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HOMOLOGY INVARIANTS
RICHARD HARTLEY AND KUNIO MURASUGI

There have been few published results concerning the relationship between
the homology groups of branched and unbranched covering spaces of knots,
despite the fact that these invariants are such powerful invariants for dis-
tinguishing knot types and have long been recognised as such [8]. It is well
known that a simple relationship exists between these homology groups for
cyclic covering spaces (see Example 3 in § 3), however for more complicated
covering spaces, little has previously been known about the homology group,
H,(M) of the branched covering space or about H,(U), U being the corre-
sponding unbranched covering space, or about the relationship between these
two groups.

In this paper, a number of specific results are given concerning these
homology groups and their interrelationship, and techniques are developed
which may be applied to yield information about arbitrary covering spaces,
many illustrative examples being given. The question has great practical
importance, since any 3-manifold can be obtained as a branched covering
space of 53, and therefore, information about the homology groups and homo-
topy groups of branched covering spaces of knots gives information about the
homology and homotopy groups of 3-manifolds. In particular, a possible
method of attacking the Poincaré conjecture is to find a covering space which
is a homotopy sphere, and to demonstrate that it is not a sphere. It is shown in
this paper that the degree p + 1 PSL(2, p) covering spaces of knots can not
give homotopy spheres except in very few cases.

The method used is quite general and provides a way of obtaining represen-
tations of the homotopy or homology groups of large classes of covering spaces
onto non-trivial groups.

Particular attention is given throughout this paper to the PSL covering
spaces first considered by Riley. These covering spaces are important in that
they are the first class of covering spaces to be considered which correspond to
representations of the knot group on unsolvable groups. For this reason, they
have great value in the study of knots with trivial Alexander polynomial for
which the usual metabelian invariants are useless. In this paper, specific
information is given about the PSL homology invariants and conjectures
A, B, and C of Riley [9] are proved, sometimes in slightly modified form.
(Actually the parts concerning the Betti numbers have already been proved
in the paper [5].)
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In the first section of this paper, we consider the problem of lifting a homo-
morphism of a knot group. If w: H - K is an epimorphism, then we say that
w lifts to a group F if there are homomorphisms ¢: H — F and 9: FF— K such
that w = Yn. If ¥ is an epimorphism, we say that w lifts onto F. Some of the
results proved in this section will be used later on in the study of PSL cover-
ings, however the subject of lifting of homomorphisms is sufficiently interesting
to be treated here in a general context. Recently, Perko proved that any
representation of a knot group onto S; lifts to a representation onto S, [7], and
Riley considered representations onto PSL(2, p) which lift to PSL(2, Z)
19, p. 609]. (These are also considered in the last section of this paper.)
Furthermore a metabelian representation of a knot group may be thought of
as a lifting of a cyclic representation; thus the method of lifting is valuable in
finding new representations of knot groups. Corollary 1.3 shows how an
arbitrary representation may be lifted. This result does not overlap with the
previous results quoted above. Lemma 4.1 may also be thought of as giving
a necessary condition for a representation to be lifted.

The following notation will be used:

K is a knot in S?
G = G(K) is a knot group, m1(S? — K)
m is a meridian of K
! is a longitude of K
N(K) is a regular neighbourhood of K
J, is a set of n elements
S(J,) is the group of all permutations of J,
¢ is a transitive representation ¢: G — S(J,)
Sty (a) is the stabilizer of ¢ € J, under ¢.
M = M, is the branched covering space corresponding to ¢.
K is the branch curvein M. K = K, UK, U... UK,
U = U, is the unbranched covering space, M, — K
br (K;) is the branching index of K,
|K | is the order of K; in H,(M)
|«|, where x is an element of a group, is the order of x.
[4], where A is a set or a group, is the number of elements in 4.

If 4 is an abelian group, then:
7(4) is the torsion subgroup of 4.
B(4) is the Betti number of 4, that is, the rank of 4/7(4)
T(A4) is the order of 7(4).

If X is a relation matrix for an abelian group, 4, then
B(X) is the column nullity of X, equal to B(4)
T'(X) is a generator of the first non-zero elementary ideal of X, and is
equal to 7°(4).
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If M is a manifold, then
T'(M) is abbreviated notation for T'(H,(M))
B(M) is abbreviated notation for B(H,(M))
PSL(2, p) and SL(2, p) are defined in § 5
A - B is an epimorphism from 4 to B.

1. The lifting problem. The present section deals with the problem of
lifting a homomorphism from one group to another. The relevance of this
section to the rest of the paper lies in the results of Example 2 and Theorem
1.7 below, which will be used in Section 5, to deduce properties of PSL covering
spaces of knots.

An important tool in the study of liftings is the pull-back diagram [6, p. 71].
Given a diagram of groups and epimorphisms

B

(1.1) l B
A—»C
o
then the pull-back exists, is unique up to isomorphisms and may be realised as

the subgroup {(«, b): « € A,b € B, aa = bB} of A X B. The following lemma
is useful for recognising pull-backs.

Lemma 1.1 The diagram

n
H-— B

171

A—» C
«

is a pull-back diagram if and only if £ and n are onto, ker (¢) M ker (n) = {1},
and (ker (9))¢ = ker (a). (That is £ maps ker () isomorphically onto ker (a)).

Proof. (“'If" part) Given homomorphisms »: 1V — 4 and p: V — B such
that va = uB one sees by diagram chasing that for any x € V' there is a unique
element ¥ € H such that x'n = xu and x’¢ = xv. Define a homomorphism ¢:
V' — H such that x¢ = x’. This shows that H is the pull-back.

(*Only if"” part) Just observe that the conditions are true for the particular
realisation of the pull-back as a subset of 4 X B.

THEOREM 1.2 Given « commuting diagram

o
F— B

1l

A—s C
«
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then there exists a homomorphism of I onto the pull-back of diagram (1.1) if and
only if wmaps ker (v) onto ker (8) (or v maps ker (u) onto ker (a)).

Proof. From the realisation of the pull-back as a subgroup of 4 X B, we
see that the map ¢ from F to the pull-back is onto if and only if, given « € 4
and b € B such that «a = bB, then there exists x € F such that xu = b and
xv = a. This is equivalent to the given condition.

Note. xy is the unique element such that xyn = xu and xy¢ = xv.

The most important case occurring in the study of knot groups is of the
pull-back of a diagram

B

(1.2) C— B/B" «~— B where (s a cyclic group.

Theorem 1.2 takes the form:

CoroLLARY 1.3. If p: G(K) — B is « homomorphism of G onto B, then u lifts
to a mapping ¥ onto the pull-back of the diagram (1.2).

Proof. There is an epimorphism v: G — C whose kernel contains G’. Then
w maps G’ onto B’. So ¢ is onto.

The pull-back of such a diagram as (1.2) is also easy to identify. As a
corollary to Lemma 1.1 we get:

CoROLLARY 1.4. If the diagram (1.2) 1s completed to the diagram

H-1,p

I

C—» B/B
such that ker () M ker (§) = {1}, then H 1is the pull-buck.

Proof. Once again the condition that (ker (¢))y = ker (8) is automatic.

Example 1. Any epimorphism w: G(K) — PSL(2, Z) can be lifted to an
epimorphism ¢: G(K) — SL(2,Z). (Also see Example 2). This follows from
Corollary 1.3, since SL(2, Z) is the pull-back of the following diagram:
AT P PSL(Q, Z)

Example 2. Let g.c.d. (m, n) = 1. Then any epimorphism, w, of G(K) onto
the free product, Z,* Z, of Z, and Z, can be lifted to an epimorphism :
G(K) > G(Kp,) = (s, t: s" = ") where K, , represents the torus knot of
type (m, n) and G(K,, ,) is its knot group. To prove this, one simply observes
that G(K,, ,) is the pull-back of the diagram Z » Z,,,« Z,* Z,.

Example 2 yields a necessary condition for a knot group to have a representa-
tion on Z,, * Z,,.
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ProrosiTiON 1.5. Let Ag(t) and A, ,(t) denote the Alexander polynomials of a
knot K and of K,, , respectively. If G(K) has a representation on Z,, * Z, with
g.cd. (m, n) = 1, then Ag(t) vs divisible by A, ,(t).

The proof is straight-forward and so is omitted.

Since PSL(2, Z) = Zy*Z; and As;3(t) = 1 — t + %, we obtain the fol-
lowing.

CoROLLARY 1.6. If a knot group, G(K), has a representation on PSL(2, Z)
then Ag(t) 1s divisible by 1 — ¢ + 2.

Example 3. 1f n is a square free integer and n divides Ax(—1) then G(K)
maps onto the semidirect product Z,, ® Z, given by (s, t: 527, * sts=1t) for any
qg=0,1,2....

Proof. According to (4, p. 163; 8, p. 715] the knot group G(K) can be rep-
resented on D, = Z, © Z,. Then observe that Z,, ® Z, is the pull-back of the
diagram Z,, » Z, <« Z, © Z,.

We now consider under what conditions a representation of a knot group
onto PSL(2, p), p = 3, may be lifted to SL(2, ). Since there are two elements
in SL(2, Z) which are mapped onto each element of PSL(2, Z), it is possible
for a mapping to be lifted in more than one way.

THEOREM 1.7. If w is @ mapping from a knot group G onto PSL(2, p) such
that |mw| # 2, then w may be lifted in two different ways to SL(2, p).

Proof. A simple calculation shows that the elements of PSL(2, p) which
have trace equal to zero are exactly the elements of order 2.

The group G(K) is generated by a set of conjugate elements {x;}, meridians
of the knot. We define a homomorphism ¢: G(K) — SL(2, p) by specifying
its value on the generators, extending and verifying that the relators of G(K)
are mapped to the identity matrix. Denote the natural homomorphism from
SL(2, p) onto PSL(2, p) by a star, *. For each of the generators, x; define
x4 to be one of the two elements of SL(2, p) such that x* = x. in such a
way that x4 has the same trace for all 7. This can be done in two possible
ways. (Note that conjugate matrices have the same trace). A Wirtinger
relator of the group G(K) is of the form x;%x x;7x;~1 Now (x; 6, %,y =
=+ id, since (x %0, %, )¢Y* = id. Thus (x;%xx; )¢ = =+ x. However, as
remarked, (x;%%x; )¢ and x¢ have the same trace. We deduce that
(i 7)Y = x, whence (xxx,~ %, )y = id.

As a result of Theorem 1.7, we can see that if mw is of odd order, then w can
be lifted to an epimorphism y¢: G(K) — SL(2, p) such that |mw| = |my|.

2. Homology groups of 3-manifolds. In this section, we consider a link L
of » components, Ki,..., K, in an orientable closed 3-manifold M paying
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particular attention to relationships between H,(M — L) and H,(M). Brody
[1] showed that for links of one component, H;(M — L) depends only on the
homology class of L. The following theorem gives more specific information for
links of any number, 7, of components.
THEOREM 2.1. Let Hi(L)1y be the subgroup of H,(M) generated by the K ;.

Then

B(M — L) = B(M) 4+ r — B(H (L)1y)
and

T(H(M)/H(L)iy) = 7(H, (M — L)).

Proof. The formula for the Betti numbers is simply a restatement of I’roposi-
tion 1.3 of [5]. Thus we turn our attention to the torsion subgroups.
Considering the following section of the homology exact sequence:

HL(L) S H (M) — Ho(M, L) — Hy(L)
one sees that the following sequence is exact:
0— H(M)/H\(L)iy — H,(M, L) — Hy(L).

Since H,(L) is torsion free, 7 (H,(M)/H(L)iy) = 7 (H,(M, L)). By duality,
H(M, L) = H,(M, N(L)) =X H,(M — N(L)°, dN(L)) = H*(M — N(L)°)
where N (L) represents the interior of N(L). Furthermore, the Universal
Coefficient Theorem for cohomology [11, p. 243] gives, with X representing
M — N(L)%:

0— Ext (H.(X), Z) > H*(X, Z) » Hom (H.(X), Z) — 0.

Since Hom (H,(X), Z) is torsion free, and 7(Ext (H,(X), Z) is isomorphic to
7(H1(X)), we see that 7(H (X)) = r(H*(X)). Therefore, 7(H,(M — L)) =
r(H (M)/H,(L)1y).

The case where each |K | is finite is the one which concerns us most. As a
consequence of the first part of Theorem 2.1 we obtain the following.

COROLLARY 2.2 Each K ; 1s of finite order in H,(M) if and only if the set of
meridians {m; 1= 1,...,r} generates a free abelian group of rank r in
Hy(M — L).

For the special case where r = 1 we get the following.

CoRrOLLARY 2.3. If K is a knot in a 3-manifold M and m 1s its meridian, then
K s of finite order in H,(M) if and only if m is of infinite order in H\(M — K).

The following corollary follows straight from Theorem 2.1 in the case where
each |K,| is finite.

CoroLLARY 2.4. If each K, is of finite order in H,(M), then B(M — L) =
B(M) 4+ rand r(Hi(M — L)) = r(H.(M)/H(L)14).
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A simple estimate of the order of H;(L)i4 leads to the following theorem.

THEOREM 2.5. Let L = K;1\J ... \J K, be ¢ link in a 3-manifold M, and
suppose that each K ; is of finite order in H,(M). Then

Lem. (|Kq|) | 7(M) /T (M — L) | 1}1 K.

In the study of covering spaces of knots one can often derive relations be-
tween the components K ; (see next section). Insuch a case, the following lemma
applies.

LEMMA 2.6. Ifthere exist integers a;such that Y i1 ¢ ;K; ~ 0fori = 1,...s,
and if |[K,| = q; # 0, then

lem. (g,) | TM/T M — L) | T(X),
where X 1s the matrix [\Z{] and ¥V = 18,9l ixrs Z = llasjl]sxr

Proof. Clearly the order of H(L)i4 divides 7°(X).

The case where we are given a single relation is the most important. In this
case the previous lemma can be simplified.

LEmMma 2.7. If %1 a;K; ~ 0 and if s is the least positive integer such that
sa, = 0 (mod |K|) for all i, then

Lem. () | T(M)/T(M — L) | (I‘] qi) /s.

=1

Since 7(H,(M — L)) depends on the relationship between H,(M) and
H,(L), it is not surprising that the orders of each K; can be read from a
certain matrix for H;(M — L). For each 1, let m; be a meridian of K ;. The set
{m;} can be extended to a set {my,...,m,, us,...,u,} of generators for
H,(M — L). One obtains a relation matrix for H,(M — L) of the form
(A4|B), where A has r columns, the ¢th column corresponding to the generators
m;, and B has n columns corresponding to the generators u;. Thus B is a
relation matrix for H,(M). If ¢ is a column vector, then we say ¢ = 0 (mod B)
if ¢ is an integral linear combination of the columns of B. The order of ¢ (mod
B) is the least positive integer « such that @« ¢ = 0 (mod B). In the following
lemma, c¢; denotes the 7th column of 4 corresponding to a meridian m,, and
the @, are integers.

LEMMA 2.8. The following statements are equivalent.
i) Y1 axc; =0 (mod B).
i) Yicia.K;~0 in H(M).
iii) There is a homomorphism A: Hi(M — L) to Z such thatm;A = a,for all 1.

Proof. Clearly i) and iii) are equivalent. We now show ii) and iii) are equiv-
alent.
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Suppose 3.1 «,K; ~ 0 in H(M). Let v, be a 2-chain with boundary
> ie1 a;K . Then for @ in H(M — L) we define a A = Int (vq, «), where Int
is the intersection number. Then A is a homomorphism of H,(M — L) into Z
such that m;A = a,.

Conversely, suppose the existence of such a A. By an adaptation of Proposi-
tion 1.1 of [5], one sees that there exists a 2-chain v, with boundary X% ¢.K;
such that ¢; = m; A = Int (v, m,). 1t follows that ¢; = a..

It follows from Lemma 2.8 that |K | is the order of column ¢;(mod B).

3. Branched and unbranched coverings. In this section, we apply the
results of the previous section to the covering space of a knot in S3. If K is a
knotinS3and K = K, U ...\U K,is the covering link in a branched covering
space, M, of S3 we will refer to M — K as U. If F is a Siefert surface spanning
the knot K, then F lifts to a surface / in 3 with boundary 3., «;K; where
a, is the branching index of K, Thus

T

(3.1) Y aRi~0 wnH (M)
i=1
The examples given in this section apply Lemma 2.6 to various covering
spaces to obtain relationships between 7°(U) and 7' (M). It is clear that one
could instead use Corollary 2.4 to obtain relationships between the torsion
coefficients themselves with little extra work.

Example 1. (Irregular Sy coverings) If M is an irregular S; covering of a
knot, then K = K,\U K, where K, is of index 7 and |[K,| = ¢; # 0. The
matrix X of Lemma 2.6 is

g 0
0 q2
1 2

which has torsion g.c.d. (2¢1, ¢2).
Hence

Lem. (g1, ¢2) | TQD/TWU) | ged (2q1, ¢s).

Therefore, T(M) = ¢,1(U) = |K|T(U).
(Since link (K;, K.) = — 2 link (K., K,) it follows that link (K, Ks) is of
the form 2a/b where b = 1" (M) /T(U).)

Example 2. (PSL(2, p) coverings of degree p 4+ 1) The same argument
applies to the PSL(2, p) representations called by Riley ‘‘reps” [9, p. 608]
(see next section for more details on PSL(2, p) representations). These are
PSL(2, p) representations into the permutation group S(J,.1) such that me
is of order p. We obtain 7°(M)/1T(U) = |K,| where K, is the knot of index p.
In this case, link (K, K,) is of the form pa/b where b = 1°(M)/T(U).
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Often one can obtain more restrictive homology relationships than (3.1). In
fact, the surface I, which is a lifting of a Seifert surface, may split into several
connected components, in which case we obtain one homology relation for
each connected component. Let the base point b in S? be on the intersection
of F with the boundary of a regular neighbourhood N of K. Then b is covered
by % points b;. There exists a path & on F from b, to b, if and only if there exists
a path x on F such that 7(x¢) = j. Since any element of G represented by a
path on F must lie in the commutator subgroup, G, we deduce that b, and b,
lie on the same component of I only if 7 and f lie in the same orbit of J, under
the action of (G¢)'. Hence, if {P;},7=1,...,s and {Q;},7=1,...,tare
respectively the orbits of J, under (G¢)’ and (m¢) and «; = |P; M Q,| where
Q; is any orbit of m¢ contained in Oy, then we have ¢ relations of the form
S a1 a Ky ~ 0. Here Oy is one of the orbits of J, under (m¢, l¢). These orbits
are in a one-to-one relationship with the components K ; (see [5]).

In the case of regular coverings, the situation is slightly more simple. ¢ is
called a regular representation if St,(i) = ker ¢. The corresponding covering
space is also called regular. 1t is easily seen that if ¢ is a transitive regular rep-
resentation of G into S(J,), then the order of G¢ is n. In a regular covering
space, the group of covering translations acts transitively on the points 0,
above b, and hence on the branch curves. Since all the branch curves are there-
fore equivalent, we can write |[K,| = tand br (K;) = a. Then ¥iu; aK; ~ 0.
If |Go/(Go)'| = s then there are s orbits of (G¢)’ in J,. The relation (3.1)
then splits up into s identical relations of the form 3=y ¢/sK; ~ 0.

Example 3. (Cyclic covering spaces) If M is the n-fold cyclic branched
covering space, and ¢ the corresponding representation, then K consists of a
single branch curve of branching index n. Also |G¢/(G¢)'| = n. lence K ~ 0
and so H,(U) = Z + H,(M) (4, p. 149].

Example 4. (Regular Sy coverings) If M is the regular covering space cor-
responding to ¢: G — 83 — S(Js), then K consists of 3 knots of branching
index 2. Since |S;/Sy'| = 2, we obtain K; + K» + K3~ 0.So0 |K,| | T (M)/
T(U) ||K 2 1f K is a 2-bridged knot, it can be shown further that [K,| = 1.
(The proof depends on the fact that M is a 2-fold branched cover of the
irregular Sy covering space, which is S® [2]. Hence H\(U) = Z +Z + Z
+ H,(M) and Hi(M) = Z,;, d = }|A(—1)].)

Finally we consider covering spaces in which there is a single branch curve.
This will usually mean that m¢ is a single # cycle, but not always (see [5]). In
any case, mé is a product of cycles of the same length, b = br (K) = |me|. If N
is a regular neighbourhood of K, then [ lifts to a torus link / in the boundary of
N. If we choose a longitude X for N (this is uniquely determined only up to
a multiple of #), then [ ~ a# + bX, where g.c.d. (a, b) is the number of com-
ponents of /. Each component is a torus knot which is homologous in M to
(b/g.c.d.(a, b))K. We write v = b/g.c.d.(a, b), and observe that v is easily
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determined from the representation ¢. In fact, if Cy, ..., C, are the cycles of
me¢ and D, . .., D,are the cycles of l¢, it is clear that all the C; have the same
length and so do all the D;. Furthermore |C;\ D,| does not depend on the
particular 7 and j. Then v = |C; M D,|. It follows that st{C; M\ D,| = n. Also
slm¢| = nand t|l¢| = n. Hencev = |C; M D,| = |m|-|ip|/n.

THEOREM 3.1. If M is an n sheeted branched covering space in which the covering
link has just one component, then

me|-|1g]/n | K| | |meg].
me| | nand |Ig] | n.

Iurthermore

Proof. Firstly, since I ~01in S?, it follows that / ~0in M. Thus br (K) - K ~
0 and so |]€|'br (K). Let d = |K| and b = br (K). Then [ ~ ai 4 bX in
H,(M — K) where g.cd. (¢, b) = b/v. Now, since dK ~ 0, we see that
dX ~ dK ~ 0 in H(M). Hence dX ~ asii in H,(M — K). Thus from am +
bA ~ 0 and dX — arii ~0 comes (¢ + ba/d)# ~ 0. Since # must be of
infinite order, this means ¢ 4 ba/d = 0. So ad + ba = 0. Dividing by g.c.d.
(a, b) we obtain ad/g.c.d.(a, b) + ba/g.c.d.(a, b) = 0. Since a/g.c.d.(a, b) and
b/g.c.d.(a, b) have no common factor greater than 1, it follows that b/g.c.d.
(a, b) = v divides d.

Example 5. (PSL(2, p) representations; p = 5, 7, 11) If M is a p sheeted
covering and m¢ is a p cycle (p prime) and Il¢ # id, then |K| = p and so
T (M) = pT(U). Actually 7(U) = 7(M)/{K) where (K) =~ Z,. Also B(M) =
B(U) — 1. This case occurs in certain PSL(2, p) coverings when p = 5,7, 11.
See [9] and also the next section. This proves Conjecture C of Riley 9] under
slightly modified hypotheses.

4. Epimorphisms of knot groups. A basic tool in the investigation of
of homology invariants is a notation which was introduced in [5] but is re-
defined below for convenience.

Let /' be a group and x some element of F. Let ¢: FF— S(J,) be a transitive
representation and let S = St,(¢) where ¢ is some element of J,. Define the
elements {x;: 7 € J,} of S as follows. Let v,; be some element of F such that
a(v.:¢) = 1. Then x, is to be the element v, 27 (Yv,,~! where ¢(7) is the smallest
positive integer such that x7(? € St,(2). Of course, x; depends on the choice of
elements v,;, but the conjugacy class of x; in Sty(e) is independent of this
choice.

Define the group = (F, ¢, x) to be S/{{x;})S and define H(F, ¢, x) to be the
commutator quotient group of 7 (F, ¢, x). Now let G be a knot group and let /
and m be longitude and meridian of the knot. Let ¢ be a transitive represen-
tation of G and M and U the corresponding branched and unbranched covering
spaces. It is well known that St,(a) is isomorphic to = (U, b,). In fact the
projection map, p: U — S? — K induces an isomorphism p.* of (U, b,) onto
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Sty(a). Hence, 7(G, ¢, id) = Sty(a) = 7, (U). The elements m; are just the
projections of appropriately chosen meridians of the components of the
covering link K. It follows that = (G, ¢, m) = =, (M).

LEMMA 4.1. In the following diagram let  be an epimorphism and & a transitive
permutation representation (not necessarily faithful).

c¢tut sy

Let x be any element of G; then  induces epimorphisms from (G, Y&, x) onto
w(H, & x¢) and from H(H, &, x) onto H(H, §, x¢).

Proof. ¢y maps Sty (¢) onto Ste(e), and v,x%,, ' onto (v, 4) (x¢)* (v, f) .

As a simple application of Lemma 4.1 we can prove the “only if'’ part of a
proposition due to Perko and Fox [7, Lemma 1]:

ProrosiTiON 4.2. Let £ be the homomorphism of S(J.) onto S(J3) with kernel
A = {id, (12)(34), (13)(24), (14)(23)}. Then a knot group G has a representa-
tion ¥ onto S(J4) such that \my| = 2 only if H\(My:) maps onto Z».

Proof. We may assume my = (12). Then my¢ = (12). Lemma 4.1 states
that Hi(My:) = H(G, y&, m) maps onto H(S(J4), & (12)). Now S = St (1) =
A\J A(23). Then H(S(J4), & (12)) = S/((23))5 = Z,.

The following lemma will prove useful.

LEmMmA 4.3. Gwen & H— S(J,), suppose |x| = |xt| and that xt is a regular
element of S(J,,), that is, the cycles of x& are all of the same length. Then w(H, &, x)
= w(H, ¢ id) = St(a).

Proof. One simply observes that all x; are the identity.

Under certain circumstances, one knot group may map onto another knot
group, by an epimorphism taking meridian to meridian. (Such an example will
be considered in § 5). Thus we consider the homomorphisms

6:G56* % 5,

where G = G(K) and G* = G(K*) are knot groups. Let M, U, M* and U* be
the covering spaces corresponding to ¢ and y respectively. Let K consist of s
components K, ..., K, with meridians 7y, . . . , #i, and let K* consist of 7
components with meridians 7 *. Let {7} generate a group Fin H,(U) and let F*
be the group generated by {7 ;*} in H,(U*). As Lemma 4.1 indicates, » induces
an epimorphism ws: Hi(U) — H,(U*) which takes 7, to some i ¥, and takes
Fonto F*. Since wy maps the set {#,} onto the set {77 *} we see thatr < 5. If
r = s, then we number the meridians (and hence the components) consistently
such that 7w = 7 *.
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TuroreM 4.4. With the above notation, suppose that K and K* have the same
number, v, of components and that each |K *| is of finite order. Then
i) Each K is of finite order, and |K | divides |K *|;
i) BOM) — B(M*) = B(U) — B(U*) = 0 and B(U) = B(M) + r;
i) (M) /T (U) divides T(M*)/T(U*); and
iv) if B(M) = B(M*) then T(M)/T(U) = T(M*)/T(U*).

Proof. Since each K * is of finite order, F* is free abelian of rank » by Corol-
lary 2.2. Since F is generated by » meridians and is mapped onto /* by wy, it
follows that I is free of rank » and so each K, is of finite order. Now suppose
that Y'ei K * ~ 0 in H,()M*). Then by Lemma 2.8 there is a homo-
morphism p: H,(U*) — Z such that #,*p = «,. This means that wgp is a
homomorphism from H,(U) to Z such that #iwgp = a; So Yiei a K~ 0 in
H,(M). Therefore, the mapping K.*— K, defines a homomorphism of
H,(K*)iy, onto H,(K)is (notation as in Theorem 2.1). In particular |K |
divides |K ;*|. This proves i). Part ii) follows from the facts that H,(}) maps
onto Hi(M*) and FF=Z F*, and from Corollary 2.4. To prove iii) note that
T(M)/T(U) = |H\(K)ig| divides |H,(K*)ig| = T(M*)/T(U*), where we
use Corollary 2.4.

Proof of iv): Consider the commutative diagram

0 0 0

! Loy
0—-0—-> 4 - B —0

! L8l

0— F — H,(U) » Hi(M) -0
[12 Loy Lo,
0— F*— H,(U*) - H(M*) — 0

l l l
0 0 0

where 4 is the kernel of w, and B the kernel of w, and v is induced by 8. All
the rows and columns are exact except the top row. However, this is exact by
the 3 X 3 lemma [6, p. 204], and so 4 = B. If B(M) = B(M¥*), then B(U) =
B(U*) and both 4 and B are torsion groups. Therefore 7°(U*) = 1T°(U)/1T(A4)
and T(M*) = T°(M)/T(B) from which the desired result follows.

5. PSL coverings. The remainder of this paper is devoted to a detailed
study of PSL coverings of knot groups. These coverings were studied by Riley
[9] who made several conjectures concerning their homology invariants. Many
of these conjectures are proved here.

The group SL (2, p) consists of the 2 X 2 matrices over Z, with determinant
1, and PSL(2, p) = SL(2, p)/(E) where E = [*(1) 0
jection of SL(2, p) onto PSL(2, p) will be represented by a star, * . SL(2, p) is

]. The natural pro-
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generated by two elements, S = [} (1)] and T" = [0 —l:l. Since for p = 5,

1 0
the group PSL(2, p) is simple, there is no apparent restriction on the image,
muw, of a representation of a knot group G onto PSL(2, p). PSL(2, p) contains
cyclic subgroups of orders p, (p + 1)/2 and (p — 1)/2, and any element of
the group is contained in a cyclic subgroup of one of these orders [3, § 318].
Furthermore, forn = p, (p + 1)/20r (p — 1)/2, all cyclic subgroups of order
n are conjugate [3; § 315, § 319, § 316] and therefore, any two cyclic subgroups
of the same order are conjugate. The order of any element x must divide p,
(p+1)/20r (p—1)/2

The group PSL(2, p) may be represented as a permutation group in various
ways, since every subgroup of PSL(2,p) gives rise to a representation of
PSL(2, p) into the group of permutations of its cosets. For a complete dis-
cussion of the subgroup structure of PSL(2, p), see [2, Chapter 20]. We will
be mainly interested in the degree p + 1 representation described below.

Let H be the group of lower triangular matrices in SL(2, p), and H* its
image in PSL(2, p). H and H* are the internal product of two cyclic subgroups

F= {[ { ?:l} of order p, and D, the subgroups of diagonal matrices, of

order p — 1. Furthermore, conjugation by a generator of D gives an automor-
phism of Fof order (p — 1)/2. Thus H is a semi-direct product

2,1 O Z, = (S, V:S, V=1, VSV~-! = Se)
o'
0
H* 2 Zynyp © Z, 22 (S, V% S¥p *@—1/2 [¥S¥ — Gka|r*)

Since H* is of index p + 1, there is a representation n of PSL(2, p) into
S(Jp41). In fact if J,41 is taken as the set of Z,\U {0}, then n has a simple
description:

where V' = [ 2_1] and « is a primitive (p — 1)/2th root mod p. Then

Ja bJ* . . .
l[c d] n=(ei+c)/0i+d) forié€ Jy,

with a natural convention regarding oo [3, § 315]. Then H* = St, (). This
simple formula makes this representation a particularly convenient one to deal
with, and the one which will concern us most.

It follows from the first paragraph of [3, § 325] that there is only one con-
jugacy class of subgroups of index p 4+ 1 in PSL(2, p), and hence that all
permutational representations of PSL (2, p) of degree p + 1 are equivalent up
to inner automorphism.

By a PSL-representation of G we mean a homomorphism of G onto a group
of permutations isomorphic to PSL(2, p).

THEOREM 5.1. Let ¢ be a PSL(2, p)-representation of G(K) of degree p + 1,
and let o be the order of me. Let M = M,.
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a) If o = p, then H, (M) maps onto Z,_.

b) If o divides (p + 1)/2 then H,(M) maps onto Z,, where
n=p—11fo1sodd,
n= (p—1)/21f o1is even.

c) If o divides (p — 1)/2 then H (M) maps onto Z,, where
n= (p—1)/o1if o1is odd,
n= (p—1)/201f ois even.

Il

Proof. We may assume that ¢ = wn where w is a homomorphism G -
PSL(2, p). Since all cyclic subgroups of the same order are conjugate we may
1 0

*
) 1] of order p and in part

assume in part a) that mw is a power of S* = |:

a

0

¢) that mw is a power of V* where 17 = [ _1] and « is a primitive root

mod p. V* has order (p — 1)/2.

In the cases where o is odd, we apply Theorem 1.7 to lift w to a representa-
tion y: G(K) — SL(2, p) such that |my| = |mw|. Let \: SL(2, p) — S(Jp41) be
such that ¢\ = wn. Then Sty(c0) = H, and =, (M) = (G, ¢, m) maps onto
7 (SL(2, p), \, my).

Part «). In this case o is odd. Suppose my = S” = X. Then X; = id for all
iexceptoo,and X, = X = 5" Son(SL(2, p),\,S") = H/{(SHT=Z, ..

Part b). In this case, m¢ is a regular element of S(/,41) [3, § 317], and so
Lemma 4.3 applies. If o is odd, we lift to SL(2, p). Lemma 4.3 still applies,
and we see that m; (M) maps onto H = Z, ;1 © Z,. In the case where o is even,
we work in PSL(2, p). Then =1(M) maps onto Zy_1,2 © Z,,.

Puart ¢). In this case m¢ has two fixed points, 0 and o, and is regular in the
other elements of J,,1. Suppose that o is odd, then, if my = X, then X; = id
for all 7 except for 2+ = 0 and o0, in which case, letting v, = 7', we see that
Xo =X and Xy = X1 Thus 7(SL(2, p), N\, my) = H/{X)". Since X is a
power of 17 of order o, it is easily seen from the presentation of H that
H/ (X" >~7Z, wheren = (p — 1)/o.

When o is even, we assume mw = X* is of order 0. The details are similar to
the case where o is odd, except that we work in PSL(2, p). Then

m(PSL(2, p), N\, mp) = H*/(X*)"* = Z,
where n = (p — 1)/2o0.

For p = 5,7, 11, there is a unique representation of PSL(2, p) of degree p.
This representation is particularly interesting when p = 5, for then PSL(2, p)
= A;, and the most natural representation of 4; is in S(J;).

The following theorem lists all the possible representations of this type.

THEOREM 5.2. Let ¢ be a PSL(2, p)-representation of G(K) of degree p, and
let 0 be the order of me. Let M = M,.
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Case 1. p = 5.

() If o = 5, then w (M) maps onto A4, and so H,(M) maps onto Z,.
(b) If 0 = 2, then m,(M) maps onto Z;.

(c) If o = 3, we draw no conclusion.

Case 2. p = 1.

(@) Ifo = 7, then w1 (M) maps onto Si, and so Hi(M) maps onto Z,.
(b) If o = 3, then =, (M) maps onto Z,.

(¢) If o = 2 or 4, we draw no conclusion.

Case 3. p = 11.

(a) If o = 11, then w1 (M) maps onto As.

(b) If o ## 11, we draw no conclusion.

Proof. Let &: PSL(2, p) — S(J,) be a representation of degree p. Then the

stabilizer St;(1) is isomorphic to 44, Sy or 4; according as p = 5, 7, or 11.
Apply Lemma 4.1, or 4.3.

Il

Of the cases considered in the previous theorems there are very few cases in
which the covering space may be a homotopy sphere, or indeed even a homology
sphere. For p = 5, if ¢ is a PSL(2, p)-representation of degree p + 1, then
M4 may be a homology sphere only if p =1 (mod 4) and me¢ is of order
(r—1)/2

This occurs when p = 5 and |m¢| = 2. In this case, however, Riley’s tables
[9] always show H:i(M) mapping onto Zs, which suggest that it may be
impossible to obtain a homology sphere as a degree p + 1 PSL-covering of a
knot.

Theorem 5.2 shows a number of cases in which the degree p coverings for
p = 5,7, 11, may be homology spheres. In particular, when p = 5, one may
obtain a homology sphere when m¢ is of order 3. Riley’s tables indeed show
many examples of knots whose degree 5 covering spaces are homology spheres.
For two-bridged knots it can be shown by the techniques of Burde [2] that
these covering spaces are in fact spheres. However, the 3-bridged knots can not
be so conveniently disposed of.

Finally, we prove sharpened Conjecture B of Riley [10; p. 25]. Riley ob-
served that certain knot groups have a homomorphism onto PSL(2, Z), and
therefore onto PSL (2, p) for any p. If mod, is the homomorphism of PSL(2, Z)
onto PSL(2, p) and n the permutation representation of PSL(2, p) into
S(Jp41) let &, = mod,y. Let M, and U, be the covering spaces, branched and
unbranched, corresponding to the representation wf, of G(X). (In fact M, has
1
1
in § 1, w can be lifted to a homomorphism ¢ of G(K) onto G(Ks 3), and by the
remark following Theorem 1.2, one sees that y takes m, a meridian of K onto
m*, a meridian of Ks 3 Now write w = ¢, and define M,* and U,* to be the
covering spaces of K, 3 corresponding to B&,.

p + 1 sheets). We assume that mw = l: (1):' Then according to Example 2

Definition. When a prime p =1, 5, 7, 11 (mod 12), define respectively
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jp,= —13, =5, =7, 1 and r, = 1, 3, 2, 6. Write b, = (p + j,)/6 and d, =
(p+1)/r,and t, = 6/r,.
LEmMa 5.4, The relation matrix of H,(U,*) s
(5.1) (1, dt, 00...0)
N —

b,
with the first two columns corresponding to w* and wix*. Therefore, B(M,*)=
bpy B(U*) =0, + 2 and T(M,*) = d,t,, T(U*) =1,
Proof. The matrix (5.1) can be computed by the well known Reidemeister-

Schreier method. However, the computation is tedious, and hence is omitted.
(Also, see [10, p. 26]).
The number of components of K in 1, is always equal to two. Hence the

hypotheses of Theorem 4.4 are satisfied in the case here considered. Thus as
an immediate consequence of that lemma we obtain:

THEOREM 5.5. Given

9: G(K) S PSL(2. p) 5 S(J,41)
where o lifts to « homomorphism w: G(K)— PSL(2,Z) such that me =

[ } (l)i', then

DB =0, and B(U,) = BOM,) + 2;
i) T(M,)/T(U,) divides d,;
i) if BOM,) = by, then T(M,) = T(U,)-d,.
Remark. Riley proved in [10, Theorem 3] that B(U,) = b, + 2.
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