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This paper is concerned with the boundary-layer separation in subsonic and transonic
flows caused by a two-dimensional isolated wall roughness. The process of the
separation is analysed by means of two approaches: the direct numerical simulation
(DNS) of the flow using the Navier–Stokes equations, and the numerical solution
of the triple-deck equations. Since the triple-deck theory relies on the assumption
that the Reynolds number (Re) is large, we performed the Navier–Stokes calculations
at Re = 4 × 105 based on the distance of the roughness element from the leading
edge of the flat plate. This Re is also relevant for aeronautical applications. Two sets
of calculation were conducted with the free-stream Mach number Ma∞ = 0.5 and
Ma∞= 0.87. We used different roughness element heights, some of which were large
enough to cause a well-developed separation region behind the roughness. We found
that the two approaches generally compare well with one another in terms of wall
shear stress, longitudinal pressure gradient and detachment/reattachment points of the
separation bubbles (when present). The main differences were found in proximity
to the centre of the roughness element, where the wall shear stress and longitudinal
pressure gradient predicted by the triple-deck theory are noticeably different from
those predicted by DNS. In addition, DNS predicts slightly longer separation regions.

Key words: boundary layer separation, compressible boundary layers, Navier–Stokes equations

1. Introduction
The triple-deck theory was specifically designed with the purpose of describing the

phenomenon of boundary-layer separation at large values of the Reynolds number.
The basic ideas that underlie the foundation of the triple-deck theory came from
experimental studies of boundary-layer separation, including the separation caused
by an impinging shock wave, with the then unexplained phenomenon of ‘upstream
influence’. These experiments are summarised by Chapman, Kuehn & Larson (1958),
and early theoretical models to explain the phenomenon are reviewed in a paper
by Lighthill (2000). As a formal mathematical theory, the triple-deck theory was
put forward by Neiland (1969), Stewartson (1969), Stewartson & Williams (1969),
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Messiter (1970) and Sychev (1972), and a detailed description of the basic aspects
of the theory can be found in the monograph by Sychev et al. (1998). According
to the triple-deck theory, the flow near the separation point is described by Prandtl’s
boundary-layer equations. The main alteration to Prandtl’s classic theory is that the
pressure acting on the boundary layer is not known in advance, but has to be found
as part of the solution, as it is affected by the displacement effect of the boundary
layer. The main advantage of the triple-deck theory is that there are no restrictions
on how large the Reynolds number is. In fact, the larger the Reynolds number, the
more accurate the theory is. However, numerical solution of the triple-deck equations
is rather difficult, especially when the separation region is not small. It took a decade
before reliable numerical techniques were developed; see chapter 7 in Sychev et al.
(1998).

Numerical techniques for solving the Navier–Stokes equations have also undergone
significant improvement over recent decades. A comprehensive summary of the role
of direct numerical simulation (DNS) in fluid mechanics up to 1998 can be found
in Moin & Mahesh (1998) and references therein. More recently, compressible DNS
has been performed in various works, among which we cite Pirozzoli, Grasso &
Gatski (2004), Martin (2007), Rizzetta et al. (2010) and Rizzetta & Visbal (2014).
Despite all of these advances, the task of calculating large-Reynolds-number separated
flows, especially for transonic flow regimes, has been challenging. It is therefore not
surprising that there are only a few publications where the Navier–Stokes calculations
are compared with the triple-deck predictions; see, for example, Hsiao & Pauley
(1994).

In this paper, we use the subsonic and transonic versions of the triple-deck theory.
The governing equations for the subsonic triple-deck theory were formulated by
Neiland (1969), Stewartson (1969), Stewartson & Williams (1969), Messiter (1970)
and Sychev (1972). The transonic version of triple-deck theory was first formulated by
Bodonyi & Kluwick (1977), Bodonyi (1979) and Bodonyi & Kluwick (1982, 1998).
In our calculations we employed the special regime described by Timoshin (1990)
and Bowles & Smith (1993). Concerning the DNS, we solved the two-dimensional
compressible Navier–Stokes equations by means of a high-order spectral/hp element
approach, where we used a discontinuous Galerkin (DG) method in space and an
explicit fourth-order Runge–Kutta scheme in time. The interested reader can refer to
Karniadakis & Sherwin (2005), Hesthaven & Warburton (2008) and De Grazia et al.
(2014).

The paper is organised as follows. In § 2 we detail the model problem considered.
In § 3 we describe both the triple-deck model employed and the DNS tool used. In
§ 4 we present the comparison results obtained on the model problem, and in § 5 we
briefly summarise the main conclusions of this work.

2. Model problem
The problem considered consists of a two-dimensional flat plate equipped with

an isolated roughness element as shown in figure 1. We took into account various
roughness heights as well as different free-stream conditions in order to investigate
both linear and nonlinear regimes as well as subsonic (case 1) and transonic (case 2)
conditions. The shape of the roughness element was given by

F(x)= hr e−(L−x)2/β2
, (2.1)

where L is the distance from the centre of the roughness element to the leading
edge of the flat plate, hr is the height of the roughness element and β is a
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FIGURE 1. Model problem.

Ma∞ Twall (K) hr Re Pr

Case 1 – Subsonic 0.50 216.29 [0.05, 0.10, 0.15] δ99,L 4× 105 0.72
Case 2 – Transonic 0.87 258.0 [0.05, 0.10, 0.15] δ99,L 4× 105 0.72

TABLE 1. Set of numerical simulations performed.

parameter that controls the shape of the roughness element. In particular, L and
β were fixed and equal to 0.05 m and 1.7961 × 10−4 m, respectively. Concerning
the height of the roughness element, we took into account three different values:
hr = [0.05, 0.10, 0.15] δ99,L, where δ99,L is the thickness of the Blasius boundary
layer at x = L. (Note that δ99,L based on the Blasius solution is just a reference
value. The corresponding values in terms of the compressible boundary-layer
solutions are as follows: case 1, hr = [0.042, 0.084, 0.126] δ99,L,comp; case 2,
hr = [0.039, 0.078, 0.118] δ99,L,comp.) The Reynolds number, defined as

Re= ρ∞u∞L
µ∞

, (2.2)

was set equal to 4× 105 in all the tests performed, where, ρ∞ denotes the free-stream
density, u∞ is the free-stream velocity and µ∞ refers to the free-stream dynamic
viscosity.

A summary of the main parameters used for the numerical simulations is reported in
table 1. Note that we applied isothermal boundary conditions to the flat plate surface,
where the wall temperature was equal to the far-field temperature in the subsonic case,
while it was calculated using the Crocco integral in the transonic case.

The Mach, Reynolds and Prandtl numbers were chosen to be relevant for
aeronautical applications, while the shape and the related parameters can be seen
as simple models of small imperfections at the leading edge of civil aircraft wings.
In addition, the three hump heights explored range from a non-separated flow to a
well-established separation bubble behind the obstacle. Note that, in this paper, we
are mainly interested in the nonlinear regime; therefore, the case hr = 0.05δ99 was
chosen such that it fell within a nonlinear regime without separation.

3. Theoretical and numerical approaches
3.1. Triple-deck formulation

The scales adopted in the triple-deck formulation are depicted in figure 2. Specifically,
the subsonic case is represented in figure 2(a), while the transonic case is in
figure 2(b). In the following, we briefly introduce the triple-deck formulation used in
this paper.
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Upper deck Upper deck

Main deck Main deck

Lower deck Lower deck

L L

(a)  (b)

FIGURE 2. Three-tiered structure of the interaction region for (a) the subsonic and (b) the
transonic cases.

We first write the set of equations for the lower deck (see figure 2) in the canonical
form

u0
∂u0

∂x0
+ v0

∂u0

∂y0
=−∂p0

∂x0
+ ∂

2u0

∂y2
0
,

∂u0

∂x0
+ ∂v0

∂y0
= 0,

 (3.1)

with the conditions

u0 = v0 = 0 at y0 = 0,
u0 = y0 + · · · as x0→−∞,
u0 = y0 + A0(x)+ · · · as y0→∞,

 (3.2)

where A0(x) is the displacement function, x0 and y0 are the streamwise and wall-
normal coordinates, u0 and v0 are the associated velocities, p0 is the pressure and
the subscript ‘0’ denotes leading-order dimensionless quantities, which are defined in
the asymptotic expansions used and defined in §§ 3.1.1 and 3.1.2. The interaction law
between the boundary layer (lower deck) and the potential flow in the upper deck has
the form of a Hilbert integral for subsonic flows. In the transonic case, the interaction
law is instead represented by the following integral:

p0(x0)= 1
π
√

m

∫ ∞
−∞

F′(s)− A′0(s)
s− x0

ds. (3.3)

Here F(x0) is the shape of the roughness element defined in § 2, and m is known as
the Kármán–Guderley parameter (m was equal to 1.3 in all the transonic cases taken
into account) and is defined as

Ma2
∞ = 1−m Re−1/9, (3.4)

where Ma∞ is the free-stream Mach number. Note that in (3.3), for the transonic case,
the upper-deck steady problem is described by the transonic small perturbation (TSP)
equation disregarding the time derivative (for additional details, the interested reader
can refer to Cole & Cook (1986)). In the subsonic case, the upper deck is instead
solved through the Laplace equation for the pressure.
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To solve the steady triple-deck problem numerically, we discretise our two-
dimensional domain with a set of mesh points at generic coordinates (x0,i, y0,j), where
(i = 1, . . . , Nx0; j = 1, . . . , Ny0). Following Kravtsova, Zametaev & Ruban (2005),
where the numerical approach adopted here is detailed, we define the displacement
function vector A0,i and the pressure vector p0,i at each point x0,i. The vectors A0,i

and p0,i define the values of the displacement function and of the pressure at all the
points along the wall-normal direction y0. For a given displacement function A0,i, the
interaction law in (3.3) (equivalently the interaction law for the subsonic case) allows
the calculation of the inviscid pressure gradient d p0/dx0

∣∣
inv. For the same A0,i, it is

also possible to calculate the viscous pressure gradient d p0/dx0

∣∣
v

by means of the
lower-deck equations (3.1) and (3.2). The final set of implicit equations to be solved
to find the displacement function A0,i is the difference between the inviscid and the
viscous pressure gradients:

Φ0(A0,i)= d p0

dx0

∣∣∣∣
inv

(x0,i)− d p0

dx0

∣∣∣∣
v

(x0,i)= 0, for i= 1, . . . ,Nx0 . (3.5)

Equation (3.5) is solved using the Newton–Raphson method by iterating on the
displacement function A0,i. For additional details, the interested reader can also refer
to Sychev et al. (1998).

All the triple-deck calculations were performed using a second-order finite-
difference method on an 801 × 301 non-uniform mesh with minimum step sizes
1x0 = 0.005 and 1y0 = 0.005 in the streamwise and wall-normal directions,
respectively. Note that, to guarantee independence of the numerical results from
the mesh resolution, we performed a mesh refinement study by using a finer grid
(one order of magnitude greater resolution than the 1x0 and 1y0 provided above). The
difference in terms of L∞-norm (normalised with respect to the respective absolute
maximum values) between the results on the coarser and finer grids was less than
0.1 % for both the wall shear stress τxy and pressure gradient dp/dx.

The asymptotic dimensionless expansions of the variables (denoted in (3.1) by the
subscript ‘0’) used in the subsonic and transonic regimes are different and they are
reported in the following two subsections.

3.1.1. Subsonic regime
If we consider the typical triple-deck scales around an isolated roughness element

in the subsonic regime (figure 2a), we can expand the streamwise and wall-normal
directions as

x= L(1+ Re−3/8λ−5/4µ
−1/4
0 ρ

−1/2
0 α−3/4x0), (3.6a)

y= L Re−5/8λ−3/4µ
1/4
0 ρ

−1/2
0 α−1/4(y0 + F(x0)), (3.6b)

where x0 and y0 indicate the dimensionless quantities used as asymptotic expansions
in the triple-deck approach. Note that we have applied the Prandtl transposition
theorem for the vertical coordinate and we have assumed that the hump was fully
contained within the lower deck. Concerning the dimensional velocities (u, v), we
used the following asymptotic expansions:
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u= u∞ Re−1/8λ1/4µ
1/4
0 ρ

−1/2
0 α−1/4u0 + · · · , (3.7a)

v = u∞ Re−3/8λ3/4µ
3/4
0 ρ

−1/2
0 α1/4(v0 + u0F′(x0))+ · · · , (3.7b)

where u0 and v0 are the velocities related to the triple-deck approach. Finally, the
dimensional thermodynamic quantities were expanded as follows:

p= p∞ + ρ∞u2
∞ Re−1/4λ1/2µ

1/2
0 ρ

−1/2
0 α−1/2p0 + · · · ,

ρ = ρ∞ρ0(x0, 0)+ · · · , µ=µ∞µ0(x0, 0)+ · · · ,

}
(3.8)

where α = √1−Ma2∞, p is the pressure, ρ is the density and µ is the dynamic
viscosity. Note that these variable transformations were used to compare DNS and
triple-deck data in the subsonic case.

3.1.2. Transonic regime
In the transonic regime (figure 2b), the scales for the streamwise and wall-normal

coordinates become

x= L(1+ Re−1/3λ−4/3µ
−1/3
0 ρ

−1/3
0 x0), (3.9a)

y= L Re−11/18λ−7/9µ
2/9
0 ρ

−4/9
0 (y0 + F(x0)), (3.9b)

where, again, we have assumed that the hump was fully contained within the lower
deck. Concerning the dimensional velocities (u, v), we used the following asymptotic
expansions:

u= u∞ Re−1/9λ2/9µ
2/9
0 ρ

−4/9
0 u0 + · · · , (3.10a)

v = u∞ Re−7/18λ7/9µ
7/9
0 ρ

−5/9
0 (v0 + u0F′(x0))+ · · · . (3.10b)

Finally, the dimensional thermodynamic quantities assumed the same expressions as
in the subsonic case, with the exception of the pressure, which was expanded as
follows:

p= p∞ + ρ∞u2
∞ Re−2/9(λ4/9µ

4/9
0 ρ

1/9
0 )p0 + · · · . (3.11)

The Kármán–Guderley parameter was instead

m= (1−Ma2
∞)λ

−2/9
0 µ

−2/9
0 ρ

4/9
0 Re1/9. (3.12)

Note that these variable transformations were used to compare DNS and triple-deck
data in the transonic case.

3.2. Direct numerical simulation
The governing equations considered for the DNS are the unsteady two-dimensional
compressible Navier–Stokes equations.

The spatial numerical discretisation adopted was a spectral/hp element approach
complemented by an explicit (in time) DG method. The temporal discretisation was
an explicit fourth-order Runge–Kutta scheme. The spatial discretisation has an order
of accuracy equal to P + 1, where P is the order of the polynomials used within
each element of the numerical grid.
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FIGURE 3. DNS configuration.

The numerical setting used is depicted in figure 3. We first simulated a flat plate
with no roughness element as represented in figure 3, where we applied symmetry
boundary conditions prior to the flat plate AB, with B representing the leading
edge of the flat plate, which extends up to C, CD is the outflow region, DE is
the far field and finally EA is the inflow. In generating the data on the flat plate,
we run a sensitivity analysis regarding the position of the boundaries as well as a
mesh refinement study in order to assure that the data produced were effectively
independent of these factors. All the simulations were run until the steady state was
reached. Note that we also verified that the boundary-layer profiles generated were
consistent with those calculated by solving the compressible boundary-layer equations
under the same conditions.

After having obtained the data on the flat plate without roughness element, we
interpolated these data in the embedded domain Z1Z2Z3Z4 around the roughness
element represented in figure 3. The initial conditions and all the boundary conditions
(except the no-slip boundary condition at the wall) were prescribed from the data
obtained in the flat-plate simulations. Note that the boundary conditions were Dirichlet
and they were imposed in a weak form. Also, for the embedded simulations, we
performed a sensitivity study in order to assess the independence of the results from
the boundary location as well as from the mesh resolution. The difference in terms
of L∞-norm (normalised with respect to the respective absolute maximum values)
between the finest mesh used and a mesh with approximately half of the resolution
was less than 1 % for both the wall shear stress τxy and the pressure gradient dp/dx.

The final embedded mesh was constituted by 500 × 66 elements, where we
employed a stretching technique in both the wall-normal and the streamwise directions.
We used a solution polynomial of order three within each element and, therefore,
the number of solution points in the wall-normal direction was equal to 264 (220
of which were contained within the boundary layer at the roughness location), while
that in the streamwise direction was equal to 2000. The minimum 1y in proximity
to the wall was equal to 2 × 10−6 m. In the streamwise direction, the maximum
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FIGURE 4. Comparison of (a,c) dp/dx and (b,d) τxy (dimensional values) for (a,b) the 5 %
and (c,d) the 15 % cases, with Ma∞= 0.50 and Twall= T∞= 216.29 K (case 1, subsonic).

resolution near the roughness element was equal to 1 × 10−5 m. The description of
the roughness element was obtained using a fifth-order spline to achieve an accurate
description of the geometry.

4. Numerical results
The numerical simulations were performed at two different Mach numbers, the

first subsonic, Ma∞ = 0.5, and the second transonic, Ma∞ = 0.87. The shape of
the roughness element is given in (2.1), where we used the parameters specified in
§ 2 and three different heights: 0.05δ99, 0.1δ99 and 0.15δ99. We recall that δ99 is a
reference value and refers to the Blasius boundary layer at the roughness location.

The comparison between triple-deck and DNS simulations was carried out using
two quantities: the pressure gradient along the streamwise direction dp/dx, and the
shear stress τxy. We also compared the difference between DNS and triple-deck theory
in terms of the length of the separation bubbles (where present) as well as their
detachment and reattachment points.

In figure 4 we show the comparison of dp/dx and τxy for case 1: Mach number
Ma∞ = 0.50, wall temperature Twall = 216.29 K and roughness element heights hr =
0.05δ99 and hr = 0.15δ99, respectively. In figure 5 we show the same quantities for
case 2: Mach number Ma∞= 0.87, wall temperature Twall= 258.0 K (see also table 1).
From these figures it is possible to see an overall good agreement between triple-deck
and DNS data except in proximity to the centre of the roughness element, where large
discrepancies are observed (as can be seen from the inset images, which are a close-
up view of this region). These discrepancies are expected in the asymptotic analysis
because in proximity to the roughness element we observed a larger acceleration of the
flow in the DNS results when compared to the triple-deck data. Also, the deceleration
of the flow behind the hump is larger in the DNS data when compared to the triple-
deck one. These features generate sharper and higher peaks in terms of both wall shear
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FIGURE 5. Comparison of (a,c) dp/dx and (b,d) τxy (dimensional values) for (a,b) the
5 % and (c,d) the 15 % cases, with Ma∞ = 0.87 and Twall = 258.0 K (case 2, transonic).

stress τxy and longitudinal pressure gradient dp/dx. We also observed that the wall-
normal pressure gradient in the DNS data has a contribution that is neglected in the
triple-deck theory and might affect the behaviour of the two quantities investigated
and contribute to the discrepancies seen, although some other factors may also play a
role.

In table 2 we quantified the differences between DNS and triple-deck data at four
distinct locations along the streamwise direction, P1= 0.046 m, P2= 0.049 m, P3=
0.051 m and P4 = 0.054 m, for both the wall shear stress τxy and the longitudinal
pressure gradient dp/dx. We also measured the maximum difference between DNS
and triple-deck data (reported in the last column of the table). All the differences are
normalised with respect to the maximum absolute value obtained in the DNS results
for each case considered. We can see how the difference between DNS and triple-deck
data in terms of dp/dx and τxy in proximity to the hump (points P2, P3 and maximum
difference) increases as the height of the roughness element increases in both subsonic
and transonic regimes. In particular, we estimated that the maximum difference in
terms of dp/dx in proximity to the centre of the roughness element was between
27 % (for hr= 0.05δ99, subsonic case) and more than 54 % (for hr= 0.15δ99, transonic
case), while moving slightly off from the roughness centre these differences were
consistently lower with an order of magnitude below 2 %. The maximum differences
in terms of τxy were between 11 % and 30 % (also in this case normalised with respect
to the maximum absolute value of τxy obtained from the DNS data) in proximity to
the centre of the roughness element. These differences consistently decreased moving
either upstream or downstream, with maximum differences in these regions below 4 %.

In table 3 we quantified the differences in terms of separation bubble lengths, and
the differences in terms of detachment (D) and reattachment (R) points between DNS
and triple-deck results. These differences are normalised with respect to the length
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hr P1 P2 P3 P4 max(∆)

|1dp/dx|/max(|dp/dxDNS|) (%)
Case 1 (Ma∞ = 0.50, Twall = T∞) 0.05δ99 ≈0.01 ≈0.16 ≈0.52 <0.01 ≈27.54

0.10δ99 ≈0.02 ≈0.18 ≈0.87 ≈0.01 ≈38.28
0.15δ99 ≈0.03 ≈0.19 ≈1.09 ≈0.05 ≈44.35

Case 2 (Ma∞ = 0.87, Twall = 258 K) 0.05δ99 ≈0.03 ≈0.19 ≈0.78 ≈0.06 ≈29.90
0.10δ99 ≈0.04 ≈0.20 ≈1.04 ≈0.08 ≈44.34
0.15δ99 ≈0.08 ≈0.22 ≈1.08 ≈0.09 ≈54.08

|1τxy|/max(|τxyDNS |) (%)
Case 1 (Ma∞ = 0.50, Twall = T∞) 0.05δ99 ≈1.69 ≈0.17 ≈1.12 ≈1.56 ≈11.63

0.10δ99 ≈0.87 ≈0.26 ≈2.26 ≈1.03 ≈20.38
0.15δ99 ≈0.49 ≈0.60 ≈3.67 ≈1.06 ≈25.56

Case 2 (Ma∞ = 0.87, Twall = 258 K) 0.05δ99 ≈1.75 ≈0.17 ≈1.19 ≈1.71 ≈12.47
0.10δ99 ≈0.86 ≈0.28 ≈2.21 ≈1.22 ≈23.90
0.15δ99 ≈0.28 ≈0.83 ≈3.26 ≈1.20 ≈30.34

TABLE 2. Difference between DNS and triple-deck theory in the dp/dx and τxy variables
normalised with respect to their maximum absolute values obtained from the DNS data at
four different locations along the flat plate: P1= 0.046 m, P2= 0.049 m, P3= 0.051 m,
P4 = 0.054 m. The last value is the maximum difference between DNS and triple-deck
data, also normalised with respect to the DNS maximum absolute value.

Separation |1(D, R,L )| (%)
hr DNS Triple-deck D R L

Case 1 (Ma∞ = 0.50, Twall = T∞) 0.05δ99 × × — — —
0.10δ99 X X 5.94 9.79 15.73
0.15δ99 X X 2.50 26.35 28.85

Case 2 (Ma∞ = 0.87, Twall = 258 K) 0.05δ99 × × — — —
0.10δ99 × × — — —
0.15δ99 X X 2.81 23.54 26.35

TABLE 3. Difference between DNS and triple-deck theory in terms of the detachment
point (D), reattachment point (R) and length (L ) of the separation bubbles – normalised
quantities.

`999 of the hump (we considered a tolerance T = 0.001hr at which we measured the
length of the hump; this gave us `999 ≈ 0.00096 m).

It is possible to note that the underlying qualitative physics of the problem is well
captured by both approaches. In particular, separation happens for the same test cases
in both DNS and triple-deck theory. The differences in terms of detachment point is
relatively contained (less than 6 % for hr= 0.10δ99 in the subsonic case, and less than
3 % for hr = 0.15δ99 in the subsonic and transonic cases). The major gap between the
two approaches is related to the reattachment point, which in turn influences the length
of the separation bubble. We note that this gap increases as the height of the hump
increases. This is probably related to the local behaviour of the pressure in proximity
and prior to the reattachment point. In fact, in the DNS results we observe a larger
streamwise pressure gradient in proximity to and behind the hump when compared to
the triple-deck theory. Also, the wall-normal pressure gradient is not negligible in this
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region. Both the streamwise and wall-normal pressure gradients strongly influence the
deceleration of the flow and therefore the position of the reattachment point; see, for
example, Stewartson (1970) and Korolev, Gajjar & Ruban (2002).

Although the gap is related to the reattachment point and therefore to the length
of the separation bubble, we consider the agreement between the two approaches
satisfactory.

5. Summary and conclusions

In this paper we compared two substantially different approaches, namely DNS and
asymptotic triple-deck theory, for calculating the flow past an isolated roughness
element on a flat plate with separation behind the element in some situations.
The calculations were performed in a compressible regime, and both subsonic and
transonic conditions were taken into account. We considered three different roughness
element heights, ranging from a non-separated flow to a laminar separation bubble
behind the obstacle. The study has been carried out by comparing two quantities, the
pressure gradient dp/dx and the shear stress τxy, as well as by evaluating the location
of the detachment and reattachment points and the length of the separation bubble
where present.

The results obtained for dp/dx and τxy show an overall good agreement between
DNS and triple-deck data except for their maximum and minimum values. This
behaviour can be expected since we observe a non-zero wall-normal pressure
gradient in the DNS data when compared to the triple-deck results (where a zero
pressure gradient along the wall-normal direction is assumed) and a different flow
acceleration/deceleration in proximity to the hump between triple-deck and DNS
data. This aspect can well affect the local behaviour of the wall shear stress and
of the longitudinal pressure gradient, even though some other nonlinear effects can
also contribute to the differences observed. In addition, triple-deck theory relies
on the assumption that Re is large; therefore we expect a better agreement if we
increase Re, although the Reynolds number adopted in this work is relevant for
aeronautical applications. It is also possible to note that the discrepancy between
DNS and triple-deck data increases as the height of the roughness element increases,
and therefore when nonlinear effects become more relevant (see table 2 for example).

Concerning the separation bubbles, both DNS and triple-deck theory predict
separation for the same test cases. This indicates that the underlying physics of
the problem is well captured in both approaches (in the limit of two-dimensional
separation bubbles). Specifically, the detachment point compares well, though some
rather large differences are present for the reattachment point, probably due to
the different longitudinal and wall-normal pressure distributions between DNS and
triple-deck data.

This study demonstrates that the asymptotic triple-deck theory captures correctly the
qualitative physics and the main flow features in practical aeronautical applications,
and therefore it can be effectively used as a reduced model in this field. This is of
particular use in estimates of receptivity and in separation prediction studies, where
the quantities we have investigated, dp/dx and τxy, are very relevant; see, for example,
Rizzetta, Burggraf & Jenson (1978) and Ruban, Bernots & Pryce (2013). (Note that
the velocity profiles are also important for stability and receptivity calculations.
However, the two quantities investigated in this paper, i.e. dp/dx and τxy, provide
a satisfactory insight into the separation characteristics of the flow and they can be
used for receptivity studies.)
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On the other hand, from a quantitative perspective, the triple-deck theory is not
entirely reliable when considering a nonlinear regime and its use in this context has
to be considered carefully, especially if accurate quantitative calculations are required.

This work also constitutes the rationale for further studies on the connections
between the two approaches, historically developed in two different research
communities, and it allows a more theoretical insight into the DNS data as well
as a more applied viewpoint for the triple-deck community.
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