T0 + 1T , lower boundary, and T0, upper boundary. Darcy’s law
generalised for non-Newtonian power-law fluids is here employed together with the
Oberbeck–Boussinesq approximation. Local thermal equilibrium between the solid
and the fluid phase is assumed and a convection–diffusion energy balance is used to
model the heat transfer. The balance equations and the boundary conditions can be
written in the dimensionless form

∇ · u= 0,
∇× [η(T)|u|n−1u] = Ra∇× (Tey),

∂T
∂t
+ u · ∇T =∇2T,

y= 0 : v = 0, T = 1, and y= 1 : v = 0, T = 0

 (2.1)

by introducing the transformations

(x, y)→H(x, y), (u, v)→
~

H
(u, v), t→

σH2

~
t, T→ (T0 +1T)T. (2.2a−d)
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The Rayleigh number Ra is defined as

Ra=
ρ0gβ1TKHn

µ∗0~
n

. (2.3)

Here, u is the seepage velocity having Cartesian components (u, v), and (x, y) are the
Cartesian coordinates, with y denoting the vertical axis, T is the temperature, µ∗ is
the consistency index of the fluid and µ∗0 (SI unit (Pa sn)) denotes the value of µ∗
evaluated at reference temperature T0, n is the power-law index, K is the permeability
(with SI unit mn+1), ρ0 is the fluid density at the reference temperature T0, g is the
gravitational acceleration (of modulus g), β is the thermal expansion coefficient of
the fluid, σ is the ratio between the average volumetric heat capacity of the porous
medium and the volumetric heat capacity of the fluid, and ~ is the average thermal
diffusivity of the saturated porous medium. We assume here the following dependence
of η on T (Nowak, Gryglaszewski & Stacharska-Targosz 1982; Celli et al. 2017):

η(T)=
µ∗(T)
µ∗0
= (1+ γ Ra T)−n, (2.4)

where γ is a non-negative dimensionless parameter that tunes the departure from the
constant consistency index model, namely

γ =
µ∗0 ~

n ξ

ρ0 gβ K Hn
, (2.5)

where ξ is a fluid property (with unit K−1) modulating the slope of the temperature
change. In passing, we note that an exponential dependence is modelled in Darbouli
et al. (2016). A comparison between the two models is reported in the supplementary
material, showing that both models can be used, with a similar agreement between
experimental data and interpolating function.

2.2. Basic solution and stability analysis
The stability analysis has to be performed on a stationary solution of the balance
equations (2.1). This solution is the so-called basic state, here denoted by the
subscript b. The stationary solution of (2.1) here considered as basic state is

ub = Pe
[

1+
γ Ra (1− 2 y)

2+ γ Ra

]
, vb = 0, Tb = 1− y, (2.6)

where ub={ub, vb} is the basic state velocity vector, and the Péclet number is defined
as the mean velocity of the basic flow, given by

Pe=
∫ 1

0
ub dy. (2.7)

As the experimental set-up is composed by a Hele-Shaw cell, the basic state in (2.6)
and (2.7) is two-dimensional. Accordingly, in the following, a two-dimensional linear
stability analysis in the plane (x, y) is performed.

The basic state is thus perturbed by small-amplitude disturbances, namely

u= ub + εU, T = Tb + ε Θ, (2.8)
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FIGURE 2. Critical values of the Rayleigh number.

where U = (U, V) is the perturbation velocity, Θ is the perturbation temperature,
and ε is a parameter such that |ε| � 1. The streamfunction, Ψ (x, y), formulation
can be employed to simplify the problem, with U = ∂Ψ /∂y and V = −∂Ψ /∂x. The
perturbations can now be expressed in terms of normal modes, namely{

Ψ (x, y, t)
Θ(x, y, t)

}
=

{
f (y)
h(y)

}
exp(λ t) exp[i(k x−ω t)]. (2.9)

One can substitute (2.8) and (2.9) into (2.1) to obtain

n(n− 1)Gu′b f ′ + nub[Gf ′′ +G′( f ′ − hu′b)] − k2Gub f
−u2

b(G
′′h+G′h′)+ ikRau2−n

b h= 0,
h′′ − h(k2

+ λ− iω+ ikub)− ikf = 0, with f = 0, h= 0 at y= 0, 1,

 (2.10)

where the primes denote derivatives with respect to y and G(y)= η(Tb(y)). We note
that, due to (2.10), we have dη(Tb)/dTb =−G′(y).

2.3. Derivation of critical wavenumber and Rayleigh number
The solution of (2.10) is obtained numerically by employing the same procedure
used in Celli et al. (2017). The critical values of the Rayleigh number and of the
wavenumber are reported in figures 2 and 3 as functions of the parameter γ for
different values of the power-law index n and of the Péclet number. As Pe increases,
these figures illustrate the non-monotonic behaviour of Rac and kc versus γ .

3. Experimental set-up

Validation of the model was performed by comparison of the theoretical results
achieved in § 2 with experimental results obtained with an analogue model consisting
of a Hele-Shaw cell 80 cm long and 4 cm high; its design is similar to Hartline
& Lister (1977), see figure 4(a,b). A frame of aluminium held together two
polycarbonate windows 0.8 cm thick, with a gap variable between 0.1 and 0.3 cm
controlled by aluminium shims. The upper and lower frames were cooled and heated,
respectively, by a water flux within PVC pipes inserted into the frame. Temperature
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FIGURE 4. Layout of the Hele-Shaw cell.

control within 0.1 K was achieved via two thermostatic baths. The temperature
was measured with two probes inserted in the upper and lower side of the frame:
PT100 4 wires AA 1/3DIN with a nominal accuracy of 0.1 K at 273 K. The probes
were calibrated in a limited range of temperature with a maximum uncertainty of
0.08 K, hence the error on the temperature difference between the two frames is
0.12 K. The cell is insulated with foam rubber in order to avoid lateral dispersion
– except for a window in the central section to allow observation of the fluid flow.
The uniform horizontal velocity component, representing the basic flow, was obtained
by injecting fluid with a syringe pump in one of the two wells, with overflow in the
other well. The visualisation of the flow field was obtained with a tracer having the
same composition as the fluid within the cell, i.e. water and Xanthan Gum (nominal
concentration in the range 0.10 %–0.20 %, the actual one is a little smaller because the
mixture was filtered to eliminate some lumps for homogeneity), added with aniline
dye. The tracer was injected through several small holes with diameter less than
0.1 mm in a PVC pipe inserted in one of the polycarbonate windows, positioned at
mid-height of the window. The pipe was connected to two small tanks, periodically
refilled with tracer fluid, in order to guarantee a constant and uniform injection.
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Expt. ρ0 µ∗0 n b ub T0.5 Pe Rac,exp kc,exp

(g cm−3) (Pa sn) (cm) (cm s−1) (K)

1 1.003 0.02 0.72 0.2 0.0131 298.2–298.4 52± 2 9.8± 0.4 2.96± 0.07
2 1.003 0.10 0.55 0.2 0.0131 298.3–299.1 — 6.2± 0.6 2.99± 0.07
3 1.003 0.05 0.60 0.2 0.0131 298.5–298.7 — 4.8± 0.4 2.80± 0.06
4 1.003 0.07 0.66 0.2 0.0131 298.3–299.0 — 8.3± 0.8 2.86± 0.06
5 1.003 0.05 0.60 0.3 0.0087 298.7–298.9 34± 2 4.0± 0.4 2.94± 0.07
6 1.003 0.07 0.66 0.3 0.0087 298.9–299.1 — 6.3± 0.4 3.05± 0.07
7 1.003 0.10 0.55 0.3 0.0087 298.7–299.2 — 4.7± 0.6 2.78± 0.06

TABLE 1. Parameters of the experiments. Here, ρ0 is the reference mass density at
a temperature of 298 K, µ∗0 is the fluid consistency index, evaluated at the reference
temperature T0, n is the fluid behaviour index, b is the gap width, ub is the average basic
horizontal velocity, T0.5 is the temperature in the mid section z/H= 0.5 during experiments
(minimum/maximum value), Pe is the Péclet number, Rac,exp is the experimental critical
Rayleigh number, kc,exp is the dimensionless critical wavenumber. Expt., experiment.

The images were acquired with a USB video camera (1280 pixel × 960 pixel) with
microscope lenses, with a field of view (FOV) of ≈12 × 10 cm2. The FOV was
illuminated by a lamp with rays made parallel through a lens, in order to increase
resolution and sharpness. The video camera acquired a single frame each 30–60 s.
The overall process was controlled by a PC with a DAQ board, storing temperature
measurements at a data rate of 10 Hz, and controlling the USB image acquisition.
Tracer was progressively injected and the temperature set-up was increased/lowered
for the hot/cold thermostatic bath, with steps of 0.1 K each 2–3 min. Variations
of the upper/lower temperature were fixed in order to have a constant (or almost
constant) temperature T0.5 in the mid section. Most experiments lasted for 3–4 h,
with a time gradient of temperature of less than 10−3 K s−1. A typical time series of
measured temperatures is shown in the supplementary material, as well as details of
rheometric measurements and experimental uncertainties.

4. Experimental results

The experiments and their parameters are listed in table 1. Figure 5 shows a typical
sequence of frames from the early stages of instability development to the appearance
of strongly nonlinear instabilities. A slow translation to the left is observed due to
the basic flow velocity of 0.0087 cm s−1. Similar results were obtained for all tests.
In most cases, the temperature difference between the two frames first showed an
increase over time, followed by a reduction, with consequent linearisation of the
convective cells up to their disappearance. Hysteresis phenomena, with a difference in
temperature at the early appearance of the cell (branch of rising 1T) higher than the
difference in temperature corresponding to the return to stability (branch of reducing
1T), were evident only for the more viscous fluid flow. The description of the
methodology adopted for comparison gives evidence of the numerous experimental
complexities encountered during the activity.

Figure 6(a,b) shows the comparison between the theoretical and experimental
critical Rayleigh number for two different groups of experiments with different
values of the Péclet number Pe. The error bars are shown for the experiments and
represent one standard deviation. The theoretical predictions are supplemented with
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t

FIGURE 5. Evolution of the perturbation over time (top to bottom and left to right)
for one of the experiments. The vertical lines delimit squares with side length equal to
H=4 cm. In the final frame (bottom right) a bifurcation of the cell in a strongly nonlinear
regime is observed. Snapshots are 60 s apart.

confidence limits corresponding to the possible combinations of the variables and
parameters involved in the model, assumed equal to their nominal value plus/minus
their standard deviation.

The value of theoretical Rac increases for increasing fluid behaviour index, although
not monotonically for the larger value of Pe considered; also, an increase in Pe brings
about an increase in Rac, albeit not in the same proportion for different values of
n. These theoretical values consistently overpredict experimental values to various
degrees, from approximately 15 % to nearly 100 %; no clear trend is detected in
the discrepancy for different values of n and/or Pe. The experimental values of Rac
obtained show a non-monotonic behaviour with fluid behaviour index n; for both Pe
values, a minimum for Rac is evident at n= 0.6.

Figure 6(c,d) compares the experimental and theoretical values of the critical
wavenumber for varying n, again for two different values of Pe. The trend is correctly
reproduced and the theoretical formulation always underpredicts the experimental
result to a variable degree (the maximum discrepancy is below 10 %), with a lower
average discrepancy for experiments at low Péclet number.

There are several sources of discrepancy: the strong nonlinearity of the flow
field favours a rapid evolution of the cell from the onset of instability towards a
fully developed cell with a reduction of wavelength (and consequent increment of
the experimental wavenumber). A further evolution leads to doubling of the cells.
A disturbing factor is a possible slip at the wall, which is not included in the model
and which reduces the flow resistance and favours the growth of the instability. This
effect was clearly detected for viscoplastic fluids (Darbouli et al. 2013), and is widely
documented for most aqueous polymer solutions – see Joshi, Lele & Mashelkar (2000)
and Valdez et al. (1995).

5. Discussion and conclusions

The need to extend the available models for Darcy–Bénard instability to rheologically
complex fluids and non-viscometric flow fields has suggested the analysis of
non-Newtonian fluid flow in a two-dimensional geometry and in the presence
of a uniform cross-flow. The fluid is assumed to display a power-law nature
with temperature-dependent consistency index. A two-dimensional linear stability
analysis in the vertical plane yields the critical wavenumber and the critical Rayleigh
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FIGURE 6. Comparison of the experimental and theoretical values of the critical Rayleigh
number (a) for Pe= 34± 2 and (b) for Pe= 52± 2, and of the critical wavenumber (c) for
Pe= 34± 2 and (d) for Pe= 52± 2. Open symbols are the experiments, curves are theory.
The error bars and the confidence bands refer to one standard deviation. Here, kcN =π is
the critical wavenumber for a Newtonian fluid initially at rest.

number upon solving numerically the eigenvalue problem. The critical Rayleigh and
wavenumbers are significantly affected by the power-law index and by the thermal
effects on the consistency index, displaying a non-monotonic trend with local minima
and maxima.

A set of experiments performed in a Hele-Shaw cell allowed us to study flow
patterns as functions of the Rayleigh number. The experiments were carried out with
shear-thinning fluids of flow behaviour index n ranging from 0.55 to 0.72, coupled
with cell gap widths of 0.2 or 0.3 cm, imposing cross-flow velocities of approximately
0.01 cm s−1 and vertical temperature gradients of 0.5–3.4 K cm−1 between the lower
and upper frames. The critical wavenumber was obtained via analysis of the frames
acquired.

The overall flow dynamics is controlled by the entangled interaction between fluid
properties, geometry of the flow field and underlying uniform cross-flow. The onset
of convective cells occurs with increasing wavenumber for increasing n. At the onset
of convection, the shear-thinning behaviour favours a fast growth of the instabilities.
Considering the complexity of the protocol and the numerous sources of uncertainty
(see Longo et al. (2013b), for details on uncertainties in rheometric measurements),
experimental results show a fairly good agreement, within 10 %, with theory for the
critical wavenumber. The discrepancy may be attributed to nonlinear phenomena not
captured by the linear stability analysis, and additionally to slip at the wall, and
ageing and degradation of the fluid properties – all unaccounted-for phenomena in
the theoretical model.

Results for the critical Rayleigh number show a correct trend and an overall
acceptable agreement with theoretical predictions; the discrepancy varies widely
with n and Pe values, and is generally larger than for the critical wavenumber. The
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theoretical model itself shows a larger sensitivity to the governing parameters for
Rac than for kc. Other rheological models, more complex than the power law, are
available to describe Xanthan Gum mixtures (see, for example, Escudier et al. (2001),
where a Carreau–Yasuda model is favourably tested). However, the power-law model
is suitable to locally describe complex rheologies, with several validations in complex
flows geometries – see Longo et al. (2013a) and the recent Chiapponi et al. (2019).
In this regard, we have verified that in the shear rate range of our experiments, a
power-law model adequately fits the rheometric data – see figure 1(b) and its caption
in the supplementary material.

The experiments showed clearly that the development of the instability may occur
at a threshold Rayleigh number lower than the critical value predicted by linear
stability theory. This could be considered as symptomatic of a subcritical bifurcation,
induced by the nonlinear terms in the governing equations of the fluid. Indeed, it
is well established, both experimentally and theoretically, that the bifurcation is
supercritical in the Darcy–Bénard convection with throughflow for a Newtonian fluid.
The supercritical linear threshold of absolute instability (see Barletta 2019) was found
to correspond perfectly to the one needed in experiments to trigger the instability.
As suggested by the present series of experiments, as well as by the shear-thinning
behaviour (see Balmforth & Rust 2009; Albaalbaki & Khayat 2011; Bouteraa et al.
2015), the nature of the bifurcation may be subcritical, and therefore a nonlinear
stability analysis has to be carried out as a natural development of the present study.
By using the concepts of nonlinearly convective and absolute instability, as defined
in Couairon & Chomaz (1997), one can hope to obtain results that corroborate the
experimental results obtained in this paper.

The present study can be extended in several directions. In particular, a change
of the boundary condition (open instead of closed top) in the experimental set-up
could give further hints for understanding the complex evolution of the cells; a direct
numerical simulation should be at hand, due to the viscous regime of the flow field.
The great flexibility of numerical experiments could shed light on the possible effects
of slip at the wall and on the evolution in the quasi-linear and fully nonlinear regimes.
Additional topics to be investigated are related to vertical fractures with uneven gaps
(for example, see Felisa et al. (2018)), which are good proxies of geological fractures
characterised by a length scale from a few centimetres to several metres and subject
to thermal gradients and cross-flow. The vertical convection should be a quite efficient
agent for re-mixing the fluid, favouring heat exchange and chemical reactions.
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