
Can. J. Math., Vol. XXX, No. 3, 1978, pp. 655-670 

HOMOLOGY INVARIANTS 

RICHARD HARTLEY AND KUNIO MURASUGI 

There have been few published results concerning the relationship between 
the homology groups of branched and unbranched covering spaces of knots , 
despite the fact t ha t these invariants are such powerful invariants for dis­
tinguishing knot types and have long been recognised as such [8]. I t is well 
known tha t a simple relationship exists between these homology groups for 
cyclic covering spaces (see Example 3 in § 3) , however for more complicated 
covering spaces, little has previously been known about the homology group, 
Hi(M) of the branched covering space or about H\{U), U being the corre­
sponding unbranched covering space, or about the relationship between these 
two groups. 

In this paper, a number of specific results are given concerning these 
homology groups and their interrelationship, and techniques are developed 
which may be applied to yield information about arbi t rary covering spaces, 
many illustrative examples being given. The question has great practical 
importance, since any 3-manifold can be obtained as a branched covering 
space of KS3, and therefore, information about the homology groups and homo-
topy groups of branched covering spaces of knots gives information about the 
homology and homotopy groups of 3-manifolds. In particular, a possible 
method of a t tacking the Poincaré conjecture is to find a covering space which 
is a homotopy sphere, and to demonstra te tha t it is not a sphere. I t is shown in 
this paper tha t the degree p + 1 PSL (2, p) covering spaces of knots can not 
give homotopy spheres except in very few cases. 

T h e method used is quite general and provides a way of obtaining represen­
tat ions of the homotopy or homology groups of large classes of covering spaces 
onto non-trivial groups. 

Part icular a t tent ion is given throughout this paper to the PSL covering 
spaces first considered by Riley. These covering spaces are impor tant in t ha t 
they are the first class of covering spaces to be considered which correspond to 
representations of the knot group on unsolvable groups. For this reason, they 
have great value in the s tudy of knots with trivial Alexander polynomial for 
which the usual metabelian invariants are useless. In this paper, specific 
information is given about the PSL homology invariants and conjectures 
A, B, and C of Riley [9] are proved, sometimes in slightly modified form. 
(Actually the par ts concerning the Betti numbers have already been proved 
in the paper [5].) 
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In the first section of this paper, we consider the problem of lifting a homo-
morphism of a knot group. If w: H -» K is an epimorphism, then we say t ha t 
co lifts to a group F if there are homomorphisms \p: H —> F and rj: F —» K such 
tha t co = \pr]. If \p is an epimorphism, we say t h a t œ lifts onto F. Some of the 
results proved in this section will be used later on in the s tudy of PSL cover­
ings, however the subject of lifting of homomorphisms is sufficiently interesting 
to be t reated here in a general context. Recently, Perko proved t ha t any 
representation of a knot group onto 53 lifts to a representation onto S\ [7], and 
Riley considered representations onto PSL(2, p) which lift to PSL(2, Z) 
[9, p. 609]. (These are also considered in the last section of this paper . ) 
Fur thermore a metabelian representat ion of a knot group may be thought of 
as a lifting of a cyclic representat ion; thus the method of lifting is valuable in 
finding new representations of knot groups. Corollary 1.3 shows how an 
arb i t rary representation may be lifted. This result does not overlap with the 
previous results quoted above. Lemma 4.1 may also be thought of as giving 
a necessary condition for a representation to be lifted. 

The following notat ion will be used: 

K is a knot in Sz 

G = G{K) is a knot group, iri(Ss — K) 
m is Si meridian of K 

I is a longitude of K 
N(K) is a regular neighbourhood of K 

Jn is a set of n elements 
S(Jn) is the group of all permuta t ions of Jn 

0 is a transit ive representat ion </>: G —> S(Jn) 
St^(a) is the stabilizer of a £ Jn under <f>. 

M = M<i> is the branched covering space corresponding to <f>. 
K is the branch curve in M. K = Kx \J K2 U . . . U Kr. 

U = 1/4, is the unbranched covering space, M^ — K 
br (Ki) is the branching index of Kt 

\Kt\ is the order of Kt in HX(M) 
\x\, where x is an element of a group, is the order of x. 

\A\, where A is a set or a group, is the number of elements in A. 

If A is an abelian group, then: 
T(A) is the torsion subgroup of A. 

B(A) is the Bett i number of A, t ha t is, the rank of A/T{A) 
T(A) is the order of r{A). 

If X is a relation matr ix for an abelian group, A, then 
B(X) is the column nullity of X, equal to B(A) 
T(X) is a generator of the first non-zero e lementary ideal of X, and is 

equal to T(A). 
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If AT is a manifold, then 

T(M) is abbreviated notation for T{HX(M)) 

B(M) is abbreviated notation for B(HX(M)) 

PSL(2, p) and SL(2, p) are defined in § 5 

A -» B is an epimorphism from A to B. 

1. T h e l i f t ing p r o b l e m . The present section deals with the problem of 
lifting a homomorphism from one group to another. The relevance of this 
section to the rest of the paper lies in the results of Example 2 and Theorem 
1.7 below, which will be used in Section 5, to deduce properties of PSL covering 
spaces of knots. 

An impor tant tool in the s tudy of liftings is the pull-back diagram [6, p. 71]. 
Given a diagram of groups and epimorphisms 

B 

(1.1) 1/3 

A » C 
a 

then the pull-back exists, is unique up to isomorphisms and may be realised as 
the subgroup {(a, b): a £ A, b G B, aa = bfi\ of A X B. The following lemma 
is useful for recognising pull-backs. 

LEMMA 1.1 The diagram 

V 
H >B 

É J j 0 
A — » C 

a 

is a pull-back diagram if and only if £ and t\ are onto, ker (J) C\ ker (??) = {1}, 
and (ker (77))£ = ker (a). (That is £ maps ker (77) isomorphically onto ker (a)). 

Proof. (''If" par t ) Given homomorphisms v\ V —> A and /*: V —> B such 
tha t va = ju/3 one sees by diagram chasing tha t for any x G V there is a unique 
element x' G H such tha t X'T? = x/d and x'£ = x^. Define a homomorphism ^: 
V -^ H such tha t xi/' = x r. This shows tha t H is the pull-back. 

("Only if" par t ) Jus t observe tha t the conditions are true for the part icular 
realisation of the pull-back as a subset of A X B. 

T H E O R E M 1.2 Given a commuting diagram 

M 

F » B 

v\ J (3 
A » C 

a 
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then there exists a homomorphism of F onto the pull-back of diagram (1.1) if and 
only if /x maps ker (v) onto ker (fi) (or v maps ker (/x) onto ker (a)). 

Proof. From the realisation of the pull-back as a subgroup of A X B, we 
see that the map \p from F to the pull-back is onto if and only if, given a £ A 
and b £ B such that «a = 6/3, then there exists x G F such that XJLX = b and 
#Ï> = a. This is equivalent to the given condition. 

Note. x\p is the unique element such that x\l/rj = XIJL and x\p£ = xv. 

The most important case occurring in the study of knot groups is of the 
pull-back of a diagram 

(1.2) C » B/Bf « B where C is a cyclic group. 

Theorem 1.2 takes the form: 

COROLLARY 1.3. / / /z: G(K) —» 5 w a homomorphism of G onto B, then /x /z/fo 
/0 a mapping \j/ onto the pull-back of the diagram (1.2). 

Proof. There is an epimorphism v: G —* C whose kernel contains G'. Then 
JU maps Gr onto i^7. So ^ is onto. 

The pull-back of such a diagram as (1.2) is also easy to identify. As a 
corollary to Lemma 1.1 we get: 

COROLLARY 1.4. If the diagram (1.2) is completed to the diagram 

H^UB 

£ I I 
C » BIB' 

such that ker (77) C\ ker (J) = {lj , then H is the pull-back. 

Proof. Once again the condition that (ker (%))rj = ker (0) is automatic. 

Example 1. Any epimorphism co: G(K) —>P5L(2, Z) can be lifted to an 
epimorphism \p: G(K) —+ SL(2,Z). (Also see Example 2). This follows from 
Corollary 1.3, since SL(2, Z) is the pull-back of the following diagram: 
Z 1 2 - » Z 6 ^ - P S L ( 2 , Z). 

Example 2. Let g.c.d. (m, n) = 1. Then any epimorphism, co, of G(K) onto 
the free product, Zm* Zn of Zm and Zn can be lifted to an epimorphism \p: 
G(K) —> G(Kmtn) = (s, t: sm = tn) where Km<n represents the torus knot of 
type (m, n) and G(Km,n) is its knot group. To prove this, one simply observes 
that G(Km<n) is the pull-back of the diagram Z -» Zmn «- Zm* Zn. 

Example 2 yields a necessary condition for a knot group to have a representa­
tion on Zm * Zn. 
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PROPOSITION 1.5. Let AK(i) and Am>n(t) denote the Alexander polynomials of a 
knot K and of Km,n respectively. If G{K) has a representation on Zm * Zn with 
g.c.d. (m, n) = 1, then AK(t) is divisible by Am,n(t). 

The proof is straight-forward and so is omitted. 

Since PSL(2, Z) = Z 2 * Z 3 and A2 ) 3(0 = 1 - t + t\ we obtain the fol­
lowing. 

COROLLARY 1.6. If a knot group, G(K), has a representation on PSL(2, Z) 
then AK(t) is divisible by 1 — t + t2. 

Example 3. If n is a square free integer and n divides AK( — \) then G{K) 
maps onto the semidirect product Z2q © Z„ given by (s} t: s2q, tn, sts~H) for any 
q = 0, 1 , 2 . . . . 

Proof. According to [4, p. 163; 8, p. 715] the knot group G{K) can be rep­
resented on Dn = Z 2 © Zn. Then observe tha t Z2q © Z„ is the pull-back of the 
diagram Z2q -» Z 2

 <<~ Z 2 © Zn . 

W e now consider under what conditions a representation of a knot group 
onto PSL(2, p), p ^ 3, may be lifted to SL(2, p). Since there are two elements 
in 5L(2 , Z) which are mapped onto each element of PSL(2, Z ) , it is possible 
for a mapping to be lifted in more than one way. 

T H E O R E M 1.7. If œ is a mapping from a knot group G onto PSL(2, p) such 
that \mœ\ =̂  2, then co may be lifted in two different ways to SL(2, p). 

Proof. A simple calculation shows tha t the elements of PSL(2, p) which 
have trace equal to zero are exactly the elements of order 2. 

The group G(K) is generated by a set of conjugate elements {xi}, meridians 
of the knot. We define a homomorphism \p: G(K) —>5L(2, p) by specifying 
its value on the generators, extending and verifying tha t the relators of G(K) 
are mapped to the identity matrix. Denote the natural homomorphism from 
SL(2, p) onto PSL(2, p) by a star, *. For each of the generators, xt define 
Xi\p to be one of the two elements of SL(2, p) such tha t xt\l/* = x̂ co in such a 
way tha t xt\p has the same trace for all i. This can be done in two possible 
ways. (Note tha t conjugate matrices have the same trace) . A Wirt inger 
relator of the group G(K) is of the form xfXjX^'xr1. Now (x^XjXi~eXjrl)\p = 
=b id, since {x^XjX^^XiT1)^ — id. Thus (xfXjXf^yp = =b xk\p. However, as 
remarked, (x^XjXf^x// and xk\p have the same trace. We deduce tha t 
(XieXjXi~e)\l/ = xkyp, whence (x^XjXC'XiT1)^ — id. 

As a result of Theorem 1.7, we can see tha t if mœ is of odd order, then œ can 
be lifted to an epimorphism \p: G(K) —>5X(2, p) such tha t |raco| = \m\p\. 

2. H o m o l o g y groups of 3 - m a n i f o l d s . In this section, we considéra l i n k L 
of r components, K\, . . . , Kr in an orientable closed 3-manifolcl M paying 
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particular attention to relationships between HX(M — L) and Hi(M). Brody 
[1] showed that for links of one component, H1(M — L) depends only on the 
homology class of L. The following theorem gives more specific information for 
links of any number, r, of components. 

THEOREM 2.1. Let H1(L)i* be the subgroup of H\(M) generated by the Kj. 
Then 

B{M - L) = B{M) + r - BiH^L)^) 
and 

riH^n/H^L^) ^ riH^M - L)) . 

Proof. The formula for the Betti numbers is simply a restatement of Proposi­
tion 1.3 of [5]. Thus we turn our attention to the torsion subgroups. 

Considering the following section of the homology exact sequence: 

HiiL) ^H^M) -tH^M, L) ->H0(L) 

one sees that the following sequence is exact: 

0 _> H^n/H^i* ->i3\(M, L) ->Ho(L). 

Since H0(L) is torsion free, r(ffi(if)/Hi(L)i„,) ^ r (F i (M, L)). By duality, 
H^M, L) ^ # i ( M , N(L)) ^ HX(M - N(L)\ dN(L)) ÊË H2(M - N(L)°) 
where N(L)° represents the interior of N(L). Furthermore, the Universal 
Coefficient Theorem for cohomology [11, p. 243] gives, with X representing 
M - N(L)Q: 

0 - > E x t (# i (X) , Z) -^H2(X, Z) ->Hom (H2(X), Z) -» 0. 

Since Horn (H2(X), Z) is torsion free, and r(Ext (Hi(X), Z) is isomorphic to 
rCfiTipO), we see that r( i7i(Z)) ^ T(H2(X)). Therefore, T(H,(M - L)) ^ 
r ^ W / i ^ L ) * , ) . 

The case where each |i£z-| is finite is the one which concerns us most. As a 
consequence of the first part of Theorem 2.1 we obtain the following. 

COROLLARY 2.2 Each Kt is of finite order in H\(M) if and only if the set of 
meridians {mt: i = 1, . . . , r) generates a free abelian group of rank r in 
HX(M - L). 

For the special case where r = 1 we get the following. 

COROLLARY 2.3. / / K is a knot in a 3-manifold AI and m is its meridian, then 
K is of finite order in H1(M) if and only if m is of infinite order in Hi (M — K). 

The following corollary follows straight from Theorem 2.1 in the case where 
each \Ki\ is finite. 

COROLLARY 2.4. If each Kt is of finite order in H1(M), then B{M — L) = 
B{M) + r and r(iïi(Af - L)) ^ T(H1(M)/H1(L)H). 
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A simple est imate of the order of Hi(L)i* leads to the following theorem. 

T H E O R E M 2.5. Let L = K\\J . . . U Kr be a link in a S-manifold M, and 

suppose that each Kt is of finite order in H\(M). Then 

l.c.m. {\K,\) | T(M)/T(M-L) \ fl \Kt\. 

In the s tudy of covering spaces of knots one can often derive relations be­
tween the components Kt (see next section). In such a case, the following lemma 
applies. 

LEMMA 2.6. If there exist integers atj such that Y,]=i aiiKj ~ Ofor i = 1, . . . ,s, 
and if \Kj\ = qj ^ 0, then 

l.c.m. (qt) | T(M)/T(M - L) \ T(X), 

where X is the matrix 7 and Y = ||<$î^;/|jrxn Z, = | |au | |sxr-

Proof. Clearly the order of H(L)i* divides T(X). 

The case where we are given a single relation is the most important . In this 
case the previous lemma can be simplified. 

LEMMA 2.7. / / X^=i ajKj ~ 0 and if s is the least positive integer such that 
sax = 0 (mod \Ki\) for all i, then 

l.c.m. (qt) I T(M)/T(M-L) \ ( r j q)/s. 

Since T(H\(M — L)) depends on the relationship between Hi(M) and 
Hi(L), it is not surprising tha t the orders of each Kt can be read from a 
certain matr ix for H\(M — L). For each i, let mt be a meridian of Kt. The set 
jwi j can be extended to a set {nti, . . . , mr, ux, . . . , un] of generators for 
Hi(M — L). One obtains a relation matrix for H\(M — L) of the form 
(A\B), where A has r columns, the ith column corresponding to the generators 
nti, and B has n columns corresponding to the generators ut. T h u s B is a 
relation matr ix for H\{M). If c is a column vector, then we say c = 0 (mod B) 
if c is an integral linear combination of the columns of B. The order of c (mod 
B) is the least positive integer a such tha t a c ^ 0 (mod B). In the following 
lemma, ct denotes the ith column of A corresponding to a meridian mu and 
the at are integers. 

LEMMA 2.8. The following statements are equivalent. 

i) Ert=i <iici = 0 (m°d £)• 
h) E l i o ^ - 0 inHx{M). 

iii) There is a homomorphism A: H\(M — L) to Z such that m t A = at for alii. 

Proof. Clearly i) and iii) are equivalent. We now show ii) and iii) are equiv­
alent. 
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Suppose ]T*=i UiKi ^ 0 in Hi(M). Let v2 be a 2-chain with boundary 
l^=i aj£*. Then for a in H\{M — L) we define aA = Int (z/2, a)> where Int 
is the intersection number. Then A is a homomorphism of Hi(M — L) into Z 
such that Mi A = at. 

Conversely, suppose the existence of such a A. By an adaptation of Proposi­
tion 1.1 of [5], one sees that there exists a 2-chain v2 with boundary 2Z*=i ÇtKt 
such that di — Mi A = Int (v2, m^. It follows that qt = at. 

It follows from Lemma 2.8 that \Ki\ is the order of column ^(mod B). 

3. Branched and unbranched coverings. In this section, we apply the 
results of the previous section to the covering space of a knot in Sz. If K is a 
knot in S2, and K = K\ U . . . U Kr is the covering link in a branched covering 
space, M, of S3 we will refer to M — K as U. If F is a Siefert surface spanning 
the knot K, then F lifts to a surface F in i f with boundary ^ ;*=i ô X"* where 
(if is the branching index of Ki. Thus 

r 

(3.1) £ a ^ ~ 0 mHxiM). 

The examples given in this section apply Lemma 2.6 to various covering 
spaces to obtain relationships between T(U) and T(M). It is clear that one 
could instead use Corollary 2.4 to obtain relationships between the torsion 
coefficients themselves with little extra work. 

Example 1. (Irregular Sz coverings) If M is an irregular 53 covering of a 
knot, then K = i?i U K2 where Kt is of index i and \Kt\ = qx• 7^ 0. The 
matrix X of Lemma 2.6 is 

\qi 0 1 
0 ?2 

LI 2 J 
which has torsion g.c.d. (2#i, ç2). 

Hence 

I .cm.(gi ,g2) I T(M)/T(U) I g.c.d. (2glf <?2). 

Therefore, T(M) = q2F{U) = \K2\T(U)L 

(Since link (Ku K2) = - 2 link (i?2, X2) it follows that link (Ku K2) is of 
the form 2a/b where b = T(M)/T(U).) 

Example 2. (PSL(2, p) coverings of degree £ + 1) The same argument 
applies to the PSL(2, p) representations called by Riley "reps" [9, p. 608] 
(see next section for more details on PSL(2, p) representations). These are 
PSL(2, p) representations into the permutation group S(Jp+i) such that m$ 
is of order p. We obtain T(M)/T(U) = \KP\ where Kp is the knot of index p. 
In this case, link (Ku Kp) is of the form pa/b where/; = T(M)/T(U). 
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Often one can obtain more restrictive homology relationships than (3.1). In 
fact, the surface F, which is a lifting of a Seifert surface, may split into several 
connected components, in which case we obtain one homology relation for 
each connected component. Let the base point b in 5 3 be on the intersection 
of F with the boundary of a regular neighbourhood N of K. Then b is covered 
by n points bt. There exists a pa th x on F from bt to bj if and only if there exists 
a pa th x on F such tha t i{x<t>) = j . Since any element of G represented by a 
path on F must lie in the commuta tor subgroup, G', we deduce tha t bt and bj 
lie on the same component of F only if i and j lie in the same orbit of Jn under 
the action of (£</>)'. Hence, if {Pt} ,i= I, . . . , s and {Qt} ,i = 1, . . . , t are 
respectively the orbits of Jn under {G<j>)' and (m</>) and aik = \Ptr\ Qj\ where 
Qj is any orbit of m<j) contained in 0k} then we have i relations of the form 
Sfe=i ctikKk ^ 0. Here Ok is one of the orbits of Jn under (m<£, /</>). These orbits 
are in a one-to-one relationship with the components Kt (see [5]). 

In the case of regular coverings, the situation is slightly more simple. <j> is 
called a regular representation if St^(i) = ker <f>. The corresponding covering 
space is also called regular. I t is easily seen tha t if 0 is a transit ive regular rep­
resentation of G into S(Jn), then the order of Gc/> is n. In a regular covering 
space, the group of covering translations acts transitively on the points bt 

above b, and hence on the branch curves. Since all the branch curves are there­
fore equivalent, we can write \Ki\ = t and br (K/) = a. Then X^=i aKi ^ 0. 
If \G<t>/{G(j>Y\ = s then there are s orbits of (G^)' in Jn. The relation (3.1) 
then splits up into 5 identical relations of the form 2Z^=i a/sKt ~ 0. 

Example 3. (Cyclic covering spaces) If M is the n-fold cyclic branched 
covering space, and <j> the corresponding representation, then K consists of a 
single branch curve of branching index n. Also \G<I>/(G(f))f\ = n. Hence K ~ 0 
and so HX(U) = Z + H^M) [4, p. 149]. 

Example 4. (Regular S% coverings) If M is the regular covering space cor­
responding to 0: G —> 5 3 —» S (Je), then K consists of 3 knots of branching 
index 2. Since \S,/S,f\ = 2, we obtain Kx + K2 + K, ~ 0. So \Ki\ \T(M)/ 
T(U) | \Ki\2. If K is a 2-bridged knot, it can be shown further tha t \Kt\ = 1. 
(The proof depends on the fact tha t M is a 2-fold branched cover of the 
irregular 5 3 covering space, which is Ss [2]. Hence H\(U) = Z + Z + Z 
+ H1(M)^ndH1(M)^Zd,d = * |A(-1) | . ) 

Finally we consider covering spaces in which there is a single branch curve. 
This will usually mean tha t mcj> is a single n cycle, but not always (see [5]). In 
any case, m<t> is a product of cycles of the same length, b = br (K) = | ra$ | . I f iV 
is a regular neighbourhood of K, then / lifts to a torus link I in the boundary of 
iV. If we choose a longitude X for diV (this is uniquely determined only up to 
a multiple of m), then / ~ am + b\, where g.c.d. (a, b) is the number of com­
ponents of /. Each component is a torus knot which is homologous in M to 
(b/g.c.d.(a, b))K. We write v = b/g.c.d. (a, b), and observe tha t v is easily 
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determined from the representat ion 0. In fact, if Ci, . . . , Cs are the cycles of 
mcj) and Di, . . . , D t are the cycles of /</>, it is clear t ha t all the Ci have the same 
length and so do all the Dt. Fur thermore |C/~^ D j[ does not depend on the 
part icular i and j . Then v = \CtC\ Dj\. I t follows t h a t st\Ct C\ D f\ = n. Also 

s\m<t>\ = n and t\l<f>\ = n. Hence v = \CiC\Dj\ = \m<j>\-\l4)\/n. 

T H E O R E M 3.1. If M is an n sheeted branched covering space in which the covering 
link has just one component, then 

\rn<t)\'\l(t)\/n \ \K\ | |w</>|. 

Furthermore |m<£| | n and |/<£| | n. 

Proof. Firstly, since / ~ 0 in 5 3 , it follows tha t l~ 0 in M. T h u s br (K) • K ~ 
0 and so | X | | b r (K). Let d = \K\ and b = br (K). Then / - a m + 6X in 
Hi(M — X ) where g.c.d. (a, 6) = 6/p. Now, since dK ~ 0, we see t ha t 
dX ~ dK ~ 0 in Hi(M). Hence dX ~ am in # i ( A f - i ? ) . T h u s from am + 
frX ^ 0 and ^X — am ^ 0 comes (a + ba/d)m ^ 0. Since m mus t be of 
infinite order, this means a + ba/d = 0. So ad + fra = 0. Dividing by g.c.d. 
(a, b) we obtain ad/g.c.d. (a, b) + fra/g.c.d. (a, 6) = 0. Since a/g.c.d.(<7, b) and 
6/g.c.d. (a, 6) have no common factor greater than 1, it follows t ha t b/g.c.d. 
(a, b) = v divides d. 

Example 5. (PSL(2, p) representat ions; p = 5, 7, 11) If M is a £ sheeted 
covering and m</> is a p cycle (£ prime) and /</> ^ id, then | i? | = p and so 
T ( M ) = pT(U). Actually r{U) ^ r(M)/(K) where (X) ^ Z„. Also B{M) = 
B{U) — 1. This case occurs in certain PSL(2, p) coverings when p = 5, 7, 11. 
See [9] and also the next section. This proves Conjecture C of Riley [9] under 
slightly modified hypotheses. 

4. E p i m o r p h i s m s of k n o t g r o u p s . A basic tool in the investigation of 
of homology invariants is a notat ion which was introduced in [5] bu t is re­
defined below for convenience. 

Let F be a group and x some element of F. Let </>: F —» S(Jn) be a t ransi t ive 
representation and let S = St^(a) where a is some element of / n . Define the 
elements {xt: i £ Jn) of 5 as follows. Let 2 ^ be some element of F such t ha t 
a(vai<p) = i. Then xt is to be the element vaiX

<r{i)vai~
1 where a(i) is the smallest 

positive integer such tha t xa(i) e S t 0 ( i ) . Of course, xf depends on the choice of 
elements vai, but the conjugacy class of xt in St^(a) is independent of this 
choice. 

Define the group w(F, (/>, x) to be S/({xi})s and define H(F, <t>, x) to be the 
commuta to r quot ient group of ir(F, 0, x). Now let G be a knot group and let / 
and m be longitude and meridian of the knot. Let 0 be a t ransi t ive represen­
tat ion of G and M and U the corresponding branched and unbranched covering 
spaces. I t is well known tha t S t 0 (a ) is isomorphic to TI(U, ba). In fact the 
projection map, p: U —> 5 3 — K induces an isomorphism pa* of 7ri(£/, ba) onto 
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S t ^ a ) . Hence, ir(G, </>, id) ~ St^(a) ~ TTI(U). The elements mt are just the 

projections of appropriately chosen meridians of the components of the 

covering link K. I t follows tha t ir(G, 0, m) ^ TTI(M). 

LEMMA 4.1. In the following diagram let \j/ be an epimorphism and £ a transitive 
permutation representation (not necessarily faithful). 

G^H^SUn) 

Let x be any element of G; then \p induces epimorphisms from T(G, \p%, x) onto 
7r(H, £, x\p) and from H(H, i//£, x) onto H(H, £, x\p). 

Proof. \p maps Sty$(«) onto St^(a), and v(lix
svai~

l onto (vai\l/)(x\p)s(v(li\p)~l. 

As a simple application of Lemma 4.1 we can prove the "only if" par t of a 
proposition due to Perko and Fox [7, Lemma 1]: 

PROPOSITION 4.2. Let £ be the homomorphism of S(JA) onto S(Jz) with kernel 
A = {id, (12) (34), (13) (24), (14)(23)}. Then a knot group G has a representa­
tion \p onto S (J A) such that \m\p\ = 2 only if Hi(M^t-) maps onto Z2 . 

Proof. We may assume m\// = (12). Then m\p% = (12). Lemma 4.1 s tates 
t h a t i / i C M ^ ) = H(G, ^ , m) maps onto # ( S ( / 4 ) , £, (12)). Now 5 = St^( l ) = 
A VJ A(23). Then H(S(J,),^ (12)) = S/((23))s ^ Z2 . 

The following lemma will prove useful. 

LEMMA 4.3. Given £; H —> S(Jn), suppose \x\ = \x%\ and that x£ is a regular 
element of S(Jn), that is, the cycles of x^ are all of the same length. Then T(H, £, x) 
= T(H, £, id) = S t { (a ) . 

Proof. One simply observes tha t all xt are the identity. 

Under certain circumstances, one knot group may map onto another knot 
group, by an epimorphism taking meridian to meridian. (Such an example will 
be considered in § 5). Thus we consider the homomorphisms 

ct>:G^G*^S(Jn) 

where G = G(K) and G* = G(K*) are knot groups. Let M, U, M* and U* be 
the covering spaces corresponding to 4> and \p respectively. Let K consist of s 
components Ki, . . . , Ks with meridians mi, . . . , ms and let K* consist of r 
components with meridians m*. Let {fhi\ generate a group F'mHi(U) and let F* 
be the group generated by {m*\ in Hi(U*). As Lemma 4.1 indicates, œ induces 
an epimorphism co#: Hi(U) —» Hi(U*) which takes mt to some m*, and takes 
/^onto F*. Since o># maps the set (w,) onto the set {ra/*} we see tha t r S s. If 
r = s, then we number the meridians (and hence the components) consistently 
such tha t w ĉo# = m*. 
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THEOREM 4.4. With the above notation, suppose that K and K* have the same 
number, r, of components and that each \K*\ is of finite order. Then 

i) Each Ki is of finite order, and \Kt\ divides \K*\; 
ii) B(M) - B(M*) = B(U) - B(U*) ^ 0 and B(U) = B(M) + r; 

iii) T(M)/T{U) divides T(M*)/T(U*); and 
iv) ifB(M) = B(M*) then T(M)/T(U) = T(M*)/T(U*). 

Proof. Since each K* is of finite order, F* is free abelian of rank r by Corol­
lary 2.2. Since F is generated by r meridians and is mapped onto F* by co#, it 
follows that F is free of rank r and so each Kt is of finite order. Now suppose 
that Y<ri=i (iiK*~0 in H\(M*). Then by Lemma 2.8 there is a homo-
morphism p: Hi(U*) —> Z such that m*p = ait This means that w#p is a 
homomorphism from H\{U) to Z such that m^fp = at. So YJi=i aiKt ~ 0 in 
Hi(M). Therefore, the mapping K*—>Ki defines a homomorphism of 
Hi(K*)i#, onto Hi(K)i* (notation as in Theorem 2.1). In particular \Ki\ 
divides \K*\. This proves i). Part ii) follows from the facts that Hi(M) maps 
onto Hi(M*) and F~ F*, and from Corollary 2.4. To prove iii) note that 
T(M)/T(U) = \Hx(R)u\ divides |/fi(X*)i«| = T(M*)/T(U*), where we 
use Corollary 2.4. 

Proof of iv): Consider the commutative diagram 

0 0 0 
1 Ï 

0-» 0 -> A 
7 1 

B 
ï Ï 

0-> F -+ Ht(U) 
0 ï 

ffi(M) 

0^ F*-^Hl(U*) 

ï i 
0 0 

^ 

H,{M*) 

i 
0 

where A is the kernel of co# and B the kernel of coft and y is induced by /3. All 
the rows and columns are exact except the top row. However, this is exact by 
the 3 X 3 lemma [6, p. 204], and so A ^ B. If B(M) = B(M*), then B(U) = 
B(U*) and both A and B are torsion groups. Therefore T(U*) = T(U)/T(A) 
and T(M*) = T(M)/T(B) from which the desired result follows. 

5. PSL coverings. The remainder of this paper is devoted to a detailed 
study of PSL coverings of knot groups. These coverings were studied by Riley 
[9] who made several conjectures concerning their homology invariants. Many 
of these conjectures are proved here. 

The group SL(2, p) consists of the 2 X 2 matrices over Zv with determinant 

1, and PSL(2, p) = SL(2, p)/(E) where E = " ^ _ ^ . The natural pro­

jection of SL{2, p) onto PSL(2, p) will be represented by a star, * . SL(2, p) is 
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generated by two elements, 5 = and T = 
0 

Since for p ^ 5, 

the group PSL(2, p) is simple, there is no apparent restriction on the image, 
raw, of a representation of a knot group G onto PSL(2, p). PSL(2, p) contains 
cyclic subgroups of orders p, (p + l ) / 2 and (p — l ) / 2 , and any element of 
the group is contained in a cyclic subgroup of one of these orders [3, § 318]. 
Fur thermore , for n = p, (p + l ) / 2 or (p — l ) / 2 , all cyclic subgroups of order 
n are conjugate [3; § 315, § 319, § 316] and therefore, any two cyclic subgroups 
of the same order are conjugate. The order of any element x must divide p, 
(p + l ) / 2 or (p - l ) / 2 . 

The group PSL(2, p) may be represented as a permutat ion group in various 
ways, since every subgroup of PSL(2, p) gives rise to a representation of 
PSL(2, p) into the group of permutat ions of its cosets. For a complete dis­
cussion of the subgroup structure of PSL(2, p), see [2, Chapter 20]. We will 
be mainly interested in the degree p + 1 representation described below. 

Let H be the group of lower triangular matrices in SL(2, p), and H* its 
image in PSL(2, p). i / a n d H* are the internal product of two cyclic subgroups 

F of order p, and D, the subgroups of diagonal matrices, of 

order p — 1. Fur thermore , conjugation by a generator of D gives an automor­
phism of F of order (p — l ) / 2 . Thus H is a semi-direct product 

where \ 

:„_! © Z„ = (S, V: S", V 

0 
Q!" -[: - l 

'*-! VSV-1 = S«> 

and a: is a primitive (£ — l ) / 2 t h root mod p. Then 

i7: * ^>w/ Z ( p_i ) / 2 © Zp ^ (5*, F*: S*p, F*^~ 1 ) / 2 , 7*5* = 5*«F*) 

Since H* is of index p + 1, there is a representation 17 of PSL(2, p) into 
5 ( / p + i ) . In fact if Jp+i is taken as the set of Zp U {00 j , then 17 has a simple 
description: 

(ai + c)/(bi + d) for i G /p+ii 

with a natural convention regarding 00 [3, § 315]. Then H* = St^(co). This 
simple formula makes this representation a particularly convenient one to deal 
with, and the one which will concern us most. 

I t follows from the first paragraph of [3, § 325] tha t there is only one con-
jugacy class of subgroups of index p + 1 in PSL(2, p), and hence tha t all 
permutat ional representations of PSL(2, p) of degree p + 1 are equivalent up 
to inner automorphism. 

By a PSL-representation of G we mean a homomorphism of G onto a group 
of permutat ions isomorphic to PSL(2, p). 

T H E O R E M 5.1. Let 4> be a PSL(2, p)-representation of G(K) of degree p + 1, 
and let 0 be the order of m$. Let M = M^. 
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a) If o = p, then Hi(M) maps onto Zv_\. 
b) If o divides (p + l ) / 2 then Hi(M) maps onto Zn, where 

n = p — 1 if o is odd, 

n = (p — l ) / 2 if o w even. 
c) / f 0 divides (p — l ) / 2 /Aew H\(M) maps onto Zn, where 

n = (p — l)/o if o is odd, 
n = (p — l)/2o if o is even. 

Proof. We may assume tha t </> = COT? where œ is a homomorphism G -» 
PSL(2, p). Since all cyclic subgroups of the same order are conjugate we may 

assume in par t a) t ha t mœ is a power of S* = 

and a is a primit ive root 

* 
of order p and in par t 

c) tha t mco is a power of V* where V = 
a 0 
0 a~l 

mod p. V* has order (£ — l ) / 2 . 
In the cases where 6> is odd, we apply Theorem 1.7 to lift w to a representa­

tion fi G (K) - » SL (2, £) such t ha t \m\f/\ = \mœ\. Let X: S i (2, />) -> S(JP+1) be 
such tha t ^X = wry. Then Stx(oo) = H, and 7ri(Af) = TT(G, </>, m) maps onto 
7 r ( 5 L ( 2 , ^ ) , X , m ^ ) . 

Part a). In this case o is odd. Suppose ra^ = Sr = X. Then AT* = id for all 
i except oo , and Xœ = X = Sr. So ir(SL(2, p), X, 5 r ) = H/{ST)H ^ Zv_x. 

Part b). In this case, m<t> is a regular element of S(Jp+i) [3, § 317], and so 
Lemma 4.3 applies. If o is odd, we lift to SL(2, p). L e m m a 4.3 still applies, 
and we see tha t ir\(M) maps onto H ~Zp_i © Zv. In the case where o is even, 
we work in PSL(2, p). Then TT\(M) maps onto Z ( P _ D / 2 © Z7;. 

Pa r / c). In this case mcj) has two fixed points, 0 and oo , and is regular in the 
other elements of Jp+i. Suppose tha t o is odd, then, if mxp = X, then Xt = id 
for all i except for i = 0 and oo , in which case, let t ing z^o = P, we see tha t 
Xœ = X and Xo = X~\ T h u s ir(SL(2, p), X, mf) *É H/{X)H. Since X is a 
power of V of order o, it is easily seen from the presentat ion of H t ha t 
H/(X)H ^ Zn where n = (p - l)/o. 

When o is even, we assume mco = X* is of order o. The details are similar to 
the case where o is odd, except t ha t we work in PSL(2, p). Then 

*(PSL(2, p), X, m*) ^ H*/(X*)"' ^ Z„ 

where n = (p — l)/2o. 

For /> = 5, 7, 11, there is a unique representat ion of P 5 L ( 2 , £) of degree /?. 
This representat ion is part icularly interesting when p = 5, for then PSL(2, p) 
= A5, and the most natural representat ion of A5 is in S(JÔ). 

The following theorem lists all the possible representat ions of this type . 

T H E O R E M 5.2. Let <j> be a PSL(2, p)-representation of G(K) of degree p, and 
let o be the order of m<f>. Let M = M$. 
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Case 1. p = 5. 

(a) If o = 5, then TTI(M) maps onto A\, and so H\{M) maps onto Z3 . 

(b) If o = 2, //&.ew TTI(M) maps onto Z3. 

(c) / / o = 3, we draw no conclusion. 

Case 2. p = 7. 
(a) I / o = 7, //zew 7ri(M) ma^5 ow/0 S4, awrf so H\(M) maps onto Z2 . 
(b) If o = 3, /feew 7Ti(M) wf^5 ow/0 Z2 . 
(c) I / o = 2 or 4:, we draw no conclusion. 
Case 3. p = 11. 
(a) If o = 11, /feew 7ri(M) maj5 0wto ^45. 
(b) 7 / o ^ 11, we draw no conclusion. 

Proof. Let £: PSL(2, p) —+S(JP) be a representation of degree £. Then the 
stabilizer Stg( l ) is isomorphic to A±, 5 4 or Ab according as p = 5, 7, or 11. 
Apply Lemma 4.1, or 4.3. 

Of the cases considered in the previous theorems there are very few cases in 
which the covering space may be a homotopy sphere, or indeed even a homology 
sphere. For p ^ 5, if </> is a PSL(2, p)-representation of degree p + 1, then 
M<j> may be a homology sphere only if p = 1 (mod 4) and m(f> is of order 
(p - _ l ) / 2 . 

This occurs when p = 5 and |ra$| = 2. In this case, however, Riley's tables 
[9] always show H1(M) mapping onto Z2 , which suggest tha t it may be 
impossible to obtain a homology sphere as a degree p + 1 P5L-covering of a 
knot. 

Theorem 5.2 shows a number of cases in which the degree p coverings for 
p = 5, 7, 11, may be homology spheres. In particular, when p — 5, one may 
obtain a homology sphere when m<f> is of order 3. Riley's tables indeed show 
many examples of knots whose degree 5 covering spaces are homology spheres. 
For two-bridged knots it can be shown by the techniques of Burde [2] t ha t 
these covering spaces are in fact spheres. However, the 3-bridged knots can not 
be so conveniently disposed of. 

Finally, we prove sharpened Conjecture B of Riley [10; p. 25]. Riley ob­
served t ha t certain knot groups have a homomorphism onto PSL(2, Z ) , and 
therefore onto PSL (2, p) for any p. If modp is the homomorphism of PSL (2, Z) 
onto PSL(2, p) and rj the permutat ion representation of PSL(2, p) into 
S(Jp+\) let £p = modp??. Let Mv and Up be the covering spaces, branched and 
unbranched, corresponding to the representation w£p of G(K). (In fact Mp has 

p + 1 sheets). We assume tha t mw = -CÏ . Then according to Example 2 

in § 1, co can be lifted to a homomorphism \[/ of G(K) onto G(K2^), and by the 
remark following Theorem 1.2, one sees tha t \p takes m, a meridian of K onto 
m*, a meridian of i£2,3. Now write co = ^ft, and define Mp* and Z7P* to be the 
covering spaces of i£2>3 corresponding to j3£p. 

Definition. When a prime £> = 1, 5, 7, 11 (mod 12), define respectively 
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jp = —13, —5, —7, 1 and rp = 1, 3, 2, 6. Write bp = (p + jp)/6 and dp = 
(p + l ) / r p and tp = 6//y 

LEMMA 5.4. The relation matrix of Hi(Up*) is 

(5.1) (tptpdptpOO...O) 

bP 

with the first two columns corresponding to rhi* and m2*. Therefore, B(MP*) = 
bp, B(Up*) =bp + 2 and T(M*) = dptp, T(UP*) = tp. 

Proof. The matrix (5.1) can be computed by the well known Reidemeister-
Schreier method. However, the computation is tedious, and hence is omitted. 
(Also, see [10, p. 26]). 

The number of components of K in Mp is always equal to two. Hence the 
hypotheses of Theorem 4.4 are satisfied in the case here considered. Thus as 
an immediate consequence of that lemma we obtain: 

THEOREM 5.5. Given 

4>:G(K)?>PSL(2!p)l>S(Jp+1) 
where a lifts to a homomorphism a>: G(K) —> PSL(2, Z) such that mw = 

L then 

i) B(MP) è bp and B(UP) = B(MP) + 2; 
ii) T(MP)/T(UP) divides dp; 

iii) if B(MP) = bp} then T(MP) = T{Up)-dp. 

Remark. Riley proved in [10, Theorem 3] that B(UP) ^ bp + 2. 
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