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Universal Minimal Flows of Groups of
Automorphisms of Uncountable Structures

Dana Bartošová

Abstract. It is a well-known fact that the greatest ambit for a topological group G is the Samuel com-
pactification of G with respect to the right uniformity on G. We apply the original description by
Samuel from 1948 to give a simple computation of the universal minimal flow for groups of automor-
phisms of uncountable structures using Fraı̈ssé theory and Ramsey theory. This work generalizes some
of the known results about countable structures.

1 Introduction

Universal minimal flows play an important role in topological dynamics. In [KPT05],
the authors explicitly compute universal minimal flows of groups of automorphisms
of countable structures with certain properties using Fraı̈ssé theory and Ramsey the-
ory. In the same spirit, we compute universal minimal flows for dense subgroups of
automorphism groups of uncountable structures. However, for uncountable struc-
tures we do not have in hand a generic ordering, so we have to take a slightly different
route. This work was initially inspired by a talk of Y. Gutman [Gut10] on the univer-
sal minimal flow of the group of homeomorphisms of ω∗ = βω \ω, where βω is the
Čech–Stone compactification of discrete ω, and a suggestion of Todorčević to reprove
his result using the ideas of [KPT05], a project that has been also the subject of his
joint work with P. Ursino several years ago. We observe that the same space serves as
the universal minimal flow for all dense subgroups, hence for all normal subgroups
of the group of trivial homeomorphisms of ω∗ described by van Douwen in [vD90].

The structure of the paper is as follows: In the second section, we introduce the ba-
sic notions from topological dynamics and describe them for the case of groups that
admit a basis of neighbourhoods of the neutral element of open subgroups. In the
third section, we talk about groups of automorphisms and their relationship with the
groups in the first section. In the fourth section, we introduce crucial ingredients—
Fraı̈ssé classes, Ramsey theory and linear orderings. In the fifth section, we prove
the main theorem and apply it to describe some universal minimal flows. In the last
section, we use the main theorem to characterize extremely amenable groups, gener-
alizing Theorem 4.3 from [KPT05] to uncountable structures.
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710 D. Bartošová

2 Topological Dynamics

The central notion of topological dynamics is a continuous action π : G × X → X
of a topological group G on a compact Hausdorff space X. We call X a G-flow, and
we omit π if it is understood and write gx instead of π(g, x). A homomorphism of
G-flows X and Y is a continuous map φ : X → Y respecting the actions of G on X
and Y , i.e., φ(gx) = gφ(x) for every g ∈ G, x ∈ X and y ∈ Y . We say that Y is a
factor of X, if there is a homomorphism from X onto Y . Every G-flow has a minimal
subflow, a minimal closed subspace of X invariant under the action of G. Among
all minimal G-flows, there is a maximal one—the universal minimal flow M(G). It
means that every other minimal G-flow is a factor of M(G). In the study of universal
minimal flows, a construction of the greatest ambit turns out to be useful. An ambit
is a G-flow X with a distinguished point x0 ∈ X whose orbit Gx0 = {gx0 : g ∈ G} is
dense in X. Likewise for minimal flows, there is a maximal ambit—the greatest ambit(

S(G), e
)

. It means that every other ambit (X, x0) is a factor of S(G) via a quotient
mapping sending e to x0. As we say below, the greatest ambit is a compactification
of G with a structure of a right-topological semigroup and the universal minimal flow
is a minimal left ideal of S(G). The study of S(G) shows that every homomorphism
of M(G) into itself is an isomorphism, which in turn gives that the universal minimal
flow is unique up to an isomorphism. For an introduction to topological dynamics,
see [dV93].

We will describe the greatest ambit and the universal minimal flow of groups of
automorphisms as Stone spaces of certain Boolean algebras. For completeness, we
introduce these notions and Stone duality between them.

Stone Representation Theorem

In 1936, M. H. Stone [Sto36] proved that every Boolean algebra B is isomorphic to
the Boolean algebra of all clopen subsets of a compact totally disconnected Haus-
dorff space Ult(B). The points of Ult(B) are the ultrafilters on B, and the sets
A∗ = {u ∈ Ult(B) : A ∈ u} for A ∈ B form a clopen base of the topology on
Ult(B). This gives a one-to-one correspondence that also extends to homomor-
phisms: if f : B → C is a homomorphism between two Boolean algebras, then
Ult( f ) : Ult(C)→ Ult(B), given by

u 7→ “the ultrafilter on B generated by
⋃
{ f−1(A) : A ∈ u}”

is a continuous map. If f is injective, then Ult( f ) is surjective. In terms of category
theory, Ult is a contravariant functor giving an equivalence between the category of
Boolean algebras with homomorphisms and the category of compact totally discon-
nected Hausdorff spaces with continuous mappings.

Greatest Ambit

If G is a discrete group, then its greatest ambit is the ultrafilter dynamical system
Ult(G). This is the space of all ultrafilters on the underlying set of G with the topology
generated by clopen sets A∗ = {u ∈ Ult(G) : A ∈ u}. It means that Ult(G) is the
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Stone space Ult
(
P(G)

)
of the power set algebraP(G) of G. The action of G on Ult(G)

extends the multiplication in G: gu = {gA : A ∈ u} for g ∈ G and u ∈ Ult(G).
Moreover, we can extend the multiplication to all of Ult(G), turning Ult(G) into a
semigroup: for u, v ∈ Ult(G), we set uv =

{
A ⊂ G : {g ∈ G : g−1[A] ∈ v} ∈

u
}

. In other words, uv = u − lim{gv : g ∈ G}. Fixing an ultrafilter u, the right
multiplication ·u : Ult(G) → Ult(G), v 7→ uv is continuous, hence Ult(G) is a right-
topological semigroup.

If G is a topological group, then the greatest ambit of G is a factor of Ult(G) by
definition. It was first described by Samuel in 1948 (see [Sam48]) in the setting of
uniform spaces and seems to be overlooked by topological dynamists. We briefly
describe his construction for topological groups with the right uniformity. Let G
be a topological group with the neutral element e and N a basis of neighbourhoods
of e giving the topology on G. The right uniformity on G is generated by covers
{Va : a ∈ G} for V ∈ N. We define an equivalence relation ∼ on Ult(G) as follows.
For an ultrafilter u ∈ Ult(G), we define a filter u ′ generated by {VA : A ∈ u,V ∈ N}.
Then for u, v ∈ Ult(G) we set u ∼ v if and only if u ′ = v ′. The quotient space
S(G) = Ult(G)/∼ with the quotient topology is called the Samuel compactification
of G and it is the greatest ambit of G. The multiplication on Ult(G) also factors
to S(G), making S(G) a right-topological semigroup with the multiplication extend-
ing the multiplication on G.

From now on, G will always be a topological group that possesses a basis N of
open neighboorhoods of the neutral element e consisting of open (hence clopen)
subgroups of G. It is easy to see that then L = {VA : A ⊂ G,V ∈ N} is a Boolean
algebra, and we get the following description of the greatest ambit.

Lemma 1 The greatest ambit S(G) is equal to the Stone space of the Boolean algebra L
as above with action defined by gx = {gA : A ∈ x} for g ∈ G and x ∈ Ult(L).

Proof We will show that u ′ 7→ u ∩ L for u ∈ Ult(G) is an isomorphism between
S(G) and the Stone space of L.

Let u, v ∈ Ult(G). Since VV = V for every V ∈ N, we have that u ∩ L is an
ultrafilter on L that generates u ′ ∈ S(G). This means that whenever u ∩ L = v ∩ L,
then u ∼ v.

On the other hand, if u ∩ L 6= v ∩ L, then there is A ∈ L such that A ∈ u ∩ L and
G\A ∈ v∩L, which implies that u ′ 6= v ′. This gives us the sought-for correspondence
between S(G) and ultrafilters on L.

The quotient multiplication on Ult(L) can be described explicitly as an analogue
of the multiplication on Ult(G).

Lemma 2 Let u, v ∈ Ult(L), A ⊂ G and V ∈ N. Then VA ∈ uv if and only if
{g ∈ G : g−1[VA] ∈ v} ∈ u.

Proof Let u ′, v ′ ∈ Ult(G) be representatives of the equivalence classes of u, v re-
spectively. We need to show that the definition of uv in the claim corresponds to
u ′v ′ ∩ L. By the definition of ultrafilter multiplication, VA ∈ u ′v ′ ∩ L if and only
if U = {g ∈ G : g−1[VA] ∈ v ′} ∈ u ′. First, we show that we can replace u ′

with u. Notice that VU = U , since for every s ∈ V and g ∈ G, we have that
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sg ∈ U if and only if (sg)−1[VA] = g−1s−1[VA] = g−1[VA] ∈ v if and only if
g ∈ U . Therefore, VA ∈ u ′v ′ ∩ L if and only if U ∈ u ′ ∩ L = u. Second, we show
that v ′ can be replaced by v. For every g ∈ G and W ∈ N, g−1[VA] ∈ v ′ implies
W g−1[VA] ∈ v. Pick a W ∈ N such that gW g−1 ⊂ V . Then W g−1 ⊂ g−1V ,
so W g−1VA ⊂ g−1VVA = g−1VA. But obviously, g−1VA ⊂ W g−1VA, hence
W g−1VA = g−1VA, which shows that g−1VA ∈ v ′ if and only if g−1VA ∈ v ′∩L = v.
This concludes the proof.

Universal Minimal Flow

Let G be a group with a basis of neighbourhoods N of the neutral element e consisting
of open subgroups and let L be as above. The universal minimal flow M(G) for G,
being a subspace of the greatest ambit S(G), is itself a Stone space. Hence we can
consider its Boolean algebra of all clopen subsets B(G). For m ∈ M(G) and ∅ 6=
U ∈ B(G), denote by Ret(m,U ) the set of elements of G that bring m into U , i.e.,
Ret(m,U ) = {g ∈ G : gm ∈ U}. Since h Ret(m,U ) = Ret(m, hU ) and M(G) is
compact, there are finitely many g1, g2, . . . , gn ∈ G such that

⋃n
i=1 gi Ret(m,U ) = G.

Such sets are called syndetic. More generally, see the following lemma.

Lemma 3 The following are equivalent for a G-flow X:

(i) X is minimal;
(ii) for every non-empty open set O ⊂ X,

⋃
g∈G gO = X;

(iii) for every x ∈ X and non-empty open set O ⊂ X, the set Ret(x,O) is syndetic.

Proof (i)⇒ (ii) Let X be a minimal G-flow, x ∈ X and O a non-empty open subset
of X. If X \

⋃
g∈G gO 6= ∅, then it is a non-trivial closed subflow witnessing non-

minimality of X.
(ii) ⇒ (iii) Since X is compact, the cover {gO : g ∈ G} has a finite subcover

{g1O, g2O, . . . , gnO}. Then
⋃n

i=1 gi Ret(x,O) =
⋃n

i=1 Ret(x, giO) = G, so Ret(x,O)
is syndetic.

(iii)⇒ (i) If X is not minimal, then there is an x ∈ X such that O = X \ Gx is a
non-empty open set. But then Ret(x,O) = ∅, hence not syndetic.

A Boolean algebra of subsets of G is called a syndetic algebra, if it is invariant under
left translations by elements from G and all of its non-empty elements are syndetic
sets.

Now, we are ready to imitate a proof for discrete semigroups from [BF97] to char-
acterize B(G).

Theorem 1 The universal minimal flow M(G) is the Stone space of a maximal synde-
tic subalgebra of L. All maximal syndetic subalgebras of L are isomorphic.

Proof Let B(G) denote the algebra of clopen subsets of M(G) and let m ∈ M(G). Let
Rm : S(G)→ S(G) denote the right translation by m, i.e., u 7→ um.

Since M(G) is a minimal left ideal of S(G), S(G)m = M(G). So Rm actually maps
S(G) onto M(G). S(G) being a right-topological semigroup, Rm is continuous. Since
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Rm is onto, the dual homomorphism between the Boolean algebras of clopen sets
ρm : B(G)→ L is injective. By Lemma 2, we know that for every VA ∈ L,

ρm

(
(VA)∗ ∩M(G)

)
= {u ∈ S(G) : VA ∈ um}

= {g ∈ G : g−1[VA] ∈ m}

= Ret
(

m, (VA)∗
)
.

So B(G) is isomorphic to

A =
{

Ret
(

m, (VA)∗
)

: A ⊂ G,V ∈ N
}
,

which is a subalgebra of L consisting exclusively of syndetic sets.
Now we show that A is invariant under left translations by G. Let h ∈ G; then

h Ret
(

m, (VA)∗
)

= h{g ∈ G : g−1[VA] ∈ m}

= {x ∈ G : x−1[hVA] ∈ m}

= Ret
(

m, (hVA)∗
)
.

It remains to show that A is a maximal syndetic algebra. Let B ⊃ A be a syn-
detic algebra. Then Ult(B) with multiplication gu = {gA : A ∈ u} for g ∈ G and
u ∈ Ult(B) is a minimal flow. The identity embedding of i : A ↪→ B induces a sur-
jective G-homomorphism Ult(i) : Ult(B) → Ult(A) ∼= M(G). This means that also
Ult(B) ∼= M(G). Since every G-homomorphism from M(G) to itself is an isomor-
phism, so is Ult(i), which is only possible if A = B.

For the second part of the theorem, let us assume that A is a maximal syndetic
subalgebra of L. To achieve the conclusion, it is enough to find an m ∈ M(G) such
that A = {Ret(m,O) : O ∈ B(G)}.

Clearly, Ult(A) with G-multiplication as above is a minimal G-flow. Hence there
is a G-homomorphism φ : M(G) → Ult(A). Consider p ∈ Ult(A) given by p =
{A ∈ A : e ∈ A} and its preimage m under φ. Given A ∈ A, denote by A∗ the clopen
set {u ∈ Ult(A) : A ∈ u}. Then Ret(p,A∗) = Ret(m, φ−1[A]), since φ(gm) =
gφ(m) = g p for all g ∈ G. But also

Ret(p,A∗) = {g ∈ G : g p ∈ A∗} = {g ∈ G : g−1[A] ∈ p}

= {g ∈ G : e ∈ g−1[A]} = {g ∈ G : ge ∈ A} = A.

So we have that

A = {Ret(p,A∗) : A ∈ A} ⊂ {Ret(m,O) : O ∈ B(G)}.

By maximality of A, we get that A = {Ret(m,O) : O ∈ B(G)}.

Corollary 1 M(G) is a totally disconnected space.
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3 Automorphism Groups

Let κ be a cardinal number endowed with the discrete topology and denote by Sκ
the group of all bijections on κ. In what follows, we consider Sκ as a topological
group with the topology of pointwise convergence. The topology is given by a basis
of neighbourhoods of the neutral element consisting of open subgroups SA = {g ∈
Sκ : g(a) = a, a ∈ A} where A is a finite subset of κ. We can observe that a subset H
of Sκ is closed if and only if it contains every g ∈ Sκ such that for any A ⊂ κ finite
there exists an h ∈ H with g|A = h|A.

Let G ≤ Sκ be a subgroup and let A be a finite subset of κ. We define the point-
wise stabilizer of A as

GA = {g ∈ G : ga = a, a ∈ A}

and the set-wise stabilizer as

G(A) = {g ∈ G : gA = A}.

Let L be a first order language and A an L-structure with the universe of cardinal-
ity κ. Then the group of automorphisms of A, Aut(A), is a closed subgroup of Sκ.
It is clear that the topology on Aut(A) is given by Aut(A)A for A a finitely-generated
substructure of A. If every partial isomorphism between two finitely generated sub-
structures of A can be extended to an automorphism of the whole structure A, then
we say that A is ω-homogeneous. In the case of Boolean algebras, ω-homogeneity
coincides with the notion of homogeneity (see [MB89]). A Boolean algebra B is ho-
mogeneous if for every b ∈ B the relative Boolean algebra B|b = {c ∈ B : c ≤ b} is
isomorphic to B.

In what follows, when we say “a structure”, we mean a structure for some first
order language.

Finally, we describe the correspondence between groups possessing a neighbour-
hood basis of the neutral element of open subgroups, dense subgroups of groups of
automorphisms of structures and subgroups of Sκ.

Theorem 2 Let G be an infinite topological group and let κ be a cardinal number.
Then the following are equivalent:

(a) G is a subgroup of Sκ;
(b) G has a basis N of neighbourhoods of the neutral element of cardinality λ ≤ κ

consisting of open subgroups such that the family of all left translates of elements
from N also has cardinality λ;

(c) G is a dense subgroup of a group of automorphisms of an ω-homogeneous relational
structure on a set of cardinality κ;

(d) G is a dense subgroup of a group of automorphisms of a structure on a set of cardi-
nality κ.

Proof The equivalence of (a), (c) and (d) follows from [Hod97, Theorem 4.1.1].
(b) trivially follows from (a), so we only need to establish that also (b) implies (a).
We proceed as in [BK96, Theorem 1.5.1]. Let {Ui : i ∈ λ} be an enumeration of a
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basis for the topology on G given by all left translates of subgroups from N. For every
g ∈ G, define φ(g) = πg ∈ Sκ by

πg(i) = j ⇔ gUi = U j for i ∈ λ and πg(i) = i otherwise.

Obviously, g 7→ πg is an injective homomorphism of G into Sκ. To show that it is
continuous, let A ⊂ λ be finite and let Sκ,A = {π ∈ Sκ : π(i) = i, i ∈ A} be a basic
open subgroup of Sκ. Then φ−1(Sκ,A) = {g ∈ G : gUi = Ui , i ∈ A}. Since for every
i ∈ A, Ui = hiVi for some hi ∈ G and some subgroup Vi ∈ N,

φ−1(Sκ,A) =
⋂

i∈A
{g ∈ G : ghiVi = hiVi}

=
⋂

i∈A
{g ∈ G : h−1

i ghi ∈ Vi}

=
⋂

i∈A
{g ∈ G : g ∈ hiVih

−1
i },

which is an intersection of finitely many open sets, hence open. Similarly, let H ∈ N

be an open subgroup of G, so H = Ui for some i ∈ λ. Then φ(H) = {πh : h ∈ H} =
{π ∈ Sκ : π(i) = i} ∩ φ(G), hence φ is a homeomorphism onto its image.

4 Fraı̈ssé Classes, Ramsey Theory and Linear Orderings

Now, we give necessary definitions and facts about Fraı̈ssé classes, the Ramsey prop-
erty for finite structures and linear orderings. For a comprehensive treatment of these
ingredients, see [KPT05].

Fraı̈ssé classes

A class of finitely-generated structures F of a given language is called a Fraı̈ssé class, if
it satisfies the following conditions:

(HD) Hereditary property: if A is a finitely generated substructure of B and B ∈ F,
then also A ∈ F.

(JEP) Joint embedding property: if A,B ∈ F, then there exists a C ∈ F in which
both A and B embed.

(AP) Amalgamation property: if A,B,C ∈ F and i : A → B and j : A → C are
embeddings, then there exist D ∈ F and embeddings k : B → D and l : C → D
such that k ◦ i = l ◦ j.

Let A be an ω-homogeneous structure. Then it is easily verified that Age(A), the
class of all finitely-generated substructures of A, is a Fraı̈ssé class. In case of countable
structures, there is a one-to-one correspondence betweenω-homogeneous structures
and Fraı̈ssé classes, given by A 7→ Age(A), see [Fra54].

Example 1 The following are Fraı̈ssé classes:

(a) finite sets
(b) linearly ordered finite graphs
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(c) finite Boolean algebras
(d) finite vectors spaces over a finite field
(e) finite linear orderings

In what follows, we will only be interested in Fraı̈ssé classes consisting of finite
structures.

Ramsey Theory

A class K of finite structures satisfies the Ramsey property if for every A ≤ B ∈ K and
natural number k ≥ 2 there exists C ∈ K such that

C → (B)A
k ,

which means that for every colouring of copies of A in C by k colours, there is a copy
B ′ of B in C , such that all copies of A in B ′ have the same colour.

Example 2 All examples of Fraı̈ssé classes in Example 1 satisfy the Ramsey prop-
erty: (a) is the classical Ramsey theorem, (b) was proved by Abramson and Harring-
ton [AH78] and Nešetřil and Rödl [NR77], (c) is equivalent to the so-called dual
Ramsey theorem by Graham and Rothschild [GR], (d) was proved by Graham, Leeb,
and Rothschild in [GLR72] and (e) is equivalent to (a).

Linear orderings

Let LO(κ) denote the space of all linear orderings on κ considered as a subspace of
2κ×κ with the product topology. The topology on LO(κ) is generated by clopen sets

(A, <)∗ = {<′ ∈ LO(κ) : <′|A = <},

for A ⊂ κ finite and < a linear ordering on A. In other words, LO(κ) is the Stone
space of the Boolean algebra generated by all (A, <)∗ for A ⊂ κ finite and < a linear
ordering on A.

Let A be a structure of size κ and again let Age(A) denote the family of finitely-
generated substructures of A. Let L be the language of A and let L ′ = L ∪ {<} be
an expansion of L by a binary relational symbol < not in L. Let K be a family of
structures for L ′ in which < is a linear ordering. Suppose that Age(A) is a reduct
of K, i.e., Age(A) = {K | L : K ∈ K}. Let ≺ be a linear ordering on κ such that
(A,≺ |A) ∈ K for every A ∈ Age(A). Then we call ≺ a normal ordering of A
induced by K. The space of all normal orderings of A induced by K is denoted by
NOK(A) and it is a closed subspace of LO(κ).

Example 3 ([KPT05])

(BA) Let F be the class of all finite Boolean algebras. We call a linear ordering on
a finite Boolean algebra natural, if it is induced antilexicographically by a linear
ordering on its atoms. LetK denote the class of all naturally ordered finite Boolean
algebras. If B is a homogeneous Boolean algebra, then NO(B) 6= ∅, since both K

and Age(B) = F are Fraı̈ssé classes. Moreover, they satisfy the Ramsey property.

https://doi.org/10.4153/CMB-2012-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-023-4


Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures 717

(VS) Let F be the class of all finite vector spaces over a given finite field G. As in the
previous example, we call a linear ordering on a finite vector space of G natural, if
it is an antilexicographical ordering induced by a linear ordering on a basis and a
fixed linear ordering of the field G (see [Tho86]). Let K be the class of all naturally
ordered finite vector spaces. If V is an infinite vector space over G, then NO(V) 6=
∅, since V is ω-homogeneous and both Age(V) = F and K are Fraı̈ssé classes, the
latter shown by Thomas in [Tho86]. Moreover, they satisfy the Ramsey property
(see [KPT05, p. 144]).

Every subgroup G of Sκ has a natural action on LO(κ) given by a (g<) b if and
only if g−1a < g−1b, and in the same way if A is a structure, K as above and H a
subgroup of Aut(A), then H has a natural action on NOK(A).

5 Computations of Universal Minimal Flows

Let A be an ω-homogeneous structure whose finitely-generated substructures are
finite and let G be a dense subgroup of the group of automorphisms of A. Let A be
a finite substructure of A. Then we can identify the right coset space G(A)/G with
copies of A in A via G(A)g ←→ g−1[A] ∈

(
A
A

)
. The right cosets of GA in G(A) then

correspond to automorphisms of A via gGA = { f ∈ G(A) : f |A = g|A} 7→ g|A ∈
Aut(A).

Now assume that K is a Fraı̈ssé order class whose reduct is Age(A). Following
[KPT05, Definition 5.5], we say that K is order forgetful whenever

(1) (A, <), (B,≺) ∈ K and A ∼= B imply (A, <) ∼= (B,≺).

It is shown in Proposition 5.6 of [KPT05] that such an order forgetful expansionK

of Age(A) has the Ramsey property if and only if Age(A) does.
In [KPT05], the univeral minimal flows are computed for groups of automor-

phisms of countableω-homogeneous structuresA whose Age has an order expansion
K satisfying the ordering property, i.e., for every A ∈ Age(A), there is B ∈ Age(A)
such that whenever ≺ is a linear ordering on A, ≺ ′ is a linear ordering on B and
(A,≺), (B,≺ ′) ∈ K, then (A,≺) is a substructure of (B,≺ ′). Since order forget-
ful expansions of Age(A) trivially have the ordering property, the following result
generalizes Theorem 7.5 (ii) to uncountable structures in this special case.

Theorem 3 Let A be an ω-homogeneous structure. Suppose that finitely-generated
substructures of A are finite and that they satisfy the Ramsey property. Suppose that K
is a Fraı̈ssé order class that is an order forgetful expansion of Age(A). Then NOK(A)
induced by K is the universal minimal flow for every dense subgroup of Aut(A).

Proof Let G be a dense subgroup of Aut(A). To prove minimality of NOK(A), we
need to verify that Ret

(
<, (A, <′)∗

)
= {g ∈ G : g < ∈ (A, <′)∗} is syndetic for

every normal ordering < in NOK(A) and (A, <′) ∈ K. Let SA be a set of repre-
sentatives for right cosets of GA in G(A). As K is order forgetful, Ret

(
<, (A, <′)∗

)
intersects every right coset of G(A), so SA Ret

(
<, (A, <′)∗

)
= G. Since A is finite,

also SA is finite and hence Ret
(
<, (A, <′)∗

)
is syndetic.
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To prove universality, we need to show that given a normal ordering < in
NOK(A), the syndetic algebra B generated by

{
Ret
(
<, (A, <′)∗

)
: (A, <′) ∈ K

}
is a maximal syndetic subalgebra of the algebra L = {GAK : K ⊂ G,A ∈ Age(A)}.

In order to do that, we show that if left translates of a set H = GAK ∈ L generate
a syndetic subalgebra of L, then H intersects every right coset of G(A). Suppose that
{g : H ∩ G(A)g = ∅} is nonempty. Then H ′ = SAH = G(A)K is in the algebra
generated by left translates of H, and G \ H ′ 6= ∅. Consider the induced colouring
c :
(
A
A

)
→ {H ′,G \ H ′} given by c(A ′) = H ′ if and only if there is an h ∈ H

such that h−1[A] = A ′. Suppose now that there are g1, g2, . . . , gn ∈ G witnessing
that both H ′ and G \ H ′ are syndetic. Let C be the substructure of A generated by⋃n

i=1 gi[A]. Since Age(A) satisfies the Ramsey property, there is a copy C ′ of C in A

which is monochromatic, say in the colour H ′. Since G is dense in Aut(A) and A is
ω-homogeneous, there is an f ∈ G mapping C ′ to C . It means that c( f−1giA) = H ′

for all i, which shows that there is no h ∈ G \ H ′ and no i such that f = gi ◦ h, a
contradiction.

Now let H = GAK ∈ L be syndetic. We have that Aσ := σ Ret
(
<, (A, <)∗

)
∈ B

for every σ ∈ SA and G =
⋃
σ∈SA Aσ , therefore

⋃
σ∈SA (H ∩ Aσ) = H. For every

σ ∈ SA either Aσ ∩ H = ∅, or Aσ ∩ H = Aσ , since Aσ takes exactly one right coset
of GA in every right coset of G(A), so either H ∈ B or B ∪ {H} does not generate a
syndetic algebra. It follows that B is maximal.

Group of All Bijections

Since the class of finite linear orders is an order-forgetful expansion of the class of
finite sets satisfying the Ramsey property, we can generalize the result of Glasner and
Weiss [GW02] about Sω to Sκ for arbitrary infinite κ.

Theorem 4 The universal minimal flow of Sκ is LO(κ).

Homogeneous Boolean Algebras

ω-homogeneous Boolean algebras are usually called just homogeneous. The Age of
a homogeneous Boolean algebra is the class of all finite Boolean algebras. Recall (see
[KPT05, p. 145]) that a linear ordering< on a finite Boolean algebra is natural if it is
an antilexicographical order induced by an ordering of the atoms. Since both the class
of finite Boolean algebras and the class of naturally ordered finite Boolean algebras
are Fraı̈ssé classes with the Ramsey property and they satisfy the assumptions of the
theorem, we get the following result, which generalizes Theorem 8.2 (iii) in [KPT05]
to uncountable homogeneous Boolean algebras.

Theorem 5 Let B be a homogeneous Boolean algebra and K the class of naturally
ordered finite Boolean algebras. Then the universal minimal flow of Aut(B) is the space
NOK(B) of all linear orderings on B that are natural when restricted to a finite subal-
gebra.

Homogeneous Boolean algbebras are in Stone duality (see Section 2) with h-
homogeneous zero-dimensional compact Hausdorff spaces, so this is just a dual ver-
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sion of a result by Glasner and Gutman. Recall that a topological space X is called
h-homogeneous if all non-empty clopen subsets of X are homeomorphic.

Theorem 6 ([GG]) Let X be an h-homogeneous zero-dimensional compact Hausdorff
topological space. Let G = Homeo(X) be equipped with the compact-open topology.
Then M(G) = Φ(X), the space of maximal chains on X.

The space of maximal chains was introduced by Uspenskij in [Usp00] as fol-
lows: let X be a compact space and denote by exp X the space of closed subsets of
X equipped with the Vietoris topology. Then the space Φ(X) of all maximal chains of
closed subsets of X is a closed subspace of exp exp X. The natural action of Homeo(X)
on X induces an action on exp X and Φ(X), which is the action considered in the the-
orem above. There is of course an explicit isomorphism between these two universal
minimal flows (see [KPT05, Theorem 8.3]).

Following a paper by van Douwen [vD90], if κ is a cardinal number, we denote by
P(κ)/[κ]<κ the quotient algebra of the Boolean algebra of all subsets of κ by the ideal
of sets of cardinality less than κ. It is easy to see that P(κ)/[κ]<κ is homogeneous for
every cardinal κ.

Now we introduce two subgroups of P(κ)/[κ]<κ: Denote by Tκ the set of all bi-
jections between subsets A,B ⊂ κ with card(κ \ A), card(κ \ B) < κ. With the
operation of composition, Tκ is a monoid, but not a group. We can however assign
to each f ∈ Tκ an automorphism f ∗ of P(κ)/[κ]<κ, f ∗([X]) =

[
f [X]

]
, mapping

Tκ onto a subgroup T∗κ = { f ∗ : f ∈ Tκ} of Aut(P(κ)/[κ]<κ). Since the automor-
phisms in T∗κ are induced by a pointwise bijection between subsets of κ, we call them
trivial. Inside of T∗κ we have a normal subgroup of those automorphisms induced
by a true permutation of κ, let us denote it by S∗κ. Shelah [She82] (see also [SS88])
proved that consistently every automorphism of P(ω)/ fin is trivial. This has been
extended to P(κ)/ fin for all cardinals κ in [Vel93]. Of course, consistently the two
groups are different.

The next theorem shows that T∗ω and S∗ω do not coincide, hence T∗ω (and thus
consistently also Aut(P(ω)/ fin)) is not simple.

Theorem 7 ([vD90]) There is a homomorphism h∗ from T∗ω onto Z with kernel S∗ω .
(In particular, T∗ω 6= S∗ω .)

Van Douwen also identified all normal subgroups of T∗ω .

Theorem 8 ([vD90]) A subgroup G of T∗ω is normal if and only if card (G) = 1 or
G ∈ {(h∗)−1kZ : k ∈ N}.

It follows that all non-trivial normal subgroups of T∗ω are dense in Aut(P(ω)/ fin).
So we can apply Theorem 3 to obtain the following corollary.

Corollary 2 The universal minimal flow for all normal subgroups of T∗ω and of
Aut(P(ω)/ fin) is NO

(
P(ω)/ fin

)
.

Note that even though the algebraic structure of S∗κ is inherited from Sκ, their
topologies are radically different, therefore so are their universal minimal flows
NO
(
P(κ)/[κ]<κ

)
and LO(κ) respectively (even in cardinality).

In the uncountable case, the situation is slightly different.
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Theorem 9 ([vD90]) If κ > ω, then T∗κ = S∗κ.

Nevertheless, T∗κ is dense in Aut
(
P(κ)/[κ]<κ

)
, so Theorem 3 applies.

Corollary 3 Let κ be a cardinal number. Then the universal minimal flow of
Aut
(
P(κ)/[κ]<κ

)
and T∗κ is NO

(
P(κ)/[κ]<κ

)
.

Vector Spaces Over Finite Fields

Every vector space over a finite field isω-homogeneous and its Age is equal to all finite
dimensional spaces over the given finite field. This forms a Fraı̈ssé class satisfying the
Ramsey property and so does the class of all finite dimensional naturally-ordered
spaces. Moreover, these classes satisfy the condition (1) on order forgetfulness of
Theorem 3, as noted in [KPT05, p. 144]. Thus we can generalize the result in [KPT05]
about countable-dimensional vector spaces to those with uncountable dimension.

Theorem 10 The universal minimal flow of Aut(V), where V is an infinite dimen-
sional vector space over a finite field, is the space NO(V).

6 Extremely Amenable Groups

Next theorem characterizes extremely amenable subgroups of Sκ. The implications
(a)⇒ (c) and (c)⇒ (b) have identical proofs as for S∞ given in [KPT05].

Definition 1 A topological group is called extremely amenable if its universal min-
imal flow is a singleton.

Theorem 11 Let G be a subgroup of Sκ. The following are equivalent:

(a) G is extremely amenable,
(b) (i) for every finite A ⊂ κ, GA = G(A), and (ii) for every colouring c : G/GA →
{1, 2, . . . , k} and for every finite B ⊃ A, there is g ∈ G and i ∈ {1, 2, . . . , n} such
that c(hGA) = i whenever h[A] ⊂ g[B].

(c) (i ′) G preserves an ordering, and (ii) as above.

Remark 1 Let A be an ω-homogeneous relational structure such that G is dense in
its automorphism group. Since finitely generated substructures of A are finite, (ii) of
(b) simply says that Age(A) satisfies the Ramsey property.

Proof (a)⇒ (c) Since G is extremely amenable, it has a fixed point under its nat-
ural action on LO(κ), hence (i ′) holds. To prove (ii), suppose that c : G/GA →
{1, 2, . . . , k} is a colouring of left cosets of GA by k many colours. Consider c as a
point in the compact space X = {1, 2, . . . , k}G/GA and an action of G on X given
by gx(hGA) = x(g−1hGA). Let Y be the closure of the orbit of c in X. Since G is
extremely amenable, the induced action of G on Y has a fixed point d. As G acts tran-
sitively on G/GA, d must be a constant function, say with range {i} ⊂ {1, 2, . . . , k}
Let B ⊃ A be finite and let H = {hGA ∈ G : hA ⊂ B} ⊂ G/GA. Since d ∈ Gc, there
is a g ∈ G such that g−1c|H = d|H. Then c(ghGA) = g−1c(hGA) = d(hGA) for every
h ∈ H.
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(c)⇒ (b) Let < be an ordering given by (i ′). It means that for every g ∈ G(A) we
have that g(A, <|A) = (A, <|A), hence g(a) = a for all a ∈ A and so G(A) = GA.

(b) ⇒ (a) We will use the notation and result of Theorem 1. By the proof of
Theorem 3 we know that left translates of a set H = GAK cannot generate a syndetic
subalgebra of L if H ∩ G(A)g = ∅ for some g ∈ G. However, since G(A) = GA, it
follows that H only generates a syndetic algebra if it is equal to all of G.

As an immediate consequence of Theorem 11, we obtain examples of extremely
amenable groups as groups of automorphisms of structures.

Theorem 12 ([Pes98]) The group of automorphisms of an ω-homogeneous linear
order is extremely amenable.

The following result generalizes Theorem 6.14 of [KPT05] to uncountable Bool-
ean algebras.

Theorem 13 Let B be a homogeneous Boolean algebra and let< be a normal ordering
induced by the class of naturally ordered finite Boolean algebras as in the Example 3.
Then Aut(B, <) is extremely amenable.

Proof By minimality of NO(B) we have that Age(B, <) is the class of all naturally
ordered finite Boolean algebras satisfying the Ramsey property. Therefore (c) of The-
orem 11 is satisfied.

The following result generalizes Theorem 6.13 of [KPT05] to uncountable dimen-
sional vector spaces.

Theorem 14 Let V be a vector space over a finite field and let < be a normal ordering
induced by the class of naturally ordered finite vector spaces as in Example 3. Then
Aut(V, <) is extremely amenable.

Proof This is identical to the proof of Theorem 13.
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[Vel93] Boban Veličković, OCA and automorphisms of P(ω)/ fin. Topology Appl. 49(1993), 1–13.

http://dx.doi.org/10.1016/0166-8641(93)90127-Y

Department of Mathematics, University of Toronto, Bahen Center, 40 St. George St., Toronto, ON M5S 2E4

and

Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague,
Czech Republic M5S 2E4
e-mail: dana.bartosova@utoronto.ca

https://doi.org/10.4153/CMB-2012-023-4 Published online by Cambridge University Press

http://dx.doi.org/10.1007/PL00012651
http://dx.doi.org/10.1016/0001-8708(72)90005-9
http://dx.doi.org/10.1007/s00039-005-0503-1
http://dx.doi.org/10.1090/S0002-9947-98-02329-0
http://dx.doi.org/10.1090/S0002-9947-1948-0025717-6
http://dx.doi.org/10.1090/S0002-9939-1988-0935111-X
http://dx.doi.org/10.1112/jlms/s2-34.2.265
http://dx.doi.org/10.1016/0166-8641(90)90092-G
http://dx.doi.org/10.1016/0166-8641(93)90127-Y
https://doi.org/10.4153/CMB-2012-023-4

