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Meromorphic Functions Sharing the Same
Zeros and Poles

Dedicated to Henri Cartan on his 100th birthday.

Giinter Frank, Xinhou Hua and Rémi Vaillancourt

Abstract. In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any
meromorphic function f is determined by its zeros and poles and the zeros of fU/) for j = 1,2, 3, 4.

1 Introduction and Main Results

The uniqueness of meromorphic functions is an important research area. A natural
problem is whether a meromorphic function f(z) is determined by the zeros and
poles of f and the zeros of its first few derivatives. For convenience, we say that
two nonconstant meromorphic functions f(z) and g(z) share the value a CM when
f(z) — aand g(z) — a have the same zeros with the same multiplicities.

For entire functions f and g with finite order, C. C. Yang [14] and G. G. Gunder-
sen [7] studied the case where f/) and g'/) share 0 CM for j = 0, 1.

For meromorphic functions f and g, we know that f/) and g/ share 0 and oo
CM for each non-negative integer j whenever f and g satisfy one of the following
four conditions:

(i) f=cgceC—{0};

(i) f(2) = e“?, g(z) = e“™, a,c € C— {0}, b,d € C;

(i) f(z) = a(l — be®), g(z) = d(e”“ —b),a,b,c,d € C— {0};

(iv) f(z) = a/(1 —be’), g(z) = a/(e™? —b), a,b € C — {0}, B a non-constant
entire function.

A. Hinkkanen [1, p. 492] proposed the following problem:

Question 1 (Hinkkanen’s Problem) Does there exist an inf[eger n > 2 such that f
and g satisfy one of the conditions (i)—(iv) when £/ and ¢g'/) share the values 0 and
coCMforj=0,1,...,n?

In 1989, L. Kohler [10] proved that n = 6 solves the problem. K. Tohge [13] in
1990 considered the case n = 2, 3 under restrictions on the growth of f and g.

In this paper, we shall provide a sharp answer to Hinkkanen’s Problem by proving
the following result see also [5]).
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Theorem 1  The sharp answer to Hinkkanen’s problem is n = 4.

The following example shows that our theorem is best.

Example1 Let f = exp(e®) and g = exp(e™?). Then f and g do not satisfy (i)—(iv).
It is easy to check that f/) and g'/) share 0 and co CM for j = 0, 1,2, 3. However,
from

f(4) = (1 + 76 + 6e* + &) exp(z + &)

and
g(4) = (1+66° +7e* + &) exp(—4z + e %)

we see that f*) and ¢ have no common zeros. On the other hand, it is obvious that
f® and g'*) have infinitely many zeros. Thus f® and ¢'* do not share zeros.

To prove our result, the following strategy is used:

(1) Classify zeros of the functions f and g and their derivatives according to their
multiplicities.

(2) Establish relations between the characteristic functions of f’/f and either the
simple zeros of f and the zeros of f’/ with multiplicities less than 109 or the
simple zeros of f’ and the zeros of f'// with multiplicities less than 109. The
same is done for g’/g. The number 109 here can be replaced by any bigger
number.

(3) Then restrict attention only to the kind of zeros listed in 2. This is done by
considering several cases.

2 Nevanlinna’s Theory

As a quantitative generalization of Picard’s theorem, the theory of the distribution
of values of meromorphic functions, developed by R. Nevanlinna and his student, L.
Ahlfors, was one of the most outstanding achievements of mathematics in the 20th
century (see 8, 11, 12]). The most important function in Nevanlinna’s theory is
Nevanlinna’s characteristic function, which we now introduce.

Let f(z) be meromorphicin |z] < R < oo. For 0 < r < R, we denote by n(r, f)
the number of poles of f(z) in |z| < r, counted according to multiplicities. Setting
log" x = max(log x, 0), we define

/r n(t, f) — n(0, f)
t

0

N(r, f) = dt + n(0, f)logr,

1 2 . 0
m(r, f) = Z/o log™ | f(re"”)| 46,
I(r, f) = m(r, f) + N(r, f),
where N(r, f), m(r, f) and T(r, f) are called counting function, proximity function

and Nevanlinna characteristic function, respectively. One basic property is that
T(r, f) is a continuous and increasing convex function of log r.
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The order A(f) and the lower order p(f) of f are defined, respectively, as follows:

A(f) = limsup log T(r, f), (f)—lrnl flogT(r f)

00 logr logr

Furthermore, the hyper-order of f is defined to be

. loglog T'(r,
An(f) = limsup 20807, kg)gr( D

For example, ¢* has order 1 and hyper-order 0.

Nevanlinna’s First Fundamental Theorem: Let f(z) be meromorphicin |z| < R <
00. Then foranya € Cand 0 < r < R,

r(r ﬁ) — T(r, f) + O(1).

It is the following result that plays a key role in the Nevanlinna theory and its
applications.

Nevanlinna’s Second Fundamental Theorem: Suppose that f is a nonconstant
meromorphic function in |z| < R. Let ay,...,a, (9 > 3) be distinct values in C.
Then

ES)

(a—= 270 f Z (n7 ) +8(5 1),

where S(r, f) = o(T(r, f)) possibly outside a set r with finite linear measure if the
order of f is infinite, and N is the counting function of the distinct roots of f(z) = a;.

Nevanlinna’s Small Function Theorem: Suppose that f is a nonconstant meromor-
phic function in |z| < R. Let a,(2), a,(z) and a3(z) be three distinct functions such
that

T(r,a;) = S(r, ), i=1,2,3.
Then

)
— ) +S(r, f).
i=1 f-a
This implies that if f is transcendental, and f —a; and f — a, have only finitely many
zeros, then f — a; has infinitely many zeros.

Lemma on the Logarithmic Derivative: Suppose that f is a nonconstant meromor-
phic function in |z| < R. Then for any positive integer k and 0 < r < R, we have

(k)

m(r, fT) — S(r, f).

https://doi.org/10.4153/CJM-2004-052-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-052-6

Meromorphic Functions Sharing the Same Zeros and Poles

3 Notations

1193

Let R be a relation, and let Ngi(r, f) “count” only those poles in N(r, f) that have mul-
tiplicity p satisfying pRk. The symbol Ny, means ignoring multiplicities in Ng(r, f).
Set

f(j+1) g(j+1)
(1) F. = —

IO Gj = P Hj:=Hj(f,g) = F;j = Gj, (j =0,1,2,...).

Obviously, for any 0 < i < j,
2 H;(fU=",¢V=") = Hj(f, ).

4 Fifteen Lemmas

The first lemma is a revised version of Clunie [3], (see, e.g., Hua [9, Lemma 1]).

Lemma 1 Let u be a meromorphic function and Q[u] and Qo [u] be differential poly-
nomials in u with coefficients a; satisfying m(r,a;) = S(r, f). If the degree of Q[u] is less
than or equal to n and u" Qo[u] = Q[u], then

m(r, Qolul) = S(r,u) + S(r; f).

Lemma 2  For any positive integers n and g, if f # 0, then

6 (e L) =m(n2) +5(x 0),
@) r(nl) <2r(nl) es(n L),
(5) ¢=S(n%) = ¢:S(r,f7/) 0 < m<n),
© Noa(n L) =N t5) = N (5 7o)

Proof (3) comes from [4, Lemma 2(v)]. (5) follows from (4). (6) can be easily
checked. Now we prove (4). Since
(n+1) / ()
LA b
fim h fn=1)
we deduce from the First Fundamental Theorem and (3) that

N(r,%) N (rn 1)

< N(r.h) + N(r. %) < N ) + T(r. 1) + O(1)

< 2N(r,h) + m(r, h) + O(1)

() / ’
< 2N(r7 %) +m(r, f7) +S(r, fT)
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By induction, we get (4). ]
Lemma 3 If f is meromorphic and f'' # 0, then

m(r f/)<2{N (r 1>+N(r 1) N (r 1)}+S<r />
[ = =1 v [ s 1) 2 s s T )
f f f" NS f

Proof This lemma is essentially due to Frank and Hennekemper[4]. We present a
simple proof here. Let

_Gnt o ant o drn”

7 S T R TR T
and
o (f///f)/
® b=
Then
9) m(r,Bo):S(r,T)7 m(r,Bl):S(r, ?)
and

/

(B +2B] — 4Bo)f7 = ByB, + 2B|.
If B2 + 2B] — 4B, # 0, then by (9) and the above equation,

(10) m(rf%) gN(r,B§+2B{—4BO)+s(r, fT/)

Now by (7) and (8),

B%+ZB{—4BO_2];C///I/f7,—6fTH+3 (?)2—2%” (];,I//>2.

It is easy to verify that any pole of f is not a pole of B? + 2B] — 4B,. Thus poles of
B} +2B] — 4B only occur at the zeros of f and f'’. If zy is a zero of f of order m > 2,
then, near z = zj, f(z) can be written in the form

f@=ai(z—2z)" +ay(z—z)"" +---, a; #0.

This implies that, near z = z,

G+1) —j +1
fA -l (rm )?2 +0(z—12), j=0,1,...,
) z—zp (m+1—)a

which yields

B? +2B] — 4Byl,, = O(1).

Thus z is not a pole of B2 + 2B — 4B,. The conclusion follows from (10). If B2 +

/

2B{ — 4By = 0, then m(r, fT) =S(r, fTI) by [4, pp. 52-53]. ]
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Lemma 4 If f is meromorphic and ' % 0, then we have

an N(r f”') N.o(n ;,) < 1—(6)9T(r,f?) +) Ni(n f}”) +S(r,f7)
and
(12) N(r f”) —N>2(r,%) S%T(r,]%) +ZN (n f”) +5(r ];)

Remark. The number 108 here can be replaced by any bigger number, but cannot be
a smaller number. The aim is to get inequalities (56) and (57) below.

Proof The proofis similar to the one in [10, Lemma 9]. Note that, for any function
h £ 0,
_ 1
N>, (r,h) < = T(r, h).
- q

Then, by Lemma 2, (4), (6) and the First Fundamental Theorem, we have

W(ng) ~5(s55) = [¥(n7) -5 75)]

+[¥(r77) ¥ (= 7))

() ¥ )

() (o)

<New(n L) + 157(nL5) =N ()
+Newm(n L) + 157(5 L) ~Na(n 1)

gz;[ﬁ:i(r, %) _N:Hl(r; %)} _Nzl(r’%)

+Z[N ( f”) Nﬂ“( f/”

i=1

_ﬁzl(” %) 109T(r fTI) +S(r’ fTI)

Z
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108 6 f
< Z_
ZN*'( f///) 109T(T’, f)
108
f/
ZN_,(r f/)+s( f)
and (11) follows. The proof of (12) is similar and we omit it here. |

Lemma 5 ([10, Lemma 7]) If f and g share 0 and oo and if f'' and g'’ share 0, then

(-5 =s(-7)

Lemma 6  Suppose that f and g are not polynomials of degree less than 5. Then we
have the following two conclusions.

(A) For any common zero zy of f and g with multiplicity m, if, near z = z,

(13) f(2) = a1(z — 20)" + ay(z — 20)"*" + a3z — 20)"** +
and

(14) 8(2) = bi(z — 20)" + by(z — 20)"™" + bs(z — 29)"** +
then, near z = z,

H, = A(z) + [2B(z9) — C(20)](z — z9) + O((z — 20)*),

—_

2
H:fﬁimm+[ﬂﬁﬁmm—(fig)c%ﬂ@—m+OW—%ﬁ,
m m m

m+1

H=——"—A
/ m+1—j (20)

+{2 (m+1)(m+2) B(Zo)—< m+1

2
(m+1—j)(m+2—j) m+1—j> C(ZO)](Z_ZO)

+0((z—2)), (j<m+1),

where

o a) bz N as b3 o a) 2 _
A) = 72— 7 Bla) =" Cla) = ()

()"

(B) For any common pole po of f and g with multiplicity m, if, near z = py,

- (5] (%) C3 o
fa) = (z — po)™ ’ (z— po)m—! " (z — po)m—2 "
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and

d, dy ds

(15) 8@ = o T e a—py

then,near z = py,

Hy = A(po) + [2B(po) — C(po)](z — po) + O(z — po)*),

2
Hy =" A + {2’”,”23@0)— (’”ml> C(Po)} (z— po)

+0((z = po)?),

m—1

Hj:mA(Po)

(m—2)(m—1) m—1 \°
sy~ () ceo) e
+0((z—po)), j=0,1,2,...,

where
d d 2 don 2
Mg == B =g c= () = ()

Proof We need only prove (A). The proof of (B) is similar. For the zero, z;, of f and
g, from (13) and (14) we can easily deduce that, near z = z,

Fj:m—j (m+ 1ay

z—zg (m+1—j)y

nt Dm+ Dy __(_(m+Das_y2)
mrl—m+2—a  \m+1-ja ’

+0((z — 20)%),

G‘_m—j (m+1)b,
T z—zp (m+1—j)b

mt Dm+ Db ___(_(m+ Db _y2)
m+1— m+2— b \(m+1—jb ’

+0((z — 20)%),

where j = 0,1, ..., m. These two representations yield (A). ]

Lemma 7  Suppose that f and g are meromorphic functions. Let

1 1
fi 8T (j >0),
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where F; and G; are the same as in (1). If
(16) F; = equa Fi = eVGj+la Fip, = eWGj+2

for three entire functions u and v and w, then

(17) x18j + Y181 T 218igin =11,
(18) xa28j + yagjr1 T 228i8j+1 = 12,
(19) X38; + y3gjr + 23881 = 13,
where

x1="—1), y=—("-1), zn=-u', rn=0,

x=(e"—D[u'(e"=1)—v'e'(e — 1) —u'(e" — €],
yo=u'e"(e" —1)(e" — 1) —v'(e" —1)(e" — 1) —u'(e” — 1)(e" —¢"),
n=—uv(Ee —1) —ue — 1) +u"( — 1) —1),
r=(e"—D[(e" = 1)(e" —e") — (" — (e —¢")],

x5 =x5(e" —1)(" — 1) —u'xy(e" — 1) — zp(e" — 1)(e" — &),

y3 =y = 1" = 1) =v'yy(e" = 1) — z(e" — 1)(e" — &),
z3=—u'z(e" — 1) —v'z(e" — 1) + z5(" — 1)(e” — 1),

r; = x(e" — 1)(e" — ") + yale" — 1)(e" —e”) +ry(e" — 1)(e” — 1).

Proof By (1) itis easy to see that

/ /

F] G!
(20) Fi+1:Fi+Fi7 Gi+1:Gi+av

for any non-negative integer i. By this and (16) we have

!

eijH = Fj+1 = Fj + L = equ +u' + Gj+1 — Gj,

Fj

ie.,
("= 1)Gjsy — (" = 1)Gj —u' = 0.

We thus obtain (17). To prove (18), we substitute (20) with i = j into the above
equation and obtain

(21) (¢" = 1)gj = —u'gj — (" —¢").
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Similarly, by (16) and (20), we deduce that

Gy
.
eW(GjH + G] ) = eWGj+2 = Fj+2
j+1
F! G’
=Fig+ 2 =Gy + v/ + L2
j+l Fj+1 j+1 Gj+1
Thus
(22) (" = 1)gjyy = —v'gjs — (¢" —€").

Now differentiating (17) and substituting (21) and (22) into it, we get (18). By dif-
ferentiating (18) and using (21) and (22) again, we obtain (19). [ |

The following lemma is a revised version of the so-called Borel Unit Theorem,
which can be found in Gross [6, Theorem 3.12].

Lemma8 Lethy,...,h, be meromorphic functions and let gy, . .. , g, be entire func-
tions such that

k
Z hj(z)egf(z) = hy(2).

=1
Suppose that there exists a set I with infinite measure such that, for r € I,
T(r,hj) = of T(r,e® %)}, j=0,1,...,m kji=1,....,m i #k
Thenhy=h; =---=h,=0.
Lemma 9 ([10, Lemma 8]) Let f and g share 0 and oo CM, let f' and g’ share 0 CM

and let f™ and g™ share 0 CM for onen > 1. If f'/ f is rational, then either (i) or (ii)
holds.

The following lemma is a corollary in Tohge [12, p. 103].
Lemma 10  Let f and g be meromorphic functions of hyper-order less than 2. If f )
and g share 0 and co CM for j = 0,1,2,3, then the possibilities for f and g are
those of (i)—(iv) and (v) f(z) = AeP@Y)  o(z) = Be™P(=%=Y here A, B, a, b are
constants and ABa # 0.

Lemma 11  Let f and ¢ be non-polynomial meromorphic functions. Suppose that f
and ¢ share 0 CM and that ' and ¢’ share 0 CM. Then either

Now(r ) < Newa (r %) +T(nH(f,8) — Ho(f.9))

+T(r,Hy(f,8) — Hi(f,9) +0(1)
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or
Hi(f,8) — Ho(f.$) = m(Hx(f,$) — Hi(f.,9)),

where m is a positive integer.

Proof Assume that
Hi(f,8) — Ho(f.8) # m(Ha(f,§) — Hi(f.9)).

We shall deduce the desired inequality. Let zo be a zero of £ (and ¢") of order m. If
f(z9) = 0, then thg order is m + 1. If f(zy) # 0, then §(zy) # 0. From (1) we can
easily see that Hy(f(z0),§(z0)) = 0. Applying Lemma 6 to f = f’ and g = ¢’ and
noting (2), we deduce that z, is a zero ole(f,g) — m(Hz(f, 8 — Hl(f,g)) . Thus
Zp 1s a zero ole(f,g) — Ho(f,g) - m(Hg(f,g) — Hl(f,g)) . Note that if z, is a zero
off’ of order m and a zero of f, then zj is a zero off' of order m + 1. Therefore,

1
+N ( r, — — — r— ) .
H\(f,8) — Ho(f,8) — m(Ha(f,8) — Hi(f,$))
The conclusion follows from this and the First Fundamental Theorem. |

Lemma 12 Let f and § be non-polynomial meromorphic functions. Suppose that f
and ¢ share 0 CM. Then either

N:m(rv %) S T(r,Hl(f,g)_HO(f;g)) +T(r,H2(f,§)—H1(f;§)) +O(1)

or
P AL m—1 P AL
Hl(f?g) - HO(f7g) = m+ 1 (HZ(fag) - Hl(f7g)) )
where m > 2 is a positive integer.
Proof We suppose that
m—1

Hi(f,8) — Ho(f,8) # (Hy(f,9) — Hi(f,9)-

m+1

Let 2o be a zero of f (and ¢) of order m. Applying Lemma 6 to f = f and g = ¢, we
obtain, near z = z,

H(f9) ~ Holf.9) = - AGay) + Oz — )

and

B9~ Hi(f.0) = " Alz) + Oz — ).

(m—1)
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Thus z is a zero of H,(f,¢) — Ho(f,8) — “=L(Hy(f,$) — Hi(f,$)). This implies

that
_ 1 1
N_m(r,7)<N( — — )
f H(f,8) — Ho(f,¢) — 2L (Hu(f,8) — Hi(f,9))
The conclusion follows from this and the First Fundamental Theorem. |

Lemma13 Let { and § be non-polynomial meromorphic functions. Suppose that
there exists an integer q such that

(23) Hi(f,9) — Ho(f,8) = a(Ha(f, &) — Hi(f,8)) #0
Then B ) |
N ?) <N(r Hi(f.9) —Ho(fvg))
and B . B )
N(r ) =Nl ?)“N( RGD-FFD)

Proof Let z, be a zero of f of multiplicity m > 2. Then from Lemma 6 we deduce
that, near z = z,

B9~ Holf.9) = - AGay) + Oz — )

and
m+1

Hz(f,ﬁ) - Hl(fug) = WA(Z()) + O(z — zp).

It follows from these two expressions and (23) that

(1- 52 - o

Since m > 2 and m and q are integers, %= is not an integer, and we deduce that
1-— m —q # 0. Thus A(zy) = 0 and z is a zero ole(f $) — Ho(f,g). This gives
the first inequality.

Now, for any zero zy of {7 of multiplicity m # g, if f (z0) = 0, then 2 is a zero of
f of order m + 1. If f(zy) # 0, then z, is a zero of Hy(f,$) . Applying Lemma 6 to
f = fand g = g, we see that z is a zero of Hy(f, ) — ’”;Hl(f, $). It follows from

this, (23) and m # q that z; is a zero ole(f,g). Thus

— 1 — 1 1 1
N{rn—) —N_(rn—) <N =] +N N .
( f/) 1 f/) Ve f) (+ Hi(f,8) ~ Ho(fag'))
The second inequality follows from this and the first inequality. ]
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Lemma 14  Let f and g be non-polynomial meromorphic functions. Suppose that
there exists an integer q such that

(24) H; — H, = q(Hy — H3) # 0.

Then )
N < — ).
Nt ) < N(r =)

Proof Let py be a pole of f with multiplicity m > 2. Then from Lemma 6 we
deduce that, near z = py,

m—1
H; — H, = TmrDmt2) +2)A(Zo) + O(z — po)
and 1
m—
H, — H; = A(z) + O(z — po).

(m+2)(m+3)
It follows from (24) that

(14520 o,

Since m > 2 and m and q are integers, ﬁ is not an integer, and we deduce that
1+ -2 —q# 0. Thus A(py) = 0, and so, p is a zero of H; — H,. [ |

m+1

Lemma 15 Let f and ¢ be non-polynomial meromorphic functions such that f and §
share 0 and oo CM. Assume that

e (e —1)
L b

(25)

—
N<
|
_

g/
gi

where
Liz)=(1—c)z+d

for two constants ¢ and d and v(z) is an entire function. Then f and § have no poles and
they have at most one zero.

Proof Note that any zeros and poles of f will be poles of f '/ f .Ifc =1, then L(2)
is a constant and we see from (25) that f and ¢ have no poles and no zeros. Next we
suppose that

(26) c# 1.

Then {J(Z) has one zero. Thus, by (25), f and ¢ have either one pole or one zero.
If f (and ¢) has a pole py, then py is the zero of L. Let

15
et, $=-¢",
£71

(27) f=

1=
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where o and 3 are entire functions. Note that L’(z) = 1 — ¢. We deduce from this,
(1) and (25) that

(28) fl=c e, ¢ = 1_671,@5
- ) g - L2 .

On the other hand, differentiating (27) gives

., a'L—1' L pL-L'
f/ = L2 eav g/ = L2 €.
Combining these with (28) we obtain
a,_ce"—2c+1 , 2—c—e’
B L ’ B L

Since o’ and 3/ are entire functions, then
ce’P) —2c41=0, 2—c—e " =y.

This implies that ¢ = 1, which contradicts (26). [ |

5 Proof of Theorem 1

By Example 1 in Section 1, we need only prove that n = 4 solves the problem. Ob-
viously, we can suppose that f and g are not polynomials, otherwise, conclusion (i)
holds since f and g have the same zeros and poles.
Let Fj, Gj and H; be as in (1). By Lemma 6, all H; (j < 4) are entire functions. It
follows from Lemma 5, (20) and the lemma on logarithmic derivatives that
T(r,His1 — H;) = m(r, Hisy — H;)

< m(r, Fiy1 — F;) + m(r, Giyp — Gi) + O(1)

F! G/ !
= m(r, Flz) —I—m(r7 EZ) +0(1) = S(r7 7)
fori = 0,1,2,3. Thus we have

/

(29) T(nH,-—HJzS(nJ;), 0<i<j<4).

Next we distinguish four cases.
Casel H; = 0forsomeiwith1 < i < 4. We consider only i = 4, since the cases
where i < 4 are easier and similar. From H,; = 0 and (2) we deduce that there exist

constants ¢ (# 0), ¢1, ¢, ¢3 and ¢4 such that

(30) f=cg+P
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and
(31) f'=cg'+P,

where P(z) = ¢,2° + ;2> + ¢3z + ¢4. Since f and g share 0 and co CM, there exists an
entire function 3(z) such that

(32) g=éf.

If 3 is identically constant, then we obtain (i). If 3 # const., we deduce from (32)
and (30) that

P(z) P(2)
33 = = -
(33) @ 1— cexp(ﬁ(z)) 82) exp( —ﬂ(z)) —c
If P'(8’P—P’) # 0, then P’ # 0 and 3P — P’ # 0. Differentiating the first equation
in (33) we get

c(B'P—Pe? + P
(1 —ce)?

Note that e has no zeros and poles. It thus follows from Nevanlinna’s Small Function
Theorem that f’ has infinitely many zeros. Since f’ and g’ share 0 CM, it follows
from (31) that P’ has infinitely many zeros, and so P’ = 0, which is a contradiction.
Thus P’(3'P— P’) = 0, which yields either P = 0or ’P—P' = 0. If 3’P—P' = 0,
then 3’ = P’/P. Since (3 is entire, then P(z) has to be a constant. If P’ = 0, then P(z)
is also a constant. We thus obtain (iv) from (33).

fll2) =

Case2 H; — H;j_; = 0 for some j with 1 < j < 3. By integration, it fol-
lows from (1) and (2) that there exists a non-zero constant ¢ such that /) /g() =
cfU=0/gi=0 je,
Fj,1 = Cijl.

Keeping in mind that fU~Y and g~ share 0 and co CM, if fU~V and g~ have
either common zeros or common poles, by local expansions we deduce from the
above equation that ¢ = 1. Thus H;_; = Fj_; — Gj—; = 0 and this reduces to
Case 1. Now suppose that fU=1 =£ 0,00 and g/~ # 0,00. Then, by the above
equation, there exists an entire function a(z) such that

g(jfl) _ ea7 f(jfl) =q eca'.
Differentiating these equations twice we get

j+1
f(]+ ) v —c (c—1a

- = (iC e
g0 g :

where ¥(z) = (1/a’)’. Since fU*!) and g/*V share 0 CM, ¥ does not assume ¢
and 1. In addition, by definition, ¥ has no simple poles. It follows from Nevanlinna’s
Second Fundamental Theorem that

T(r,¥) < sz(r, )+ S(r,¥) < %T(r7 W) + S(r, ¥).
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Thus W is a constant, and so ai, is linear. But « is entire, and so &’ is a constant, and
o is a linear polynomial. Hence

g(j—l)(z) _ eaz+h, f(j—l)(z) _ ecaerd7

where a, b, ¢, d, are constants, a # 0 and ¢ # 1. Thus f and g have hyper-order 0, so
case (v) of Lemma 10 does not occur, and the conclusion follows from Lemma 10.

Case3 H; — 2H, = 0. From (1) we deduce that f'/g’ = c(f/g)% i.e, f'/f* =
cg’/¢*. Integration yields that 1/ f = c/g + ¢| for some constant c;. If ¢; = 0, then
we obtain (i). If ¢; # 0, then f and g are entire and f(c + ¢;g) = g. Since f and g
share 0 CM, there exists a non-constant entire function a(z) such that c+¢;g = @),
This implies that f(z) = é - ﬁe_“(z) and g(z) = ée“('z) - ﬁ Thus

f”(Z) —c \I/(Z) +1 efza(z)

¢"(z2)  W(z)—1 ’

where ¥(z) = (1/a’)’. Since '’ and g'’ share 0 CM, ¥ does not assume 1 or —1.
In addition, by definition, ¥ cannot have simple poles. It follows from Nevanlinna’s
Second Fundamental Theorem that

T(r,¥) < N>y(r, )+ S(r, ¥) < %T(r, U) + S(r, ¥).

Thus W is a constant. Since « is entire, o’ is constant and so « is linear. This
gives (iii).

Case 4 None of the above three cases holds, i.e.,
(34) H;#0(i=0,...,4), Hj—H; ,#0(j=1,...,3), H —2H#0.

If zy is a simple pole of f and g, then, by Lemma 6, H,(z)) = H;(z) = 0. Thus by

(29),
(35) N_A(, f)<N(r é) :S(rf—l).
= b —_ b H2 _ H1 ) f
If z; is a simple zero of f and g, then by Lemma 6, Hy(zy) — 2Hy(zp) = 0. By (29),
1 1

(66 Nea(r7) SN g—sp0) < 70 = 2Hy + O()

_ f! f! g f'

= m(r, Hy) +S(r, 7) < m(r, 7) + m(r, E) + S(r, 7) .

Next, we deal with multiple zeros and poles of f or g. We shall prove that
!/

T Rala) < o ) an(e ) (o)
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To this end, we set

1 2 1

(38) Q(Z)ZFO—E‘*'E

and consider two situations.

At first, we suppose that Q(z) # 0. Let zy be a zero of f with multiplicity m > 2.
Then, by assumption, z, is also a zero of ¢ with multiplicity m. Suppose that, near
z = zj, f and g have expansions as in Lemma 6. If A(z)) = Zf - l% = (0, then

H,(zp) — Hi(2z9) = 0. If A(z) # 0, then by Lemma 6, near z = z,

(39)
o= : 2B(z9) — C(z0)| ( )+
ﬁO_A(Zo)_A(zo)Z[ 20) = C(z)] (z —z0) + -+,
(40)
1 _m 1 1 m(m +2)
H<  m+1A(zg) Alz)? { (m+ 1) B(zo) —C(zo)} (z—2z)) 4+,
(41)
1 _m—-1 1 1 [ (m—1)(m+2)
H, m+1A(z) A(Zo)Z[ m(m + 1) B(zo) —C(zo)} (z—z0)+-.

It follows from (38)—(40) and the above equality that, near z = z,

4B(zy)

(42) Qz) = m(m + 1)2A(zg)?

(z—2z9) + O((z - 20)2) .
Thus z is either a zero of H, — H; or a zero of Q(z).
Similarly, for any pole p, of f and g with multiplicity m > 2, let f and g have

the same expansions, near z = p, as in Lemma 6. If A(py) = E—f - Z—f = 0, then
Hy(po) — Hi(po) = 0. If A(po) # 0, then, near z = p,,

(43)
1 1 1
Hy ~ Alpo)  Alpey? 12500 ~Cln)] = po) e
(44)
1 m 1 1 m(m — 2)
H — m—1A(po)  Alpo) |2 7 BP0 = o) [ 2= po) -
(45)
I m+1 1 1 (m+1)(m—2)
H, m—1A(po) _A(Po)z[ m(m — 1) B(pO)_C(pO)} E=po) -

It follows from (37), (43)—(45) that, near z = p,

4B(po) (2 = po) + O((z — po)?).-

(46) Q2) = m(m — 12A(po)?
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Thus, py is either a zero of H, — H; or a zero of Q(z).
Combining (29) and the above discussion about the zeros and poles of f, we ob-
tain

o o) <N() (o) <) ()

Since all H; (i < 4) are entire, then (37) follows from (3), (1), (2), (38) and the First
Fundamental Theorem.
Now we consider the case Q(z) = 0. Thus, (38) gives

(47) HH, — 2HyH, + HyH; = 0.

We write this in the form

(48) Hz - HHO
for
H, — H
(49) H=-—2 "1
H; — H,

From (29) we see that
f/
T(r,H) < T(r, Hy — Hy) + T(r, Hy — Hy) + O(1) = S(r, 7) .
Now by (1) and (20),

G () o 5 -R(E)

where

f_/ B (f/l/f/)/ (fl/f)l g_/ _ (g///gl)l (g//g)/
P(f) e TR P(g) g'je gy

Thus by (1) and (2), Hy = Hy+P(4-) — P(£). Substituting this into (48), we obtain

(50) (H—l)Hozp(]%) —P(ggl).

If H = 1, then H, = Hy by (48), and so, H = —1 by (49), which is a contradiction.
Thus, H # 1. Now by (3), Lemma 5 and the expressions of P( fT) and P(g?), we have

/

(i#(5)) =50 mer(®)) =s(F)
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It follows from (50) that

!’

)) em(er(£)) o0

T(r,Hy) = m(r,Hy) < T(r,H) + m(r,P(

-5(:4)

~|=

which, with (29), implies

Vo of L _
(51) T(r,H,)fS(r, f), (i=01,2).
Let
1 1

We claim that @’ # 0. Otherwise, there exists a constant ¢ such that

1 1
(53) 1 r_.
Hy H;

By (38) and the assumption that Q = 0, we have

1 1
(54) — — — =c
H, H,
If c = 0, then H, — H; = 0, which contradicts (34). If ¢ # 0, then from (53) and
(54) and the fact that all H; (j < 4) are entire, it follows that H; # —%, %, o0o. Thus
H; is a non-zero constant, so are Hy and H, by (53) and (54). Hence, there exist
three non-zero constants ¢; (i = 0, 1, 2) such that H; = ¢;. By integration, there exist

constants d; (i = 0, 1, 2) such that

f _ eCOZerOg, f/ _ eclz+d1g/, f// _ eczz+d2g//.

By differentiating the first equation twice and the second equation once and using all
six equations we get

2 (2ci—cy—cy)z+2d, —dy—

e bt oco(eg — o)l @etdi—do

— ¢y — Co)e(cl—Cz)z+d1—d2 _ cé.

It follows from Lemma 8 that ¢ = ¢; = ¢, i.e., Hy = H; = H,, which contradicts
(34). Thus @’ # 0.
Let z; be a zero of f and g with multiplicity m > 2 such that

H;(zy) — Hi(z9) # 0.

Then A(z)) # 0 by Lemma 6. From (42) and Q = 0 we deduce that B(z,) = 0.
Combining this with (39), (40) and (52), we obtain, near z = z,,

Py 1 Y
@(z)_i(m+l)A(zo)+O((z Zo)>7
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and so, ®’(z9) = 0. Similarly, if p, is a multiple pole of f and g such that H,(po) —
Hi(po) # 0, then we deduce from Lemma 6, (43), (44), (46) and (52) that ®'(p,) =
0. It follows from (3), Lemma 5, (31), (51), (52) and the above discussion that

_ — 1 1 1 f’
sz(r,f)ﬁ-NZg(r,?) <N( Hiz H1) +N(r a) S(r,7).
This also proves (37).
Now, by (3) and (35)—(37) we have

(55) (r f%) SSm(r f?') +4m( E) +S( J;/)

From (3) Lemma 3 and Lemma 5, we have

m(r7 ]%) <m( ];—l,/) +S(r, ]%)

<[5 ) 8o ) ()] 055
2w ) (e ) N )] +5(e ),

Substituting these two inequalities into (55) and using Lemma 4, we get

o0 (o) s vl (s )+ F(e )| +5(: )

In addition, by (55), Lemmas 3 and 4,

(57) T(r,f?/) < 36N 7 )+ZN,1( F)]w(nf?/).

Similarly, by N(r,g’/g) = N(r,g) + N(r,1/g) = N(r, '/ f) we have

, 108 ,

1) e[Na(ng) + () | +5(+ )

and
/

(=8 <3y XN (n )] 5[ E).

Next, we consider two subcases.
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Case 4.1

1 f’
V(i) -5 1)

f f
Ileos N_ ( fl,,) = S(r, fTI) then £ f is constant by (56), so is &-. This is (ii). If
2108 N_,( f”’) # S(r, fTI) , then there exists a positive integer q (1 < g <108)
such that

_ f’
Vi) 450 5)
Now, we discuss three situations:
Case 4.1.1
- 1y — 1 f

(60) Nzl(r, W) +N:qﬂ(r, F) - S(r, 7).

Applying Lemma 11 with m = g,and f = '’ and § = g/, we have from (59), (60),
(29) and (2) that

(61) H; — H, = q(Hy — H3).

By applying Lemma 13 to f = '/ and ¢ = g’/ and noting (2), we deduce from (29),
(35), (60), (61) and Lemmas 13 and 14 that

(62) N )+ (r f”) =s(x f?/)
and
(63) N(r,%) gﬁzq(r, %) +s( ];/)

Now by (3), (1), Lemma 3 and the First Fundamental Theorem,

N i) =) ¥ ) R )
(64) < m(r, Fy) + N, f)+(q+1)N( f”) —m(r, Fiz) +s(r, f_/)

:m(r,Fl)—m(r,FiZ)+N(rf)+(q+1)N( f”) S(r,f?l)

< 2N (n %) +2N(r, W) +NG: f) + g+ DN (s fL)

“n(ng) +s(+ ).
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It follows from (58), (60), (62) and (63) that

(65) (q— Z)N:q<r, %) +m (r, Fiz) = S(r, f7')

By the same reasoning we obtain

(66) (q—2)ﬁzq(r,($) +m(r,GiZ) :S(r,f?).

From (59) and (65) we see that g < 2. Next, we discuss ¢ = 2 and g = 1, respectively.
If g = 2, then (66) and (65) give

(67) m(r,%) :S<r, ;), m(r,Giz) —S(r,?).

From (61), (2) and (20) we obtain
B_G (B G\ _ (K G
F, Gz_q Fs G) “\F G/
An integration gives
F2 (F3>2
22,
Gy Gs

where ¢ is a non-zero constant. It is easy to verify that

F/ G/
FE=F+-=2, G3=G,+—.

F, G,
Thus we have
G, 1 /GiN2 F} c rFIN2
68 F—G:2—2+—(—2) —2—2+—(—2).
(68) TG TG\ G, ‘R E\R

Note that m(r, F; /F,) = S(r, F,) = S(r, f'/ f) by (1) and (5). Thus the same conclu-
sion also holds for G,. It follows from this, Lemma 5, (68) and (67) that

(69) m(r, cFy — Gy) = S(r, fT/) .

Set U = cF, — G,. Thenm(r,U) = S(r, fTI) by (69). We rewrite (68) in the form

cF, — U’ 1 (CFZ/—U/)Z 2F2/ C(FZ/)Z
F,/ -

U=2 + =+ —
F—U  BH-U\ch—-U ‘TR
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Multiplying both sides by F,(cF, — U)? gives
UF,(cF, — U)* = (cFy — U')Fy(cF, — U)* + (cFy — U’)*E,
Fj\ 2
—2F(cF, —U) + C(F) (cF, — U’
2
Ej E) 2
- 2<C—F2 - U’) Fy(cFy — U)* + (C—Fz - U’) F,
F2 F2
F! FiN2
—2C2Fy(cFy — U + c( —2) (cF, — U)>.
F, F,

Now by expanding this equality and putting all the terms with F; to the left-hand
side we get

F/
P [U —2(1 - C)Fﬂ E; = P(Fy),

where P(F,) is a differential polynomial of F, with coefficients in U, U’, c and F; / F,,
and the degree of P(F,) with respect to F, is less than or equal to 3. Lemma 1 implies

m(r, [U—Z(l—c)%}Fz) —S(r,];/), m(r,U—Z(l—c)%) —S(r,];/).

IFU —2(1 — )% # 0, then
i ) < m(n [V =20 -0 2] k) +m<r, m> +o()
N -t +s(-)
<N ) +N(r fi) +N(r fl) +5(r f)

It follows from (64) with g = 2, (62) and (63) that

sz(r, %) §N:2(r, f}”) +S(r, f7)

Since N_,(r, ﬁ) = 2N, (r, ﬁ) , we obtain N_,(r, #) = S(r, fT/) , which
contradicts (59). Thus U — 2(1 — c)% = 0. If ¢ # 1, then we have

/

N(r, %) < N(r, %) — N(1,U) = N(r, cF, — Gy)

— NG, f)+ﬁ(r,%),
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and so, by (62), N(r, ﬁ) = S(r, fTI) , which contradicts (59). If c = 1,then U = 0
and F, = G, i.e., H, = 0, which contradicts (34).
If g = 1, then (59) and (61) are

(70) Nzl(r, %) 4 S(r,f%)
and
H; — H, = Hy — H,

respectively. Integrating the above equation we get

Fz . F2+F2//F2

71 =222 eC—{o}
(71) G Grcle © {o}
We rewrite this in the form
+ Fz/ 1+ Gé
ct+ec—= = —.
F G

By integration we have

(72) L=~ - &

_ = Lz =(1-
A (2) = (1 =)z +d,

for some constant d. If L(z) = 0, thenc¢ = 1 and d = 0. By (72), F, = G, i.e,
H, = 0, which contradicts (34). Next, we consider the case

(73) L(z) # 0.

By our assumptions, there exist entire functions u(z) and v(z) such that
(74) Fi=¢"G), F=cGy¢.

We deduce from (72) that

e —1 e (" —1)
G =—" "
L7 L

(75) Fz =C

Applying Lemma 15 with f = f’" and ¢ = g/, we imply that '/ and g’’ have no

poles and have at most one zero which is the zero of L. Hence we may suppose that
f// _ Le“, g// — Leﬂ,

where « and (3 are entire. From this, (1) and (75) we deduce that

(76) f"=c-1e", g'=(01-¢") e’

Since
! !

F G
EE=F+—=, G =G+
2 1 F]v 2 1 Gl’
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by (74) we have

G/
FZZEMG1+M/+G—1:euG1+M/+G2—G1.
1

Substituting (75) into this equation we get
u / l —V v
G(l—ée)Y=u +Z(l—e (1 —cé’).
Differentiating this equation and using (75) and G, = G; + % we obtain
(77)  he —he'+hye — e thye™ —cFe¥ + hs et —hg =0,
where

(78) hy = 2cLu’ + cLv’ + 3¢2,
hy = 2Lu’ + L2’ + cLu’ — L2u" + 2c + &2,
hy = 2Lu’ + Lv' + 3,
hy=Lu —Lv' — 1+ 2c,
hs = cL(u — v)’ + 2¢ — ¢,

hg = 2u” + (1+20)Lu’+2c+22 —1+L%u".

Next, we consider three subcases.
Case4.1.1.1 There exists a set I with infinite measure such that

T(r,e") = o(T(r, ev)) rel.
We rewrite (77) in the form

e+ (h+hse) e’ + (e +hy)e” —e'e ™ — (hye' +hg) = 0.

From Lemma 8 we deduce that ¢ = 0 which contradicts (71).
Case 4.1.1.2 There exists a set I with infinite measure such that

T(r,e") = o(T(r7 e”)) rel.
We rewrite (77) in the form

(—hy+hye ™’ —e 2 +hse)e* + (—hye" + he™” — 2 e® — hg) = 0.

https://doi.org/10.4153/CJM-2004-052-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-052-6

Meromorphic Functions Sharing the Same Zeros and Poles 1215
This and Lemma 8 imply
—hythse —e P +hse' =0, —he+he’ —cfe —hg=0.

By (78), these two equations are equivalent to

—L2u” U+ [—(2+c)L+2Le " +cLe'lu’
t[2c—+ IV +3)e " —e ¥ —(cLv' —2c+cH)e'] =0

and

2 L 4 [—(L+ 200+ Le " +2cLe|u’

+t2c+2 —1—Iv' +1—-20)e " =2+ (cLv' +3c%) e'] =0,

respectively. From these two equations we get

200" +Lc—1+e " —ce)u' +1 — 4c — 3¢

+2(vV +2—0)e " —e T+ e 2c(lv —142c) e =0

and

—2r*u 4 3L(=1—c+e " +ceu' +c2 —1

2v

+2(c+ eV —e 2 =¥ +2c(1+c)e" = 0.

Differentiating the last equation and eliminating ' and u’/ in the three equations,

we obtain
j=5

240%™ + ) " Pi(L,v))el” — 24¢°L8™ = 0,
j=—5

where P;(L,v’) are differential polynomials in v’ and L. If v is a constant, then
N (r, #) = 0 by (76), which contradicts (70). If v is non-constant, then from
the above equation and Lemma 8 it follows that L = 0, which contradicts (73).

Case 4.1.1.3 Neither Case 4.1.1.1 nor Case 4.1.1.2 holds. Then
T(r,e") = O(T(re)), T(re)=O0(T(re"))

for all » > 0 except possibly for a set of values of r with finite linear measure. From
(78) we see that

T(r,hj) = o( T(r,e"), T(r,e")), (r¢Ej=1,...,6),

where E is a set of finite measure.
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Case 4.1.1.3.1 There exists a set I with infinite measure such that
T(r,e"™") = o(T(r, e”)) , T(r,e"™V) = o(T(r7 ev)) , rel.
We rewrite (77) in the form
(hse" ™ — ) e¥ +(h —h e ) e + (hy—e" ") eV —hg = 0.
This and Lemma 8 assert that
(79) he=0, hse" V= =0, h—he =0 h—e"=0.
Eliminating "~ we obtain
(80) hshy —c* =0, hy —hyhy = 0.
From (78), (79) and Lemma 1 we imply that u’ = const. and L = const., i.e,, ¢ = 1,
L = d. It follows from this, (78) and (80) that v/ is constant. Noting that ¢*~" =
hy = d(u—v)" +1, we deduce that u — v = const. Combining all these facts with (80)
we getu’ = v/ =0, i.e, vis a constant. By this and (76), f""’ # 0, which contradicts
(70).
Case 4.1.1.3.2 There exists a set [ with infinite measure such that
T(r,e" ™ ®) = o{T(r,e"), T(r,e")}, rel
We rewrite (77) in the form
hs e 2e? — (hye" 2 +c*)e® + (hy + hye ) e’ + hye™” — (e" % + hg) = 0.
By Lemma 8,

h5 = h4 = 0, hl + h:,,euizv = 07

he ™+ =0, € ¥ +hs=0.

From hs = hy = 0 and the expressions for hy and ks in (78) we deduce that ¢ = 1
and so L = d by (72). Now eliminating e“~%" in the above equations gives

hohe = ¢ = 1.
Substituting the expressions for h, and h¢ in (78) into this, we obtain
) +Ps(u') =0,
where P;(u’) is a differential polynomial of u’ of degree < 3. This and Lemma 1 im-

ply that u’ is a constant, and so v’ is also a constant by hs = 0 (in fact, we can further
deduce that du’ = —2, dv’ = —1 and ¢*~2" = —1). Thus v is linear. Therefore
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f’" and g"’ have hyper-order 1 by (76), and so, f and g also have hyper-order 1 by
Chuang [2]. By Lemma 10, we need only consider case (v):

f(z) = Ae™P=D) | g(z) = Be™ 7Y (ABa #0).
Differentiating the equation for f twice we obtain
f//(z) _ Aa2(eaz+b + l)eaz+h+exp(az+b) .
Thus f’/ has infinitely many zeros, which contradicts (76).

Case 4.1.1.3.3 There exists a set I with infinite measure such that
T(r, ™) = o{T(r,€"), T(r, e")}.
We rewrite (77) in the form
2 4 e + (hse™™ — hg) — (hy e)e™" + (hy €)e ™2 — Ve = 0,
By Lemma 8, ¢ = 0, which is a contradiction to (71).

Case 4.1.1.3.4 None of the above three subcases hold. Then Lemma 8 and (77) give
a contradiction.

Case 4.1.2

(81) N:qﬂ(r,%) #S(r,?l).

Applying Lemma 12tom = g+ 1, f = " and ¢ = g”/, it follows from (29), (81)
and (2) that

q
82 H; — H, = ——(H, — H3).
(82) 3 —H, q+2(4 3)

By the assumptions of Theorem 1, there exist three entire functions u(z), v(z) and
w(z) such that

(83) Fi(2) = ¢'9Gi(2), Fi(z) = ¢"DGy(2), Fi(z) = "?Gs(2).
Integrating (82) gives

F2 . ( F3 ) ‘1/(‘1"‘2)
G “ G

b
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where ¢; is a non-zero constant. This and (83) imply

(84) v2) = —Low(z) +d,
q+2

where d; is a constant. Now we consider two subcases.

Case 4.1.2.1
Nq+2(r, %) + S(r, ;) )

Applying Lemma 12 with m = g + 2, f = f’ and ¢ = g, we have from (29) and (2)
that
qt+1

H-H=2"H-H
2 1 q+3(3 2);

which, upon an integration, becomes

(85)

?

F, F,\ (a+1)/(q+3)
o —alg)
where ¢; is a non-zero constant. It follows from (83)—(85) that

q(g+1)

(86) “a) = g3

w(z) + d,

where d, is a constant. Applying Lemma 7 with j = 1 we obtain

(87) X181+ N+ a5Hp =11,
(88) X081t 2t 22818 = 12,
(89) X381+ y38 + 23818 = 13,

where x;, y;, zi,r; (i = 1,2,3) are as in Lemma 7, and by (84) and (86), each member
inx;, y;,z,r; (i =1,2,3) has a representation of the form

K
ZPi[w'] e K eN,

i=1

where a; > ap > - -+ > 0, P;[w'] are differential polynomials in w’ and

T(r, P[w']) = S(r, fT/)
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By simple calculations we see that

q
= — +d}—1,
X exp{q oWt

xzz—v'exp{(l+2q%2)w+2d1} e

X3 = —[v’(2v’+w’)+v”]exp{ (2+3 q )w+3d1} +oe,

q+2
alg+1)
=T {(q+2)(q+3)w+ 2} L
_ q q(q+1)
yz_“eXp{(1+q+z+(q+2)(q+3))w+d1+d2}+ !

T R P q qalq +1)
y3=[u"+u'(u +v +w)]exp{(2+2q+2+(q+2)(q+3)>w+2d1+d2}

4.

l
21 = —u,

z :u”exp{ (1+ q—k%)w+d1} +oeee,
zz=[(v +w)Hu" +u'"] exp{Z(l + L) w+2d1} +oen
qt+2
n = Oa
T = exp{ <1+2_q >w+2d1} +
q+2 ’

r3 = (3v'+w’)exp{ (2+3q%2)w+3d1} +oen
where we only list the largest term with respect to «;;. Combining all these represen-
tations with (84) we deduce from (87)—(89) (where we look at (87)—(89) as a system

of linear equations in the unknowns g, g, and g1>) that the largest term with respect
to «; in the determinant of the coefficients of (87)—(89) is

1
L) = Prexp{ (3+4- 04 MY )y ag 0]
q+2 (q+2)(q+3)
where
2
P, = ——(u’u”' W' (1+ —q+3)u”u’2+ —q+3u’4)_
q+l g+1 q+1

If the determinant of the coefficients of (87)—(89) is vanishing, then by Lemma 8,
P, = 0. Thus,

+3 +3
un'"’ — ' — (1 M i )u”u’z + 3704 <o
q+1 q+1
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By Lemma 1, u’ is constant. It follows from the above equation that u#’ = 0, and so
v/ = w’ = 0by (84) and (86). Thus u, v, w are constants. If e’ # 1, then from (15)
with j = 1 and (83) we deduce that F; and G; are constants, thus '/ # 0, which
contradicts (81). If ¢" = 1, then F; = G by (83), and so H; = 0, which contradicts
(34). Therefore the determinant of the coefficients of (87)—(89) is non-vanishing. By
Cramer’s rule we obtain

Cdet#,7,7)  det(®%7,2)  det(®, 7,7)

87 da® 5,0 &7 de® g 8T de® i)
Thus,
(90) det(7, ¥,7) det(¥,7,2) = det(¥, ¥, Z) det(X, ¥, 7).
By (84) and the representations of x1, . . ., 73 above, the highest term with respect to

«; on the right-hand and the left-hand sides of (90) are

_ q q(q+1)
t(r) —Pexp{ (6+9quz +2(q+2)(q+3))w+9d1+2d2}

and

_ q q(q+1)
t(l)—PoeXp{ (6+9q+2+ (q+2)(q+3))w+9d1+d2},

respectively, where

2 \? +3 +3
pP— _( ) {u/u///_u//Z_ (1+q )u//u/Z+ q u/‘*} «
q+1 q+1 q+1

[u//_(1+q+3)u/2}
q+1

and

+3 +3
Py = [u”’ - (2% + 1) o (2‘1— _ 1) uﬂ X
q q

+1
+3 + 3\ 2
{u”' - (2_6] + 1) u'u' + (—q ) u’s}.
q+1 q+1

It follows from these two equations, (90) and Lemma 8 that P = 0, and so,

u/u///_u//2_ (1+q+3)u//u/2+q+3u/4} {u//_ (1+q+3)u/2} =0
qg+1 qg+1 q+1 o

This and Lemma 1 give m(r,u’) = S(r,u’). Note that, by the above equality, u” has
no poles. Thus T(r, u’) = S(r, u’). This implies that 1’ is a constant. Using the above
equality again, we imply that 4’ = 0, and so v/ = w’ = 0 by (84) and (86). Thus,
u, v, w, are constants. If e” # 1, then from (15) with j = 1 and (83) we deduce that F;
and G; are constants, thus f’/ # 0, which contradicts (81). If e = 1, then F; = G;
by (83), and so H; = 0, which contradicts (34).
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Sl ) =5(e )

Applying Lemma 11 to f = f and ¢ = g with m = g + 1, we have from the above
equality, (29), (81) and (2) that

Case 4.1.2.2 Assume

H, —H, = (g +1)(Hs; — Hy).

Integrating the last equation gives

F, ( F2) (q+1)
_ = C 5
G '\G

where ¢; is a non-zero constant. It follows from (83) and (84) that

(o1)

u(z) = q(qq+ D (2) + dy,

where d, is a constant. If ¢ = 1, then (84) and (91) become

v(z) = %W(Z) +dy, u(z)= %W(Z) +d,.

By the same reasoning as in Case 4.1.2.1 we arrive at the desired result, where we

replace -1 5 and (q+2q+ql+3 in (84) and (86) by 1 5 and 2, respectively. If g > 2, then (84)

and (91) give

(92) w(z) = u(z) +e, v(z) = u(z) + e,

q+
q(q +1) q+1
where e; and e, are constants. Similarly as in Case 4.1.2.1, we replace (84) and (86)

by (92) and obtain the desired result.

Case 4.1.3 Assume

(93) W:q“( f//)is( fJ‘f/)’ N- ( f”)#s( Cc)

Applying Lemma 11 with m = g, f = f"" and ¢ = g", it follows from (29), (59) and
(2) that

(94) H; — H, = q(Hy — H3),

which, upon integration, becomes

95) e=c(2)"
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where c is a constant. If g = 1, then

F, F ( Fz’)/( G
—=c—==c| KL+ = G+—).
G, CGs ‘A F, TG,

We rewrite this in the form

E_G
l—c=c2— 2,
c=c¢ B &
By integration,
c 1
Liz) = —— + —
(z) 5 G

where L(z) = (1 — ¢)z+ d and d is a constant. If L(z) = 0, thenc = 1 and F, = G,,
which contradicts (34). If L(z) # 0, then by (83) we obtain

f/// B e’ — ¢

f// - = L(Z) .

) =

This implies that f’/ has at most one zero. However, this contradicts (93) unless fT

is rational. By Lemma 9 we obtain the desired results. Next we let ¢ > 2 and consider
two subcases.

Case 4.1.3.1 Assume

(96) sz(r,%) ;As(r,];).

Applying Lemma 12 to m = 2, f = f and § = g/, it follows from (29), (96) and (2)
that

1
H, - H, = g(Hs - H,).

From this, (83) and (95) we deduce that
1 1
(97) u(z) = 5V(Z) +dy, w(z) = 51/(2) +da,

where d; and d, are constants. Similarly, as in Case 4.1.2.1, we can derive the desired
results.

Case 4.1.3.2 Assume
N (r 1) S(r f/)
=2 Y = s T, )
I’ f

Applying Lemma withto m = 1, f = f’ and § = g, we deduce from (29) and (93)
that
H, —H, = H; — H,,
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which, upon integration, becomes

Do Z)=e(me D)/ (a+ S
Do (Y o(p+ ) (g + 2L
G C(G2 AT TG )

where ¢ is a constant. We rewrite this in the form

F G
l—-c=c—5 — =.
G
By integration,
c 1
L = —— 4+ —
(z) E G

where L(z) = (1 — ¢)z +d, and d is a constant. If L(z) = 0, then ¢ = 1 and
H; = F; — Gy = 0, which contradicts (34). If L(z) # 0, then by (83),

e — ¢ 1—ce™
G =———

F, = =
(98) 1 L ) L

It follows from (1) and Lemma 15 that " and ¢’ have at most one zero which is the

zero of L. Suppose that
f'=Le*, ¢ =Lé

From this and (98), we deduce that
I __ l u I __ £ _ U
o' = L(e 1, p'= L(l e ")

and
fr=("=0e, g'=@0-ce e

Differentiating this gives

. ,
1= Z[e2“ +(Lu' —1—oc)e“+cle*, g = % e e+ (Lu' —1—c)e"+c]e’.

Differentiating the above equations, we get

Qv

e
o= 7 [+ (3Lu' — u— 3 +c)e™
+(2+ 0" +L%u” — 2+ 0Lu'+ (2 — u) e — 2c+ 7],
B3—3u
ce
g(4) = —L2 [(ZC — 1)€3u

+((1+20Lu’ — Pu” + Lu’" + 1 —2c — 2¢%) e + 3c(c — Lu') " — ¢*].

From this and the Second Fundamental Theorem we can easily verify that f®* and
g(4) do not share 0 CM, which is a contradiction.
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Case 4.2 Suppose

(99) Nzl(r,%) #S(r,f%).

We consider two subcases.

Case 4.2.1 : I
sz(r, ?) = S(r, 7) )

Let zy be a simple zero of f” which is not a zero of f. Then by Lemma 6, z is a zero
of Hi — Hy — (H, — H,). It follows from (29), (99) and Lemma 11 that

H1 _HO :HZ_H1~
Integrating this, we get

F, R Fy +Fl/F,

Go G Go+G/Gy

where ¢ is a nonzero constant. We rewrite this in the form

F, G
—1+c=2 =20
c c R- &
By integration we obtain
1 c
100 Liz) = — — —,
(100) (2) G R

where L(z) = (1 — ¢)z + d for some constant d. If L(z) = 0, then ¢ = 1 and Fy, = Gy
by (100), which implies Hy, = 0, a contradiction to (34). If L(z) # 0, then similarly
as the Case 4.1.3.2, we can derive a contradiction.

Case 4.2.2
— 1 f’
(101) N:2<T’,?) #S(T,?)
Applying Lemma 12 with m = 2, f = fand § = g, it follows from (2), (29) and
(101) that
1
(102) H, —H, = 5(H2—H1)~

Integrating this gives

(5) =(5):
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where ¢ is a non-zero constant. Let z; be a zero of f of order 2. Then by the above
equation, near z = z,
1=c+0(z— z).

Thusc = 1and

(103) (2—2)3: 2—11

By our assumptions, there exists an entire function u(z) such that
(104) Fy = €"Gy.

Since
! !

G F,
G=Go+ = =e¢e"F—u+2=e"F—u +F —F,
Go F

we deduce from the above three equations that
(105) (" —DFy+(1—eF —u' =0.

If, near z = zj, f has a simple zero z, and f and g have the expansions given by
Lemma 6, then near z = z,

1 a
Fy = + =+ 0(z — 2),
zZ— 2 ap
2
F, = ﬂ + O(z — zp).

a
From (105) we get
eTU@) —1 q

P2 —ulzg) _ ﬂ _ ,—3u(z)
p—— al(e 0 1)+2a1(1 e )

—u'(zp) (e_“(z") +1) + O(z — z)) = 0.
Thus,
e @) —1=0
and
L (@) 1) 4222 (1= e E)) i/ (z) (e 4+ 1) = 0.
ap ay
This implies that #’(zp) = 0. On the other hand, by (104),

F! G!
Hl—H0=F1—Gl—(FO—GO)ZFl—Fo—(Gl—Go)ZI7O—G—0=U/~
0 0

Thus H;(zg) — Ho(zg) = 0. Therefore

(106) Nzl(r, %) SN(nﬁ) - 5(“ f?)
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/

by (31). Ileos N_,( fl,,) = S(r, ) hen is rational by (57) and (106), and

7
the conclusion follows. If Zlos N_ ,( t, ) (r, 7) , then there exists g with
1 < g <108 such that
_ f’
(107) Ny (n f”) #3(n f)

By the assumptions of Theorem 1, there exist three entire functions, u(z), v(z) and
w(z), such that

(108) Fo(2) = e"9Go(2), Fi(z) =€"¥Gi(2), F(2) = e"?Gy(2).
Substituting (108) into (103) we get
1
(109) u(z) = 3 v(z) +di,
where d; is a constant. Next, we discuss two cases.

Case 4.2.2.1

(110) Nega (' f,)aéS( ’;)

Applying Lemma 12 withm = g+ 1, f = f’ and § = g’, we deduce from (110), (29)
and (2) that

q
111 H, — H = ——(H; — H,).
(111) p 1= 2( 3 2)
Integrating (111) and then substituting (108) into it we obtain
(112) v(z) = q%ZW(Z) +da,

where d, is a constant. We apply Lemma 7 with j = 0 and use (109) and (112). By
the same reasoning as in Case 4.1.2.1, we complete this case.

N 4) =5(+ ).

Applying Lemma 11 with m = g, f = f’ and § = g/, it follows from the above
equality, (107), (29) and (2) that

Case 4.2.2.2

H, — H, = q(Hs — H>).

Integrating this equation and then substituting (108) into it we obtain
1
w(z) = —v(z) + d,.
q

By the same reasoning as in Case 4.1.2.1 where (84) and (86) were replaced by (109)
and the above equation, applying Lemma 7 with j = 0 we solve this case.
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This completes the proof of the theorem. ]
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