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1. In t roduc t ion . The concept of a Boolean r ing , a s a 
r ing A in which e v e r y e l e m e n t i s i dempo ten t (i . e. , a = a 
for a l l a in A), w a s f i r s t i n t roduced by Stone [4]. Boo lean 
a l g e b r a s and Boo lean r i n g s , though h i s t o r i c a l l y and concep tua l ly 
d i f fe rent , w e r e shown by Stone to be equa t iona l ly i n t e rde f inab l e . 
Indeed, let (A, + ,x) be a Boolean r ing with unit 1, and let 
(A, w, r\, f ) be a Boo lean a l g e b r a , w h e r e o», r\, ' , denote 
"un ion" , " i n t e r s e c t i o n " , and " c o m p l e m e n t " . The equa t ions 
which c o n v e r t the Boo lean r ing into a Boo lean a l g e b r a a r e : 

(I) a u b = a + b - ab ; a n b = ab ; a ' = 1 - a . 
C o n v e r s e l y , the equa t ions which c o n v e r t the Boo lean a l g e b r a 
into a Boo lean r ing a r e : 

(II) a + b = (a r\bl ) w (a ' r>b) ; ab = a r> b . 

With t h i s equa t iona l in te rde f inab i l i ty a s m o t i v a t i o n , 
F o s t e r [ l ] i n t r o d u c e d the concep t of a B o o l e a n - l i k e r ing a s a 
c o m m u t a t i v e r ing A with unit 1 such tha t , for a l l a, b , in A, 

(III) a.+ b = (a r > b ' ) w ( a f r>b) . 

In v iew of (I) above , it is r ead i ly v e r i f i e d that (III) 
r e d u c e s to 

(IV) ( a b ) 2 - a b 2 - a 2 b + 3ab = 0 . 

M o r e o v e r , by se t t ing b = 1 in (IV), i t i s e a s i l y seen tha t (IV), 
in t u r n , i s equ iva len t to 

2 - 2 2 
(V) (ab) - a b - a b + ab = 0 , and (VI) 2a = 0 , for 

a l l a, b , in R. 
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It is noteworthy that (V) and (VI) combined a re equivalent 
to (IV) (as well as to (III)) without any assumption of commuta-
tivity. In fact, it turns out that any ring with unit which satisfies 
(V) and (VI) is necessar i ly commutative (see Theorem 2). 
Hence, we have the following equivalent definition of a Boolean-
like ring. 

Definition. A ring A with unit 1 is called a Boolean-like 
ring if, and only if, for every a and b in A, 

2 2 2 
(V) (ab) - ab - a b' + ab = 0 , and (VI) 2a = 0 . 

The object of the present note is to study a certain c lass 
of rings which include the Boolean-like rings of Fos t e r as 
special cases . Such rings we call n-l ike r ings. In fact, 
Boolean-like rings are now easily seen to reduce to our 2-like 
rings (n = 2). In section 3, we prove that an n-l ike ring is 
necessar i ly commutative, and, in addition, we give a simple 
character izat ion of an n-like ring. The resul ts given here 
generalize some previous theorems which the author proved 
for the case where n = p = pr ime (see [5]). In this note, how­
ever , n is assumed to be any integer (> 1), not necessar i ly 
p r ime . 

2. P re l iminary definitions and l emmas . Suppose n > 1 
is a fixed integer, not necessar i ly p r ime , throughout. 

Definition. A ring A with unit 1 is called an n-l ike 
ring if, and only if, for every a and b in A, 

(1) (ab)n - ab n - anb + ab = 0 , and (2) na = 0 . 

We now have the following 

n 2 
LEMMA 1. In an n-like ring, we have (i) (a-a ) = 0 , 

n -n+2 2 , n.n n . ., .r ^ 
a = a , (a ) = a ; (n) a is nilpotent if, and only if, 

2 
a = 0 ; (iii) The product of any two nilpotent elements is zero; 

(iv) (ab) = a b ; (v) Every nilpotent element is in the center . 

Proof. Setting b = a in (1), we get (a-a ) = 0 . Hence, 
2n n+1 2 2n n-1 _ n+1 n-1 2 n-1 

a = 2a - a . Therefore , a a = 2a a -a a 
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3n-l 0 2n n+1 ^.^ n+1 2v n+1 „ n+1 ^ 2 
a = 2a - a = 2(2a -a ) - a = 3a - 2a . 

Hence, a = 3a - 2a . Multiplying the last equation by 
n ~ * , . , . , - . • i 4 n " 2 . n + 1 o 2 

a and simplifying as in above, we obtain, a = 4a - 3a . 
Repeating this process a suitable number of times, we get, 
kn-(k-2) , n+1 . 71 „x 2 1 1 . . . . 

a = ka (k-l)a , where k is any positive integer. 
nn-(n-2) n+1 , , 2 

Hence, m particular, a = na (n-l)a . Therefore, 
n -n+2 2 . , _ ^ „ n n a =a , since by (2), na = 0 . Hence, also, (a ) = 
n -n+2 n-2 2 n-2 n m , . ... 

a a = a a = a . This proves (I). 

r 
To prove (ii), let a =0 , and choose k so large that 

, , 2 % ^ m i , ,.% 2 2 n2-n 2 n2-n n2-n 
k(n -n) + 2 > r. Then, by (î), a = a a = a a a = . . . = 

2 k(n2-n) k(n2-n)+2 ^ 
a a ' = a =0 . This proves (n). 

To prove (iii), let a and b be nilpotent. Then, by (ii), 
2 2 n 

a = 0 = b . Hence by (1), (ab) + ab = 0 . But, by (1) and (2), 
2 2 

we also have, since a = 0 = b , 

0 = { a(b+l)} n - a(b+l)n + a(b+l) = (ab+a)n + ab = 

(ab) + (ab) a + ab. Hence, (ab) a = 0, (ab) =0, ab = 0, 

and (iii) is proved. 

n 2 n 2 
To prove (iv), we have, by (i), (a-a ) = 0 = (b-b ) . 

Hence, by (iii), 0 = (a-a )(b-b ) = a b - a b - a b + a b . 
Part (iv) now follows at once from (1). 

To prove (v), let a be nilpotent. By (i), b - b is 
also nilpotent, for any b. Therefore, by (iii), a(bn-b) =0 = 
(bn-b)a. Hence, 

(3) ab = ab ; b a = ba (a nilpotent, b arbitrary). 

Since a. is nilpotent, therefore, by (ii) and (iv), we have, 

0 = a b = (ab) . Hence, by (ii) again, (ab) = 0 . Similarly, 
2 

(ba) = 0 . We have thus shown 
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(4) (ab) = 0 = (ba) , (a nilpotent, b a rb i t r a ry ) . 

Now, using (3), (4), (iii) we obtain, 

(ab+b)n = (ab)b11*"1 + b(ab)bn~2 + b 2 ( ab )b n " 3 + . . . + 

b n " 1 (ab) + b n , (ba+b)n =(ba)bn"1+ b(ba)b n"Z + . . . + 

b n " 2 (ba)b + b n " 1 (ba) + b n . 

Hence, (ab+b)n - (ba+b)n = (ab)bn~ - b*1" (ba) = 

ab - b a = ab - ba . 

Moreover, by (iv), (2), and the hypothesis that a is 
2 n 

nilpotent (and hence, by (ii), a =0), we have, (ab+b) = 
{(a+l)b} =(a+l) b =b . Similarly, (ba+b)n = b n . Hence, 

ab - ba = (ab+b) - (ba+b) = 0 . This proves (v), and the proof 
of Lemma 1 is complete. 

3. The main theorems . We a re now in a position to 
prove the following main 

THEOREM 2. An n-Iike ring A is commutative. 

Proof. Let x e A. Then, by Lemma 1 (i), x - x is 
nilpotent. Hence, by Lemma 1 (v), x n - x is in the center of 
A. Therefore , by a well-known theorem of Her stein [2], the 
ring A is commutative, and the theorem is proved. 

We shall now give a simple character izat ion of n-l ike 
r ings. 

THEOREM 3. Let A be a ring with unit 1, and let n 
be any positive integer (n > 1). A is an n-l ike ring if, and . 
only if, the following conditions a re satisfied: 

o 
( 1 ) A- is commutative, 
o 

(2) na = 0 for all a in A, 
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o 
(3) For every x in A, J y, r\ in A such that 

x = y + T), where yn = y and r\ is nilpotent, 

o 
(4) The product of any two nilpotent elements in A is 

zero. 

o o 
Proof. The necessity of conditions (1) — (4) follows 

from Theorem 2, Lemma 1, the definition of an n-like ring, 
and the observation that x = xn + (x-xn). 

Sufficiency: Let A be a ring with unit 1 satisfying 
o o o 

conditions (1) - (4), and let x € A. By (3), 3 Y> f) 6 -A. such 
n o o o 

that x=y + -q, y = y, r\ nilpotent. Then, by (1), (2), (4), 
n / v n n n -

x - T j = y = y = (X-T]) . = x . Hence, r\ = x - x is nilpotent. 
o 

Therefore, by (4), for any x, y in A, we have, 
(x-x )(y-y ) = 0, which is equivalent to (1) in the definition of 

o 
an n-like ring, since, by (1), A is commutative. The proof 

o 
is now completed by observing (2). 

4. Examples. We shall conclude this note by giving some 
examples of n-like rings. 

Example 1. Let A be any Boolean ring with unit. More 
generally, let A be any p-ring with unit (p prime) (see [3]). 
It is easily seen that A is an n-like ring also, for suitably 
chosen n. 

Example 2. Let A be a p-ring with unit (p prime), and 
let x be such that x2 =0, x ^ 0. Then, A[x], the ring 
obtained by adjoining x to A, is easily seen to be a p-like 
ring (n = p = prime) but not a p-ring. Indeed, A[x] contains 
some non-zero nilpotent elements (namely, x, for example). 
This example also shows that, for every prime p, there exists 
a p-like ring (with proper nilpotent elements) which is not a 
p-ring. 

Example 3. Let F be the ring (field) of residue classes 

(mod p), where p is a prime integer. Let A = F © FR be 
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the direct sum of F and F . Then A is an n-l ike ring. 
3 5 

Indeed, one may take n = 45 in this case . 
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