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DERIVATIVES AND LENGTH-PRESERVING MAPS

BY
SHINJI YAMASHITA

ABSTRACT. Let a be a constant, |a| = 1. We shall prove meromorphic
(M) and bounded-holomorphic (BH) versions of the following prototype:
(P) Let f and g be holomorphic in a domain D. Then, |f'| = |g'| in D if
and only if there exist constant a, b with f = ag + b in D. (M) Let f and
g be meromorphic in D. Then, |f'|/(1 + |f]?) = |g'|/(1 + |g|?) in D if and
only if there exist a, b with |b| = oo such that f = a(g — b)/(1 + bg). (BH)
Letfand g be holomorphic and bounded, |f| < 1, |g| < 1, inD. Then, |f'|/
(I = |f» = 1g’l/(1 = |g» in D if and only if there exist a,b with
|b| < 1, such that f = a(g — b)/(1 — bg).

1. Results. Let D be a domain in the complex plane C and let ®, be the family of
functions az + b, where |a| = 1 and b € C. A prototype for the present observation
is the following which can be easily proved.

() Let f and g be holomorphic in D. Then, |f'| = |g'| in D if and only if there exists
T € ®, such that f = TOg in D.

Each T € @, preserves the Euclidean metric. Let @, be the family of functions
a(z = b)/(1 + bz),

where |a| = 1 and b € C = C U {}; if b = = then a/z should be considered instead.
For f meromorphic in D we set

@ =1 @A +1f@P) if f(z) #
= |(1/£)'(2)| if f(z) = .
Our first result is:

(II) Let f and g be meromorphic in D. Then, f # = g# in D if and only if there exists
T € ®, such that f = TOg in D.

The “if” part is obvious. Let
0=tan'x =u/2, 0=x= o,
and set

os(z,w) = tan"'(|z — w|/|1 + Zw));
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this is the spherical metric on C. To explain this, let = be the Riemann sphere of
diameter one touching C at the origin from above. On identifying = with C via the
stereographic projection, we observe that, the great circle passing through z and w is
divided into two arcs by z and w. The smaller of the lengths of these arcs is o5(z, w).
Each T € ®, preserves os. Furthermore,

as(f(w), f()/|w — z| = f*(2) as w— z.
Let ®; be the family of functions
a(z = b)/(1 = bz),

where |a| = 1 and b € A = {|z| < 1}. For f holomorphic and bounded, |f| < 1, in D,
we set f* = |f'|/(1 = |f]». Our next result is

(111) Let f and g be holomorphic and bounded, |f| < 1, |g| < 1, in D. Then, f* =
g* in D if and only if there exists T € ®; such that f = TOg in D.

The “if ” part is obvious. The Poincaré metric in A is
op(z,w) = tanh™'(|z — w|/(1 — Zw]).
Each T € ®; preserves ap. Furthermore,
op(fw), f)/|lw = z[ = [*(z)  asw—z.

2. Proofs. To prove the “only if ” parts of (II) and (III) we shall make use of the
lemma due to E. Landau and J. Dieudonné; see [5, Theorem VI.10, p. 259].

LEMMA. Let f be holomorphic and bounded, |f| < M, in A with f(0) = f'(0) — 1
= 0. Then, f is univalent and starlike in A(M) = {|z| < N(M)} with \(M) =
M~ (M~ 1)

“Starlike” here means that for each z € A(M),
{tf(2); 0 =t = 1} C f(AM));

we note that 1 = |f'(0)| = M.

To prove the “only if ” part of (1I) we may assume that f is nonconstant. Then, there
exists w € D such that

f(w) # o # g(w) and f#(w) 0.

Set
F=(f = fo)/(L+ fw)),
G = (g~ gw)/(1 + g(wg),
in D. It suffices to show that there exists a,, |a,| = 1, such that

F(z) = ;G(z) in D.

Obvious computations then complete the proof.
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We fix a constant R > 0 such that {|z — w| = R} C D, and we note that
K = max{f*(z); |z — w| =R}

is positive and finite because f # is continuous. Let 0 < r < R and rK < m/4. To verify
that |F| < 1 and |G| < 1 in D,(w) = {|z — w| < r} we let

aw,z)={1 —tw+ tz; 0 = t = 1}, z € Dy(w).
Now, F* = f# = ¢# = G* in D and F(w) = G(w) = 0. We then have

tan”'|F(2)| = o5(F(2), F(w)) = f FR)|dL) = |w — z|K = rK < w/4,

a(w,z)

whence |F(z)| < 1 for z € D,(w). Similarly we have |G(z)| < 1 in D,(w).
Since |F'(w)| = |G'(w)| = f#(w), it follows that the holomorphic functions

&(2) = F(rz + w)/(rF' (w)),

$(z) = G(rz + w)/(rG'(w)), z€EA
are bounded,

|l =M = 1/¢fF(w), [W[=M inA.

By the lemma, both ¢ and ¥ are univalent and starlike in A(M).
Restricting F to D,(w) = {|z — w| < rA(M)}, we let B(w, z) be the inverse image
of

{tF(2); 0 =t = 1} C F(D,(w)), z € Dy(w).
Then,
tan”' |F(z)|

ou(FG) Fov) = | FA@lag]

B(w,z2)

| 6 0latl = 046,600 = n G o)

whence |F(z)| Z |G(z)| for z € D,(w). We can replace F by G in the above argument,
so that we obtain

[F(2)| = |G(2)| in Dy(w),

and hence F(z) = a,G(z) in D,(w). The unicity theorem yields that F = a,G in the
whole D.

For the case of (III) we may assume that there exists w € D with f*(w) # 0. This
time, we consider

F=(f—fw)/( — f(w)f),
G = (g — gw)/(1 = g(w)g),
in D to prove that F = a,G (|a,| = 1) in D. First, F* = f* = g* = G* in D. For
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R > 0 with {|z — w| = R} C D, we may consider
$b(z) = F(Rz + w)/(RF'(w)),
P(z) = G(Rz + w)/(RG'(w)), z € A.

We can then apply the lemma to & and & with M = 1/(Rf*(w)). Then, ¢ and { are
univalent and starlike in A(M). In this case, for z € Dy(w) = {|z — w| < RAN(M)}, we
let y(w, z) be the inverse image of

{tF(2); 0 =t = 1} C F(Ds(w))
by F restricted to D;(w). Then,

I

op(F(2), F(w)) = f F*(Q)d{]

Y(w,z)

tanh™' |F(z2)|

f G*(D)]dt] = 04(G(2), G(w)) = tanh™'|G(2)],

y(w,z)

so that |F(z)| 2 |G(z)| for z € D5(w). Similarly, |F(z)| = |G(z)| in D;(w). The unicity
theorem now proves the requested.

3. Real-part surfaces. The real-part surface of f holomorphic in D is the set of
vectors, V(x,y) = (x,y,Re f(z)), z = x + iy € D, in the space R*. The Gauss
curvature at V(x,y) is then

Ki(z) = (/" (2)4

Il

see [2], [1, Satz 3].
If g' = af’, |a| = 1, then K, = K; in particular, K._;;, = K; see [2, Satz 3.1].
E. Kreyszig and A. Pendl [3, Satz 3] proved much more; see also [4, Lemma 2].

(KP) Let f and g be holomorphic in D such that
L) g = (af +B)/(yf +3¥ in D,
where (x,B,'y,S € C, ad — By # 0. Then, K; = K, in D if and only if
g = (Af +B)/(=Bf + A) in D,
where A,B € C, |A|*> + |B|* > 0.

We can drop the condition (L) in the proposition (KP). This is obvious for the “if ”
part. With the aid of (II) applied to f' and g" with K, = K, or f'* = g'# we can show
that (L) is superfluous for the “only if ” part also. The details are left as exercises.

4. Further applications. We begin with an entire f.

(IV) If f € @, then for each T € ®,, |f|*> — |T|* is harmonic in C. Conversely if
there exists T € ®, such that |f|*> — |T|* is harmonic in a domain D, then f € ®,.

The first half is obvious by direct computations. If fand g are holomorphic in D, then
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A(f? = g = 4(f > = |g']» in D.

Therefore, |f'| = |T'| in D in the second half. By (1), together with the unicity theorem,
we have f € ®,. Also a direct proof is possible.

By the similar observations we propose applications (V) and (VI) of (II) and (II),
respectively. Perhaps (VI) is more interesting than (V).

Let f and g be meromorphic in D. Then, there exist holomorphic functions f; and f,
(g, and g,) with no common zero in D such that f = f,/f, (¢ = g,/g>) in D. Then,

Alog(|fi[* + |21 — log(lgi|* + g1} = 4(s%* — ¢ in D.

(V) Let f = f,/f, be meromorphic in C, where f, and f, are entire with no common
zero. If f € ®,, then for each T(z) = a(z — B)/(1 + bz) € ®,, there exists a harmonic
function h such that

(1) A@P + A = (2 = b]> + |1 + bz|He"

in C with 1 + |z|? for the parentheses on the right in case b = ». Conversely if there
exist T € ®, and a harmonic function h in D such that (i) holds in D, then f € ®,.

PROOF. The first half. Because f#(z) = (1 + |z|>™' = T#(z) in C. The second half.
Since f#* = T# in D, it follows that there exists T, € ®, with f = T,0T (€ ®,) in D
by (II). By the unicity theorem, f € ®,.

(V1) Let f be holomorphic and bounded, |f| < 1, in A. If f € ®s, then for each
T € ®,, there exists a harmonic function h such that

(i) L= fP =0 = [TPe"

in A. Conversely if there exist T € ®, and a harmonic function h in a subdomain A,
of A such that (ii) holds in A, then f € ®,.

In general, if f and g are holomorphic and bounded, |f| < 1, |g| < 1, in D, then
Aflog(1 = |f]") — log(1 — [g])} = 4(g** — f*)

in D. Therefore, f* = g* in D if and only if there exists a harmonic function 4 in D
such that

1= |fP=1 —|g|He" inD.

PROOF OF (VI). The first half. Because f*(z) = (1 — |z|>)~' = T*(z) in A. The
second half. By (III), there exists T) € ®; with f = T, 0T in A,, and hence in A.
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