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A DIRECT ELLIPSOID METHOD FOR LINEAR PROGRAMMING

SHIQUAN WU AND FANG WU

This paper indicates how to apply the ellipsoid method directly to Linear Pro-
gramming problems and proves that this kind of version of the ellipsoid method is
almost as good as Karmarkar's type method in the theoretical sense.

0. INTRODUCTION

As several authors have noted, the ellipsoid method is in some sense equivalent
to Karmarkar's method [6, 7]. Todd and Ye designed the ellipsoid according to the
Karmarkar's potential function and proved that the ratio of the volume reduction of
the ellipsoids is equal to the ratio of the potential function reduction. In this note, we
apply the ellipsoid method directly to Karmarkar's canonical problem and get a nicer
complexity bound than the traditional ellipsoid method. This shows, in another way,
the relationship between the ellipsoid method and Karmarkar's method.

1. KARMARKAR'S PROBLEM AND ITS EQUIVALENCE

We shall consider the following problem

(7) min{cTx | « e l }

where !R = {x \ ~Ax - 0,~eTx — n,x ^ 0}

ASSUMPTIONS.

(1) ZTx is not a constant on R.

(2) 1 £ Rmxn and rank(I) = m.

(3) Ae = 0 (where e denotes an n-dimension vector of l's).
(4) A is an integer matrix.
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Now we suppose that z\, z2, ..., zn-m-\ are the basic solutions of

eTx = 0

and Ai, A2, . . . , An-m-i are their normalised orthogonal vectors. Let A =

(Ax, A2,..., An-m-i) = (01, a2,..., a n ) T , c = ATc; then the linear mapping

x :=e + Ax

transforms (P) into

(P) min{cTx \ x £ R}

where R = {x \ Ax ^ — ~e} = {x \ afx ^ — \,a$x ^ — l,...,a%x ^ —1}.

It is not difficult to see that to transform (P) into (P) needs at most (n + l ) x n x m
arithmetic operations. Generally speaking, to transform a standard linear programming
into Karmarkar's canonical form needs to combine primal and dual problems (see [2]).
So the reduced problem (P) has fewer variables than the problem (P). The following
method is actually designed for solving (P).

2. DIRECT ELLIPSOID METHOD FOR PROBLEM (P)

In the following, we use / and c< to denote the (n — m — l ) x ( n — m — 1) identity
matrix and the tth component of c.

ALGORITHM.

Step 1. Set xi = 0, Qi = n(n - 1)1, k = 1;

{ —ai, if there exists an i such that afxk < — 1.

c, otherwise;

Step 3. set xk+1 = xk - l/(n - m)(Qkd/^/dTQkd) ,

(n-m-1)2 (n 2 (Qkd)(Qkd)T\
Qk+1 = ( n _ m _ l ) 2 - 1 [Qk ~ n-m d?Qkd )

set k = k + 1 and return to Step 2.

3. MAIN THEOREM AND LEMMAS

MAIN THEOREM. Let {xk} be generated by the algorithm, I* be the optimal
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value of (P); then

min{cTx« — /* I x« €. R,t ^ k} < n(n — l ) [ m a x c j — mincj) exp I -=• I.
' >. » * V 2(n - m ) y

So as Jb ^ 2(n - m)2i(Z) + 2[/n(n) + /nfmaxcj - mincij](n - m)2

we have min{cTst - I* \ xt € R,t < &} < 2"t(:*).

In order to prove this theorem, we need the following notions and lemmas. Given
an integer g ^ 0, we need one cell for the sign and [log2 (|g| + 1)] cells for the {0,1}-
string in order to represent its absolute value in binary. For "0"or "1" we need only
one cell. So to encode an integer q we need

cells. We call L(q) the encoding length of q. Hence the encoding length of a rational
number r = s/t is L(r) = L(a) + L{t).

LEMMA 1 .

(a) For every rational number r, \r\ ^ 2L^T' — 1.
(b) For every rational vector x € Rn, \\x\\ ^ \\x\h < 2W*>-n> - 1.

(c) For every rationai matrix D 6 RnXn, |det {D)\ < 2 ( L ( D ) - n ' ) - 1.

PROOF: See [3].

LEMMA 2 . Without loss of generality we assume that ci = min,-c,-, cn = max; c,-.

(1) nci ^ cTx ^ nc« for x G R.

(2) h := (n - l)c! - £ Ci ^ cTx < l2 := (n - lfa - "ff ct for x£R.
i=2 »=1

(3) Ri={x\ \\x\\2 < n/(n - 1)} C R C R2 = {x \ \\x\\2 ^ n{n - 1)}.

PROOF: The proof is very direct, so we omit it here.
LEMMA 3 . Let Ek = {x \ (x - xk)

TQ^1(x-xk) < 1} ; tien

vol{Ek+1) ^ ( 1 _ \
,..— •. ^ qn-m — e x p I — —z r I.

vol(Ek) \ 2(n-m)J

PROOF: See [3].

LEMMA 4 . (Briinn-Minkowski)

Suppose C\, C2 C Rn are two compact convex subsets; then

1 / n > 6>[voi(Ci)]1/n + (1 - fl)
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PROOF: See [4, Theorem 46].

Now let us prove the main theorem. For k ^ 1, denote

e* = min{cTZj — /* | j < k and Xj 6 R}.

Since x\ G R, ek is weU denned.

For XJ £ R, denote

Hj = {x | x 6 R,cTx ^ CTXJ}

<p(t) = {x \x£R,cTx ^t}.

It follows that, /* + Ek 4: CTXJ . So we have

(1) >p(l* + ek) C R 0 Hj for any j 4 k with z;- € R.

Denote

(2)

By the construction of the ellipsoids we know that, for any k ^ 1, the following con-
clusions hold:

(3) Ekn{x \cTx^cTxk}cEk+u if xkeR;

(4) Ekn{x\ afx > afxk} C Ek+1, if xfc ^ R.

We assert that

(5) Uk+1 C £*+! for fc £ 1.

In fact, for k = 1, since xi e R implies Ei C\ {x | cTa; ^ cTzi} C E2 and iZ C S i ,
it follows that

U2= RnHiCEiHH! C E2.

Now we assume that for k = h — 1 the conclusion is true, that is,

(6) Uh C Eh.

If xh 6 -R, by (3) and (6) we have

Uh+i =UhnHkcEhnHhC Eh+1.

If XH, <£ R, then it is clear that R C {x \ afx > ofash}. By (4) and (6) we get

Uh+\ = UhCEhn{x\ ajx > afxh} C Eh+U
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and the induction is finished.

By (1), (2) and (5) we get

(7) <p{r+£k)

From Lemma 3

(8) < ( 9 n - m ) t / ( n - m - 1 ) [

On the other hand, for any x £ R, by Lemma 2 we have I* ^ I* +£k ^ h- Hence there
exists a A* £ [0,1] such that

Furthermore,

and the assumption (1) implies vol(^(/*)) = 0 and R = (p(h) • From Lemma4 it follows
that

Therefore

(n-m-1)

<exp( , ) ( n
\ 2(n-m) y

= ea:p( ~^7 \2 l ^ - i K c n - c i ) ,

and the proof is completed.
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