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Abstract

Gaschutz has introduced the concept of a product of a Schunck class and a (saturated) formation
(differing from the usual product of classes) and has shown that this product is a Schunck class
provided that both of its factors consist of finite soluble groups. We investigate the same question in
the context of arbitrary finite groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 10.

Given a Schunck class 3C and a saturated formation ^"(both of them contained in
the class of all finite soluble groups), Gaschutz [6] has introduced the homomorph

of all finite groups G whose ^residual G* belongs to SC, and has shown that
9C * JHs a Schunck class, provided the classes #"and ^ consist of finite soluble
groups. The present note is an investigation into the question to which extent this
result can be generalized for classes of finite (not necessarily soluble) groups, and
is an application of the methods developed in [5]. Therefore the reader is assumed
to be familiar with the results of as well as the notation employed in [5]; the same
notation and terminology shall be used throughout the present note without
further reference. As in [5], all groups considered here are supposed to belong to a
fixed but otherwise arbitrary universe y"c $ closed under taking subgroups and
quotients.

Apart from a generalization of Gaschutz's above-mentioned result, we shall
derive in a uniform manner several results concerned with products of Schunck
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[2 ] A Schunck class construction 131

classes in the universe of all finite w-soluble groups as well as a result on products
of saturated formations, and it shall become clear how to obtain further results of
the same type by means of our Theorem below.

Our main result gives a description of the groups in b{3C * &), where #"is a
Schunck class and ^"a formation. We shall state the Theorem in the most general
setting in order to be able to derive various criteria. Quite naturally, the most
important special cases lead to considerably shorter statements, mainly because
Schunck classes J"with primitive groups of type III in their boundaries are ruled
out by the results of [5].

THEOREM. Let 3C be a Schunck class, &a formation, G e b(3T * &), and put
N = Gy. Then precisely one of the following four statements holds:

(ii) S(G) < N is an abelian minimal normal subgroup of G, N splits over S(G)
with any X e Projir(iV) complementing S(G) in N, and S(G) is a faithful,
completely reducible X-module over some GF(p); if T is an irreducible X-submodule
ofS(G), then {(X/CX(T))T) = b(3f) n Q{N) c 0>v Moreover, either

(a) S(G) < $(G), in which case (X/CX(T))T possesses two non-conjugate
maximal subgroups with trivial core, or

(b) G e <Pj, and then every element o/Proja-,^r(G) may be written as NG(X)
for some X e Proj^iV).

(iii) S(G) < N is a non-abelian minimal normal subgroup of G, S(G) = 7\ X
• • • X Tn with {Tlt...,Tn} being the set of all minimal normal subgroups of N,
G e 0>u, and either

(a) [N/CN(T)} = b(3T) nQ{N}Q&>n for each minimal normal subgroup
TofN,or

(b) {(X/CX(T))T) = b(&) DQ{N}Q &m for each minimal normal sub-
group T and N and each X e Proj^-(iV).

(iv) S(G) = Mj X Mj < N, where Mx and M2 are the minimal normal subgroups
of G, CN(Mt) = Af3_, (/ = 1,2), each X e Proj^-(iV) complements both Mx and
M2 in N, M,. = 7\(I) X • • • X Tn

(<) where {7}(l>|/ = 1,2; j = 1 , . . . ,n} is the set of
all minimal normal subgroups of N, {(X/CX(T))T) = b(SC) n Q{N) Q&mfor
each minimal normal subgroup T ofN and each X e Proj^-(N), and either

a) G S ^ J J J , or b) G is not primitive.

PROOF. We subdivide the proof into four parts, each corresponding to one of
the above statements.

Case 1. G

https://doi.org/10.1017/S1446788700022667 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022667


132 Peter Forster [3]

In this case N = G ̂ coincides with S(G), since N is the unique minimal normal
subgroup of G; and we obviously have N £ SC, whence (i) holds.

As IFc. 3C * Jf, we may assume in the sequel that M < N for each minimal
normal subgroup M of G. In fact, N # 1, and if M 4 N, then N = N X M/M =

*& Sf, yielding the contradiction that 6 e f « ^ .

Case 2. There exists an abelian minimal normal subgroup M of G.

From N/M = G*M/M = (G/M)jrG £"= £*2", we get $(JV) = 1. Hence
there is a complement X of Af in A7, and X s AT/Af G #". As Af < F(AT) and
3>(iV) = l,A/isa direct product of minimal normal subgroups TtoiN,i = \,...,n.
Since N € SC, we can find an L<N such that N/L e 6(5"), while N/M G ^
forces M £ L. Therefore 7) ^ L for at least one / G {1,. . . ,n}. Setting T = Tt,
N/L G @> together with the fact that TL/L is an abelian minimal normal
subgroup of N/L gives N/L G &t and S(N/L) = T X L/L. It is easily seen that
N/L = K\ilN(T)T = (X/CX(T))T. Consequently,

(X/Cx(T
g))Tg s iV/L* = N/L G *(S") n ^ for each g G G,

and as M is a direct product of G-conjugates of T, we conclude that X G Proja-( N).
Having chosen AT/L as an arbitrary factor group of N in b(3C), we see that to
within isomorphism iV/L is the unique element of [the isomorphism class]
Q{N) C\b{3f). Suppose that G possesses a minimal normal subgroup At* ¥= M.
Then by means of the same arguments as previously (with M* in place of M), we
obtain that X complements M* in N too. Hence one can easily derive the
following contradiction, where $(X) n (M X M*) < <b(N) = 1 has to be taken
into account:

SC=> X= Y[Xn(M X M*)] = YMis a split extension for suitable r < A",

but

( X / C A . ( r ) ) r = ( r / C r ( r ) ) l G fc(.r)isisomorphictoafactorgroupofX

We have shown that S(G) = M is minimal normal in G, and we infer that
Corec(A

r) = 1. In particular, CX(M) = 1: otherwise from CX(M)<XM = N and
the fact that CX(M) does not contain a characteristic subgroup of N one would
get that CN(M) = CX(M) X Af <G is a direct product of minimal normal sub-
groups of N iV-isomorphic to Aut(Ar)-conjugates of T, which is readily seen to
contradict X G Proj^(A7). This completes the proof of the first part of statement
(ii), whereas the proof of the second part, being an easy consequence of the
Frattini argument and the results of Section 4 of [5], is left to the reader.

For the remaining part of the proof we are permitted to assume that F(G) = 1.

Case 3. S(G) is a non-abelian minimal normal subgroup of G.
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Proceeding as in Case 2, we choose an arbitrary L<N with N/L G b(2C) and
an arbitrary minimal normal subgroup T of N. Since <&(JV) = 1 and S(G) < N,
we get T < S(JV) = S(G), and we note that G permutes the elements of
{7\, . . . , Tn } (that is to say, the minimal normal subgroups of N) transitively. If
N/L G 0>x, an argument as above yields that S(N/L) = T* X L/L for some
g G G, whence L = CN(Tg). Now it is readily seen that the situation is as
described in (iii.a). If N/L G ̂ m , a similar argument shows that iV/L =
(XL/L)(Tg X L/L) is a split extension for each X G Proj^-(Ar), giving rise to the
situation described in (iii.b). Finally, we observe that N/L G ̂ >

1 is impossible, as
Tg < S(G) (with suitable g G G) is isomorphic to a minimal normal subgroup of
N/L and is non-abelian; and G G ̂ n follows from the fact that S(G) is a
non-abelian minimal normal subgroup of G.

To complete the proof we have to handle the following case:

Case 4. F(G) = 1 and S(G) = Mr X • • • X Mm (ro > 2), where Af1;... ,Afm
denote the minimal normal subgroups of G.

Again we consider an arbitrary N/L G b(2E), and we recall that 1 # MtL/L
< S(N/L), which is a product of not more than two minimal normal subgroups
of N/L. We cannot possibly have S(N/L) = MtL/L, since then Mj < CN(Mt)
< CN(S(N/L)) = L for anyy ^ /', a contradiction. Therefore MtL/L is minimal
normal in N/L. If y * i, then Mj < CN(Mt) < CN(MtL/L), the latter group
being just the other minimal normal subgroup of N/L G ̂ "m, when taken
modulo L. In particular, from My ^ L we infer that {MtL/L, MjL/L] is the set
of all minimal subgroups of N/L whenever i ,y 'e (1 , . . . ,m} are such that / # j .
We may conclude that firstly, m = 2, and secondly, S(N/L) = (7\ X L/L) X
(r2 X L/L), where 7] is a minimal normal subgroup of iV~ contained in A/,;
indeed, as previously, S(G) = S(iV), and Af, is a direct product of minimal
normal subgroups 7}(l) of N, i = l,2,y = 1,...,«,. Moreover, each 7^(l) is iV-iso-
morphic to a minimal normal subgroup of some N/L G b{9£\ and for any
X G Proj^AT) we have {(X/CX{T^))T^} = Q{N} n b(3T) c ^»ni (/ = 1,2; 7
= l , . . . ,n,); here it is to be observed that a primitive group of type III in the
boundary of a Schunck class S"is isomorphic to the split extension of any one of
its ^projectors and of its minimal normal subgroups. Finally, from N/Mt G 9C
(i = 1,2) we get N = A'A/, for each X G Proja-(7V) and, in consequence, X n
Mi<XM3_i = N. Since for each 7)(0 we can find L,7<iV such that N/Ltj G Z>(^)
and 7^o) X L^/L^ is minimal normal in N/Lu, Tt

ij) £ X n Mt: otherwise we
should have N/LtJ = (XLIJ/LiJXTl^ X LJ/L^ = XL^/L^ G Q{X) C if.
Therefore we deduce that AT) A/, = 1 (1 = 1,2). This eventually leads to the
conclusion CN(Mt) = C^(M,.) n XM3_i = (CN(M,) n A')A/3_,. = A/3_(,
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134 Peter Forster [s]

REMARK. Requiring that b(&) n ^m = 0 excludes cases (iii.b, iv.a, iv.b). //, in
addition, &is saturated, then G is primitive unless (ii.a) applies.

Applying the main result of Section 6 of [5], we obtain the promised generali-
zation of results of Gaschutz [6] (dealing with a Schunck class #"and a formation
#"in the universe of all finite soluble groups) and Erickson [4] (where SCand ̂ "are
saturated formations in the universe of all finite groups); Erickson's result also
appears in the as yet unpublished manuscript of the book by Doerk and Hawkes
on "Finite Soluble Groups". Hypothesis (1) of the following Corollary 1 is
satisfied in case of Gaschiitz's result, whereas hypothesis (2) is satisfied by
saturated formations (as is obvious from the well-known structure of primitive
groups of type I in the boundary of a saturated and thus local formation).

COROLLARY 1. Let 3Cbe a Schunck class such that either
(1) SC-projectors form a set of conjugate subgroups in every group and Vsatisfies

the hypothesis of [5; 6.1], or
(2) b(&) n &>m = 0 and ^-projectors form a set of conjugate subgroups in each

group from b(X)n^l
l.

Suppose further that & is a formation which is either saturated or satisfies
gp&= &for all primes p such that Sp $ 3C. Then 9C * &is a Schunck class.

PROOF. AS SC * & is a homomorph, it is a Schunck class if and only if
b{3C *&r)<z9>. Therefore we consider G e b(% * &) and apply our Theorem
together with the above Remark. We are done unless case (i) or (ii.a) applies. In
case (i), however, G e b(&) is primitive: If J^is a saturated formation, then it is a
Schunck class; if 8p&= Plat all primes p such that Sp %3C, then the unique
minimal normal subgroup of G e b(% * &) n b(&) is certainly not abelian,
whence G e £Pn is primitive. Finally, case (ii.a) is excluded by (1) or (2), as the
maximal subgroups of (X/CX(T))T with trivial core are precisely the ^projec-
tors of this group from b(2E)—here the notation is as in (ii.a) of the Theorem.

We would point out that the question of whether {X * J^)-projectors form a
single conjugacy class of subgroups in every group (given that a corresponding
property is enjoyed by both 3C and &) seems to be rather intractable. More
specifically, it is not quite clear in general, which subgroups of a group G e
b(SC * &) n 9>n might belong to X * J*"and supplement S(G). The situation is
different in case that 3C * ^"coincides with £&, the class of all groups possessing
a normal subgroup in 9C such that the corresponding factor group is in J*\ (The
latter class, however, is not necessarily a Schunck class, and may contain 3C * J2"
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properly.) The next corollaries, generalizing results of Lausch [8, 9], Beidleman
and Brewster [2, 3], exploit this observation.

COROLLARY 2. Let 'fbe the class of ir-separated groups, SE a Schunck class of
ir-groups and *& a Schunck class of ir'-groups such that Proj^(G) and Proj^-(G),
respectively, form a set of conjugate subgroups of each tr-group and ir'-group G. Then
SCWis a Schunck class with the same property in W, the class of all m-soluble groups.

PROOF. The proof is a simple application of our Theorem and the following
elementary observations. (*) %'& = (X * gv.) n ^, where Sv. is the class of all
w'-groups and ^ is the class of all groups G such that G/Gg" e <W. (In fact, the
class ^ of all groups such that G/G^ej^, F D ^ a formation and JC a
homomorph, is a homomorph satisfying (&C\!F= Jif and b{&) = b(J(?) n J5", and
is a Schunck class if Jf is.)

(**) b(Jifn J f ) c b(Jff) U b{ Jf) for aU homomorphs^T and X.

Of course, apart from (*) and (**), the results of [5] (in particular, the main result
of Section 5 is important in this context) are to be used here; the Frattini
argument is useful, too. The (rather difficult) proof of the statement related to
conjugacy of projectors rehes on the results and methods contained in the sequel
to [5], and will not be given here.

By means of Corollary 2 we get that the following class, being an intersection
of two Schunck classes, is a Schunck class whenever X and & satisfy the
hypotheses of Corollary 2:

Y]

Moreover, a brief glance at the structure of groups in b{9CY. 9) shows that we
get conjugacy of (#"X ^)-projectors in all G e V, that is, we do not require G to
be 7r-soluble (or IT'-soluble). (Clearly, by restricting attention to <2f, it is easier to
ensure that the hypotheses of the following Corollary 3 are satisfied, a fact used in
the papers of Lausch and Beidleman.)

COROLLARY 3. Let X, <&, and i^be as in Corollary 2. Then &X 9 is a Schunck
class with Proj^^S?) = (Z« |ge G} (Z any &X ^projector of G) for each
G e i^ An addition, Proj^y^ = Cov^^, provided that Proj^.= Cov .̂ for 2£= 3,', <&.

Finally, it is easy to derive various descriptions of projectors and/or covering
subgroups for the Schunck classes discussed here by means of the results in
Section 3 of [5].
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136 Peter Forster [7]

By inspection of the conclusions of our Theorem, further modifications on the
hypotheses of Jifand Censuring 3tf * J^to be a Schunck class are readily found.
We shall conclude the discussion of the above Theorem by exhibiting examples to
show that each of the cases listed in the Theorem can occur.

EXAMPLES, (i) J5"any formation, 9C= {1}; G e
(ii.a) J r = gp, the class of all /^-groups (or & = JV, the class of all nilpotent

groups), 3f=^V" = {G e<^|F'(G) = G}, the class of "generalized nilpotent
groups" (this class was shown to be a Schunck class in 2.5 of [5]—recall that
F'(G), by definition, is S(Gmod $(G)) ; G = EV, a split extension, where £ is a
non-abelian simple group, and Fis a GF(p)[E]-raodule (for a prime/; dividing
\E\) such that F/Rad(F) is an irreducible, trivial £-module and Rad(F) is an
irreducible, faithful £-module. Observe that G*= OP(G) = £Rad(F), $(G) =
Rad(F), G^/QiG) = E<ESC, E<S>(G) <£ %, and $(G) is the unique minimal
normal subgroup of G contained in F. (An example of such a group G is
discussed in 5.7 of [5]; in fact, it is easy to see that such a module Fover GF(p)
exists for each non-abelian simple group E and each of the prime divisors p of
\E\.)

= {1}, #"any Schunck class with b(&) n ^ # 0 ; G e b(9E) n 9>v

"= {1}, .fany Schunck class with b(9?) n0>u* 0 ; G e b( 2C) n 0>xl.
(iii.b) J^= Sp, J"the Schunck class defined by b{9C) = {E X E) for a non-

abelian simple group E (i.e., 3C= h(E X £ ) = ( C E £\Q{G) n {E X E) =
0 }); G = EV/TCP, the regular wreath product of E and a cyclic group of order/?.

(iv.a) JS"= {1}, 3"any Schunck class with b(%) n 0>m # 0 ; G e b{2C) n &m.
(iv.b) &= if, 3C= h(E X E) for some non-abelian simple group E such that

Inn(£) < Aut(£); G = Hx X H2 where Inn(£) < Ht < Aut(£) (and

Observe that in the last example G*'= E X E = S(G) and CG(£ X 1) = 1 X
/?2, CG(1 X E) = 7/x X 1, whence none of the centralizers of the minimal normal
subgroups of G is contained in G*. We are not aware of any example for case
(iv.b) satisfying CG(Af,) = A/3_, for / = 1,2, where A/j and M2 denote the
minimal normal subgroups of G. Further, we do not know whether this assump-
tion, forcing G/Mi e &xl for / = 1,2, leads to the conclusion that G/M1 s G/M2;
note that G*/Mx = G*/M2 s X whenever A" e ProjV(G^). Anyhow, even if
both of these assertions are assumed to hold, we are not able to show that G e ^
(that is to say, C e ^ m ) follows, thus ruling out case (iv.b) when this special
situation occurs. This last question, however, is related to a seemingly interesting
problem concerning the primitivity of certain groups—a problem not referring to
the notion of a Schunck class (albeit an affirmative solution could be applied to
the theory of Schunck classes; cf. Chapter I of [1] or [7]).
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Problem. Let G be a group with S(G) = Ml X M2, Mt minimal normal in G, such
that G/Mx = G/M2 e 0>u. Is G necessarily primitive (of type III)?

ADDED IN PROOF. After this paper had been submitted, L. G. Kovacs showed
us a negative solution to the problem discussed above; an example will appear in
Chapter I of [1].
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