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Abstract In this paper, we formulate and present ample evidence towards the conjecture that the
partition function (i.e. the exponential of the generating series of intersection numbers with monomials in
psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the
noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation
of this conjecture to the top degree part of Pixton’s class states that the partition function of the double
ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that
this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also
provide several independent computational checks in support of it.
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1. Introduction

The Witten–Kontsevich theorem [17, 22] states that the partition function exp
(
ε−2FW

)
of the trivial cohomological field theory on the moduli space Mg,n of stable curves of

genus g with n marked points,

FW(t0,t1, . . . ,ε) :=
∑

g,n≥0
2g−2+n>0

ε2g

n!

∑
d1,...,dn≥0

(∫
Mg,n

n∏
i=1

ψdi
i

)
n∏

i=1

tdi
,

is the topological tau function of the Korteweg–de Vries hierarchy. In particular, this

means that u= uW = ∂2FW

(∂t0)2
satisfies the infinite system of compatible partial differential

equations (PDEs):

∂u

∂t1
= ∂x

(
u2

2
+

ε2

12
uxx

)
,

∂u

∂t2
= ∂x

(
u3

6
+

ε2

24
(2uuxx+u2

x)+
ε4

240
uxxxx

)
, . . . ,

where x= t0 and whose generic member is given in terms of a simple and well-known Lax

representation. In this paper, we propose a generalisation of this result involving Pixton’s
class

∑g
j=0P

j
g (A), a family of nonhomogeneous tautological classes on Mg,n depending

on an n-tuple of integers A= (a1, . . . ,an) ∈ Z
n with

∑
ai = 0, given explicitly in terms of

a subtle combinatorial formula introduced by A. Pixton, whose top degree term P g
g (A),

in cohomological degree 2g, equals (up to a constant) the double ramification (DR) cycle

DRg(A) (i.e. the cohomological representative of (a compactification of) the locus of genus

g curves whose marked points support a principal divisor [16]). This family of tautological

classes forms a partial cohomological field theory cg,n with an infinite dimensional phase
space V = span({ea}a∈Z). Consider the generating series:

FP(t∗∗,ε,μ) :=
∑

g,n≥0
2g−2+n>0

g∑
j=0

ε2gμ2j

n!

∑
A=(a1,...,an)∈Z

n∑
ai=0

∑
d1,...,dn≥0

(∫
Mg,n

2−jP j
g (A)

n∏
i=1

ψdi
i

)
n∏

i=1

tai

di
,
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and let:

(wP)a :=
∂2FP

∂t00∂t
−a
0

, a ∈ Z, wP :=
∑
a∈Z

(wP)aeiay, uP :=
S(εμ∂x)

S(iεμ∂x∂y)
wP,

where S(z) := ez/2−e−z/2

z . Then our main Conjecture 2 states that u = uP satisfies the
infinite system of compatible PDEs:

∂u

∂t1
= ∂x

(
u∗u
2

+
ε2

12
uxx

)
,

∂u

∂t2
= ∂x

(
u∗u∗u

6
+

ε2

24
(u∗uxx+ux ∗ux+uxx ∗u)+

ε4

240
uxxxx

)
,

...

where x = t00, which is a noncommutative analogue of the Korteweg-de Vries (KdV)

hierarchy above, with respect to the noncommutative Moyal product:

f ∗g := f exp

(
iεμ

2
(
←−
∂x

−→
∂y −

←−
∂y

−→
∂x)

)
g

for functions f,g on a 2-dimensional torus with coordinates x,y [6]. Notice that, together
with the string and dilaton equation, the above noncommutative KdV (ncKdV) equations

determine uniquely the generating series FP.

This conjecture specialises to:

FDR(t∗∗,ε) :=
∑

g,n≥0
2g−2+n>0

ε2g

n!

∑
A=(a1,...,an)∈Z

n∑
ai=0

∑
d1,...,dn≥0

(∫
Mg,n

DRg(A)
n∏

i=1

ψdi
i

)
n∏

i=1

tai

di
,

and:

(wDR)a :=
∂2FDR

∂t00∂t
−a
0

, a ∈ Z, wDR :=
∑
a∈Z

(wDR)aeiay, uDR :=
S(ε∂x)

S(iε∂x∂y)
wDR,

with u= uDR|ε �→εμ satisfying the dispersionless ncKdV hierarchy:

∂u

∂tn
= ∂x

(
u∗(n+1)

(n+1)!

)
, n≥ 1, (1.1)

which is Conjecture 1. In this paper, we provide a proof that the two above conjectures

follow from the much more general DR/Dubrovin-Zhang (DZ) equivalence conjecture,

which states that the double ramification hierarchy (introduced in [1] and further studied
in [5]) and the DZ hierarchy (introduced in [11]) are equivalent up to a very specific

change of coordinates in the corresponding phase space [1–4], together with the results of

[6], where we proved that the double ramification hierarchy for the Pixton class is indeed
the ncKdV hierarchy. In particular, this proves our conjectures at the approximation up

to ε2. Moreover, we provide several independent computational checks for Conjectures 1

and 2 themselves.
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2. Double ramification cycles and the dispersionless ncKdV hierarchy

In this section, we recall the definition of the double ramification cycles on the moduli
spaces of stable curves and present Conjecture 1 describing an integrable system

controlling the intersections of monomials in psi classes with the double ramification

cycles.
All the cohomology and homology groups of topological spaces will be taken with

complex coefficients.

2.1. Double ramification cycles

For a pair of nonnegative integers (g,n) in the stable range (i.e. satisfying 2g+2−n> 0),

let Mg,n be the moduli space of stable algebraic curves of genus g with n marked points

labeled by the set [n] := {1, . . . ,n}. Denote by ψi ∈H2(Mg,n) the first Chern class of the
line bundle Li over Mg,n formed by the cotangent lines at the i -th marked point on stable

curves. The classes ψi are called the psi classes. Denote by E the rank g Hodge vector

bundle over Mg,n whose fibers are the spaces of holomorphic one-forms on stable curves.
Let λj := cj(E) ∈H2j(Mg,n). Let Mg,n ⊂Mg,n be the moduli space of smooth pointed

curves and denote by Mct
g,n ⊂ Mg,n the locus of stable curves with no nonseparating

nodes.

Consider an n-tuple of integers A= (a1, . . . ,an), such that
∑

ai = 0, it will be called a
vector of double ramification data. Suppose first that not all the numbers ai are equal to

zero. Let:

Zg(A)⊂Mg,n

be the locus parameterising the isomorphism classes of pointed smooth curves

(C;p1, . . . ,pn) satisfying the condition OC(
∑n

i=1 aipi)
∼=OC , which is algebraic and defines

Zg(A) canonically as a substack of Mg,n of dimension 2g− 3+n. Naively, the double

ramification cycle DRg(A) is defined as the cohomology class on Mg,n that is Poincaré

dual to a compactification of Z(A) in Mg,n. A rigorous definition is the following (see,
e.g. [16]).

The positive parts of A define a partition μ = (μ1, . . . ,μl(μ)). The negative parts of A

define a second partition ν = (ν1, . . . ,νl(ν)). Since the parts of A sum to 0, the partitions μ
and ν must be of the same size. We now allow the case |μ|= |ν|= 0. Let n0 := n− l(μ)−
l(ν). The moduli space:

Mg,n0
(P1,μ,ν)∼

parameterises stable relative maps of connected algebraic curves of genus g to rubber P1

with ramification profiles μ,ν over the points 0,∞∈ P
1, respectively. There is a natural

map:

st : Mg,n0
(P1,μ,ν)∼ →Mg,n

forgetting everything except the marked domain curve. The moduli spaceMg,n0
(P1,μ,ν)∼

possesses a virtual fundamental class
[
Mg,n0

(P1,μ,ν)∼
]vir

, which is a homology class of
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degree 2(2g−3+n). The double ramification cycle:

DRg(A) ∈H2g(Mg,n)

is defined as the Poincaré dual to the push-forward st∗
[
Mg,n0

(P1,μ,ν)∼
]vir ∈

H2(2g−3+n)(Mg,n).

Let us list some properties of the double ramification cycles (see, e.g. [16]). In genus 0,
we have:

DR0(A) = 1 ∈H0(Mg,n).

If all the numbers ai are equal to zero, then we have:

DRg(0, . . . ,0) = (−1)gλg ∈H2g(Mg,n).

There is a very simple explicit formula for the restriction of the double ramification cycle

to the moduli spaceMct
g,n. For J ⊂ [n] and 0≤ h≤ g in the stable range 2h−1+ |J |> 0 and

2(g−h)−1+(n−|J |)> 0, denote by δJh ∈H2(Mg,n) the Poincaré dual to the substack
of Mg,n formed by stable curves with a separating node at which two stable components

meet, one of genus h and with marked points labeled by |J |, and the other of genus g−h

and with marked points labeled by the complement [n]\J . We adopt the convention δJh := 0

if at least one of the stability conditions 2h−1+ |J | > 0 and 2(g−h)−1+(n−|J |) > 0
is not satisfied. Let aJ :=

∑
j∈J aj . Introduce a degree 2 cohomology class θg(A) on

Mg,n by:

θg(A) :=

n∑
j=1

a2jψj

2
− 1

4

g∑
h=0

∑
J⊂[n]

a2Jδ
J
h ∈H2(Mg,n).

Then we have the formula:

DRg(A)|Mct
g,n

=
1

g!
θg(A)

g

∣∣∣∣Mct
g,n

, (2.1)

which is called Hain’s formula. More properties of the double ramification cycles will be
presented in Section 3.

2.2. The noncommutative KdV hierarchy

The classical construction of the KdV hierarchy as the system of Lax equations (see,

e.g. [9]):

∂L

∂tn
=

ε2n

(2n+1)!!

[(
Ln+1/2

)
+
,L

]
, n≥ 1,

where L := ∂2
x + 2ε−2u, u is a function of x,t1,t2, . . . ,ε is a formal parameter and

(2n+1)!! := (2n+1) · (2n−1) · · ·3 ·1 admits generalisations, called noncommutative KdV
hierarchies, where one doesn’t have the pairwise commutativity of the x -derivatives of

the dependent variable u. In what follows, we will work with a specific example from the

class of noncommutative KdV hierarchies.
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Let uk1,k2
, k1,k2 ∈ Z≥0, ε and μ be formal variables and consider the space Â :=

C[[u∗,∗,ε,μ]], whose elements will be called differential polynomials in two space variables.

Consider a gradation on Â given by:

deguk1,k2
:= (k1,k2), degε := (−1,0), degμ := (0,−1).

We will denote by Â[(d1,d2)] ⊂ Â the space of differential polynomials of degree (d1,d2).

The space Â is endowed with operators ∂x and ∂y of degrees (1,0) and (0,1), respectively,

defined by:

∂x :=
∑

k1,k2≥0

uk1+1,k2

∂

∂uk1,k2

, ∂y :=
∑

k1,k2≥0

uk1,k2+1
∂

∂uk1,k2

.

We see that uk1,k2
= ∂k1

x ∂k2
y u. We will denote u0,0 simply by u.

The algebra Â is also endowed with the Moyal star product defined by:

f ∗g := f exp

(
iεμ

2
(
←−
∂x

−→
∂y −

←−
∂y

−→
∂x)

)
g =

∑
n≥0

∑
k1+k2=n

(−1)k2(iεμ)n

2nk1!k2!
(∂k1

x ∂k2
y f)(∂k2

x ∂k1
y g),

(2.2)

where f,g ∈C[[u∗,∗,ε,μ]]. The Moyal star product is associative, and it is graded: if degf =
(i1,i2) and degg = (j1,j2), then deg(f ∗g) = (i1+ j1,i2+ j2). Note also that when μ= 0,

the Moyal star product becomes the usual multiplication:

(f ∗g)|μ=0 = f |μ=0 ·g|μ=0. (2.3)

Let us now consider the algebra of pseudo-differential operators of the form:

A=
∑
i≤n

ai ∗∂i
x, n ∈ Z, ai ∈ C[[u∗,∗,μ]][[ε,ε

−1], (2.4)

with the multiplication ◦ given by:

(a∗∂i
x)◦ (b∗∂j

x) :=
∑
k≥0

(
i

k

)
(a∗∂k

xb)∗∂i+j−k
x , a,b ∈ C[[u∗,∗,μ]][[ε,ε

−1], i,j ∈ Z.

The positive part of a pseudo-differential operator (2.4) is defined by A+ :=
∑

0≤i≤n ai ∗
∂i
x, and, as in the classical theory of pseudo-differential operators, a pseudo-differential

operator A of the form ∂2
x +
∑

i<2 ai ∗ ∂i
x has a unique square root of the form ∂x +∑

i<1 bi ∗∂i
x, which we denote by A

1
2 .

Consider the operator L := ∂2
x + 2ε−2u. The noncommutative KdV hierarchy with

respect to the Moyal star product (2.2) is defined by (see, e.g. [10, 15]):

∂L

∂tn
=

ε2n

(2n+1)!!

[(
Ln+1/2

)
+
,L

]
, n≥ 1. (2.5)
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The ncKdV hierarchy is integrable in the sense that its flows pairwise commute. Explicitly,
the first two equations of the hierarchy are:

∂u

∂t1
= ∂x

(
u∗u
2

+
ε2

12
uxx

)
,

∂u

∂t2
= ∂x

(
u∗u∗u

6
+

ε2

24
(u∗uxx+ux ∗ux+uxx ∗u)+

ε4

240
uxxxx

)
.

For any n ≥ 1, the right-hand side of (2.5) has the form ∂xPn, where Pn ∈ Â[(0,0)].

Moreover, Pn =
∑n

g=0Pn,g, where Pn,g is a linear combination of the monomials ε2gud1
∗

· · · ∗udn+1−g
with d1+ · · ·+dn+1−g = 2g. The leading term Pn,0 is equal to u∗(n+1)

(n+1)! . The

hierarchy:

∂u

∂tn
= ∂x

(
u∗(n+1)

(n+1)!

)
, n≥ 1, (2.6)

will be called the dispersionless noncommutative KdV (dncKdV) hierarchy.

Note that because of (2.3), the noncommutative KdV hierarchy becomes the classical
KdV hierarchy when μ= 0.

We are now ready to present our first conjecture. Let us introduce formal variables tad,

a ∈ Z, d≥ 0 and consider the generating function:

FDR(t∗∗,ε) :=
∑

g,n≥0
2g−2+n>0

ε2g

n!

∑
A=(a1,...,an)∈Z

n∑
ai=0

∑
d1,...,dn≥0

(∫
Mg,n

DRg(A)

n∏
i=1

ψdi
i

)
n∏

i=1

tai

di
∈ C[[t∗∗,ε]].

Introduce a formal power series:

S(z) :=
ez/2− e−z/2

z
= 1+

z2

24
+

z4

1920
+O(z6),

and let:

(wDR)a :=
∂2FDR

∂t00∂t
−a
0

∈ C[[t∗∗,ε]], a ∈ Z,

wDR :=
∑
a∈Z

(wDR)aeiay ∈ C[[t∗∗,ε]][[e
iy,e−iy]],

uDR :=
S(ε∂x)

S(iε∂x∂y)
wDR ∈ C[[t∗∗,ε]][[e

iy,e−iy]]. (2.7)

Conjecture 1. The function uDR
∣∣
ε �→εμ satisfies the dispersionless noncommutative KdV

hierarchy (2.6), where we identify td = t0d and x= t00.
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Let us analyse the system of equations that this conjecture gives for the generating
series FDR in a bit more detail. For any a ∈ Z, introduce a formal power series:

T (a,z) :=
S(z)

S(az)
= 1+

1−a2

24
z2+

3−10a2+7a4

5760
z4+O(z6) =

∑
g≥0

Qg(a)z
2g. (2.8)

Here, Qg(a) are polynomials in a. If we decompose:

uDR =
∑
a∈Z

(uDR)aeiay, (2.9)

then the transformation (2.7) simply means that:

(uDR)a = (wDR)a+
∑
g≥1

ε2gQg(a)∂
2g
x (wDR)a, a ∈ Z.

Also, using the decomposition (2.9), we can rewrite the equations of the dncKdV hierarchy
as a system of evolutionary PDEs with one spatial variable x and infinitely many times

td, d≥ 1, for the functions (uDR)a, a ∈ Z. For example, the first equation of the dncKdV

hierarchy, ∂u
∂t1

= ∂x
(
u∗u
2

)
, via Conjecture 1, gives the following PDEs for the functions

(uDR)a:

∂(uDR)a

∂t1
=
∑
g≥0

ε2g

22g

∑
a1,a2∈Z

a1+a2=a

∑
k1,k2≥0

k1+k2=2g

(−1)k1

k1!k2!
ak2
1 ak1

2 ∂x
(
∂k1
x (uDR)a1∂k2

x (uDR)a2
)
, a ∈ Z.

3. The Pixton class and the full ncKdV hierarchy

Here, we recall Pixton’s very explicit construction of a nonhomogeneous cohomology

class on Mg,n, with nontrivial terms in degree 0,2,4, . . . ,2g. By a result of [16], the
degree 2g part of this class coincides with the double ramification cycle. We then present

Conjecture 2, which generalises Conjecture 1 and says that the intersection numbers of

Pixton’s class with monomials in psi classes are controlled by the full noncommutative
KdV hierarchy.

Let us first recall a standard way to construct cohomology classes on Mg,n in terms of

stable graphs. A stable graph is the following data:

Γ = (V ,H,L,g : V → Z≥0,v : H → V ,ι : H →H),

where:

(1) V is a set of vertices with a genus function g : V → Z≥0,

(2) H is a set of half-edges equipped with a vertex assignment v : H → V and an

involution ι,

(3) the set of edges E is defined as the set of orbits of ι of length 2,

(4) the set of legs L is defined as the set of fixed points of ι and is placed in bijective
correspondence with the set [n], the leg corresponding to the marking i ∈ [n] will

be denoted by li,

(5) the pair (V ,E) defines a connected graph,
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(6) the stability condition 2g(v)−2+n(v)> 0 is satisfied at each vertex v ∈ V , where

n(v) is the valence of Γ at v including both half-edges and legs.

An automorphism of Γ consists of automorphisms of the sets V and H that leave invariant

the structures L,g,v and ι. Denote by Aut(Γ) the authomorphism group of Γ. The genus

of a stable graph Γ is defined by g(Γ) :=
∑

v∈V g(v)+h1(Γ). Denote by Gg,n the set of
isomorphism classes of stable graphs of genus g with n legs.

For each stable graph Γ ∈Gg,n, there is an associated moduli space:

MΓ :=
∏
v∈V

Mg(v),n(v),

and a canonical map:

ξΓ : MΓ →Mg,n,

that is given by the gluing of the marked points corresponding to the two halves of each

edge in E(Γ). Each half-edge h ∈ H(Γ) determines a cotangent line bundle Lh → MΓ.

If h ∈ L(Γ), then Lh is the pull back via ξΓ of the corresponding cotangent line bundle

over Mg,n. Let ψh := c1(Lh) ∈H2(MΓ). The Pixton class will be described as a linear
combination of cohomology classes of the form:

ξΓ∗

(∏
h∈H

ψ
d(h)
h

)
,

where Γ ∈Gg,n and d : H(Γ)→ Z≥0.

Let A= (a1, . . . ,an) be a vector of double ramification data. Let Γ ∈Gg,n and r ≥ 1. A

weighting mod r of Γ is a function:

w : H(Γ)→{0, . . . ,r−1},

that satisfies the following three properties:

(1) for any leg li ∈ L(Γ), we have w(li) = ai mod r;

(2) for any edge e= {h,h′} ∈ E(Γ), we have w(h)+w(h′) = 0 mod r;

(3) for any vertex v ∈ V (Γ), we have
∑

h∈H(Γ), v(h)=vw(h) = 0 mod r.

Denote by WΓ,r the set of weightings mod r of Γ. We have |WΓ,r|= rh
1(Γ).

We denote by P d,r
g (A) ∈ H2d(Mg,n) the degree 2d component of the cohomology

class: ∑
Γ∈Gg,n

∑
w∈WΓ,r

1

|Aut(Γ)|
1

rh1(Γ)
ξΓ∗

⎡⎣ n∏
i=1

exp(a2iψli)
∏

e={h,h′}∈E(Γ)

1− exp(−w(h)w(h′)(ψh+ψh′))

ψh+ψh′

⎤⎦ (3.1)

in H∗(Mg,n). Note that the factor
1−exp(−w(h)w(h′)(ψh+ψh′ ))

ψh+ψh′
is well defined since the

denominator formally divides the numerator. In [16], the authors proved that for fixed
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g,A and d the class P d,r
g is polynomial in r for all sufficiently large r. Denote by P d

g (A)
the constant term of the associated polynomial in r.

The restriction of the class P j
g (A) to Mct

g,n is given by:

P j
g (A)

∣∣
Mct

g,n

=
2j

j!
θg(A)

j

∣∣∣∣
Mct

g,n

.

In [16], the authors proved that:

DRg(A) = 2−gP g
g (A).

In [8], the authors proved that the class P d
g (A) vanishes for d > g. In [16, page 10], the

authors remark, ‘For d< g, the classes P d
g (A) do not yet have a geometric interpretation’.

Our next conjecture shows that the intersection numbers of these classes with monomials
in psi classes have an elegant structure from the point of view of integrable systems.

Let us introduce the following generating series:

FP(t∗∗,ε,μ) :=
∑

g,n≥0
2g−2+n>0

g∑
j=0

ε2gμ2j

n!

∑
A=(a1,...,an)∈Z

n∑
ai=0

∑
d1,...,dn≥0

(∫
Mg,n

2−jP j
g (A)

n∏
i=1

ψdi
i

)
n∏

i=1

tai

di
,

and let:

(wP)a :=
∂2FP

∂t00∂t
−a
0

, a ∈ Z,

wP :=
∑
a∈Z

(wP)aeiay,

uP :=
S(εμ∂x)

S(iεμ∂x∂y)
wP.

Conjecture 2. The function uP satisfies the full noncommutative KdV hierarchy (2.5),
where we recall that we identify t0d = td and t00 = x.

Note that since: (
FP
∣∣ ε �→ετ
μ �→τ−1

)∣∣∣∣
τ=0

= FDR.

Conjecture 1 immediately follows from Conjecture 2.

Note also that since P 0
g (A) = 1, we have:

FP
∣∣
μ=t�=0

∗ =0
= FW,
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where FW is the classical generating series of intersection numbers on Mg,n considered
by Witten in [22]:

FW(t0,t1, . . . ,ε) :=
∑

g,n≥0
2g−2+n>0

ε2g

n!

∑
d1,...,dn≥0

(∫
Mg,n

n∏
i=1

ψdi
i

)
n∏

i=1

tdi
.

Clearly, we have:

(wP)a
∣∣
μ=t�=0

∗ =0
= (uP)a

∣∣
μ=t�=0

∗ =0
=

{
∂2FW

(∂t0)2
, if a= 0,

0, otherwise.

Thus, after the specialisation μ= t �=0
∗ = 0, Conjecture 2 says that the function ∂2FW

∂t20
is a

solution of the classical KdV hierarchy, which is the celebrated conjecture of Witten [22],

first proved by Kontsevich [17].

4. A relation with the DR/DZ equivalence conjecture

The goal of this section is to show that Conjecture 2 follows from the so-called DR/DZ

equivalence conjecture proposed in [2] and a result of [6], where the authors proved that
the DR hierarchy corresponding to the partial cohomological field theory formed by the

classes exp(μ2θg(A)) coincides with the noncommutative KdV hierarchy. In particular,

since the DR/DZ equivalence conjecture is proved at the approximation up to genus 1
[2, 4], this proves Conjecture 2 at the approximation up to genus 1.

4.1. Partial cohomological field theories

Recall the following definition, which is a generalisation first considered in [19] of the

notion of a cohomological field theory from [18].

Definition 4.1. A partial cohomological field theory (CohFT) is a system of linear
maps:

cg,n : V
⊗n →Heven(Mg,n),

for (g,n) in the stable range, where V is an arbitrary finite dimensional C-vector space

called the phase space, together with a special element e ∈ V called the unit and a
symmetric nondegenerate bilinear form η ∈ (V ∗)⊗2 called the metric, such that, fixing

a basis e1, . . . ,edimV in V, the following axioms are satisfied:

(i) The maps cg,n are equivariant with respect to the Sn-action permuting the n copies

of V in V ⊗n and the n marked points in Mg,n, respectively.

(ii) Let π : Mg,n+1 →Mg,n be the map that forgets the last marked point. Then

π∗cg,n(⊗n
i=1eαi

) = cg,n+1(⊗n
i=1eαi

⊗ e), 1≤ α1, . . . ,αn ≤ dimV.

Moreover, c0,3(eα⊗ eβ ⊗ e) = η(eα⊗ eβ) =: ηαβ for 1≤ α,β ≤ dimV .
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(iii) For decompositions I 
 J = [n], |I| = n1, |J | = n2 and g1 + g2 = g with

2g1−1+n1 > 0, 2g2−1+n2 > 0, let:

gl : Mg1,n1+1×Mg2,n2+1 →Mg1+g2,n1+n2
(4.1)

be the corresponding gluing map. Then:

gl∗cg,n(⊗n
i=1eαi

) = cg1,n1+1(⊗i∈Ieαi
⊗ eμ)η

μνcg2,n2+1(⊗j∈Jeαj
⊗ eν),

1≤ α1, . . . ,αn ≤ dimV , (4.2)

where ηαβ are the entries of the matrix (ηαβ)
−1.

Definition 4.2. A CohFT is a partial CohFT cg,n : V
⊗n →Heven(Mg,n), such that the

following extra axiom is satisfied:

(iv) gl∗cg+1,n(⊗n
i=1eαi

)= cg,n+2(⊗n
i=1eαi

⊗eμ⊗eν)η
μν for 1≤α1, . . . ,αn ≤ dimV , where

gl : Mg,n+2 → Mg+1,n is the gluing map that increases the genus by identifying

the last two marked points.

Note that a notion of infinite rank partial CohFT (i.e. a partial CohFT with an infinite
dimensional phase space V ) requires some care. One needs to clarify what is meant by the

matrix (ηαβ) and to make sense of the, a priori infinite, sum over μ and ν, both appearing

in Axiom (iii). One possibility is demanding that the image of the linear map V ⊗(n−1) →
H∗(Mg,n)⊗V ∗ induced by cg,n : V

⊗n →H∗(Mg,n) is contained in H∗(Mg,n)⊗ η	(V ),

where η	 : V → V ∗ is the injective map induced by the bilinear form η. Then in Axiom

(iii), instead of using an undefined bilinear form (ηαβ) on V ∗, one can use the bilinear
form on η	(V ) induced by η. This solves the problem with convergence.

A useful special case is the following. Consider a vector space V with a countable basis

{eα}α∈Z, and suppose that for any (g,n) in the stable range and each eα1
, . . . ,eαn−1

∈ V ,

the set {β ∈Z |cg,n(⊗n−1
i=1 eαi

⊗eβ) �=0} is finite. In particular, this implies that the matrix
ηαβ is row- and column-finite (each row and each column have a finite number of nonzero

entries), which is equivalent to η	(V )⊆ span({eα}α∈Z), where {eα}α∈Z is the dual ‘basis’.

Let us further demand that the injective map η	 : V → span({eα}α∈Z) is surjective too
(i.e. that a unique two-sided row- and column-finite matrix (ηαβ), inverse to (ηαβ), exists;

it represents the inverse map (η	)−1 : span({eα}α∈Z)→ V ). Then the equation appearing

in Axiom (iii) is well defined with the double sum only having a finite number of nonzero
terms. Such a partial CohFT will be called a tame partial CohFT of infinite rank.

4.2. The DR/DZ equivalence conjecture

Let us fix a positive integer N.

4.2.1. Differential polynomials. Let us introduce formal variables uα
i , α = 1, . . . ,N ,

i= 0,1, . . .. Following [11] (see also [21]), we define the ring of differential polynomials AN

in the variables u1, . . . ,uN as the ring of polynomials f(u∗,u∗
1,u

∗
2, . . .) in the variables uα

i ,

i > 0, with coefficients in the ring of formal power series in the variables uα = uα
0 :

AN := C[[u∗]][u∗
≥1].
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Remark 4.3. This way, we define a model of the loop space of a vector space V of
dimension N by describing its ring of functions. In particular, it is useful to think of

the variables uα := uα
0 as the components uα(x) of a formal loop u : S1 → V in a fixed

basis e1, . . . ,eN of V. Then the variables uα
1 := uα

x,u
α
2 := uα

xx, . . . are the components of the
iterated x -derivatives of a formal loop.

A gradation on AN , which we denote by deg, is introduced by deguα
i := i. The

homogeneous component of AN of degree d is denoted by A[d]
N . The operator:

∂x :=
∑
i≥0

uα
i+1

∂

∂uα
i

increases the degree by 1.

Differential polynomials can also be described using another set of formal variables,
corresponding heuristically to the Fourier components pαk , k ∈ Z, of the functions uα =

uα(x). We define a change of variables:

uα
j =

∑
k∈Z

(ik)jpαk e
ikx, (4.3)

which allows us to express a differential polynomial f(u,ux,uxx, . . .) ∈ AN as a formal

Fourier series in x. In the latter expression, the coefficient of eikx is a power series in the
variables pαj with the sum of the subscripts in each monomial in pαj equal to k.

Consider the extension ÂN :=AN [[ε]] of the space AN with a new variable ε of degree

degε := −1. Abusing the terminology, we still call its elements differential polynomials.
Let Â[k]

N ⊂ ÂN denote the subspace of differential polynomials of degree k.

4.2.2. The DR hierarchy of a partial CohFT. Consider an arbitrary partial

CohFT:

cg,n : V
⊗n →Heven(Mg,n).

Following [1, 2], we will present the construction of the DR hierarchy and the DR/DZ

equivalence conjecture. Formally, the results presented here were obtained in [1, 2] for a

CohFT, but, as it was already remarked in [2, Section 9.1], the construction of the DR
hierarchy works without any change for an arbitrary partial CohFT, and all the results

that we discuss here are true for an arbitrary partial CohFT with the same proofs.

Let N := dimV , and let us fix a basis e1, . . . ,eN ∈ V . Introduce the following generating
series:

Pα
β,d :=

∑
g≥0
n≥1

(−ε2)g

n!

∑
a1,...,an∈Z

(∫
DRg(−

∑n
i=1 ai,0,a1,...,an)

λgψ
d
2η

αγcg,n+2(eγ ⊗ eβ ⊗n
i=1 eαi

)

)

n∏
i=1

pαi
ai
ei(

∑n
j=1 aj)x, (4.4)
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for α,β = 1, . . . ,N and d= 0,1,2, . . .. The expression on the right-hand side of (4.4) can be

uniquely written as a differential polynomial from Â[0]
N using the change of variables (4.3).

Concretely, it can be done in the following way. From Hain’s formula (2.1), it follows

that the restriction DRg (−
∑n

i=1 ai,a1, . . . ,an)
∣∣
Mct

g,n+1

is a homogeneous polynomial in

a1, . . . ,an of degree 2g with the coefficients in H2g(Mct
g,n+1). This property, together with

the fact that λg vanishes on Mg,n\Mct
g,n (see, e.g. [12, Section 0.4]), implies that the

integral: ∫
DRg(−

∑n
i=1 ai,0,a1,...,an)

λgψ
d
2η

αγcg,n+2(eγ ⊗ eβ ⊗n
i=1 eαi

) (4.5)

is a homogeneous polynomial in a1, . . . ,an of degree 2g, which we denote by:

Qα
β,d,g;α1,...,αn

(a1, . . . ,an) =
∑

b1,...,bn≥0
b1+...+bn=2g

Qα;b1,...,bn
β,d,g;α1,...,αn

ab11 . . . abnn .

Then we have:

Pα
β,d =

∑
g≥0
n≥1

ε2g

n!

∑
b1,...,bn≥0

b1+...+bn=2g

Qα;b1,...,bn
β,d,g;α1,...,αn

uα1

b1
. . . uαn

bn
.

The system of PDEs:

∂uα

∂tβd
= ∂xP

α
β,d, 1≤ α,β ≤N, d≥ 0 (4.6)

is called the DR hierarchy. The flows of the hierarchy pairwise commute. Let

Aαeα := e ∈ V . The flow ∂
∂t11 :=Aα ∂

∂tα0
is given by:

∂uα

∂t110
= uα

x . (4.7)

Remark 4.4. The DR hierarchy is actually Hamiltonian, and in [1, 2], it is introduced via
a sequence of local functionals. However, since we don’t need the Hamiltonian structure

in this paper, we introduce directly the equations of the DR hierarchy.

Because of (4.7), as a solution of the DR hierarchy, we can consider an N -tuple of

formal power series uα(t∗∗,ε) ∈ C[[t∗∗,ε]], 1 ≤ α ≤N , satisfying the system (4.6) after the
identification of the flows ∂x and ∂

∂t110
. The string solution (ustr)α(t∗∗,ε) ∈ C[[t∗∗,ε]] of the

DR heirarchy is defined as the unique solution satisfying the initial condition:

(ustr)α
∣∣
tγn=δn,0Aγx

=Aαx.

The potential of our partial CohFT is defined by:

F(t∗∗,ε) :=
∑

g,n≥0
2g−2+n>0

ε2g

n!

∑
1≤α1,...,αn≤N

d1,...,dn≥0

(∫
Mg,n

cg,n (⊗n
i=1eαi

)
n∏

i=1

ψdi
i

)
n∏

i=1

tai

di
∈ C[[t∗∗,ε]].

The exponent exp
(
ε−2F

)
is traditionally called the partition function.
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Define:

(wtop)αn := ηαμ
∂n

(∂t110 )
n

∂2F
∂tμ0∂t

11
0

, 1≤ α≤N.

In [2, Proposition 7.2], the authors proved that there exists a unique differential

polynomial P ∈ Â[−2]
N , such that the power series F red ∈ C[[t∗∗,ε]] defined by:

F red := F + P|uγ
n=(wtop)γn

,

satisfies the following vanishing property:

Coefε2g
∂nF red

∂tα1

d1
. . . ∂tαn

dn

∣∣∣∣∣ t∗∗=0 = 0, if

n∑
i=1

di ≤ 2g−2. (4.8)

The power series F red is called the reduced potential of our partial CohFT.

The differential polynomials ũα ∈ Â[0]
N defined by:

ũα := η11μP
μ
α,0

are called the normal coordinates of the DR hierarchy. The differential polynomials ũα :=
ηαν ũν are also called the normal coordinates.

The following conjecture was presented in [2, Conjecture 7.5].

Conjecture 3. We have:

∂2F red

∂t110 ∂t
α
0

= ũα|uγ
n=(ustr)γn, 1≤ α≤N. (4.9)

Remark 4.5. To be precise, Conjecture 7.5 from [2] claims that:

FDRH = F red, (4.10)

where FDRH is the potential of the DR hierarchy, see Section 4.2 in [2] for the construction.

Let us explain why it is equivalent to Conjecture 3. In one direction, equation (4.9)

immediately follows from (4.10) and the definition of FDRH. Conversely, equation (4.9)

implies that ∂2Fred

∂(t110 )2
= ∂2FDRH

∂(t110 )2
, which, using the string equations for F red [2, Proposition

7.2] and FDRH [2, Proposition 6.3], gives that F red = FDRH (see [14, Lemma 3.1]).

4.3. The Pixton class as a partial cohomological field theory

Proposition 4.6. The classes:

cg,n(⊗n
i=1eai

) :=

g∑
d=0

2−dμ2dP d
g (a1, . . . ,an) (4.11)

form an infinite rank tame partial cohomological field theory with the phase space V =

span({ea}a∈Z), the unit e0 and the metric given in the basis {ea}a∈Z by ηab = δa+b,0.

Proof. Since cg,n(⊗n
i=1eai

) = 0 unless
∑n

i=1 ai = 0, the tameness property is clear.

To prove the axioms from Definition 4.1, the crucial observation is that formula (3.1)

is very close to the formula for the action of a Givental R-matrix on a topological
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field theory (see, e.g. [20, Section 2] for an introduction to these techniques). Let

Vr := span({e0, . . . ,er−1}) and fix a bilinear form ηr(ea,eb) :=
1
r δa+b=0 mod r on Vr. Starting

with the topological field theory ωg,n : V
⊗n
r →H0(Mg,n), where:

ωg,n(ea1
⊗. . .⊗ ean

) := r2g−1δa1+...+an=0 mod r,

and applying the Givental R-matrix:

R(z) := exp
(
−diagr−1

a=0(a
2)2−1μ2z

)
,

we obtain the CohFT:

Ωr
g,n(ea1

⊗. . .⊗ ean
) =

∑
Γ∈Gg,n

∑
w∈WΓ,r

r2g−1−h1(Γ)

|Aut(Γ)| ξΓ∗

[
n∏

i=1

exp(a2i 2
−1μ2ψli)

×
∏

e={h,h′}∈E(Γ)

2−1μ2 1− exp
(
2−1μ2

(
w(h)2ψh+w(h′)2ψh′

))
2−1μ2(ψh+ψh′)

⎤⎦,
whose unit is e0 and where WΓ,r are the same weightings appearing in formula (3.1). In

particular, the factor r2g−1−h1(Γ) comes from the product of the factors r2g(v)−1 appended
to each vertex v ∈ V (Γ) times the factors r appended to each edge (from the η−1

r in the

edge contributions), since:∑
v∈V (Γ)

(2g(v)−1)+ |E|= |E|− |V |+2

∑
v∈V (Γ)

g(v) = (h1(Γ)−1)+2(g−h1(Γ)) = 2g−1−h1(Γ).

Dividing the classes Ωr
g,n(⊗n

i=1eai
) by r2g−1 preserves the property of being a partial

CohFT. Therefore, the classes:

Ω̃r
g,n(ea1

⊗. . .⊗ ean
) :=

∑
Γ∈Gg,n

∑
w∈WΓ,r

1

|Aut(Γ)|
1

rh1(Γ)
ξΓ∗

[
n∏

i=1

exp(a2i 2
−1μ2ψli)

×
∏

e={h,h′}∈E(Γ)

2−1μ2 1− exp
(
2−1μ2

(
w(h)2ψh+w(h′)2ψh′

))
2−1μ2(ψh+ψh′)

⎤⎦
(4.12)

form a partial CohFT with the same phase space Vr, the metric η̃r(ea,eb) = δa+b=0 mod r

and the unit e0. Note that in this formula we have:

w(h)2 =−w(h)w(h′)+ rw(h), w(h′)2 =−w(h)w(h′)+ rw(h′).

Note also that the class Ω̃r
g,n(ea1

⊗. . .⊗ ean
) is zero unless a1+. . .+an = 0 mod r.
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For an integer a, let us denote by ã ∈ {0, . . . ,r−1} the unique number, such that a= ã

mod r. If r > |a|, then, clearly,

ã=

{
a, if a≥ 0,

r+a, if a < 0.

Consider an n-tuple A = (a1, . . . ,an) ∈ Z
n satisfying a1 + . . . + an = 0, and let Ã :=

(ã1, . . . ,ãn). Comparing formulas (3.1) and (4.12), and using Proposition 3” in [16], we

conclude that both classes Ω̃r
g,n(⊗n

i=1eãi
) and

∑
d≥0 2

−dμ2dP d,r
g (A) are polynomials in

r (for r sufficiently large) having the same constant term, which is equal to the class
cg,n(⊗n

i=1eai
) (one should notice that the factors 2−1μ2 appended to each psi class and

each edge of a stable graph in (4.12) globally produce a factor 2−dμ2d). The proposition

can now be easily derived from that.

To prove Axiom (iii) from Definition 4.1 for the classes cg,n(⊗n
i=1eai

), consider the
gluing map (4.1) with respect to the bilinear form η̃r. We have:

gl∗Ω̃r
g,n(⊗n

i=1eãi
) = Ω̃r

g1,n1+1(⊗i∈Ieãi
⊗ e−̃aI

)Ω̃r
g2,n2+1(⊗j∈Jeãj

⊗ e−̃aJ
).

Considering both sides as polynomials in r (for r sufficiently large) and taking the

constant terms, we obtain:

gl∗cg,n(⊗n
i=1eai

) = cg1,n1+1(⊗i∈Ieai
⊗ e−aI

)cg2,n2+1(⊗j∈Jeaj
⊗ e−aJ

),

as required. Proofs of Axioms (i) and (ii) are the same, and we omit them.

4.4. The DR/DZ equivalence conjecture implies Conjectures 1 and 2

Consider the partial CohFT given by the Pixton class,

cg,n(⊗n
i=1eai

) :=

g∑
d=0

2−dμ2dP d
g (a1, . . . ,an)

and the corresponding DR hierarchy.

Remark 4.7. Strictly speaking, we discussed the construction of the DR hierarchy only

for partial CohFTs with a finite dimensional phase space. However, it is not hard to

understand that, for a partial CohFT of infinite rank, tameness is a sufficient condition

for all the constructions and results to remain true. More precisely, while the definition
of the Hamiltonians of the DR hierarchy works even without the tameness hypothesis for

any infinite rank CohFT (at the cost of replacing the spaces of differential polynomials

and local functionals with a space of formal power series in all formal variables u∗
∗ and ε),

the construction of the equations of the DR hierarchy (4.6) already requires dealing with

the existence of the matrix (ηαβ) and the convergence of the infinite sum appearing in

formula (4.4). From there on, through the proof of compatibility of the equations of the
DR hierarchy (commutativity of Hamiltonians) to the existence of the potential of the DR

hierarchy FDRH featured in the DR/DZ equivalence conjecture, several constructions and

results present the very same problem. It is immediate to see that the tameness hypothesis
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is always sufficient to ensure that (ηαβ) exists and that all infinite sums always have only
a finite number of nonzero terms.

Proposition 4.8. The normal coordinates of the DR hierarchy are given by:

ũα = uα+
∑
g≥1

ε2g
(μα)2g

22g(2g+1)!
uα
2g, α ∈ Z. (4.13)

Proof. To compute the normal coordinates ũα, one has to compute the integrals:∫
Mg,n+2

DRg

(
−

n∑
i=1

ai,0,a1, . . . ,an

)
λg2

−dP d
g (0,−α,α1, . . . ,αn),

where n≥ 1, a1, . . . ,an,α1, . . . ,αn ∈ Z, 0≤ d≤ g, which by degree reasons can be nonzero

only if g−1+n= d. Therefore, only the integrals with n= 1 and d= g give a nontrivial
contribution, that is, the integrals:∫

Mg,3

DRg (−a,0,a)λgDRg(0,−α,α)
[6, Theorem 2.1]
============

(αa)2g

22g(2g+1)!
,

which gives formula (4.13).

Proposition 4.9. The reduced potential FP,red of our partial CohFT is equal to:

FP,red = FP+
∑
g≥1

(εμ)2g

22g(2g+1)!
(wtop)02g−2.

Proof. Equivalently, we have to check that:

FP,red = S(εμ∂x)FP,

where we identify x= t00.

For d ∈ Z, denote by Sd ⊂ C[[t∗∗,ε]] the space of formal power series F satisfying the

condition:

Coefε2g
∂nF

∂tα1

d1
. . . ∂tαn

dn

∣∣∣∣∣
t∗∗=0

= 0, if
n∑

i=1

di ≤ 2g+d.

By degree reasons, we have:

FP−
∑
g≥1

(εμ)2g
(
(−1)g

∫
Mg,1

λgψ
2g−2
1︸ ︷︷ ︸

=:bg

)
t02g−2 ∈ S−2.

Let b0 := 1. Using the string equation:

∂FP

∂t00
=
∑
a≥0

tαa+1

∂FP

∂tαa
+

1

2

∑
α∈Z

tα0 t
−α
0 ,
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we obtain:

∂2h
x FP−

∑
g≥0

(εμ)2g(−1)gbgt
0
2g+2h−2 ∈ S2h−2 for h≥ 1

⇒ S(εμ∂x)FP−
∑
g≥1

(εμ)2gt02g−2

( ∑
g1+g2=g

(−1)g1bg1
22g2(2g2+1)!

)
∈ S−2.

By [13, Theorem 2], the numbers bg are given by:

1+
∑
g≥1

bgz
2g =

iz

eiz/2− e−iz/2
=

1

S(iz)
,

which implies that S(εμ∂x)F̂DR ∈ S−2, as required.

Theorem 4.10. Suppose that Conjecture 3 is true for the partial CohFT given by the

Pixton class. Then Conjecture 2 is true.

Proof. Conjecture 3, together with Proposition 4.8, implies that:

∂2FP,red

∂t00∂t
−α
0

= S(μεα∂x)(u
str)α.

On the other hand, from Proposition 4.9, it follows that:

∂2FP,red

∂t00∂t
−α
0

= S(εμ∂x)(w
P)α.

Therefore,

(ustr)α =
S(εμ∂x)

S(iεμα∂x)
(wP)α ⇒ uP =

∑
α∈Z

(ustr)αeiαy.

In [6, Theorem 4.1], the author proved that
∑

α∈Z
(ustr)αeiαy satisfies the noncommutative

KdV hierarchy. This implies that uP satisfies the noncommutative KdV hierarchy, as
required.

Corollary 4.11. Conjectures 1 and 2 are true at the approximation up to ε2.

Proof. In [4], the authors proved that Conjecture 3 is true at the approximation up to

ε2. Together with Theorem 4.10, this gives the corollary.

5. A prediction for the integrals
∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1

In this section, using Conjecture 2, we will present an explicit formula for the generating

series of integrals
∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1 . We will then check several special cases of

this formula.
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Proposition 5.1. Suppose that Conjecture 2 is true. Then we have:

∑
1≤j≤g

(∫
Mg,2

2−jP j
g (a,−a)ψ3g−1−j

1

)
μ2jz3g−1−j =

1

z

(
S(aμz)

S(μz)
e

z3

24 −1

)
. (5.1)

Proof. By the string equation:

∂FP

∂t00
=
∑
a≥0

tαa+1

∂FP

∂tαa
+

1

2

∑
α∈Z

tα0 t
−α
0 , (5.2)

equation (5.1) is equivalent to:

∑
0≤j≤g

(∫
Mg,3

2−jP j
g (a,−a,0)ψ3g−j

1

)
︸ ︷︷ ︸

=:T j
g (a)

μ2jz3g−j =
S(aμz)

S(μz)
e

z3

24

⇔
∑

0≤j≤g

T j
g (a)μ

2jzg−j =
S(aμ)

S(μ)
e

z
24 . (5.3)

From (5.2), it also follows that:

∂n
x (w

P)α = δα,0δn,1+
∑

0≤j≤g

ε2gμ2jT j
g (α)t

α
3g−j+n+O

(
(t∗∗)

2
)
.

Therefore, ∂n
x (u

P)α has the form:

∂n
x (u

P)α = δα,0δn,1+
∑

0≤j≤g

ε2gμ2jRj
g(α)t

α
3g−j+n+O

(
(t∗∗)

2
)
, (5.4)

where Rj
g(α) =

∑j
h=0T

j−h
g−h (α)Qh(α) (recall that Qh(α) was defined in (2.8)) or, equiva-

lently,

∑
0≤j≤g

Rj
g(α)μ

2jzg−j =

⎛⎝ ∑
0≤j≤g

T j
g (α)μ

2jzg−j

⎞⎠⎛⎝∑
h≥0

Qh(α)μ
2h

⎞⎠ .

Since
∑

h≥0Qh(α)μ
2h = S(μ)

S(αμ) , we see that (5.3) is equivalent to the equation:

Rj
g(α) =

δj,0

24gg!
. (5.5)

Equation (5.5) is obvious for g = 0. The property (5.4) implies that:

1

2
∂x(u

P ∗uP)+
ε2

12
uP
xxx =

∑
α∈Z

∑
0≤j≤g

ε2gμ2j

(
Rj

g(α)+
1

12
Rj

g−1(α)

)
tα3g−je

iαy +O
(
(t∗∗)

2
)
,
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where we adopt the convention Rj
g(α) := 0 for j > g or g < 0. On the other hand, the

dilaton equation:

∂FP

∂t01
=
∑
a≥0

tαa
∂FP

∂tαa
+ ε

∂FP

∂ε
−2FP+

1

24

implies that:

∂(uP)

∂t01
=
∑
α∈Z

∑
0≤j≤g

ε2gμ2j(2g+1)Rj
g(α)t

α
3g−je

iαy +O
(
(t∗∗)

2
)
.

Using now the first equation of the noncommutative KdV hierarchy:

∂uP

∂t01
=

1

2
(uP ∗uP)+

ε2

12
uP
xxx,

we obtain:

Rj
g(α) =

1

24g
Rj

g−1 for g ≥ 1,

which gives (5.5) and proves the proposition.

Let us now check several special cases of formula (5.1). First of all, note that the
following two specialisations of (5.1) appeared in the literature before:

(1) If we put μ= 0 in (5.1), we obtain:

∑
g≥1

(∫
Mg,2

ψ3g−1
1

)
z3g−1 =

1

z

(
e

z3

24 −1
)

⇔
∑
g≥1

(∫
Mg,1

ψ3g−2
1

)
z3g−2 =

1

z2

(
e

z3

24 −1
)
,

which is a classical formula (see, e.g. [12, equation (6)]).

(2) Multiplying both sides of (5.1) by z, substituting μ �→ μz−1 and putting z = 0, we
obtain: ∑

1≤j≤g

(∫
Mg,2

DRg(a,−a)ψ2g−1
1

)
μ2j =

S(aμ)

S(μ)
−1,

which was proved in [7, Theorem 1].

The two special cases discussed above involved the integrals with the classes P j
g (A),

where j = 0 or j = g. Consider now an example with 0< j < g. For a fixed integer a and
r big enough, we have:

P 1,r
2 (a,−a) = a2(ψ1+ψ2)+ |a|(r−|a|) 1 21 1 +

r2−1

12
1 21 ,
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which gives:

P 1
2 (a,−a) = a2

(
ψ1+ψ2− 1 21 1

)
− 1

12
1 21 ,

where we refer a reader to [4, Section 2.1] for our pictorial notation for the cohomology

classes on Mg,n. Therefore, ∫
M2,2

P 1
2 (a,−a)ψ4

1 =
a2−1

288
,

which agrees with formula (5.1).
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