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ON STRONG CONVEX COMPACTNESS PROPERTY OF
SPACES OF NONLINEAR OPERATORS

XUELI SONG AND JIGEN PENG

The strong convex compactness property is important for property persistence of op-
erator semigroups under perturbations. It has been investigated in the linear setting.
In this paper, we are concerned with the property in the nonlinear setting. We prove
that the following spaces of (nonlinear) operators enjoy the strong convex compact-
ness property: the space of compact operators, the space of completely continuous
operators, the space of weakly compact operators, the space of conditionally weakly
compact operators, the space of weakly completely continuous operators, the space
of demicontinuous operators, the space of weakly continuous operators and the space
of strongly continuous operators. Moreover, we prove the property persistence of
operator semigroups under nonlinear perturbation.

1. Introduction

It is well-known that the space K(X,Y) of linear compact operators from Banach
space X to Banach space Y is not complete in the strong operator topology. However,
in most cases we are really interested in compactness persistence in a certain sense of
convexity. For example, in practical application of operator semigroups, we often have to
know if an operator semigroup preserves its compactness under a certain perturbation (see
below). Motivated by this, in the frame of bounded linear operators, Voigt [15] introduced
a relevant notion, named the strong convex compactness property, and proved that the
following several spaces enjoy the property: the space of completely continuous operators,
the space of Dieudonné operators and the space of unconditionally summing operators. As
early as in 1988, Weis [16] effectively proved the strong convex compact property for the,
space of strictly singular operators from LP(£2) (or C(f2)) into itself, although he did not
specifically give the definition. Recently, Mokhter-Kharroubi [10] presented direct proofs
of the convex compactness property for the space of compact operators as well as the space
of weakly compact operators, and applied the property to the spectral theory of perturbed
semigroups. Almost at the same time as [15], Schliichtermann {14] proved that both
the space of weakly compact operators and the space of conditionally weakly compact

Received 5th June, 2006
This work was supported by the Natural Science Foundation of China under the contact no. 10531030.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 $A2.00+0.00.

411

https://doi.org/10.1017/5S0004972700040466 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700040466

412 X. Song and J. Peng 2]

operators enjoy the property. Moreover, he remarked that the mentioned conclusions
can be extended to the nonlinear case if the uniform boundedness in Voigt’s definition
of the strong convex compactness property is replaced with the uniform integrability
property (see, [14, Remark 2.4] or (2.3) below). This implies that some spaces of nonlinear
operators may also enjoy the strong convex compactness property. The significance of
this remark is, that, inter alia, an operator semigroup may still preserve its compactness
under some nonlinear perturbation. Indeed, since the perturbed semigroup {S;}:5o and
the unperturbed linear semigroup {7;}:»¢ bear the following relation:

t
(1.1) Sz =Tz +/ T:-.BS,zdr,Vz € X,t 20
0

where A is the infinitesimal generator of {T}},5o and B the nonlinear perturbation op-
erator, the compactness of S, is completely determined by that of the integral term of
(1.1). Noticing that, for each ¢ > 0, the operator defined by the integral term is a convex
combination of the operators {T:—,BS; }ocr<: in the strong operator topology, we derive
the compactness of the perturbed semigroup {S;}:>¢ if each integral element 7;_,BS, be-
longs to a compact operator space that enjoys the strong convex compactness property.
Therefore, it is significant to probe what spaces of nonlinear operators enjoys the strong
convex compactness property.

The purpose of this paper is to investigate the strong convex compactness property
for several spaces of nonlinear operators, and then to derive property persistence of
operator semigroup under nonlinear perturbation. Nonlinear operators are not assumed
to be continuous unless specified.

2. PRELIMINARIES

Throughout this paper we assume that X and Y are two Banach spaces on the same
scalar field K(=R or C), and denote by B(X,Y) the space of bounded linear operators
from X to Y. Below we introduce the definitions of the strong convex compactness
property for spaces of operators from X to Y.

DEFINITION 1: ([15]) A closed linear subspace E of B(X,Y) is said to have the
strong convex compactness property if, for any finite measure space (Q, A, 1) and bounded

strongly measurable function U :  — E, the strong integral / U du defined by

/Ud,u(w)z: = /U(w)zd,u(w), z€X.
) 0

belongs to E.
In Definition 1, the boundedness of U means that sup”U (w)” < 00, where ||U (w)”
wefN

is the operator norm of the bounded linear operator U(w). Since the operator norm is
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excessive for a nonlinear operator, we have to modify Definition 1 so that the notion of
convex compactness property is also valid for nonlinear operator spaces.

DEFINITION 2: Let E be a linear space of operators from X to Y enjoying some
specified property. Then, E is said to have the strong convex compactness property if,
for any finite measure space (2, A, u) and strongly measurable function U : Q — E that
satisfies for any bounded subset B of X,

(2.1) sup sup [|U(w)z|| < oo,
wENZE B

the strong integral / U dp defined by

(2.2) A /QUdu(w)z = /QU(w):z:dp(w), reX

belongs to E.

By standard technique it can be shown that if £ is a closed subspace of B(X,Y’) then
Definition 2 is reduced to Definition 1. It is worth mentioning that, in order to make
the definition valid for nonlinear weakly compact operators as well as nonlinear condi-
tionally weakly compact operators, Schliichtermann suggests in [14] that the assumption
sug”U (w)” < 00 in Definition 1 should be replaced with the uniform integrability

wE

(2.3) sup/”U(w)z“du(w) < 00, lim sup/”u(w)x”dp(w) =0,
zeB Jq w(A)»0zeB J 4

for any bounded subset B of X. It is clear to see that the condition (2.1) implies the
uniform integrability (2.3). Hence, the definition suggested by Schliichtermann seems to
be more general than Definition 2. Initially, we defined the convex compactness property
using the condition (2.3) instead of (2.1). However we now adopt the present definition
is because: firstly, as the nonlinear extension of uniform boundedness in Definition 1,
the condition (2.1) is more direct than (2.3); and secondly, in most cases, to verify the
condition (2.3) is more difficult than (2.1). Moreover, it has been suggested that the
conditions (2.1) and (2.3) might be equivalent in the cases treated by us. However, we
are not able to give the equivalent proof.

Below we introduce several types of nonlinear operators, which can be found in, for
example, [4, 14, 15, 17].

An operator T from X into Y is compact (weakly compact) if for every bounded
subset M of X, its range T (M) is relatively compact (relatively weakly compact) in Y. A
continuous compact operator is called completely continuous. We denote by Kn(X,Y),
WKu(X,Y) and CCrp(X,Y) the space of all compact operators, the space of weakly
compact operators and the space of completely continuous operators, respectively. Here
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the subscript “nl” is the abbreviation for nonlinear, which is only used to distinguish
them from their respective subspaces consisting of corresponding linear operators.

An operator T from X into Y is said to be conditionally weakly compact (CWC) if
every sequence in the range T(M) admits a weak Cauchy subsequence for any bounded
subset M of X. The space of all CWC operators is denoted by CW K,;(X,Y). It is easy
to show that a linear CWC operator from X into Y must be bounded and hence belongs
to B(X,Y).

We call a mapping T from X into Y a weakly completely continuous (WCC) operator
if it maps weak Cauchy sequences of X to weakly convergent sequences. In [15], a weakly
completely continuous operator is also called Dieudonné operator. It is easy to show
that a linear WCC operator must be bounded and hence continuous. We denote by
WCCn(X,Y) the space of all weakly completely continuous operators from X into Y.

An operator T from X into Y is called demicontinuousif Tz, is weakly convergent to
Tz for all z € X and sequences {z,}22, C X converging to z. We denote by DCp(X,Y)
the space of all demicontinuous operators from X into Y.

An operator T from X into Y is said to be weakly continuous if, for all z € X and
sequences {z,}3%, weakly converging to z, Tz, is weakly convergent to T'z. It is obvious
that a linear weakly continuous operator must be continuous. The space of all weakly
continuous operators from X into Y is denoted by WCp,(X,Y).

An operator T from X into Y is said to be strongly continuous if, for all x € X
and sequences {z,}32, weakly converging to z, Tz, is convergent to Tz. Denote by
SCn(X,Y) the space of all strongly continuous operators from X into Y.

3. STRONG CONVEX COMPACTNESS PROPERTY

In this section we prove the strong convex compact property for the operator spaces
defined in the previous section.

PROPOSITION 1. K, (X,Y) has the strong convex compactness property pro-
vided Y is separable.

PROOF: It can be shown that an operator T from X into Y is compact if and only if
its restriction to any separable subspace of X is also compact. Indeed, for any bounded
sequence {Zn}nen Of X, {TZ,}nen has an accumulation point in X if and only if this is
also true for {T|yZ,}aen in the separable subspace V = span{z, : n € N} spanned by
{Zn}nen, where T|y is the restriction of T to the subspace V. Hence, without loss of
generality we assume that X is separable.

Since Y is separable, by [1, Chapter XI, Theorem 9] we know that ¥ can be embedded
isomorphically into the Banach space C|0,1] of continuous real functions on the interval
[0,1]. Because it does not affect the compactness of operators to enlarge the range
space, we assume, without loss of generality, that Y = C[0,1]. Since C[0,1] possesses
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a Schauder basis, there exists a sequence {P,}gnen of finite dimensional projections such
that {Pn}nen strongly converges to the identity operator I of Y. Thus, it is easy to
show that a nonlinear operator K is compact if and only if, for any bounded set B of X,

lim sup |lKz — P,Kz|| = 0. In fact, if K is compact, for any bounded set B, the range

n—+00 o

K(B) is relatlve compact (that is, the closure K(B) is compact). Hence, it follows that

lim sup |IKz — P,Kz| = llm sup |ly — Payl| =0
n—+00 yeK(B)

if and only if hm lly— Poyll =0 foreach y € K (B) which is guaranteed by the strong

convergence of {P }nen. '

Conversely, if for any bounded set B holds lim sup |Kz — P,Kz|| = 0, for any

e > 0 there exists a sufficiently large n. € N such that sup ||K z— P, Kz| < /2. Because
z€B
P, K (B) is relatively compact, there exists a finite set Z, such that P,, K(B) is contained

in the £/2-neighbourhood of Z,. Hence, K(B) is contained in the e-neighbourhood of Z,.
This implies that K(B) is relatively compact, that is, K is compact.

Now, we turn to the operator f U du defined by (2.2). By the definition it follows
that, for any bounded set B,

/Udp.x—P,,/Uduz

From the strong convergence of { P, }.en and the uniform boundedness theorem, we derive
that there exists a constant M > 0 such that ||P,|| < M for all n € N. Since (2,4, )
is finite and U(w) satisfies the condition (2.1), we have ||PU(w)z|| < ||Pal||U(w)z|

< M||U(w)z| and ||U(-)z|| : & — R is integrable for z € B. Combined with the
compactness of U(w), the dominated convergence theorem gives that

/Ud,uz— /Udux

Hence, /Udu is compact, that is, /Udu € Ku(X,Y). 0

sup
z€B

g/nsup”U )z = PoU(w)z||dp(w)

€B

lim sup
n—=+4+00 cp

/ lim sup”U(w)z - PU(w)z||dp(w) = 0.
n

n—+00 ,

REMARK 1. In the above proof, we adopt the proof idea of {15, Theorem 1.3].
PROPOSITION 2. CCn(X,Y) enjoys the strong convex compactness property.

PROOF: According to the proof of Proposition 1 we can assume that X is separable
and without loss of generality, let X = {z,:n€ N}. Let U : @ — CCp(X,Y) be
strongly measurable. Then, for every z,, there exists a y-null set F;, such that {U (w)z, :
w € Q\F,} is contained in a separable subspace of Y. Since U(w) is continuous for all

s o]
w € §, it is easy to show that the y-null set F' = |J F, satisfies

n=1

{U(w)x: weQ\FzeX}C U{U(w)x,,: we€ MNF,,n=12,...}.
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The set on the right side is obviously contained in a separable subspace of Y. Hence,
we can assume that Y is separable, without loss of generality. The remainder proof is
similar to that of Proposition 1. ]

REMARK 2. From the above proofs it can be seen that Proposition 1 and Proposition
2 still hold even if the condition (2.1) in Definition 2 is replaced with (2.3).

ProrPosITION 3. ([14]) WK, (X,Y) has the strong convex compactness prop-

erty.

PROPOSITION 4. ([14]) CWKL(X,Y) has strong the convex compactness
property.

PROPOSITION 5. WCCu(X,Y) enjoys the strong convex compactness prop-
erty.

PRrOOF: Let U : Q - WCCh{X,Y) be a strongly measurable function on the finite
measure space (§2, A, 1) such that the condition (2.1) is satisfied. By the definition of
the WCC operator we know that the sequence {U (w):z:,.}neN is weakly convergent for

all w € Q and any given weak Cauchy sequence {Zn}nen. If we denote by y(w) the
corresponding weak limit, namely,

Jim (U(w)Zn,y*) = (y(w),y*), forallw € Qand y* € Y*,

then, by [3, Theorem 2, p. 42], the function w +» y(w) is strongly measurable. Moreover,
by the condition (2.1) we have that, for all y* € Y*,

sup'(y(w),y‘}‘ < sup supl(U(w)xmy')‘ < c0.
wefl w€ N neN

That is, sup||ly(w)|| < co. Hence, the function w — y(w) is Bochner integrable.
weN
Since there holds that, for all y* € Y,

’</QU(w)Zn du(w),y’> - </ny(w) du(w),y‘>

= l/ﬂ(U(w)zmy') — (y(w),y") dﬂ(w)l
< /Q |<U(w)rmy') ~(yw)y')

du(w),

applying the dominated convergence theorem in [3], we conclude that / U(w)zndp(w)
Q

weakly converges to / y(w)dp(w) as n — oo. Therefore, the proof is completed. 0
o

PROPOSITION 6. DCuy(X,Y) possesses the strong convex compactness prop-
erty.

PROOF: Let U : Q = DCny(X,Y) be a strongly measurable function on the finite
measure space (§2, 4, 1) such that the condition (2.1) is satisfied. For any given z € X

https://doi.org/10.1017/5S0004972700040466 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700040466

7 On strong convex compactess 417

and sequences {z}32, converging to z, we have that (U(w)zn,y*) = (U(w)z,y*) for all
w € Q and y* € Y*. Moreover, we have that, for all y € Y*,

‘< /n U(w)zn du(w),y‘> - < /n U(w)e dp,(w),y‘>

=| [(@emnr) - Weis) duto)
< /QI(U (@)zn,y") = (U(w)z,y")

du(w).

Hence, by the dominated convergence theorem in {3} we conclude that / U(w)zodp{w)
Q

weakly converges to / y(w)du(w) as n — oo. 0
o

PROPOSITION 7. WCnu(X,Y) possesses the strong convex compactness prop-
erty.

PROPOSITION 8. SC,(X,Y) possesses the strong convex compactness prop-
erty.

We omit the proofs of Propositions 7 and 8 because they are similar to that of
Proposition 6.

In the remainder of the paper, we apply the above propositions to the property
persistence of operator semigroups. For the properties of operator semigroups, see (6,
9, 12]. By (12, 13|, we know that the perturbed operator A + K generates a strongly
continuous semigroup {S:}s> ¢ of Lipschitz continuous operators if A is a generator of a
Co-semigroup {T;}¢> o and K is Lipschitz continuous, where the two semigroups bear the
following relation

t
(3.1) Sz =Tz +/ T+ KS,z dr, Vz € X,t > 0.
0

An operator K from X into itself is said to be Lipschitz continuous if there exists a
nonnegative constant M such that ||Kz — Ky|| < M||z — y|| for all z,y € X.

PROPOSITION 9. Let {T;};»0 be a Co-semigroup on X with its generator A,
and let K be a Lipschitz continuous operator from X into itself. Then, so is the Lipschitz
operator semigroup {S:}:> o generated by A+ K whenever {T}}> o is compact, completely
continuous, weakly compact, or conditionally weakly compact.

PRroOF: By the equality (3.1) and Propositions 1-4, it suffices to verify that T;_, K S,
inherits the specified property of T;_, for all t,r > 0. Because it is Lipschitz continuous,
K S, maps any bounded set into bounded set. Hence, for all ¢, > 0 with ¢t > r, so
is T;_,KS, if T,_, is compact, completely continuous, weakly compact or conditionally
weakly compact. 0
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REMARK 3. Ifthe perturbation operator K is linear, then it is easy to show that so is the
perturbed semigroup {S;}:> o whenever the unperturbed semigroup {T:}:; o is strongly
continuous or weakly completely continuous. See [2, 5, 6, 7, 8, 11] for details about
property persistence of operator semigroups under linear perturbation. However, in the
nonlinear case, we do not know if the perturbed {S;}:> ¢ inherits the weak continuity,
strong continuity or weakly complete continuity of the unperturbed semigroup {T}}:5 o.
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