
ON NON-AVERAGING SETS OF INTEGERS 

LEO MOSER 

1. Introduction. Let 5 be a set of positive integers no three of which are in 
arithmetical progression, i.e., if -4, J5, C are distinct elements of 5, A + 5 ^ 2C. 
We call such a set a non-averaging set. Let v(n) denote the maximum number of 
elements not exceeding n in any non-averaging set. The problem of finding 
bounds for v(n) has been treated by several authors [1, 3, 5, 6, 7]. The question 
first arose in connection with a theorem of van der Waerden [8]. Van der 
Waerden's theorem states that if one separates the integers 1, 2, 3, . . . , N into 
k disjoint classes, then for every /, there exists at least one class which contains 
an arithmetical progression of / terms, if N = (k, /) is sufficiently large. This 
theorem was used by Brauer [2] to prove the existence of sequences of / consecu­
tive quadratic residues and I consecutive non-residues for every sufficiently 
large prime. In van der Waerden's theorem the N(k, I) is extremely large, and it 
was thought that a study of v(n) would yield better bounds for N. Unfortunately 
this hope has not as yet been fulfilled. 

G. Szekeres conjectured that v{ (3* + l)/2} = 2* and this was proved [3] for 
k < 5. This would make 

/ \ ^ log 2/ log 3 

v(n) < en 
for some fixed c. The conjecture was proved false by Salem and Spencer [6] who 
showed that for every e > 0 and sufficiently large w, 

(1.1) V(tl) > ^ - ^ 2 + 0 / d o g l o g n ) 

This result was refined by Behrend [1] who proved that for e > 0 and sufficiently 
large w, 
( 1 . 2 ) V{tl) > w l - < 2 V ( 2 l o g 2 ) + c ) / V ( l o g n ) 

In Behrend's method the set 5 depends upon «, i.e., the set used for n = 1000 
might be quite different from that for n = 1001. Furthermore, the argument 
makes use of the Dirichlet's principle of drawers and hence is not constructive. 
In §2 we give a constructive definition of an infinite sequence R which has no 
three terms in arithmetic progression, and which yields, for n sufficiently large, 

(1.3) K " ) > " 1 - c / V ( l o g n \ 

where c is a fixed constant. 
P. Erdôs and P. Turân gave some upper bounds for v{n) in [3]. They proved 

that for n > 8, 

(1.4) v{2n) < n. 
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Also for every e > 0 and n sufficiently large they proved 

(1.5) v(n) <(l + e)n. 

Finally they stated without proof that 

(1.6) v(n) < (I + €)». 

In §3 we shall use a different method to prove 

(1.7) v(n) < \n + 3. 

This has the advantage of being free of e. We shall then use the same method 
but with a much longer argument to prove that 

(1.8) v(n) < rin + 5, 

which is stronger than (1.6). 
It has long been conjectured that v(n) = o(n), but this has only recently 

been proved [5]. In this connection it is interesting to note the following theorem 
proved by Redheffer [4]. A necessary and sufficient condition that every non-
averaging set {\n\ have zero density is that 

be always incomplete on every interval. 

2. Lower bounds for v(n). We shall now define an infinite sequence R, 
show that no three of its elements are in arithmetical progression, and show 
that if v*(n) denotes the number of elements in R and not exceeding n, then 

v*(n)>n1-c/<«°sn\ 

where c is a fixed constant. 
Given a number x, written in the denary scale, we decide whether x is in R 

on the basis of the following rules : 
First we enclose x in a set of brackets, putting the first digit (counting from 

right to left) in the first bracket, the next two in the second bracket, the next 
three in the third bracket, and so on. If the last non-empty bracket (the bracket 
furthest to the left which does not consist entirely of zeros) does not have a 
maximal number of digits, we fill it with zeros. For instance, the numbers 

A = 32653200200, B = 100026100150600, C = 100086600290500 

would be bracketed as follows: 

A = (00003) (2653) (200) (20) (0), B = (10002) (6100) (150) (60) (0), 

C = (10008) (6600) (290) (50) (0). 

Now suppose the rth bracket in x contains non-zero digits, but all further 
brackets to the left are zero. Call the number represented by the digits in the ith 
bracket xit i" = 1, 2, . . . , r — 2. Further, denote by x the number represented 
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by the digits in the last two brackets taken together, but excluding the last 
digit. For x to belong to R we require: 

(2.1) The last digit of x must be 1 ; 

(2.2) Xf must begin with 0 for i = 1, 2, . . . , r — 2; 
r -2 

(2.3) ^ Xi = x. 

In particular, we note that A satisfies (2.2) but violates (2.1) and (2.3) and so 
is not in R, but B and C satisfy all three conditions and so are in R. To check 
(2.3) for B we note that 602 + 1502 = 26100. 

We next prove that no three integers of R are in arithmetic progression. 
First note that if two elements of R have a different number of non-empty 
brackets then their arithmetic mean cannot satisfy (2.1). Thus we need only 
consider averages of elements of R having the same number of non-empty 
brackets. From conditions (2.1) and (2.3) it follows that two elements of R 
can be averaged bracket by bracket for the first r — 2 brackets and also for the 
last two brackets taken together. Thus in our example 

| (60 + 50) = 55, |(150 + 290) = 220, 

\(100026100 + 100086600) = 100056350, 

\{fi + C) = (10005) (6350)(220)(55)(0). 

This violates (2.3) and so cannot be in R. In general we will prove that if x and 
y are in R, then z = \{x + y) will violate (2.3). 

Since x and y are in R, 

On the other hand z in R implies 

r-2 r-2 / , \ 2 

= z*/=2:(^H. 
*=i i= i \ *> / 

z 

Hence if z is in R then 

Thus 

r-2 2 , 2 r-2 / 

E - ^ = E (= 
i= i ^ t=i \ 

r-2 / \ 2 

*i + y<Y 

o, 

which implies xt — yt for i = 1, 2, . . . , r — 2. This together with (2.1) and 
(2.2) implies that x and y are not distinct. 

Szekeres* sequence starts with 1, 2, 4, 5, 10, 11, 14, 28, 29, . . . . Our sequence 
starts with 

100000, 1000100100, 1000400200, 100250500, ... . . 

https://doi.org/10.4153/CJM-1953-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-027-0


248 LEO MOSER 

Nevertheless, it will be proved that the terms of this sequence eventually 
become smaller than the corresponding terms of the first sequence. 

The first sequence is maximal in the sense that no number can be added to it 
without introducing an arithmetical progression of three terms. Our sequence is 
not maximal in this sense and indeed it is easy to find numbers, among them 1, 
which may be adjoined. However, there seems little point in doing this since it 
improves (1.3) only by an e in the constant. 

We now estimate how many integers in R contain exactly r brackets. Given 
r brackets we can make the first digit in each of the first r — 2 brackets 0. 
We then fill up the first r — 2 brackets in an arbitary manner. This can be done 
in 

jQ0+l+2+ . . . + (r-2) = jQ$( r -2 ) ( r -3 ) 

ways. The last two brackets can then be filled in such a way as to satisfy (2.1) 
and (2.3). To see this we need only check that the last two brackets will not 
be overfilled, and that the last digit, which we shall set equal to 1, will not be 
interfered with. This follows from the inequality 

(101)2 + (102)2 + . . . + (1(T2)2 < lO2 ' ' -" . 

For a given n let r be the integer determined by 

(2.4) 10*r(r+2) < n < 10*(r+1)(r+2). 

Since all the integers with at most r brackets will not exceed w, and since r 
brackets can be filled to specification in 10*(r~3)(r_2) ways, we have 

(2.5) v*(n) > l0* ( r~2)( '-3). 

From the right-hand side of (2.4) we obtain, using logarithms to base 10, 

r + 2 > V(2 log n) 

so that (2.5) implies, for sufficiently large w, 
* / \ «^ 4Qè(r-2)( r -3) ^ - ^log n-9V (2 log n) ^ * Qlog n(l-c/V(log n)) = l-c/V(log n) 

This proves (1.3) since v(n) > v*(n). 
Use of base 2 instead of base 10, together with a more refined treatment of 

the inequalities, would yield a better value for the constant. 

3. Upper bounds for v(n). Le ta i < a2 < . . . < aT denote the even elements, 
and by b\ < b2 < . . . < b8 the odd elements of 5, not exceeding w. Denote the 
integers Ha< + aj) by (i, j). It follows from the definition of 5 in §1 that (i, j) 
is not in 5. 

Now denote the following set of 2r — 3 integers by S : 

(1, 2) < (1, 3) < (2, 3) < (2, 4) < . . . < (t, i+l)< {i, i + 2) < . . . 
< (r - 2, r - 1) < (r - 2, r) < (r - 1, r). 

The integers of S are clearly under n and not in 5. Furthermore, we shall see that 
at least one of the integers (1, 4) and (1, 5) which are not in 5, is also not in S. 
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To see this note that if (1, 4) is in S, then (1, 4) = (2, 3). If also (1, 5) is in 
8, then either (1, 5) = (2, 3) or (1, 5) = (2, 4), or (1, 5) = (3, 4). Now (1, 4) = 
(2, 3) together with (1,5) = (2, 3) implies a4 = ab. Also (1,4) = (2, 3) together 
with ( 1 , 5 ) = (2, 4) implies a3 + aB = 2a4. Finally, (1,4) = (2, 3) together 
with (1,5) = (2, 4) implies a% + #5 = 2a4. Similarly, at least one of each pair 

(i, i + 3), (i, i + 4), i = 1, 2, . . . , r — 4 

must be absent from S and differ from any in 8. Thus we have at least (2r — 3) + 
(r — 4) = 3r — 7 numbers under w and not in 5. Present in 5 are exactly 
r + s numbers. Hence we have 

(3.1) 3r - 7 + r + s < n. 

Let us assume that r > s. Then (3.1) yields 

(3.2) l(r + s) - 7+ (r + s) < n; 

and since v(n) = r + 5, this yields 

v(w) < |w + 3. 

If r < 5 then we can deal with the Us instead of the a's and the same conclusion 
will follow. Thus in any case (1.5) is proved. 

Our final object is to prove 
v{n) < rin + 5. 

We use the same notation as before. Again we have the 2r — 3 integers of S 
not in S. This time however we will prove that of the integers 

(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), 

which we will denote by T (and which are not in S) at least three distinct ones 
are not in S. 

The argument will then closely follow the lines used in the previous theorem. 
We will first prove the following 

LEMMA. TWO different equations of the type (ii, i?) = (is, i^) involving only five 
distinct integers under r, imply a contradiction. 

Proof. Let the five different numbers involved be i\ < ii < iz < ii < ib-
Clearly the only possible equations of the required type involving these are: 

A: (ii, i4) = (i2, is) B: (ii, iB) = (i2, is) C: (ii, i5) = (i2, i4) 
D: (ii, i5) = (is, n) E: (i2, i6) = (is, n) 

But now A together with B implies au = at*', A together with C implies 

a*3 + du = 2a*«. 

Similarly each of the other eight combinations easily leads to a contradiction. 
We shall now prove that at least three distinct numbers in T are not in S. 

We consider three cases. 

Case 1. Suppose that (2, 5) is in 8. Now (2, 5) in >§ implies (2, 5) = (3, 4). 
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Note that we need not concern ourselves here with possibilities like (2, 5) = 
(1, i) since then i > 5 and (1, i) will not be in S. If (1, 4) is in §, then (1,4) = 
(2, 3) which by the lemma is incompatible with (2, 5) = (3, 4). Hence (1, 4) 
is not in 8. 

If (1, 5) is in S then we have one of 

(1,5) = (2,5), (1,5) = (2,4), (1,5) = (3,4) 

but each of these possibilities is incompatible with (2, 5) = (3, 4) by the lemma. 
Hence (1, 5) is not in S. If (2, 6) is in S, then we have one of 

(2, 6) = (3, 4), (2, 6) = (3, 5), (2, 6) = (4, 5), 

but each of these is incompatible with (2, 5) = (3, 4) by the lemma. Hence 
(2, 6) is not in S. 

Thus, in case (1) the three numbers (1, 4) (1, 5) (2, 6) are not in S and we 
are finished. We may therefore assume (2, 5) is not in S, and need only show 
that two other numbers of T are not in S. 

Case 2. Suppose (1, 4) is in S. Now (1, 4) in S implies (1, 4) = (2, 3) and 
(1, 5) in S implies one of 

(1,5) = (2,3), (1,5) = (2,4), (1,5) = (3,4) 

each of which is incompatible with (1,4) = (2, 3) by the lemma. Hence (1,5) 
is not in >S, and it will suffice to show that at least one other number in T is not 
in S. If this be false then we must have at least one inequality in each of the 
following columns: 

A: (1, 6) = (2, 3) A: (2, 6) = (3, 4) A: (2, 7) = (3, 4) 
A: (1, 6) = (2, 4) C: (2, 6) = (3, 5) (2, 7) = (3, 5) 
A: ( 1 , 6 ) = (3, 4) (2, 6) = (4, 5) D: (2, 7) = (4, 5) 

( 1 , 6 ) = (3, 5) D: (2, 7) = (4, 6) 
B: (1,6) = (4, 5) D: (2, 7) = (5, 6) 

The possibilities marked A are out by (1, 4) = (2, 3) and the lemma. B: 
(1, 6) = (4, 5) is out for then no possibility for (2, 6) makes (2, 6) > (1, 6). 
Now we have (1,6) = (3, 5) and this with the lemma eliminates the possibility 
marked C. Now (2,6) = (4, 5) so that by the lemma the possibilities marked D 
are out. But now the remaining possibilities for (2,7), namely (2, 7) = (3, 5) 
makes (2, 7) < (2, 6) which is impossible. Hence in this case we are finished, 
and so we may assume (1, 4) is not in S. 

Case 3. We have already (1, 4) and (2, 5) not in S. Hence it will suffice to 
show that at least one other number is in T and not in S. If this be false we must 
have at least one equality in each of the following columns : 

G: (1, 5) = (2, 3) A: (1, 6) = (2, 3) D: (2, 6) = (3, 4) 
(1, 5) = (2, 4) B: (1, 6) = (2, 4) (2, 6) = (3, 5) 

E: (1, 5) = (3, 4) (1, 6) = (3, 4) F : (2, 6) = (4, 5) 
C: (1.6) = (3,5) 
A: (1, 6) = (4, 5) 
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D: (1, 7) = (2, 3) 
D: ( 1 , 7 ) = (2,4) A: (2, 7) = (3, 4) 
D: (1,7) = (3,4) G: (2, 7) = (3, 5) 

(1,7) = (3, 5) H : (2, 7) = (4,5) 
H: (1,7) = (4,5) (2, 7) = (4, 6) 
E: (1, 7) = (4, 6) G: (2, 7) = (5, 6) 
A: (1, 7) = (5, 6) 

Now (1, 6) = (2, 3) would not leave any consistent possibility for (1, 5) while 
(1, 6) = (4, 5) would not leave any consistent possibility for (2, 6). Similarly 
(1,7) = (5, 6) and (2, 7) = (3, 4) are out. These four possibilities are marked A. 

If B: (1, 6) = (2, 4) then by the lemma, the only possibility for (2, 6) is 
(2, 6) = (3, 5). 

Also (1, 6) = (2, 4) and (1, 6) > (1, 5) gives as only possibility for (1, 5), 
(1, 5) = (2, 3). 

Now (2, 6) = (3, 5) and (1, 5) = (2, 3) are incompatible by the lemma 
Hence B is out. 

If C: (1, 6) = (3, 5) then by the lemma, the only possibility for (1, 5) is 
(1, 5) = (2, 4). 

Also (1, 6) = (3, 5) and (2, 6) > (1, 6) gives as only possibility for (2, 6), 
(2, 6) = (4, 5). 

Now (1, 5) = (2, 4) and (2, 6) = (4, 5) are incompatible by the lemma; 
hence C is out. 

We now have (1,6) = (3, 4), and since (2, 7) > (1, 7) > (1, 6) and (2, 6) > 
(1, 6) the possibilities marked D are out. Furthermore, by the lemma (1,6) = 
(3, 4) eliminates the possibilities marked E. 

Now F: (2, 6) = (4, 5) leaves every choice for (2, 7) either not larger than 
(2, 6) or incompatible with (2, 6) = (4, 5) by the lemma; hence F is out. 

We now have (2, 6) = (3, 5) which by the lemma eliminates the possibilities 
marked G. 

This leaves (1, 5) = (2, 4) which by the lemma eliminates the possibilities 
marked H. 

We thus have (2, 6) = (3, 5) = (1, 7) but (2, 6) = (1, 7) eliminates the 
remaining possibilities for (2, 7). Hence case 3 is complete. 

The theorem which we have thus proved for the set T: 

(1,4), (1,5), (1,6), (1,7), (2,5), (2,6), (2,7) 

will go through with only an obvious change in notation for the set 7 \ : 

(i, i + 3), (*', i + 4), (i, i + 5), (i, i + 6) (i + 1, i + 4), (i + 1, i + 5), 
(i + M + 6), i = 1,2, . . . , r - 6 . 

Furthermore, the sets Tt are disjoint for i = 1, 3, 5, . . . , k where k is the largest 
odd integer in r — 6. Certainly then we may take k > \{r — 6). 

Thus we have at least | (r — 6) integers not in 5 and not in S. Altogether 
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then, we have 

( 2 r - 3) + | ( r - 6) = \r - 12 

integers not in 5. 
In S we have exactly r + 5 integers, hence 

lr - 12 + r + s <n. 

Assuming r > s gives 

l(r + s) + (r + s) - 12 = V(r + 5) - 12 < n; 

and since ;/(n) = r + 5 we have 

K») < n (» + 12) < nw + 5. 

On the other hand, if r < s, the same result can be obtained by working with 
the 6's instead of the a's. 
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