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This work considers the problem of binary classification: given training data x1, . . . , xn from a

certain population, together with associated labels y1, . . . , yn ∈ {0, 1}, determine the best label

for an element x not among the training data. More specifically, this work considers a variant

of the regularized empirical risk functional which is defined intrinsically to the observed data

and does not depend on the underlying population. Tools from modern analysis are used to

obtain a concise proof of asymptotic consistency as regularization parameters are taken to

zero at rates related to the size of the sample. These analytical tools give a new framework for

understanding overfitting and underfitting, and rigorously connect the notion of overfitting

with a loss of compactness.
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1 Introduction

The problem of classification is one of the most important problems in machine learning

and statistics. In this paper, we consider the problem of binary classification: given

training data x1, . . . , xn from a population, together with associated labels y1, . . . , yn ∈
{0, 1}, determine the best label for an element x not among the training data. The

x variables represent the values of certain features identifying individuals/objects in a

given population; on the other hand, the y variables represent a group each individual

belongs to. The classification problem is thus to construct, using the available training

data (xi, yi)i=1...n, a function, called a classifier, mapping features x to labels u(x), which

reflects patterns or trends exhibited in the samples. In some sense, the goal can be posed

as “learning” relevant aspects of the underlying geometry of the population by observing

only a finite number of samples.

Here, we follow the standard assumption that the data {(xi, yi)}i are independent

samples of some unknown ground-truth distribution ν . This means that yi is not simply
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obtained by evaluating a function at xi, but instead yi is randomly chosen from a

distribution that depends on xi. In other words, the labels in the training data are

randomly obtained from a distribution that depends on the feature values:

yi ∼ �(yi = ·|x = xi).

For our purposes, this assumption gives a robust means to account for external sources

of noise and for internal uncertainty associated to an object/individual (for example, the

features may not always give all of the relevant information about an individual). It is

also reasonable to assume that objects with similar features have similar labels, which in

this probabilistic setting means that the distribution �(y = · |x = x) varies continuously

in x.

By way of definition, a classifier is a function u : D → {0, 1}, where we use D ⊆ Rd to

denote the space of features for the given population. The performance, or “goodness”

of any classifier is measured in terms of some risk functional. The risk functional that we

consider in this paper is the average misclassifications error for data sampled from the

distribution ν . More precisely, given a classifier u : D → {0, 1}, we define its risk as

R(u) := �(|u(x) − y|) =

∫
D×{0,1}

|u(x) − y|dν(x, y).

With respect to this risk functional, the best classifier (i.e. the one that minimizes the risk)

is the Bayes classifier, which is the function uB defined as

uB(x) :=

{
1 if �(y = 1|x = x) > 1/2,

0 otherwise.

A central difficulty in the classification problem is that ν is unknown, and thus we cannot

compute either R(u) or uB . In fact, in some cases, the extent of D, or in other words, the

support of ν , may be unknown. Given that the Bayes classifier is the best classifier, a

reasonable goal is then to construct a classifier based completely on the training data, in

such a way that it approximates the Bayes classifier in some asymptotic sense (as n→ ∞).

A result of this type, namely that a family of classifiers approximates the Bayes classifier

as n→ ∞, is known as an asymptotic consistency result.

One of the key difficulties in bridging the gap between the finite training sample and

the unknown distribution ν is balancing between overfitting and underfitting. When one

constructs a very “complex” classifier so as to be faithful to the labels associated to the

training data, it is said that the classifier overfits the data. On the other hand, when one

oversimplifies the classifier by sacrificing faithfulness to the observed data, it is said that

the classifier underfits the data. The so called one nearest neighbour classifier is a typical

example of a classifier that overfits: for a given x ∈ D, define the label of x to be that

of the point xi closest to x. On the other hand, the classifier constructed by setting the

label of every x ∈ D to be the most common label among the training data, is the most

extreme case of a classifier that underfits. Figure 1 shows examples of these situations.

The natural question is thus: How does one construct an “ideal” classifier which neither

overfits nor underfits a finite set of training data?
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Figure 1. Three different classifiers for a family of data points; the x-axis represents location and

the y-axis represents the labels 0 or 1. The first classifier, namely the nearest neighbour classifier un1,

overfits the data. The second classifier picks the most common label, and underfits the data. The

third classifier is the Bayes classifier.

To answer the previous question, one needs a clear mathematical notion of overfitting

and underfitting. One central purpose of this paper is to give precise definitions for

overfitting, underfitting and consistency as asymptotic notions (n → ∞) in a concrete

analytical setting introduced in Section 1.1.

Before we describe our setting, it is helpful to consider the one nearest neighbour

classifier so as to get a better understanding of the problem of overfitting and the classical

approaches to mitigating the same. Let ln : {x1, . . . , xn} → {0, 1} be the label function

defined by ln(xi) = yi. The one nearest neighbour classifier, un1, is constructed by extending

the function ln, which is only defined on the point cloud {xi}ni=1 , to the whole domain

D as described earlier. Since the labels yi are random variables given xi, the function ln
may take very different values at neighbouring xi and xj . The highly oscillatory nature

of ln means that as n → ∞ the function ln may not resemble any function u defined on

the whole domain D. The function ln will instead resemble a distribution, where at each

point x ∈ D, one may have the value 1 with certain probability and the value 0 with

certain probability. In the language of modern analysis, we do not have compactness in

the space of measurable functions, but instead in the space of Young measures. However,

each classifier un1 is a function that when restricted to the training data coincides with

the label function ln. In particular, it minimizes the empirical risk, which for a function

u : D → R is defined as

Rn(u) :=
1

n

n∑
i=1

|u(xi) − yi| =
1

n

n∑
i=1

|u(xi) − ln(xi)|.

Thus, if one seeks to construct a classifier via unconstrained empirical risk minimization,

then even basic properties, such as being a function, may be lost in the limit. This is partly

due to the limitation that the functional Rn is truly a functional defined for functions on

the point cloud: un : {x1, . . . , xn} → R.

Classically, the main approach for avoiding the problem of overfitting is to restrict,

either explicitly or implicitly, the family of classifiers considered when trying to minimize

the empirical risk Rn. After a family F of functions is specified, one must then prove

asymptotic consistency, usually obtained by analysing the variance and the bias associated

to F . One of the first main theoretical tools developed for the purpose of analysing the

variance is VC (Vapnik–Chervonenkis) theory. In VC theory, the shattering number

N (F , n) of a family of functions F is defined by

N (F , n) := max
(xi)i=1...n

|F(xi)|,
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where F(xi) is the restriction of the functions in F to the set (xi) and |F(xi)| is the number

of distinguishable elements in F(xi). In essence, the shattering number gives one relevant

measure of the capacity of the family of functions F to overfit a set of data points. One

of the central results in VC theory is that if

log2 N (F , n)
n

→ 0,

then the empirical risk Rn converges in probability uniformly (over F) towards R. VC the-

ory, and its many extensions, provide a powerful tool for proving asymptotic consistency.

However, in many situations, estimating the shattering number of a class of functions can

be a challenging combinatorial problem.

As stated, the shattering number is defined in terms of some explicit family of classifiers

F . However, it is also possible to implicitly restrict the family of classifiers by minimizing

a regularized empirical risk function of the form

min
u:D→R

Rn(u) + λΩ(u),

where Ω is some functional measuring the complexity of the classifier u. For example, Ω

may be some integral of ∇u, i.e. a TV or Sobolev norm. In this setting, λ is known as a

regularization parameter, which specifies a trade-off between fidelity (Rn) and smoothness

(Ω). In this context, VC theory can still be applied to the family of functions F = {u :

Ω(u) < C} if suitable combinatorial estimates are satisfied. A helpful overview of some

of the classical techniques used to prove consistency is [24], and a standard reference

addressing some of these topics is [21].

The classical theory outlined previously is based on classifiers that are extrinsic to the

data, in the sense that in both cases, one considers a notion of complexity of families

of functions defined on the whole underlying domain D. This approach is very powerful

in many settings, but can be difficult to apply in practice. The extrinsic approach may

also be challenging when information about D is limited and one is forced to work with

families of functions defined on the whole ambient space Rd which may not be tailored

to the geometry of D. In this paper, we take a different point of view and consider an

intrinsic approach, namely we first seek to construct a suitable function defined on the

point cloud. In particular, we focus on a regularized empirical risk minimization problem

of the form

min
un
Rn(un) + λΩn(un), (1.1)

where un is a function taking values on the point cloud {x1, . . . , xn} and Ωn is a regular-

izer constructed from the point cloud. This paper specifically addresses the asymptotic

behaviour of minimizers of the above regularized empirical risk minimization problem

when Ωn is the graph total variation defined in (1.13) below. This functional depends on

the construction of a proximity graph based on the point cloud and a parameter ε which

specifies the connectivity of the graph.

In establishing a consistency result, we need a suitable metric for comparing functions

on a point cloud, namely minimizers of (1.1), with functions defined on all of D ⊆ Rd,

namely uB . In particular, we utilize the TL1(D) metric space introduced in [12] (see
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(1.17) below for its definition). The TL1(D) metric space turns out to be very useful

when stating our definitions of (asymptotic) overfitting, underfitting and consistency for

different asymptotic regimes of λ. We show that if the regularizer is too weak (λ small

with respect to ε), then the minimizers of the regularized empirical risk, despite forming a

Cauchy sequence in TL1(D), do not converge to an element in the metric space TL1(D).

In the completion of this metric space, the limit can be interpreted as a distribution, or

Young measure, and not a function: this is an overfitting regime. If the regularizer is too

strong (λ not decaying to zero), then the minimizers obtained are too regular and in the

limit (TL1(D)-limit), one recovers a regular function; when λ→ ∞, one recovers the most

extreme case of underfitting. Finally, there is an “ideal” scaling regime where one recovers

the Bayes classifier uB in the limit: this is an asymptotic consistency result. The fact that

there may be separate asymptotic regimes in the scaling parameter has been observed

previously, see e.g. [1] and [15] for results of this type in the context of Bayesian inverse

problems.

We also provide a simple means of constructing a classifier u : Rd → {0, 1} from the

minimizer of the problem (1.1). To this end, define the Voronoi extension (or one nearest

neighbour extension) of a function un : {x1, . . . , xn} → {0, 1} by

uVn (x) =

n∑
i=1

un(xi)1Vn
i
(x), (1.2)

where Vn
i is the set of points in D whose closest point among {x1, . . . , xn} is xi; this set

is called the Voronoi cell of the point xi. In simple words, the label assigned to a point

x ∈ D is the value of un at its closest neighbour in the set {x1, . . . , xn}. The last theorem in

this work proves that the Voronoi extensions of the minimizers of (1.1) indeed converge

to the Bayes classifier when λ scales appropriately.

In summary, we decompose the process of constructing a classifier into two steps.

The first step involves solving a discrete, convex optimization problem, namely finding

a minimizer of (1.1). The second step involves extending the minimizer via the Voronoi

extension. This process is intrinsic in the sense that it assumes no a priori information

about the distribution, and uses only information derived from the point cloud.

There are several noteworthy features of this approach. First, the (limiting) family of

classifiers attainable by this method is very broad, namely the family of BV classifiers.

In other words, the structural assumptions on the limit are quite weak, giving the

method significant flexibility. Second, very little information is required about the initial

distribution ν . In particular, no information is needed about the support of ν , besides it

being supported on some open, sufficiently regular set. The case in which ν is supported

on an embedded submanifold M ⊆ Rd (with lower intrinsic dimension) can be addressed

with similar techniques, but we will present the details elsewhere.

Our analytical framework differs from the classical learning theory approach in two

main aspects. First, regularity of a minimizer of the functional (1.1) is enforced by

the Ωn term and an appropriate choice of the parameter λn. In turn, this regularity

guarantees the needed compactness in the appropriate metric space so as to guarantee

the asymptotic consistency and avoid overfitting. Second, we directly compare minimizers

of the empirical energies with minimizers of the analogous continuum (population level)
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energies, as opposed to studying only bounds on energy differences. Our point of view is

amenable to analysis using transparent, modern tools from mathematics. These tools can

be used both to prove important theoretical results, such as the consistency result of this

paper, as well as to provide new insights into certain phenomena. For example, the metric

that we use in this paper provide clear means for defining asymptotic notions of over and

underfitting. In particular, overfitting can be seen in terms of a loss of compactness, or

convergence towards a non-trivial Young measure.

Finally, we remark that while we have focussed our efforts on supervised learning,

many of these ideas may be applicable in other settings. In particular, one could try to

consider the semi-supervised learning problem (i.e. graph-based semi-supervised learning),

in the setting where the labelled data is a fixed fraction of the data points. In that setting,

the only difference in our set-up would be that the fidelity term in the energy (1.14) would

only contain a fraction of the data points. We do not seek to address this (interesting)

question in the present work.

1.1 Set-up and assumptions

To start developing the ideas presented in the introduction, we first need to be more

precise about the notions and assumptions we consider in this paper.

Let D ⊆ Rd be a bounded, connected, open set with Lipschitz boundary. We measure

the distance between two elements in D with the Euclidean distance in Rd. We will assume

that d � 2 throughout this work.

We let ν, the distribution of features, be given by dν = ρdx, where ρ : D → R is a

continuous density function defined on D. We will assume that ρ is bounded above and

below by positive constants, that is, we assume that there are constants 0 < m,M such

that

m � ρ(x) � M, ∀x ∈ D. (1.3)

We let ν , the joint distribution of features and labels, be given by a Borel probability

measure on Rd ×R whose support is contained in D × {0, 1} and whose first marginal is

ν. That is, for every Borel set A ⊆ Rd,

ν(A× {0, 1}) = ν(A ∩ D) =

∫
A∩D

ρ(x)dx.

For a random variable (x, y) distributed according to ν , we let νx be the conditional

distribution of y given x = x. That is, we use the disintegration theorem to write ν as

ν(A× I) =

∫
A

(∫
I

dνx(y)

)
dν(x),

for all Borel subsets A of D and for every interval I ⊆ R. Expressed simply, νx represents

the distribution of labels of an object/individual with features x = x.

We let μ : D → R be the conditional mean function, defined by

μ(x) :=

∫
{0,1}

ydνx(y) = νx({1}) = �(y = 1|x = x). (1.4)
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The Bayes classifier uB : D → R is defined by

uB(x) :=

{
1, if μ(x) � 1/2

0, otherwise.
(1.5)

It is straightforward to check that uB is a minimizer over L1(ν) of the risk functional

R(u) :=

∫
D×R

|u(x) − y|dν(x, y) =

∫
D

(∫
R

|u(x) − y|dνx(y)

)
dν(x), (1.6)

where L1(ν) is the space of real-valued functions integrable with respect to the measure ν.

For ease of presentation, it will be desirable for uB to be the unique minimizer of R. To

this end, observe that on the set {x ∈ D : μ(x) = 1/2}, we may modify u(x) to take any

value in [0, 1] without increasing the value of R. Thus, for uB to be unique, it is necessary

to assume that

ν
(
{x ∈ D : μ(x) 
= 1/2}

)
= 1. (1.7)

In light of (1.3), this is equivalent to the statement μ 
= 1/2 Lebesgue-a.e.

The condition (1.7) is in fact sufficient for uB to be the unique minimizer of the risk

functional R over the class of L1(ν)-functions. Indeed, suppose that u minimizes R. It is

clear that if the set where u takes values not in [0, 1] has non-zero measure, then u cannot

be a minimizer of R; hence, u takes values in [0, 1] only. Now, given that u takes values

in [0, 1] only, we can write

R(u) =

∫
D

(∫
R

|u(x) − y|dνx(y)

)
dν(x),

=

∫
D

(
|u(x) − 1|μ(x) + |u(x)|(1 − μ(x))

)
dν(x),

=

∫
D

((1 − u(x))μ(x) + u(x)(1 − μ(x))) dν(x),

=

∫
D

μ(x)dν(x) +

∫
D

(1 − 2μ(x))u(x)dν(x). (1.8)

Now, by the definition of uB , for any u(x) only taking values in [0, 1], we have that

(1−2μ(x))u(x) � (1−2μ(x))uB(x) for all x ∈ D. Under the assumption (1.7), this inequality

can only be an equality at ν a.e. x if u = uB . From this, it follows that R has a unique

minimizer (the Bayes classifier) if and only if the set of x with μ(x) = 1/2 has ν-measure

zero.

In addition to assumption (1.7), which guarantees the uniqueness of minimizers for R,

we also assume that ν({x ∈ D : uB(x) = 1}) 
= 1/2, or in other words that the Bayes

classifier has only one median. We denote by u∞ the median of uB , that is,

u∞ :=

{
1 if ν({x ∈ D : uB(x) = 1}) > 1/2

0 otherwise.
(1.9)

It is then straightforward to check that u∞ is the unique minimizer of miny∈R R(y).
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We additionally make some weak regularity assumptions on the functions μ and uB .

We assume that the function μ is continuous at ν-a.e. x ∈ D. In particular, μ is allowed

to have discontinuities as long as the set at which μ is discontinuous is ν-negligible. This

assumption models the continuity of the law of y given that x = x, as x changes. Also,

we assume that uB is a function with finite total variation (we recall the definition of

total variation in (1.16)). We notice that the assumption on the regularity of the Bayes

classifier, that is the regularity of the interface between the regions where uB = 1 and

uB = 0, is very mild. Specifically, it only requires that the interface has finite perimeter;

the notion of perimeter we use is that of Caccioppoli (see [2]).

Now let us consider (x1, y1), . . . , (xn, yn) i.i.d. samples from ν . These are the training data

representing n objects/individuals with features xi and corresponding labels yi. We denote

by νn the empirical measure

νn :=
1

n

n∑
i=1

δ(xi ,yi),

and by νn the measure

νn :=
1

n

n∑
i=1

δxi .

Observe that νn is a measure on D ×R and νn a measure on D.

The labels yi define a label function ln ∈ L1(νn), where ln : {x1, . . . , xn} → {0, 1} and

ln(xi) := yi, ∀i = 1, . . . , n. (1.10)

In the above and in the remainder of the paper, L1(νn) represents the space of integrable

functions with respect to the measure νn, i.e. real-valued functions whose domain is the

set {x1, . . . , xn}.
Associated to the sample (x1, y1), . . . , (xn, yn), we consider the empirical risk functional

Rn : L1(νn) → R given by

Rn(un) :=

∫
D

|un(x) − ln(x)|dνn(x) =
1

n

n∑
i=1

|un(xi) − yi|, un ∈ L1(νn).

We notice that the risk functional is intrinsic to the data, as it can be defined completely

in terms of the values of (xi, yi) for any arbitrary function un ∈ L1(νn). We remark that if

un takes only values in {0, 1}, then Rn(un) is simply the fraction of discrepancies between

un and the labels yi. We also observe that using the empirical measure νn, the empirical

risk functional Rn may be written as

Rn(un) =

∫
D×R

|un(x) − y|dνn(x, y).

When written in this form, we see that Rn resembles the true risk (1.6). The main

difference between Rn and R is that the argument of Rn is a function un ∈ L1(νn), whereas

the argument of R is a function u ∈ L1(ν).

As we stated previously, the unique minimizer of the true risk functional (1.6) is the

Bayes classifier uB defined in (1.5). On the other hand, it is evident that the function ln
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is the unique minimizer of the empirical risk Rn among functions un ∈ L1(νn). Despite

the resemblance between Rn and R, we cannot expect to obtain uB as the limit of the

functions ln in any reasonable topology. As discussed in the introduction, this is due to the

fact that the functions ln are “highly oscillatory” as n → ∞, and hence cannot converge

to a function. To buffer the high oscillation of the functions ln, while still being faithful to

the labels yi, one seeks to minimize a risk functional with an extra “regularizing” term.

To be more precise, we first consider a kernel η : [0,∞) → [0,∞) not identically equal to

zero and satisfying the following assumptions:

(K1) η is non-increasing.

(K2) The integral
∫ ∞

0
η(r) rddr is finite.

We note that the class of admissible kernels is broad and includes both Gaussian kernels

and discontinuous kernels like one defined by η of the form η = 1 for r � 1 and η = 0

for r > 1. The assumption (K2) is equivalent to imposing that the quantity

ση :=

∫
Rd

η(|h|)|h1|dh, (1.11)

is finite, where h1 is the first coordinate of the vector h. We refer to ση as the surface

tension of the kernel η. Also, we will often use a slight abuse of notation and for a vector

h ∈ Rd write η(h) instead of η(|h|).
We make an additional assumption on η, namely,

η(r) � 1, ∀r ∈ [0, 2]. (1.12)

This assumption is mainly for convenience, since any kernel satisfying (K1) and (K2) can

be rescaled to satisfy (1.12).

Having chosen the kernel η, we choose ε > 0 and construct a weighted geometric graph

with vertices {x1, . . . , xn}; the parameter ε defines a length scale which determines the

connectivity of the point cloud. The weights of this graph are given by

Wij := ηε(xi − xj),

where

ηε(z) :=
1

εd
η

(z
ε

)
.

For a function un ∈ L1(νn), namely a function whose domain is the vertices of the graph

({xn},W ), we define the graph total variation by

GTVn,ε(un) :=
1

n2εd+1

n∑
i=1

n∑
j=1

η

(
xi − xj
ε

)
|un(xi) − un(xj)| . (1.13)

The graph total variation was previously used in [12, 14] in connection to approaches to

clustering using balanced graph cuts.

In this work, we will analyse the regularized empirical risk functional given by

Rn,λ(un) := λGTVn,ε(un) + Rn(un), un ∈ L1(νn). (1.14)
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Here, λ > 0 is a parameter whose role is to emphasize or de-emphasize the effect of the

regularizer GTVn,ε. We will generally assume that λ and ε are allowed to vary as n → ∞
(written λn and εn); this is natural in light of the results in [12], which require specific

decay rates on εn.

The functional Rn,λ is similar to the Rudin–Osher–Fatemi model with L1-fidelity term

used in the context of image denoising (see [5, 18]), but our setting and motivation is

different from that in [5, 18], as the functional Rn,λ is constructed from a random sample

{(xi, yi)}i=1...n of an unknown distribution ν . We remark that the L1-fidelity term is well

suited for the task of classification because it naturally generates functions valued in {0, 1},
or, in other words, sparse functions. Numerical methods designed to find an approximate

minimizer of (1.14) can be found in [23]; on the other hand, an augmented Lagrangian

approach to find the exact minimizer of (1.14) can be found in [8]; See also [5] and the

references within.

The analogue of the functional Rn,λ in the continuous setting is the functional

Rλ(u) := λσηTV (u) + R(u), u ∈ L1(ν), (1.15)

where in the above, TV denotes the (weighted by ρ2) total variation of the function

u ∈ L1(ν), which is defined by

TV (u) := sup

{∫
D

div(φ)udx : φ ∈ C1
c (D : Rd), and ‖φ(x)‖ � ρ2(x), ∀x ∈ D

}
. (1.16)

If the above quantity is finite, we say that u ∈ L1(ν) is a function with bounded (weighted

by ρ2) variation. We have included the surface tension ση in the definition of Rλ in light

of the results from [12] which state that σηTV is the Γ -limit (we will make this precise

in Theorem 2.8 below) of the functionals GTVn,ε, when ε scales with n appropriately.

In order to state the main results of the paper, one needs a suitable metric for comparing

functions in L1(νn) with functions in L1(ν). We consider the TL1-metric space that was

introduced in [12].

We denote by P(D) the set of Borel probability measures on D. The set TL1(D) is

defined as

TL1(D) := {(θ, f) : θ ∈ P(D), f ∈ L1(D, θ)}. (1.17)

That is, elements in TL1(D) are of the form (θ, f) , where θ is a probability measure on D

(in this paper, we will take ν or νn), and f ∈ L1(θ), that is, f is integrable with respect to

θ. This space can be seen as a formal fibre bundle over P(D); the fibres are the different

L1-spaces corresponding to the different Borel probability measures over D.

We endow TL1(D) with the metric

dTL1 ((θ1, f1), (θ2, f2)) := inf
π∈Γ (θ1 ,θ2)

(∫∫
D×D

|x1 − x2| + |f1(x1) − f2(x2)|dπ(x1, x2)

)
, (1.18)

where Γ (θ1, θ2) represents the set of couplings, or transportation plans between θ1 and θ2.

That is, an element π ∈ Γ (θ1, θ2) is a Borel probability measure on D×D whose marginal

on the first variable is θ1 and whose marginal on the second variable is θ2. In [12], it is

proved that dTL1 is indeed a metric.
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Let us now discuss a characterization of TL1-convergence of a sequence of functions

{un}n∈N with un ∈ L1(νn) towards a function u ∈ L1(ν); we use this characterization in the

remainder. We recall that a Borel map Tn : D → {x1, . . . , xn} is said to be a transportation

map between the measures ν and νn, if for all i, T−1
n

(
{xi}

)
has ν-measure equal to 1/n

(such a map is known to exist as long as ν is absolutely continuous, see e.g. [22]) . The

results from [13], imply that with very high probability, i.e. probability greater than 1−n−β
(for β any number greater than one), there exists a transportation map Tn between ν and

νn, such that

‖Tn − Id‖L∞(ν) �
Cβ log(n)pd

n1/d
, (1.19)

where pd is a constant depending on dimension and is equal to 1/d for d � 3 and equal

to 3/4 when d = 2; Cβ is a constant that depends on β, D and the constants from

(1.3). Notice that from the Borell–Cantelli lemma and the fact that 1
nβ

is summable, we

can conclude that with probability one, we can find a sequence of transportation maps

{Tn}n∈N, such that for all large enough n, (1.19) holds. We refer the interested reader

to [13] for more background and references on the problem of finding transportation

maps between some distribution and the empirical measure associated to samples drawn

from it.

It is shown in [12] (see Proposition 2.2 below) that (νn, un)
TL1

−→ (ν, u) if and only if

un ◦ Tn
L1(ν)−→ u, where Tn are the maps from (1.19) (which exist with probability one).

We abuse notation a bit and simply say that un
TL1

−→ u in that case, understanding that

un ∈ L1(νn) and u ∈ L1(ν).

1.2 Main results

The first main result of this paper is related to the study of the limiting behaviour of u∗n
defined by

u∗n := arg min
un∈L1(νn)

Rn,λn (un), (1.20)

under different asymptotic regimes for {λn}n∈N.

Theorem 1.1 Suppose that (x1, y1), (x2, y2), . . . , (xn, yn), . . . are i.i.d. random variables distrib-

uted according to ν , where ν satisfies the assumptions from Section 1.1. Consider a sequence

{εn}n∈N satisfying

(log(n))pd

n1/d

 εn 
 1, (1.21)

where pd = 1/d when d � 3 and p2 = 3/4. Additionally, let {λn}n∈N be a sequence of

positive real numbers.

(1) If λn 
 εn as n → ∞ then, with probability one, u∗n = ln for n sufficiently large and

u∗n does not converge in the TL1-sense towards any function u ∈ L1(ν). In addition,

lim
n→∞

Rn(u
∗
n ) = 0.
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(2) If εn 
 λn 
 1 as n → ∞ then, with probability one, u∗n converges in the TL1-sense

towards the Bayes classifier uB . In addition,

lim
n→∞

Rn(u
∗
n ) = R(uB).

(3) If λn → λ ∈ (0,∞) as n→,∞ then, with probability one, every subsequence of {u∗n}n∈N

has a further subsequence that converges to a minimizer of Rλ defined in (1.15). In

addition,

lim
n→∞

Rn,λn (u
∗
n ) = min

u∈L1(ν)
Rλ(u).

(4) If λn → ∞ as n → ∞ then, with probability one, u∗n converges in the TL1-sense

towards the constant function u∞ defined in (1.9). In addition,

lim
n→∞

Rn(u
∗
n ) = min

y∈R
R(y).

Remark 1.2 The conclusion of the theorem continues to hold even if the sequence {u∗n}n∈N

is only assumed to be a sequence of almost minimizers of the energies Rn,λn . That is, we only

have to assume that

lim
n→∞

(
Rn,λn (u

∗
n ) − min

un∈L1(νn)
Rn,λn (un)

)
= 0

for the conclusions of the theorem to be true.

Remark 1.3 The assumption (1.21) provides a natural setting under which the geometric

graph is sufficiently well-connected. This was studied in detail in [12].

Theorem 1.1 provides a clear characterization of the asymptotic behaviour of u∗n
depending on the scaling of the parameter λn.

In the regime εn 
 λn 
 1, we obtain the Bayes classifier as the limit of the functions

u∗n in the TL1-sense. Here, we find the balance between enough regularization (so that

the limit of u∗n is a function) and enough fidelity (so that the limit of u∗n is not just any

function, but the Bayes classifier). We illustrate this regime in Figure 2. In that example,

we have chosen D to be the unit square (0, 1)2 and the measure ν was chosen to be the

uniform distribution on D. The function μ determining the conditional distribution of

y given x = x was chosen to take two values 0.45 and 0.55; in the upper left corner

and lower right corner μ = 0.55 whereas in the upper right corner and lower left corner

μ = 0.45. A number of samples from the resulting distribution ν are shown in Figure 2(a).

The function u∗n was constructed using the algorithm proposed in [8]; in Figure 2(b), we

present an appropriate level set of the function u∗n .

In the regime λn 
 εn, which we will call the overfitting regime, the sequence of functions

u∗n minimizing Rn,λn does not converge to uB in the TL1 sense, and in fact, it does not

converge to any function u ∈ L1(ν). Instead, u∗n , or in other words ln, converges towards

ν in the completion of the TL1(D) space; see Section 2.1 for a discussion regarding the

completion of TL1(D). It is important to highlight that the limit of u∗n is not a function,

but a measure (a Young measure more precisely). This type of limit is a consequence of
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Figure 2. Example of consistency regime. (a) n = 10, 000 random samples from ν and (b) u∗n using

ε = n−1/3 and λ = n−1/4.

using a regularizer term in the functional Rn,λn that is not strong enough to control the

oscillations of the label function ln. In light of this, one could intuitively define overfitting

as an asymptotic tendency towards Young measures.

When λn → ∞, the functions u∗n approach the constant function u∞ (the median of

the Bayes classifier). We may view this regime as an underfitting regime: the limit of the

functions u∗n is a very regular function (a constant function) that is as faithful to the labels

as possible given the strong regularity constraint.

Finally, the regime λn → λ ∈ (0,∞), interpolates between the regime in which we

recover uB and the regime in which we recover u∞. Indeed, in this regime, we recover (up

to subsequence) a function uλ minimizing the regularized risk functional Rλ defined in

(1.15). For small values of λ, uλ should resemble the Bayes classifier, whereas for λ large

uλ should resemble u∞. This may be viewed as a weak underfitting regime, which in the

limit recovers a regularized version of the Bayes classifier.

Theorem 1.1 provides a type of consistency result for regularized empirical risk minim-

ization as the sample size n goes to infinity. Moreover, this consistency result gives a means

of characterizing the statistical notions of overfitting and underfitting through modern

analytical notions (such as loss of compactness and Young measures). In this particular

case, it is also possible to quantify precisely the notions of underfitting/overfitting by

means of the asymptotic behaviour of the sequence {λn}n∈N.

However, at this stage, we have not truly addressed the classification problem. We have

only given a means of constructing a suitable function u∗n defined on the geometric graph

({xn},W ). Thus, the natural question at this stage is how to construct a “good” classifier

using u∗n .

Given the definition of TL1 convergence, we know that there exists a family of

transportation maps Tn so that u∗n ◦Tn → uB in L1(ν). However, without explicit knowledge

of D and ν, it is not possible to construct the transport maps Tn. Thus, we see that while

the TL1 space and the transportation maps Tn are useful for the asymptotic analysis

of the regularized empirical risk minimization problem, they do not immediately build a

bridge between such a minimization problem and the problem of classification.
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Fortunately, it is possible to construct a good classifier from u∗n by simply considering

its Voronoi extension. We will show that these extensions converge under slightly less

general assumptions than those from Theorem 1.1 towards the Bayes classifier. This is the

content of our last main result.

Theorem 1.4 Suppose that (x1, y1), (x2, y2), . . . , (xn, yn), . . . are i.i.d. random variables distrib-

uted according to ν , where ν satisfies the assumptions from Section 1.1. Consider a sequence

{εn}n∈N satisfying

(log(n))pd

n1/d

 εn 
 1,

where pd = 1/d when d � 3 and p2 = 3/4. Additionally, let {λn}n∈N be a sequence of

positive real numbers satisfying

(log(n))d·pdεn 
 λn 
 1.

Then, with probability one,

u∗Vn
L1(ν)−→ uB, as n→ ∞,

where u∗n is a minimizer of Rn,λn and u∗Vn is the Voronoi extension (as defined in (1.2)) of

u∗n .

The bottom line is that, for {λn}n∈N chosen appropriately, it is possible to construct an

“intrinsic” classifier which converges towards the Bayes classifier uB . This is constructed

by first finding u∗n using convex optimization, and then by extending using the Voronoi

partition.

Remark 1.5 In general, it is unknown whether convergence in TL1 is equivalent to con-

vergence of Voronoi extensions. The work here (e.g. the proof of Theorem 1.4) suggests

that this is at least plausible under certain regularity conditions. In any case, we do not

seek to address the question of the convergence of the Voronoi extensions of u∗n without the

hypotheses in Theorem 1.4.

Remark 1.6 Although in Theorem 1.4 the convergence of Voronoi extensions is only con-

sidered for a regime where one recovers the Bayes classifier, one can follow the same proof

and deduce the convergence of the Voronoi extensions u∗Vn towards uλ in case λn → λ ∈ (0,∞]

and εn satisfies the assumptions in Theorem 1.1. Intuitively, this is expected because larger

λn forces u∗n to be more regular. On the other hand, it is straightforward to see that Voronoi

extensions in the overfitting regime will not converge towards any function in L1(ν) given

that for large enough n, u∗n (xi) = yi for all i (see Section 3.1).

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we present preliminary results

that we use in the remainder of the paper. Specifically, in Section 2.1, we present some
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relevant properties of the TL1 space and its completion; in Section 2.2, we present the

main results from [12] together with some other auxiliary results that we use in the

remainder of the paper. In Section 3, we prove Theorem 1.1; we do this in three steps: in

Section 3.1, we consider the overfitting regime; in Section 3.2, we consider the underfitting

regime and finally in Section 3.3, we consider the intermediate regime where one obtains

convergence towards the Bayes classifier. In Section 4, we establish Theorem 1.4. We

conclude the paper with a discussion of our results and future work.

2 Preliminaries

2.1 The metric space TL1

This section states some important properties of the TL1 space.

To begin, we demonstrate that (TL1(D), dTL1 ) is a metric space. This is accomplished

by identifying the set TL1(D) with a subset of a space of probability measures over D×R

and by identifying the metric dTL1 with the earth mover’s distance over such space of

measures.

In order to develop this idea, denote by P1(D × R) the set of Borel probability

measures whose support is contained in D×R and that have finite first moments, that is,

θ ∈ P(D ×R) belongs to P1(D ×R) if∫
D×R

(|x| + |y|)dθ(x, y) <∞.

We define a distance d1 between two measures θ1, θ2 ∈ P1(D ×R) by

d1(θ1, θ2) := inf
π∈Γ (θ1 ,θ2)

∫∫
(D×R)×(D×R)

(|x1 − x2| + |y1 − y2|)dπ(x1, y1, x2, y2).

The distance d1 is a particular case of the earth mover’s distance.

Now, given a measure θ ∈ P(D) and a Borel map � : D → D × R, define the push

forward of θ by � as the measure ��θ in P(D ×R) defined by

��θ(A× I) = θ
(
�−1(A× I)

)
, ∀A ⊆ D Borel , ∀I ⊆ R Borel .

With the previous definitions in hand, we may now identify elements in TL1(D) with

probability measures in P1(D ×R) using the map

(θ, f) ∈ TL1 �−→ (Id× f)�θ ∈ P1(D ×R), (2.1)

where Id×f is the map x ∈ D �→ (x, f(x)) ∈ D×R. In other words, (θ, f) is identified with

a measure supported on the graph of the function f. Notice that indeed (Id×f)�θ has first

integrable moments, due to the boundedness of the set D and the fact that f ∈ L1(D, θ).

Furthermore, dTL1 ((θ1, f1), (θ2, f2)) = d1((Id× f1)�θ1, d1((Id× f)�θ)) for any two elements

(θ1, f1), (θ2, f2) ∈ TL1(D) (see [12]). That is, the map (2.1) is an isometric embedding of

TL1(D) into P1(D ×R).

A simple example suffices to demonstrate that (TL1(D), dTL1 ) is not a complete metric

space.
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Example 2.1 Let D = (0, 1), θ be the Lebesgue measure and fn+1 := sign sin(2nπx) for

x ∈ (0, 1). By constructing transport maps that swap neighbouring regions valued at ±1, it

can be shown that dTL1 ((θ, fn), (θ, fn+1)) � 1/2n. This implies that the sequence {(θ, fn)}n∈N

is a Cauchy sequence in (TL1(D), dTL1 ). However, if this was a convergent sequence, it would

have to converge to an element of the form (θ, f) (see Proposition 2.2 below), but then, by

Remark 2.3, it would be true that fn
L1(θ)−→ f. This is impossible because {fn}n∈N is not a

convergent sequence in L1(D, θ).

The previous example illustrates the idea that highly oscillating functions (in this case,

the functions fn) do not converge to any element of TL1(D). On the other hand, since

{(θ, fn)} was a Cauchy sequence, it will converge in the completion of TL1(D). In fact, we

can actually interpret the limit as a Young measure or parameterized measure (see [9,10,19]).

Young measures are a type of generalized function, which associate each point x ∈ D with

a probability measure ηx over R. In the example presented above, the Young measure

obtained in the limit is ηx = 1/2δ−1 + 1/2δ1. Young measures can naturally be associated

with elements of P1(D×R). We claim that the space (P1(D×R), d1) is the completion of

TL1(D). To see this, first note that TL1(D) can be embedded isometrically into P1(D×R).

Second, note that (P1(D ×R), d1) is a complete metric space (see [3]). Finally, it is shown

in [12] that TL1(D) is dense in P1(D ×R). From the previous facts, the claim follows.

Having discussed the TL1-space and its completion, we state a useful characterization

of TL1-convergence in terms of convergence in L1 after composition with transportation

maps. We recall that given two measures θ1, θ2 ∈ P(D), a Borel map T : D → D is a

transportation map between θ1 and θ2, if θ2 = T�θ1. Notice that the condition θ2 = T�θ1

can be equivalently stated in terms of the change of variables formula

∫
D

f(T (x))dθ1(x) =

∫
D

f(z)dθ2(z), (2.2)

which holds for every Borel function f : D → R. The following result can be found in [12].

Proposition 2.2 (Characterization of TL1-convergence) Let (θ, f) ∈ TL1(D) and let

{(θn, fn)}n∈N be a sequence in TL1(D). The following statements are equivalent:

(i) (θn, fn)
TL1

−→ (θ, f) as n→ ∞.

(ii) θn
w−→ θ (to be read θn converges weakly towards θ) and for every sequence of

transportation plans {πn}n∈N (with πn ∈ Γ (θ, θn)) satisfying

lim
n→∞

∫
|x− y|dπn(x, y) = 0, (2.3)

we have ∫∫
D×D

|f(x) − fn(y)| dπn(x, y) → 0, as n→ ∞. (2.4)

(iii) θn
w−→ θ and there exists a sequence of transportation plans {πn}n∈N (with πn ∈

Γ (θ, θn)) satisfying (2.3) for which (2.4) holds.
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Moreover, if the measure θ is absolutely continuous with respect to the Lebesgue

measure, the following are equivalent to the previous statements:

(iv) θn
w−→ θ and for every sequence of transportation maps {Tn}n∈N (with Tn�θ = θn)

satisfying

lim
n→∞

∫
|Tn(x) − x|dθ(x) = 0, (2.5)

we have ∫
D

|f(x) − fn (Tn(x))| dθ(x) → 0, as n→ ∞. (2.6)

(v) θn
w−→ θ and there exists a sequence of transportation maps {Tn}n∈N (with Tn�θ =

θn) satisfying (2.5) for which (2.6) holds.

The previous result allows us to abuse notation and talk about convergence of functions

in TL1 without having to specify the measures they are associated to. More precisely,

suppose that the sequence {θn}n∈N in P(D) converges weakly to θ ∈ P(D). We say that

the sequence {un}n∈N (with un ∈ L1(θn)) converges in the TL1 sense to u ∈ L1(θ), if

{(θn, un)}n∈N converges to (θ, u) in the TL1 metric space. In this case, we write un
TL1

−→ u as

n → ∞. Also, we say that the sequence {un}n∈N (with un ∈ L1(θn)) is relatively compact

in TL1 if the sequence {(θn, un)}n∈N is relatively compact in TL1. In the remainder of

the paper, we use the previous proposition and observation as follows: we let θn = νn
(the empirical measure associated to the samples from the measure ν) and let θ = ν; we

know that with probability one, νn
w−→ ν. We also know that with probability one, the

maps from (1.19) exist and so for a sequence of functions {un}n∈N with un ∈ L1(νn), we

can say un
TL1

−→ u for u ∈ L1(ν) if and only if un ◦ Tn
L1(ν)−→ u. Notice that this was the

characterization used right before stating Theorem 1.1.

Remark 2.3 We finish this section by noticing that from Proposition 2.2, we can think of

the convergence in TL1 as a generalization of weak convergence of measures and of L1

convergence of functions. That is, {θn}n∈N in P(D) converges weakly to θ ∈ P(D) if and

only if (θn, 1)
TL1

−→ (θ, 1) as n → ∞; and that for fixed θ ∈ P(D), a sequence {fn}n∈N in

L1(θ) converges in L1(θ) to f if and only if (θ, fn)
TL1

−→ (θ, f) as n→ ∞.

2.2 Auxiliary properties and results

We now present the following additional properties that, as we will see, prove to be useful

when establishing the main results of the paper.

Given a sequence {un}n∈N with un ∈ L1(νn), we say that {un}n∈N converges weakly

to u ∈ L1(ν) (and denote this convergence by un ⇀ u) if the sequence of functions

{un ◦ Tn}n∈N converges weakly to u; the maps Tn are as in (1.19). We recall that the

statement “un ◦ Tn converges weakly to u (in L1(ν))”, means that for every f ∈ L∞(ν), it

is true that

lim
n→∞

∫
D

un ◦ Tn(x)f(x)dν(x) =

∫
D

u(x)f(x)dν(x).

https://doi.org/10.1017/S0956792517000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000201


A new analytical approach to consistency and overfitting 903

Remark 2.4 We remark that the notion of weak convergence mentioned previously is not

the same as the notion of weak convergence for measures. See [10] for more on weak

convergence in L1(ν). Although we use weak convergence for convergence of functions and

convergence of measures, there should be no confusion as to what is the meaning we give to

weak convergence in every specific context.

Our first simple observation concerns the weak limit of the sequence of functions

{ln}n∈N.

Lemma 2.5 With probability one, ln ⇀ μ, where ln is defined in (1.10) and μ is defined in

(1.4).

Proof First, recall that with probability one, the empirical measures νn converge weakly to

the probability measure ν (see [4]). Second, we know that with probability one, the maps

{Tn}n∈N from (1.19) exist. We work on a set with probability one where both νn
w−→ ν

and the transportation maps Tn from (1.19) exist.

Now, because |ln| � 1, by the Dunford–Pettis theorem (see for example [10]), the

sequence {ln ◦ Tn}n∈N is weakly sequentially pre-compact, that is, every subsequence of

{ln ◦ Tn} has a further subsequence which converges weakly. Because of this, we may

without the loss of generality assume that the sequence {ln ◦ Tn}n∈N converges weakly to

some g ∈ L1(ν). Our goal is to show that g = μ.

Let f ∈ C∞
c (D). Then,∫

D

ln ◦ Tn(x)f(x)dν(x) =

∫
D

ln ◦ Tn(x)(f(x) − f(Tn(x))dν(x) +

∫
D

ln ◦ Tn(x)f(Tn(x))dν(x).

Observe that, again because |ln| � 1,∣∣∣∣
∫
D

ln ◦ Tn(x)(f(x) − f(Tn(x))dν(x)

∣∣∣∣ � ‖∇f‖L∞(ν) ·
∫
D

|x− Tn(x)|dν(x) → 0, as n→ ∞.

Hence,∫
D

g(x)f(x)dν(x) = lim
n→∞

∫
D

ln ◦ Tn(x)f(x)dν(x) = lim
n→∞

∫
D

ln ◦ Tn(x)f(Tn(x))dν(x).

Using the change of variables formula (2.2), and using the fact that νn converges to ν

weakly, it follows that

∫
D

g(x)f(x)dν(x) = lim
n→∞

1

n

n∑
i=1

f(xi)yi =

∫
D×R

f(x)ydν(x, y) =

∫
D

μ(x)f(x)dν(x).

Since the above formula is true for every f ∈ C∞
c (D), we conclude that g = μ. �

We now determine the “strong” limit of the functions ln. Indeed, we show that the

functions ln converge towards the measure ν in the completion of TL1(D). In particular,

this shows that ln does not converge to any function u ∈ L1(ν) in the TL1-sense.
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Lemma 2.6 With probability one,

(νn, ln)
d1−→ ν as n→ ∞.

In the above, we should interpret (νn, ln) as a measure in P1(D×R) according to the identi-

fication (2.1) and d1 is the earth mover’s distance in P1(D ×R).

Proof The result follows from the following simple observations. First, (Id × ln)�νn is

nothing but νn. On the other hand, with probability one, νn
w−→ ν . Finally, since the

measures {νn}n∈N have support contained in D× [0, 1] (a bounded subset of Rd ×R), we

conclude that they have uniformly integrable first moments, and hence νn
w−→ ν , implies

that νn
d1−→ ν (see Chapter 7 in [3]). �

The next observation that we will use in the remainder, concerns the continuity of the

risk functionals Rn in the TL1-sense.

Proposition 2.7 (Continuity of risk functional in the TL1-sense) With probability one, the

following statement holds: Let {un}n∈N be a sequence of [0, 1]-valued functions, with un ∈
L1(νn). If un

TL1

−→ u as n→ ∞, then

lim
n→∞

Rn(un) = R(u).

Proof Because un takes values in [0, 1] and ln takes values in {0, 1}, we can write

Rn(un) =

∫
D

un(1 − ln)dνn +

∫
D

(1 − un)lndνn =

∫
D

undνn +

∫
D

(1 − 2un)lndνn.

Hence,

lim
n→∞

Rn(un) = lim
n→∞

∫
D

undνn + lim
n→∞

∫
D

(1 − 2un)lndνn =

∫
D

udν +

∫
D

(1 − 2u)μdν,

noticing that in the last equality we used the fact that un
TL1

−→ u, ln ⇀ μ, |ln| � 1, |u| � 1,

and Lemma 2.5. Finally, observe that the function u must take values in [0, 1] and thus

the last expression in the above formula can be rewritten as R(u). This concludes the

proof. �

To finish this section, we present the main results from [12] which state that under the

same assumptions on {εn}n∈N in Theorem 1.1, the functional σηTV is the Γ -limit of the

functionals GTVn,εn in the TL1-sense. This result will be useful when proving Theorem

1.1 in the regime λn → λ ∈ (0,∞].

Theorem 2.8 (Theorem 1.1, Theorem 1.2 and Corollary 1.3 in [12]) Let the domain D,

measure ν, kernel η, sequence {εn}n∈N, sample points {xi}i∈N, be as in the
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statement of Theorem 1.1. Then, with probability one, all of the following statements hold

simultaneously:

• Liminf inequality: For every function u ∈ L1(ν) and for every sequence {un}n∈N with

un
TL1

−→ u, we have that

σηTV (u) � lim inf
n→∞

GTVn,εn(un).

• Limsup Inequality: For every function u ∈ L1(ν), there exists a sequence {un}n∈N with

un
TL1

−→ u, such that

lim sup
n→∞

GTVn,εn(un) � σηTV (u).

• Compactness: Every sequence {un}n∈N satisfying

sup
n∈N

GTVn,εn(un) < +∞,

and

sup
n∈N

‖un‖L1(νn) < +∞,

is pre-compact in TL1.

Moreover, if u ∈ L1(ν) takes only values in {0, 1}, then in the limsup inequality above, one

may choose the functions un ∈ L1(νn) to take values in {0, 1} as well.

3 Proof of Theorem 1.1

3.1 Overfitting regime λn 
 εn

To prove Theorem 1.1 in the regime λn 
 εn, we use standard tools from convex analysis.

The idea is simply to find the optimality conditions for u∗n .

First, let us write Rn,λn (un) as

λn

εnn2
Jn(un) +

1

n

n∑
i=1

|un(xi) − ln(xi)|,

where

Jn(un) :=
∑
i,j

ηεn (xi − xj) |un(xi) − un(xj)| .

In what follows we identify functions f ∈ L1(νn) with vectors in Rn. Namely, a function

f ∈ L1(νn) is identified with the vector (f(x1), . . . , f(xn)). From the minimality of u∗n , we

must have

0 ∈ λn

εnn2
∂Jn(u

∗
n ) +

1

n
∂

(
n∑
i=1

|u∗n (xi) − ln(xi)|
)
,

where the ∂ symbol denotes sub-gradient. This inclusion implies that there exists a

w ∈ ∂

(
n∑
i=1

|u∗n (xi) − ln(xi)|
)
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such that −nεw
λn

∈ ∂Jn(u
∗
n ). The form of the sub-gradient of the absolute value then implies

that there exists w ∈ Rn such that

wi ∈

⎧⎪⎪⎨
⎪⎪⎩
{1} if u∗n (xi) > yi

[−1, 1] if u∗n (xi) = yi

{−1} if u∗n (xi) < yi

(3.1)

for every i = 1, . . . , n; and such that

−nεnw
λn

∈ ∂Jn(u
∗
n ).

The Fenchel dual of Jn is defined by

J∗n (f) := sup
g∈Rn

{
n∑
i=1

gifi − Jn(g)

}
.

A straightforward consequence of this definition and the fact that − nεnw
λn

∈ ∂Jn(u
∗
n ) is that

(see e.g. Theorem 23.5 in [20])

u∗n ∈ ∂J∗n

(
−nεnw

λn

)
. (3.2)

Now, from the fact that Jn is 1-homogeneous (as can be checked easily), it follows that

J∗n has the form:

J∗n (f) =

{
0 if f ∈ Cn
∞ if f � Cn,

(3.3)

where Cn is a closed, convex subset of Rn (see e.g. Theorem 13.2 in [20]). In this case, we

can give an explicit characterization of Cn using the following divergence operator. Given

p ∈ Rn2

, we define div(p) ∈ Rn by

div(p)i :=

n∑
j=1

ηεn (xi − xj)(pji − pij), i ∈ {1, . . . , n} .

By reordering sums, one obtains an analogue of the divergence theorem, namely

n∑
i=1

vi div(p)i =
∑
i,j=1...n

ηεn (xi − xj)pij(vj − vi).

This readily implies that

Jn(f) = sup
{∑

firi : ri = div(p)i, |pij | � 1
}
.

Since (J∗n )
∗ = Jn, we have that Jn(f) = supr∈Cn

∑n
i=1 firi, and thus we find that

Cn =
{

div(p) : p ∈ Rn2

s.t |pij | � 1, ∀i, j
}
.
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From (3.2), we know in particular that ∂J∗n (− nεnw
λn

) 
= ∅. On the other hand, from (3.3),

we conclude that − nεnw
λn

∈ Cn. In turn, this implies that there exists p ∈ Rn2

with |pij | � 1

for all i, j and such that

div(p) = −nεnw
λn

.

In particular, for all i = 1, . . . , n,

|wi| �
2λn
εn

1

n

n∑
j=1

ηεn (xi − xj)

=
2λn
εn

∫
D

ηεn (Tn(x) − xi) dν(x), (3.4)

where in the above Tn is a transportation map between ν and νn satisfying (1.19).

Let us introduce the kernel η̂ : [0,∞) → R given by

η̂(r) :=

{
η(0) if r ∈ [0, 1]

η(r − 1) if r > 1.

Notice that from (1.19) and the assumptions on εn ( i.e. (1.21)), it follows that for all

large enough n,
‖Id−Tn‖L∞(ν)

εn
� 1. In particular, for all large enough n, it follows from the

definition of η̂ that for all i = 1, . . . , n and for all x ∈ D

ηεn (Tn(x) − xi) � η̂εn (x− xi) .

Going back to (3.4), this shows that for every i = 1, . . . , n

|wi| �
2λn
εn

∫
D

η̂εn (x− xi) dν(x) �
2Mλn

εn

∫
Rd

η̂(x)dx,

where we have used (1.3). Because of this, the fact that η̂ is integrable (since η is integrable

and η(0) is finite), and the fact that λn
εn

→ 0, we conclude that if n is large enough, |wi| < 1

for all i = 1, . . . , n.

Thus by (3.1), for n sufficiently large, we have that

u∗n (xi) = yi, ∀i = 1, . . . , n.

In short, this means that for all large enough n, u∗n = ln. Since ln does not converge in

TL1 to a function as n → ∞ (see Lemma 2.6), we conclude that the same is true for the

sequence {u∗n}n∈N.

3.2 Underfitting regime: λn → λ ∈ (0,∞]

Now we establish Theorem 1.1 in the underfitting regime λn → λ ∈ (0,∞]. The main

tool we have at hand to study this regime is Theorem 2.8. In particular, we will use the

compactness result from Theorem 2.8.
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First of all, notice that for every n ∈ N

λnGTVn,εn(u
∗
n ) � Rn,λn (u

∗
n ) � inf

y∈R

1

n

n∑
i=1

|y − yi| � 1, (3.5)

and so in particular, GTVn,εn(u
∗
n ) � 1

λn
. Since λn → λ ∈ (0,∞], we conclude that

sup
n∈N

GTVn,εn(u
∗
n ) < +∞.

From the compactness statement in Theorem 2.8, we deduce that {u∗n}n∈N is pre-compact

in TL1.

Case 1 Let us assume first that λn → ∞. In this case, from (3.5), we actually deduce

that

lim
n→∞

GTVn,εn(u
∗
n ) = 0. (3.6)

Now, by the pre-compactness of {u∗n}n∈N, we know that up to subsequence (that we do

not relabel), {u∗n}n∈N converges in the TL1-sense towards some u ∈ L1(ν). From the lower

semi-continuity of the graph total variation (i.e. the liminf inequality in Theorem 2.8) and

from (3.6), we deduce that TV (u) = 0. The connectedness of the domain D implies that

u is constant on D. That is, u ≡ a for some a ∈ R. Because, νn
w−→ ν , we know that for

every b ∈ R,

lim
n→∞

1

n

n∑
i=1

|b− yi| =

∫
D×R

|b− y|dν(x, y) = R(b).

On the other hand, for a given b ∈ R,

1

n

n∑
i=1

|u∗n (xi) − yi| � Rn,λn(u
∗
n ) �

1

n

n∑
i=1

|b− yi|.

Additionally, from u∗n
TL1

−→ a, it is straightforward to check that

lim
n→∞

1

n

n∑
i=1

|u∗n (xi) − yi| = lim
n→∞

1

n

n∑
i=1

|a− yi| = R(a).

From the previous computations, we deduce that R(a) � R(b) for every b ∈ R. This shows

that a = u∞ where u∞ is defined in (1.9). We have just shown that for every subsequence

of {u∗n}n∈N, there is a further subsequence converging towards u∞. Thus, the full sequence

{u∗n}n∈N converges towards u∞ in the TL1-sense as we wanted to show. Finally, from

Proposition 2.7, it follows that limn→∞ Rn(u
∗
n ) = R(u∞) = miny∈R R(y).

Case 2: Let us now assume that λn → λ ∈ (0,∞). From Proposition 2.7 and from the

Γ -convergence of GTVn,εn towards σηTV (Theorem 2.8), it is immediate that Rn,λn
Γ−→ Rλ

as n→ ∞ in the TL1-sense. Indeed, in [6], the Γ -convergence of continuous perturbations

of a Γ -converging sequence is considered: in our case, we are perturbing the functionals
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λnGTVn,εn with Rn. From the fact that Rn,λn
Γ−→ Rλ in the TL1-sense and the fact that

{u∗n}n∈N is pre-compact in TL1, it follows that every subsequence of u∗n has a further

subsequence converging to a minimizer of Rλ. From the properties of Γ -convergence

(see [6]), it also follows that limn→∞ Rn,λn (u
∗
n ) = minu∈L1(ν) Rλ(u).

3.3 Regime εn 
 λn 
 1

The idea of the proof of Theorem 1.1 in the regime εn 
 λn 
 1 is as follows. We

establish that if the sequence {u∗n}n∈N converges weakly to some function u ∈ L1(ν)

(recall the definition of weak convergence given at the beginning of Section 2.2), then

the convergence also happens in the TL1-sense. Then, we establish that if u∗n converges

weakly to some function u ∈ L1(ν), and additionally

lim
n→∞

∫
D

u∗n (x)ln(x)dνn(x) =

∫
D

u(x)μ(x)dν(x), (3.7)

then u has to be equal to the Bayes classifier uB . So in order to establish that u∗n
TL1

−→ uB ,

it will be enough to show that u∗n converges weakly to some u and that (3.7) is satisfied.

Now, since D is a bounded set in Rd and since all the functions u∗n ◦ Tn are uniformly

bounded in L∞(ν), it follows from Dunford–Pettis theorem (see for example [10]), that

the sequence {u∗n ◦ Tn}n∈N is weakly sequentially pre-compact, that is, every subsequence

of {u∗n ◦ Tn}n∈N has a further subsequence which converges weakly. Because of this, we

may without the loss of generality assume that the sequence {u∗n}n∈N converges weakly

to some u ∈ L1(ν). Hence, the task is to show that (3.7) holds in the regime εn 
 λn 
 1.

To establish (3.7), we heuristically observe that the oscillations of the functions u∗n
happen at a scale larger than εn, whereas the oscillations of ln happen at a scale smaller

than εn; the statement regarding the oscillations of the functions u∗n is related to the fact

that the energies λnGTVn,εn(u
∗
n ) are uniformly bounded and the fact that εn 
 λn 
 1,

on the other hand, the statement regarding the oscillations of the functions ln is a direct

consequence of concentration inequalities. Heuristically, we may think of the function

u∗n as constant on balls of radius εn, whereas we may view the functions ln as rapidly

oscillating on those same neighbourhoods; because of this, when integrating over such

neighbourhoods, the functions ln behave like their weak limit (i.e. the function μ, see

Lemma 2.5).

There are certain connections between the ideas in the proofs here and the theory

of fractional Sobolev spaces. In particular, the consistency regime λnGTVn,εn(u
∗
n ) has

scaling similar to a fractional Sobolev seminorm. Hence, the argument that we use by

approximating u∗n with functions that are constant on a length scale εn is not unlike the

argument used to prove the compactness of fractional Sobolev spaces, see e.g. the proof

of Theorem 7.1 in [7].

With this road-map in mind, let us start making the previous statements precise.

Lemma 3.1 With probability one, the following statement holds: Let {un}n∈N be a sequence

of [0, 1]-valued functions, with un ∈ L1(νn), and such that un ⇀ u for some function u ∈ L1(ν)

taking only the values 0 and 1. Then, un
TL1

−→ u as n→ ∞.
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Proof We may work on a set of probability one, where all the statements in Theorem 2.8

hold. Let the sequence {un}n∈N and the function u satisfy the hypothesis in the statement

of the lemma. We know that there exists a sequence {wn}n∈N with

wn
TL1

−→ u

and such that wn ∈ {0, 1}. The existence of such sequence of functions follows in particular

from the last statement in Theorem 2.8. Then, from the fact that wn ∈ {0, 1} and un ∈ [0, 1],

it is straightforward to see that∫
D

|wn − un|dνn =

∫
D

undνn +

∫
D

(1 − 2un)wndνn.

Using the fact that wn
TL1

−→ u (strong convergence), un ⇀ u (weak convergence), and

that un, wn are uniformly bounded, we deduce that

lim
n→∞

∫
D

|wn−un|dνn = lim
n→∞

∫
D

undνn+ lim
n→∞

∫
D

(1−2un)wndνn =

∫
D

udν+

∫
D

(1−2u)udν = 0;

note that in the last equality, we have used the fact that u2 = u. Given that wn
TL1

−→ u, we

conclude that un
TL1

−→ u as well. �

Lemma 3.2 With probability one, the following statement holds: if a sequence of minimizers

{u∗n}n∈N of the energies Rn,λn satisfies u∗n ⇀ u for some function u ∈ L1(ν) and in addition

condition (3.7) holds, then u = uB .

Proof We know that with probability one, for the function uB , there exists a sequence

{un}n∈N of {0, 1}-valued functions with un ∈ L1(νn), such that un
TL1

−→ uB as n → ∞
and such that lim supn→∞ GTVn,εn(un) � σηTV (uB) < +∞; this follows from the last

statement in Theorem 2.8 and the fact that we assumed that uB has finite total variation.

From this, the fact that λn → 0 and Proposition 2.7, we deduce that

lim sup
n→∞

λnGTVn,εn(un) + Rn(un) = R(uB).

On the other hand, since u∗n minimizes Rn,λn , we conclude that

lim sup
n→∞

Rn,λn (u
∗
n ) � lim sup

n→∞

(
λnGTVn,εn(un) + Rn(un)

)
= R(uB). (3.8)

Now, given that u∗n minimizes Rn,λn , it is clear that u∗n takes values in [0, 1] only, and

thus we can write

Rn(u
∗
n ) =

∫
D

lndνn +

∫
D

(1 − 2ln)u
∗
ndνn.

From (3.7), Lemma 2.5, and the fact that u∗n ⇀ u, we deduce that

lim
n→∞

Rn(u
∗
n ) = lim

n→∞

(∫
D

lndνn +

∫
D

(1 − 2ln)u
∗
ndνn

)
=

∫
D

μdν +

∫
D

(1 − 2μ)udν = R(u),
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where the last equality follows from the fact that u must take values in [0, 1]. Since we

clearly have Rn(u
∗
n ) � Rn,λn (u

∗
n ) for every n, we deduce from the above equality and (3.8),

that

R(u) � R(uB).

The fact that uB is the unique minimizer of R implies that u = uB as we wanted to show.

�

In light of Lemmas 3.1 and 3.2, the fact that uB takes values in {0, 1} and the discussion

at the beginning of this subsection, to show that u∗n
TL1

−→ uB , it remains to show that when

u∗n ⇀ u for some u ∈ L1(ν), (3.7) holds. The remainder of the section is devoted to this

purpose.

Let us consider a sequence {εn}n∈N of positive numbers converging to zero satisfying

(1.21). For every n ∈ N, we consider a family of disjoint balls B(z1, εn/4), . . . , B(zkn , εn/4)

satisfying the following conditions:

(1) Every zi belongs to D.

(2) The family of balls is maximal, in the sense that every ball B(z, εn/4) with z ∈ D,

intersects at least one of the balls B(zi, εn/4).

We let Sn := {z1, . . . , zkn}. By the maximality property of the family of balls {B(z, εn/4)}z∈Sn ,
we see that {B(z, εn/2)}z∈Sn covers D. Moreover, we claim that there is a constant C > 0

such that

|Sn| �
C

εdn
. (3.9)

To see this, we may use the regularity assumption on the boundary of D as follows. From

the fact that D is an open and bounded set with Lipschitz boundary, it follows (see [16],

Theorem 1.2.2.2) that there exists a cone C ⊆ Rd with non-empty interior and vertex at

the origin, a family of rotations {Rx}x∈D and a number 1 > ζ > 0 such that for every

x ∈ D,
x+ Rx(C ∩ B(0, ζ)) ⊆ D.

Thus,

ν(B(x, εn/4)) =

∫
B(x,εn/4)∩D

ρ(x)dx �

∫
x+ εn

4 (Rx(C∩B(0,ζ)))

ρ(x)dx �
m|C ∩ B(0, ζ)|

4d
εdn,

where |C ∩ B(0, ζ)| denotes the volume of C ∩ B(0, ζ). The bottom line is that there exists

a constant c > 0 such that for every x ∈ D, we have

ν(B(x, εn/4)) � cεdn. (3.10)

The inequality in (3.9) follows now immediately from

c|Sn| · εdn �
∑
z∈Sn

ν(B(z, εn/4)) = ν(∪z∈SnB(z, εn/4)) � ν(D) = 1.

Let {ψz}z∈Sn be a smooth partition of unity subordinated to the open covering

{B(z, εn)}z∈Sn , meaning that each ψz is positive, smooth, has support only on B(z, εn)
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and
∑

z∈Sn ψz(x) = 1 for all x ∈ D. We remark that the functions ψz can be chosen to

satisfy

‖∇ψz‖L∞(Rd) �
C

εn
, (3.11)

where C > 0 is a constant independent of n or z ∈ Sn (see e.g. the construction in Theorem

C.21 in [17]).

The following lemma is an important first step in proving (3.7). The proof uses concen-

tration inequalities to control oscillations on a small length scale.

Lemma 3.3 Let (x1, y1), (x2, y2), . . . , (xn, yn), . . . be i.i.d. samples from ν . Assume that {εn}n∈N

is a sequence of positive numbers satisfying

(log(n))pd

n1/d

 εn 
 1.

Then, with probability one

lim
n→∞

∑
z∈Sn

∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ = 0.

Proof Fix β > 2. Let z ∈ Sn and let Nz := #{i ∈ {1, . . . , n} : xi ∈ B(z, εn)}. In the event

where the transportation map Tn from (1.19) exists (this event occurs with probability at

least 1 − 1/nβ), we have that

‖Tn − Id‖L∞(ν) � Cβ
log(n)pd

n1/d

 εn,

and from this, it follows that

⋃
xi∈B(z,εn)

T−1
n ({xi}) ⊆ B(z, 2εn).

We conclude that with probability at least 1 − 1/nβ ,

Nz

n
� ν(B(z, 2εn)) � MCdε

d
n, (3.12)

where M is as in (1.3) and Cd is a constant only depending on dimension.

On the other hand, conditioned on xi = xi for i = 1, . . . , n, the variables {yi · ψz(xi)}i=1,...,n

are conditionally independent and have conditional distribution:

yiψz(xi) =

{
ψz(xi) with prob. μ(xi)

0 with prob. 1 − μ(xi).
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Hence by Hoeffding’s inequality, for every t > 0, we have

�

(∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ > t | xi = xi, ∀i ∈ {1, . . . , n}

)
� 2 exp

(
− 2n2t2∑n

i=1(ψz(xi))
2

)

� 2 exp

(
−2n2t2

Nz

)
, (3.13)

where the second inequality follows from the fact that ψz is always less than 1.

From (3.12) and (3.13) (taking t =

√
βMCd log(n)εdn

2n
), we deduce that with probability at

least 1 − 2/nβ , we have∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ �

√
MCdβ log(n)εdn

2n
. (3.14)

In the previous estimate, we used z ∈ Sn fixed. Now, using a union bound (where the

index set is Sn), we deduce from (3.9) that with probability at least 1 − 2C
nβεdn

, (3.14) holds

for every z ∈ Sn.
Therefore, with probability at least 1 − 2C

nβεdn
,

∑
z∈Sn

∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ �

C

εdn
·
√
β log(n)εdn

2n
= C

√
β log(n)

2nεdn
,

where we have absorbed Cd,M and β into the constant C .

Since 1
nβεdn

is summable (notice that 1
nβεdn


 1
nβ−1 ), we can use the Borel–Cantelli lemma

to conclude that with probability one,

lim
n→∞

∑
z∈Sn

∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ = 0,

which is what we wanted to show. �

With all the previous lemmas at hand, we are now ready to complete the proof of

Theorem 1.1.

Proof of Theorem 1.1, part (2) Following the arguments at the start of the section, we

may safely assume that u∗n ⇀ u for some u ∈ L1(ν). Lemmas 3.1 and 3.2 then imply that if

(3.7) holds, then u∗n
TL1

−→ uB , which is the desired result. Hence, the remainder of the proof

aims to show (3.7).

First of all, observe that

sup
n∈N

λnGTVn,εn(u
∗
n ) � 1, (3.15)

which follows from the fact that for every n ∈ N,

λnGTVn,εn(u
∗
n ) � Rn,λn (u

∗
n ) � Rn,λn (1) = Rn(1) � 1.
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Consider uTn := u∗n ◦Tn, where Tn is the transportation map from (1.19). Likewise, define

lTn (x) := ln ◦ Tn(x). Observe that for almost every x, w ∈ D, we have

|Tn(x) − Tn(w)|
εn

�
|x− w|
εn

+
2‖Id− Tn‖L∞(ν)

εn
.

Now, given (1.19) and (1.21), we conclude that for all large enough n and for almost every

x, w ∈ D, we have

η̂

(
x− w

εn

)
� η

(
Tn(x) − Tn(w)

εn

)
,

where η̂ is defined as

η̂(r) := η(r + 1) for r � 0. (3.16)

In particular, from (3.15), we deduce that

sup
n∈N

λn

εn

∫
D×D

η̂εn(x− w)|uTn (x) − uTn (w)|dν(x)dν(w) <∞, (3.17)

where we have used the change of variables (2.2) to write integrals with respect to νn as

integrals with respect to ν.

Using again the change of variables (2.2), we can restate our original goal to be

lim
n→∞

∫
D

uTn l
T
n dν =

∫
D

uμdν. (3.18)

We show (3.18) in several steps.

First, for z ∈ Sn, we consider the average

uTn (z) :=
1

ν (B(z, εn))

∫
B(z,εn)

uTn (w)dν(w).

Then, we notice that∣∣∣∣∣
∫
D

uTn (x)lTn (x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

lTn (x)ψz(x)dν(x)

∣∣∣∣∣
=

∣∣∣∣∣
∑
z∈Sn

∫
D

uTn (x)lTn (x)ψz(x)dν(x) −
∑
z∈Sn

∫
B(z,εn)

uTn (z)lTn (x)ψz(x)dν(x)

∣∣∣∣∣
=

∣∣∣∣∣
∑
z∈Sn

∫
B(z,εn)

uTn (x)lTn (x)ψz(x)dν(x) −
∑
z∈Sn

∫
B(z,εn)

uTn (z)lTn (x)ψz(x)dν(x)

∣∣∣∣∣
�

∑
z∈Sn

1

ν (B(z, εn))

∫
B(z,εn)

∫
B(z,εn)

|uTn (x) − uTn (w)|lTn (x)ψz(x)dν(w)dν(x)

�
C

εdn

∫
D

∫
B(x,εn)

|uTn (x) − uTn (w)|dν(w)dν(x)

� C

∫
D

∫
B(x,εn)

η̂εn (x− w)|uTn (x) − uTn (w)|dν(w)dν(x),
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where in the first equality, we have used the fact that the functions {ψz}z∈Sn form a

partition of unity; in the second equality, we have used the fact that ψz is supported in

B(z, εn); we have also used the fact that |lTn | and ψz are bounded above by one and the

fact that ν(B(z, εn)) � cεdn (see (3.10)); the last inequality follows from the assumption

(1.12) and the definition of η̂ in (3.16).

From (3.17) and the fact that εn
λn

→ 0 (by assumption), we deduce that

lim
n→∞

∣∣∣∣∣
∫
D

uTn (x)lTn (x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

lTn (x)ψz(x)dν(x)

∣∣∣∣∣ = 0. (3.19)

In a similar fashion, we obtain∣∣∣∣∣
∫
D

uTn (x)μ(x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(x)ψz(x)dν(x)

∣∣∣∣∣
� C

∫
D

∫
B(x,εn)

η̂εn (x− y)|uTn (x) − uTn (w)|dν(w)dν(x), (3.20)

and thus

lim
n→∞

∣∣∣∣∣
∫
D

uTn (x)μ(x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(x)ψz(x)dν(x)

∣∣∣∣∣ = 0. (3.21)

On the other hand, because μ ∈ L∞(D), the weak convergence of uTn towards u implies

that

lim
n→∞

∣∣∣∣
∫
D

uTn (x)μ(x)dν(x) −
∫
D

u(x)μ(x)dν(x)

∣∣∣∣ = 0. (3.22)

From (3.19), (3.21), (3.22) and the triangle inequality, it follows that in order to show

(3.18), it is enough to show that

lim
n→∞

∣∣∣∣∣
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(x)ψz(x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

lTn (x)ψz(x)dν(x)

∣∣∣∣∣ = 0.

However, notice that∣∣∣∣∣
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(x)ψz(x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(Tn(x))ψz(x)dν(x)

∣∣∣∣∣
�

∑
z∈Sn

∫
B(z,εn)

|μ(x) − μ(Tn(x))|ψz(x)dν(x)

=
∑
z∈Sn

∫
D

|μ(x) − μ(Tn(x))|ψz(x)dν(x)

=

∫
D

|μ(x) − μ(Tn(x))|dν(x),

and this last term goes to zero as n→ ∞; this follows from the fact that μ is continuous
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at ν-a.e. x ∈ D (as it was assumed in Section 1.1) and so limn→∞ μ(Tn(x)) = μ(x) for ν-a.e.

x ∈ D, and by the dominated convergence theorem. Thus, to show (3.18), it is enough to

show that

lim
n→∞

In = 0,

where In is given by

In :=

∣∣∣∣∣
∑
z∈Sn

uTn (z)

∫
B(z,εn)

μ(Tn(x))ψz(x)dν(x) −
∑
z∈Sn

uTn (z)

∫
B(z,εn)

lTn (x)ψz(x)dν(x)

∣∣∣∣∣ .

Now, for fixed z ∈ Sn,

∫
B(z,εn)

(μ(Tn(x)) − ln(Tn(x)))ψz(x)dν(x) =

∫
D

(μ(Tn(x)) − ln(Tn(x)))ψz(x)dν(x)

=

∫
D

(μ(Tn(x)) − ln(Tn(x))) (ψz(x) − ψz(Tn(x)))dν(x)

+

∫
D

(μ(Tn(x)) − ln(Tn(x)))ψz(Tn(x))dν(x). (3.23)

Observe that

∣∣∣∣
∫
D

(μ(Tn(x)) − ln(Tn(x))) (ψz(x) − ψz(Tn(x)))dν(x)

∣∣∣∣
=

∣∣∣∣
∫
B(z,2εn)

(μ(Tn(x)) − ln(Tn(x))) (ψz(x) − ψz(Tn(x)))dν(x)

∣∣∣∣
� ν(B(z, 2εn)) · sup

x∈B(z,2εn)
|ψz(x) − ψz(Tn(x))|

� Cν(B(z, 2εn))
‖Id− Tn‖L∞(ν)

εn
,

where the first equality comes from the fact that ‖Id−Tn‖L∞(ν) < εn and the last inequality

follows from (3.11). The previous computations imply that

In �
C‖Id− Tn‖L∞(ν)

εn
·
∑
z∈Sn

uTn (z)ν(B(z, 2εn))

+
∑
z∈Sn

uTn (z)

∣∣∣∣
∫
D

(μ(Tn(x)) − ln(Tn(x)))ψz(Tn(x))dν(x)

∣∣∣∣
�
C‖Id− Tn‖L∞(ν)

εn
·
∑
z∈Sn

ν(B(z, 2εn)) +
∑
z∈Sn

∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣

�
C‖Id− Tn‖L∞(ν)

εn
+

∑
z∈Sn

∣∣∣∣∣1n
n∑
i=1

(μ(xi) − yi) · ψz(xi)
∣∣∣∣∣ , (3.24)
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where in the above we have used the change of variables formula (2.2) to write

∫
D

(μ(Tn(x)) − ln(Tn(x)))ψz(Tn(x))dν(x) =
1

n

n∑
i=1

(μ(xi) − yi)ψz(xi),

we have also used the fact that uTn (z) is less than one for every z ∈ Sn, and the fact that∑
z∈Sn ν(B(z, 2εn)) is bounded by (3.9) and (3.12) (here we are letting C change from line

to line).

The first term in the last line of (3.24) converges to zero as n → ∞ (this follows

from (1.19) and (1.21)); on the other hand, Lemma 3.3 shows that the second term also

converges to zero. Hence, limn→∞ In = 0 and this finishes the proof. �

4 Proof of Theorem 1.4

We now move to the proof of Theorem 1.4. We impose the additional constraint:

(log(n))d·pdεn 
 λn 
 1.

Let us again denote by uTn the function uTn := u∗n ◦ Tn, where {Tn}n∈N is the sequence

of transportation maps from (1.19). Up to this point, we have established that when εn
satisfies (1.21) and λn satisfies εn 
 λn 
 1, then with probability one, the functions u∗n
converge in the TL1 sense towards the Bayes classifier uB; by the very definition of TL1

convergence, this is equivalent to saying that uTn converges in the L1(ν) sense towards

uB . Now we would like to say that the same convergence result holds for the sequence

of functions
{
uVn

}
n∈N

, where uVn is the Voronoi extension (as defined in (1.2)) of the

function u∗n . Some of the ideas that follow are also present in [11], a paper that is in

preparation.

Let us consider ε̃n := εn−2‖Tn− Id‖L∞(ν). From the assumptions on εn and from (1.19),

it is clear that for large enough n, ε̃n > 0, so without the loss of generality we assume this

holds for all n.

Now,

∫
D

|uTn (x) − uVn (x)|dν(x)

=

∫
D

(
1

ν(B(x, ε̃n))

∫
B(x,̃εn)

|uTn (x) − uVn (x)|dν(w)

)
dν(x)

=

∫
D

(
1

ν(B(x, ε̃n))

∫
B(x,̃εn)

|uTn (x) − uTn (w) + uTn (w) − uVn (x)|dν(w)

)
dν(x)

�

∫
D

(
1

ν(B(x, ε̃n))

∫
B(x,̃εn)

|uTn (x) − uTn (w)|dν(w)

)
dν(x)

+

∫
D

(
1

ν(B(x, ε̃n))

∫
B(x,̃εn)

|uTn (w) − uVn (x)|dν(w)

)
dν(x)
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�
C

ε̃dn

∫
D

∫
B(x,̃εn)

|uTn (x) − uTn (w)|dν(w)dν(x)

+
C

ε̃dn

∫
D

∫
B(x,̃εn)

|uTn (w) − uVn (x)|dν(w)dν(x)

=: C(I1
n + I2

n ),

where the last inequality follows from (3.10). We will show now that
∫
D
|uTn (x)−uVn (x)|dν(x)

converges to zero as n → ∞ by showing that each of the terms I1
n , I2

n converges to zero

as n→ ∞. Since uTn
L1(ν)−→ uB as n→ ∞, this will establish that uVn

L1(ν)−→ uB as n→ ∞.

Let us first show that I1
n → 0 as n → ∞. Notice that for almost every x, w ∈ D, it is

true that if |Tn(x) − Tn(w)| > εn, then |x − w| > ε̃n. In particular, we see that for almost

every x, w ∈ D

1

ε̃dn
1|x−w|�ε̃n �

1

ε̃dn
1|Tn(x)−Tn(w)|�εn �

(
εn

ε̃n

)d

ηεn(Tn(x) − Tn(w)),

where the last inequality follows using (1.12). Then, it follows that

I1
n �

(
εn

ε̃n

)d ∫
D

∫
D

ηεn (Tn(x) − Tn(w))|uTn (x) − uTn (w)|dν(w)dν(x).

From the previous inequality and the change of variables formula (2.2), we deduce that

I1
n �

εn

λn

(
εn

ε̃n

)d

λnGTVn,εn(u
∗
n ).

From (3.15), the fact that εn
λn

→ 0 and εn
ε̃n
→ 1, it follows that I1

n → 0 as n→ ∞.

Now let us estimate the term I2
n . Let us denote by Un

1 , . . . , U
n
n the partition of D induced

by Tn, that is,

Un
i := T−1

n (xi).

Also, let us denote by Vn
1 , . . . , V

n
n the Voronoi partition of D associated to the points

x1, . . . , xn, that is,

Vn
i :=

{
x ∈ D : |x− xi| = min

j=1,...,n
|x− xj |

}
.

Observe that if x ∈ Un
i and w ∈ Vn

j , then

|xi − xj | � |xi − x| + |x− w| + |w − xj |
= |Tn(x) − x| + |x− w| + |w − xj |
� |Tn(x) − x| + |x− w| + |w − Tn(w)|
� |x− w| + 2‖Tn − Id‖L∞(ν),

where the second inequality follows from the fact that the closest point to w among the
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points x1, . . . , xn is xj . In particular, we see that for x ∈ Un
i and w ∈ Vn

j ,

1

ε̃dn
1|x−w|�ε̃n �

1

ε̃dn
1|xi−xj |�εn �

(
εn

ε̃n

)d

ηεn(xi − xj).

From the previous observation, we see that

I2
n =

1

ε̃dn

∑
i,j

∫
Un
i

∫
Vn
j

1|x−w|�ε̃n · |u∗n (xi) − u∗n (xj)|dν(w)dν(x)

�

(
εn

ε̃n

)d ∑
i,j

∫
Un
i

∫
Vn
j

ηεn (xi − xj)|u∗n (xi) − u∗n (xj)|dν(w)dν(x)

=

(
εn

ε̃n

)d ∑
i,j

ηεn(xi − xj)|u∗n (xi) − u∗n (xj)|ν(Vn
j )ν(Un

i )

=

(
εn

ε̃n

)d
1

n

∑
i,j

ηεn (xi − xj)|u∗n (xi) − u∗n (xj)|ν(Vn
j )

�

(
εn

ε̃n

)d

·
(

max
j=1,...,n

n · ν(Vn
j )

)
· 1

n2

∑
i,j

ηεn (xi − xj)|u∗n (xi) − u∗n (xj)|

=

(
εn

ε̃n

)d

·
(

max
j=1,...,n

n · ν(Vn
j )

)
εn

λn
λnGTVn,εn(u

∗
n ), (4.1)

where the third equality follows from the fact that ν(Un
i ) = 1

n
for every i = 1, . . . , n. Now,

for an arbitrary j = 1, . . . , n, notice that if w ∈ Vn
j , then |w−xj | � |w−Tn(w)| � C (log(n))pd

n1/d

which follows from (1.19). Thus, Vn
j is contained in a ball with radius C (log(n))pd

n1/d and so

ν(Vn
j ) � C (log(n))d·pd

n
for some constant C that depends on dimension and the constant M

from (1.3). Therefore,

I2
n �

(
εn

ε̃n

)d

·
(
Cεn(log(n))d·pd

λn

)
· λnGTVn,εn(u∗n ) → 0, as n→ ∞,

given the assumptions on εn, λn. This concludes the proof.

5 Conclusions and future work

Our work establishes the consistency of the empirical risk minimization problem (1.1) by

showing that with the right choice of scaling for λn, the minimizer u∗n converges towards

the Bayes classifier in the TL1-sense. Although the function u∗n is only defined on the

cloud {x1, . . . , xn}, one may extend the function u∗n in a simple way to the whole ambient

space so as to obtain a classifier that in the limit converges towards the desired Bayes

classifier. We remark that we do not use the notion of VC dimension explicitly in our

analysis given that we do not consider classes of functions defined on the ambient space

as feasible elements in the empirical risk minimization problem. Instead, we work directly

with the graph and its natural space of functions; in our analysis, we exploit the level of
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920 N. Garćıa Trillos and R. Murray

regularity of minimizers of Rn,λn (enforced by the graph total variation) and we use the

TL1 distance to compare the solutions of the discrete problem with the Bayes classifier.

We suspect a close connection between regularity of a solution of a discrete problem

like the one considered in this paper and the VC dimension of a certain implicit family

of functions. A natural setting in which to investigate notions of regularity (along with

their connection to VC theory) would be in the linear setting in which one attempts to

minimize an energy of the form

En,λn(un) :=
λn

n2εd+2

n∑
i=1

n∑
j=1

η

(
xi − xj
ε

)
(un(xi)−un(xj))2+

1

n

n∑
i=1

(un(xi)−yi)
2, un ∈ L2(νn),

with the goal of approximating the Bayes regressor u(x) := �(y|x = x), where the variable

y follows a law of the form

y ∼ �(y ∈ dy|x = x).

The minimizer of the energy En,λn can be found by solving a linear system of equations

involving the graph Laplacian associated to the graph ({xi},W ), which can be interpreted

as an elliptic PDE on the graph. Appropriate analogues of techniques from elliptic

theory, such as Schauder estimates, and convex analysis, might then be powerful tools

for analysis. We anticipate that these tools will permit a finer analysis of the problem,

including detailed estimates on rates of convergence. The development of these tools, as

well as their application, is the subject of current investigation.

Finally, we notice that the setting that we have considered in this paper is that in which

the support of the measure ν is an open domain D ⊆ Rd. It is natural to consider the

case in which the support of ν is actually a sub-manifold M embedded in Rd. We believe

that the consistency results presented in this paper can be extended to the sub-manifold

setting in a relative straightforward way. In the interest of clarity, we defer the details to

a future work. In the linear problem described above, we anticipate that the desired rates

of convergence will depend only on geometric quantities of M and not on the ambient

space Rd.
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