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Meromorphic Functions Sharing the Same
Zeros and Poles

Dedicated to Henri Cartan on his 100th birthday.

Günter Frank, Xinhou Hua and Rémi Vaillancourt

Abstract. In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any

meromorphic function f is determined by its zeros and poles and the zeros of f ( j) for j = 1, 2, 3, 4.

1 Introduction and Main Results

The uniqueness of meromorphic functions is an important research area. A natural
problem is whether a meromorphic function f (z) is determined by the zeros and

poles of f and the zeros of its first few derivatives. For convenience, we say that
two nonconstant meromorphic functions f (z) and g(z) share the value a CM when
f (z) − a and g(z) − a have the same zeros with the same multiplicities.

For entire functions f and g with finite order, C. C. Yang [14] and G. G. Gunder-
sen [7] studied the case where f ( j) and g( j) share 0 CM for j = 0, 1.

For meromorphic functions f and g, we know that f ( j) and g( j) share 0 and ∞
CM for each non-negative integer j whenever f and g satisfy one of the following
four conditions:

(i) f = cg, c ∈ C − {0};

(ii) f (z) = eaz+b, g(z) = ecz+d, a, c ∈ C − {0}, b, d ∈ C;
(iii) f (z) = a(1 − becz), g(z) = d(e−cz − b), a, b, c, d ∈ C − {0};
(iv) f (z) = a/(1 − beβ), g(z) = a/(e−β − b), a, b ∈ C − {0}, β a non-constant

entire function.

A. Hinkkanen [1, p. 492] proposed the following problem:

Question 1 (Hinkkanen’s Problem) Does there exist an integer n ≥ 2 such that f

and g satisfy one of the conditions (i)–(iv) when f ( j) and g( j) share the values 0 and
∞ CM for j = 0, 1, . . . , n?

In 1989, L. Köhler [10] proved that n = 6 solves the problem. K. Tohge [13] in
1990 considered the case n = 2, 3 under restrictions on the growth of f and g.

In this paper, we shall provide a sharp answer to Hinkkanen’s Problem by proving
the following result see also [5]).
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Theorem 1 The sharp answer to Hinkkanen’s problem is n = 4.

The following example shows that our theorem is best.

Example 1 Let f = exp(ez) and g = exp(e−z). Then f and g do not satisfy (i)–(iv).
It is easy to check that f ( j) and g( j) share 0 and ∞ CM for j = 0, 1, 2, 3. However,

from
f (4)

= (1 + 7ez + 6e2z + e3z) exp(z + ez)

and
g(4)

= (1 + 6ez + 7e2z + e3z) exp(−4z + e−z)

we see that f (4) and g(4) have no common zeros. On the other hand, it is obvious that

f (4) and g(4) have infinitely many zeros. Thus f (4) and g(4) do not share zeros.

To prove our result, the following strategy is used:

(1) Classify zeros of the functions f and g and their derivatives according to their

multiplicities.
(2) Establish relations between the characteristic functions of f ′/ f and either the

simple zeros of f and the zeros of f ′ ′ with multiplicities less than 109 or the
simple zeros of f ′ and the zeros of f ′ ′ ′ with multiplicities less than 109. The

same is done for g ′/g. The number 109 here can be replaced by any bigger
number.

(3) Then restrict attention only to the kind of zeros listed in 2. This is done by
considering several cases.

2 Nevanlinna’s Theory

As a quantitative generalization of Picard’s theorem, the theory of the distribution

of values of meromorphic functions, developed by R. Nevanlinna and his student, L.
Ahlfors, was one of the most outstanding achievements of mathematics in the 20th
century (see [8, 11, 12]). The most important function in Nevanlinna’s theory is
Nevanlinna’s characteristic function, which we now introduce.

Let f (z) be meromorphic in |z| ≤ R < ∞. For 0 < r ≤ R, we denote by n(r, f )
the number of poles of f (z) in |z| < r, counted according to multiplicities. Setting
log+ x = max(log x, 0), we define

N(r, f ) =

∫ r

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) log r,

m(r, f ) =
1

2π

∫ 2π

0

log+ | f (reiθ)| dθ,

T(r, f ) = m(r, f ) + N(r, f ),

where N(r, f ), m(r, f ) and T(r, f ) are called counting function, proximity function
and Nevanlinna characteristic function, respectively. One basic property is that
T(r, f ) is a continuous and increasing convex function of log r.
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The order λ( f ) and the lower order ρ( f ) of f are defined, respectively, as follows:

λ( f ) = lim sup
r→∞

log T(r, f )

log r
, ρ( f ) = lim inf

r→∞

log T(r, f )

log r
.

Furthermore, the hyper-order of f is defined to be

λh( f ) = lim sup
r→∞

log log T(r, f )

log r
.

For example, ez has order 1 and hyper-order 0.

Nevanlinna’s First Fundamental Theorem: Let f (z) be meromorphic in |z| < R ≤
∞. Then for any a ∈ C and 0 < r < R,

T
(

r,
1

f − a

)

= T(r, f ) + O(1).

It is the following result that plays a key role in the Nevanlinna theory and its
applications.

Nevanlinna’s Second Fundamental Theorem: Suppose that f is a nonconstant
meromorphic function in |z| < R. Let a1, . . . , aq (q ≥ 3) be distinct values in C .
Then

(q − 2)T(r, f ) ≤

q
∑

j=1

N
(

r,
1

f − a j

)

+ S(r, f ),

where S(r, f ) = o(T(r, f )) possibly outside a set r with finite linear measure if the
order of f is infinite, and N is the counting function of the distinct roots of f (z) = a j .

Nevanlinna’s Small Function Theorem: Suppose that f is a nonconstant meromor-
phic function in |z| < R. Let a1(z), a2(z) and a3(z) be three distinct functions such
that

T(r, ai) = S(r, f ), i = 1, 2, 3.

Then

T(r, f ) ≤

3
∑

i=1

N
(

r,
1

f − a j

)

+ S(r, f ).

This implies that if f is transcendental, and f −a1 and f −a2 have only finitely many
zeros, then f − a3 has infinitely many zeros.

Lemma on the Logarithmic Derivative: Suppose that f is a nonconstant meromor-
phic function in |z| < R. Then for any positive integer k and 0 < r < R, we have

m
(

r,
f (k)

f

)

= S(r, f ).
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3 Notations

Let R be a relation, and let NRk(r, f ) “count” only those poles in N(r, f ) that have mul-
tiplicity p satisfying pRk. The symbol NRk means ignoring multiplicities in NRk(r, f ).

Set

(1) F j :=
f ( j+1)

f ( j)
, G j :=

g( j+1)

g( j)
, H j := H j( f , g) := F j − G j , ( j = 0, 1, 2, . . . ).

Obviously, for any 0 ≤ i ≤ j,

(2) Hi( f ( j−i), g( j−i)) = H j( f , g).

4 Fifteen Lemmas

The first lemma is a revised version of Clunie [3], (see, e.g., Hua [9, Lemma 1]).

Lemma 1 Let u be a meromorphic function and Q[u] and Q0[u] be differential poly-

nomials in u with coefficients ai satisfying m(r, ai) = S(r, f ). If the degree of Q[u] is less

than or equal to n and unQ0[u] = Q[u], then

m(r, Q0[u]) = S(r, u) + S(r, f ).

Lemma 2 For any positive integers n and q, if f (n) 6≡ 0, then

m
(

r,
f (n+1)

f (n)

)

= m
(

r,
f ′

f

)

+ S
(

r,
f ′

f

)

,(3)

T
(

r,
f (n+1)

f (n)

)

≤ 2nT
(

r,
f ′

f

)

+ S
(

r,
f ′

f

)

,(4)

φ = S
(

r,
f (n)

f (m)

)

⇒ φ = S
(

r,
f ′

f

)

(0 ≤ m < n),(5)

N=q

(

r,
f (n−1)

f (n)

)

= N=q

(

r,
1

f (n)

)

− N=q+1

(

r,
1

f (n−1)

)

.(6)

Proof (3) comes from [4, Lemma 2(v)]. (5) follows from (4). (6) can be easily
checked. Now we prove (4). Since

f (n+1)

f (n)
= h +

h ′

h
, h =

f (n)

f (n−1)
,

we deduce from the First Fundamental Theorem and (3) that

N
(

r,
f (n+1)

f (n)

)

= N
(

r, h +
h ′

h

)

≤ N(r, h) + N(r,
1

h
) ≤ N(r, h) + T(r, h) + O(1)

≤ 2N(r, h) + m(r, h) + O(1)

≤ 2N
(

r,
f (n)

f (n−1)

)

+ m
(

r,
f ′

f

)

+ S
(

r,
f ′

f

)

.
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By induction, we get (4).

Lemma 3 If f is meromorphic and f ′ ′ 6≡ 0, then

m
(

r,
f ′

f

)

≤ 2
[

N=1

(

r,
1

f

)

+ N
(

r,
1

f ′ ′

)

− N>2

(

r,
1

f

)]

+ S
(

r,
f ′

f

)

.

Proof This lemma is essentially due to Frank and Hennekemper[4]. We present a
simple proof here. Let

(7) B0 =
( f ′ ′/ f ) ′

f ′ ′/ f
·

( f ′/ f ) ′

f ′/ f
−

( f ′/ f ) ′ ′

f ′/ f

and

(8) B1 = −
( f ′ ′/ f ) ′

f ′ ′/ f
.

Then

(9) m(r, B0) = S
(

r,
f ′

f

)

, m(r, B1) = S
(

r,
f ′

f

)

and

(B2
1 + 2B ′

1 − 4B0)
f ′

f
= B0B1 + 2B ′

0.

If B2
1 + 2B ′

1 − 4B0 6≡ 0, then by (9) and the above equation,

(10) m
(

r,
f ′

f

)

≤ N(r, B2
1 + 2B ′

1 − 4B0) + S
(

r,
f ′

f

)

.

Now by (7) and (8),

B2
1 + 2B ′

1 − 4B0 = 2
f ′′ ′

f ′ ′

f ′

f
− 6

f ′ ′

f
+ 3

(

f ′

f

)2

− 2
f (4)

f ′ ′
+ 3

(

f ′ ′ ′

f ′ ′

)2

.

It is easy to verify that any pole of f is not a pole of B2
1 + 2B ′

1 − 4B0. Thus poles of
B2

1 + 2B ′
1 −4B0 only occur at the zeros of f and f ′ ′. If z0 is a zero of f of order m ≥ 2,

then, near z = z0, f (z) can be written in the form

f (z) = a1(z − z0)m + a2(z − z0)m+1 + · · · , a1 6= 0.

This implies that, near z = z0,

f ( j+1)

f ( j)
=

m − j

z − z0

+
(m + 1)a2

(m + 1 − j)a1

+ O(z − z0), j = 0, 1, . . . ,

which yields
B2

1 + 2B ′
1 − 4B0|z0

= O(1).

Thus z0 is not a pole of B2
1 + 2B ′

1 − 4B0. The conclusion follows from (10). If B2
1 +

2B ′
1 − 4B0 ≡ 0, then m

(

r, f ′

f

)

= S
(

r, f ′

f

)

by [4, pp. 52–53].
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Lemma 4 If f is meromorphic and f ′ ′ ′ 6≡ 0, then we have

(11) N
(

r,
1

f ′ ′ ′

)

− N>2

(

r,
1

f ′

)

≤
6

109
T
(

r,
f ′

f

)

+

108
∑

i=1

N=i

(

r,
1

f ′ ′ ′

)

+ S
(

r,
f ′

f

)

and

(12) N
(

r,
1

f ′ ′

)

− N>2

(

r,
1

f

)

≤
3

109
T
(

r,
f ′

f

)

+

108
∑

i=1

N=i

(

r,
1

f ′′

)

+ S
(

r,
f ′

f

)

.

Remark. The number 108 here can be replaced by any bigger number, but cannot be

a smaller number. The aim is to get inequalities (56) and (57) below.

Proof The proof is similar to the one in [10, Lemma 9]. Note that, for any function
h 6≡ 0,

N≥q(r, h) ≤
1

q
T(r, h).

Then, by Lemma 2, (4), (6) and the First Fundamental Theorem, we have

N
(

r,
1

f ′ ′ ′

)

− N
(

r,
1

f ′

)

=

[

N
(

r,
1

f ′ ′ ′

)

− N
(

r,
1

f ′ ′

)]

+
[

N
(

r,
1

f ′ ′

)

− N
(

r,
1

f ′

)]

= N
(

r,
f ′ ′

f ′ ′ ′

)

− N=1

(

r,
1

f ′ ′

)

+ N
(

r,
f ′

f ′ ′

)

− N=1

(

r,
1

f ′

)

≤ N≤108

(

r,
f ′ ′

f ′ ′ ′

)

+
1

109
T
(

r,
f ′ ′

f ′ ′ ′

)

− N=1

(

r,
1

f ′ ′

)

+ N≤108

(

r,
f ′

f ′ ′

)

+
1

109
T
(

r,
f ′

f ′ ′

)

− N=1

(

r,
1

f ′

)

≤

108
∑

i=1

[

N=i

(

r,
1

f ′′ ′

)

− N=i+1

(

r,
1

f ′ ′

)]

− N=1

(

r,
1

f ′ ′

)

+

108
∑

i=1

[

N=i

(

r,
1

f ′′

)

− N=i+1

(

r,
1

f ′

)]

− N=1

(

r,
1

f ′

)

+
6

109
T
(

r,
f ′

f

)

+ S
(

r,
f ′

f

)
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≤

108
∑

i=1

N=i

(

r,
1

f ′ ′ ′

)

+
6

109
T
(

r,
f ′

f

)

−

108
∑

i=1

N=i(r,
1

f ′
) + S

(

r,
f ′

f

)

and (11) follows. The proof of (12) is similar and we omit it here.

Lemma 5 ([10, Lemma 7]) If f and g share 0 and ∞ and if f ′ ′ and g ′′ share 0, then

S
(

r,
g ′

g

)

= S
(

r,
f ′

f

)

.

Lemma 6 Suppose that f and g are not polynomials of degree less than 5. Then we

have the following two conclusions.

(A) For any common zero z0 of f and g with multiplicity m, if, near z = z0,

(13) f (z) = a1(z − z0)m + a2(z − z0)m+1 + a3(z − z0)m+2 + · · ·

and

(14) g(z) = b1(z − z0)m + b2(z − z0)m+1 + b3(z − z0)m+2 + · · · ,

then, near z = z0,

H0 = A(z0) + [2B(z0) −C(z0)](z − z0) + O((z − z0)2),

H1 =
m + 1

m
A(z0) +

[

2
m + 2

m
B(z0) −

(

m + 1

m

)2

C(z0)

]

(z − z0) + O((z − z0)2),

H j =
m + 1

m + 1 − j
A(z0)

+

[

2
(m + 1)(m + 2)

(m + 1 − j)(m + 2 − j)
B(z0) −

(

m + 1

m + 1 − j

)2

C(z0)

]

(z − z0)

+ O((z − z0)2), ( j < m + 1),

where

A(z0) =
a2

a1

−
b2

b1

, B(z0) =
a3

a1

−
b3

b1

, C(z0) =

( a2

a1

) 2

−
( b2

b1

) 2

.

(B) For any common pole p0 of f and g with multiplicity m, if, near z = p0,

f (z) =
c1

(z − p0)m
+

c2

(z − p0)m−1
+

c3

(z − p0)m−2
+ · · ·
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and

(15) g(z) =
d1

(z − p0)m
+

d2

(z − p0)m−1
+

d3

(z − p0)m−2
+ · · · ,

then,near z = p0,

H0 = A(p0) + [2B(p0) −C(p0)](z − p0) + O((z − p0)2),

H1 =
m − 1

m
A(p0) +

[

2
m − 2

m
B(p0) −

(

m − 1

m

)2

C(p0)

]

(z − p0)

+ O((z − p0)2),

H j =
m − 1

m − 1 + j
A(p0)

+

[

2
(m − 2)(m − 1)

(m − 2 + j)(m − 1 + j)
B(p0) −

(

m − 1

m − 1 + j

)2

C(p0)

]

(z − p0)

+ O((z − p0)2), j = 0, 1, 2, . . . ,

where

A(p0) =
c2

c1

−
d2

d1

, B(p0) =
c3

c1

−
d3

d1

, C(p0) =

( c2

c1

) 2

−
( d2

d1

) 2

.

Proof We need only prove (A). The proof of (B) is similar. For the zero, z0, of f and

g, from (13) and (14) we can easily deduce that, near z = z0,

F j =
m − j

z − z0

+
(m + 1)a2

(m + 1 − j)a1

+
[

2
(m + 1)(m + 2)a3

(m + 1 − j)(m + 2 − j)a1

−
( (m + 1)a2

(m + 1 − j)a1

) 2]

(z − z0)

+ O((z − z0)2),

G j =
m − j

z − z0

+
(m + 1)b2

(m + 1 − j)b1

+
[

2
(m + 1)(m + 2)b3

(m + 1 − j)(m + 2 − j)b1

−
( (m + 1)b2

(m + 1 − j)b1

) 2]

(z − z0)

+ O((z − z0)2),

where j = 0, 1, . . . , m. These two representations yield (A).

Lemma 7 Suppose that f and g are meromorphic functions. Let

f j =
1

F j
, g j =

1

G j
, ( j ≥ 0),
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where F j and G j are the same as in (1). If

(16) F j = euG j , F j+1 = evG j+1, F j+2 = ewG j+2

for three entire functions u and v and w, then

x1g j + y1g j+1 + z1g jg j+1 = r1,(17)

x2g j + y2g j+1 + z2g jg j+1 = r2,(18)

x3g j + y3g j+1 + z3g jg j+1 = r3,(19)

where

x1 = (ev − 1), y1 = −(eu − 1), z1 = −u ′, r1 = 0,

x2 = (ev − 1)
[

u ′(ew − 1) − v ′ev(ew − 1) − u ′(ev − ew)
]

,

y2 = u ′eu(ev − 1)(ew − 1) − v ′(eu − 1)(ev − 1) − u ′(ew − 1)(eu − ev),

z2 = −u ′v ′(ev − 1) − u ′2(ew − 1) + u ′ ′(ev − 1)(ew − 1),

r2 = (ev − 1)
[

(eu − 1)(ev − ew) − (ew − 1)(eu − ev)
]

,

x3 = x ′
2(ev − 1)(ew − 1) − u ′x2(ew − 1) − z2(ev − 1)(ev − ew),

y3 = y ′
2(ev − 1)(ew − 1) − v ′y2(ev − 1) − z2(ew − 1)(eu − ev),

z3 = −u ′z2(ew − 1) − v ′z2(ev − 1) + z ′2(ev − 1)(ew − 1),

r3 = x2(ew − 1)(eu − ev) + y2(ev − 1)(ev − ew) + r ′2(ev − 1)(ew − 1).

Proof By (1) it is easy to see that

(20) Fi+1 = Fi +
F ′

i

Fi

, Gi+1 = Gi +
G ′

i

Gi

,

for any non-negative integer i. By this and (16) we have

evG j+1 = F j+1 = F j +
F ′

j

F j

= euG j + u ′ + G j+1 − G j ,

i.e.,

(ev − 1)G j+1 − (eu − 1)G j − u ′
= 0.

We thus obtain (17). To prove (18), we substitute (20) with i = j into the above
equation and obtain

(21) (ev − 1)g ′
j = −u ′g j − (eu − ev).

https://doi.org/10.4153/CJM-2004-052-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-052-6


Meromorphic Functions Sharing the Same Zeros and Poles 1199

Similarly, by (16) and (20), we deduce that

ew
(

G j+1 +
G ′

j+1

G j+1

)

= ewG j+2 = F j+2

= F j+1 +
F ′

j+1

F j+1

= evG j+1 + v ′ +
G ′

j+1

G j+1

.

Thus

(22) (ew − 1)g ′
j+1 = −v ′g j+1 − (ev − ew).

Now differentiating (17) and substituting (21) and (22) into it, we get (18). By dif-

ferentiating (18) and using (21) and (22) again, we obtain (19).

The following lemma is a revised version of the so-called Borel Unit Theorem,
which can be found in Gross [6, Theorem 3.12].

Lemma 8 Let h0, . . . , hn be meromorphic functions and let g1, . . . , gn be entire func-

tions such that
k
∑

j=1

h j(z)e g j (z)
= h0(z).

Suppose that there exists a set I with infinite measure such that, for r ∈ I,

T(r, h j) = o{T(r, egk−gi )}, j = 0, 1, . . . , n; k, i = 1, . . . , n; i 6= k.

Then h0 = h1 = · · · = hn = 0.

Lemma 9 ([10, Lemma 8]) Let f and g share 0 and ∞ CM, let f ′ and g ′ share 0 CM

and let f (n) and g(n) share 0 CM for one n > 1. If f ′/ f is rational, then either (i) or (ii)
holds.

The following lemma is a corollary in Tohge [12, p. 103].

Lemma 10 Let f and g be meromorphic functions of hyper-order less than 2. If f ( j)

and g( j) share 0 and ∞ CM for j = 0, 1, 2, 3, then the possibilities for f and g are

those of (i)–(iv) and (v) f (z) = Aeexp(az+b), g(z) = Beexp(−az−b), where A, B, a, b are

constants and ABa 6= 0.

Lemma 11 Let f̂ and ĝ be non-polynomial meromorphic functions. Suppose that f̂

and ĝ share 0 CM and that f̂ ′ and ĝ ′ share 0 CM. Then either

N=m

(

r,
1

f̂ ′

)

≤ N=m+1

(

r,
1

f̂

)

+ T
(

r, H1( f̂ , ĝ) − H0( f̂ , ĝ)
)

+ T
(

r, H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

+ O(1)
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or

H1( f̂ , ĝ) − H0( f̂ , ĝ) = m
(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

,

where m is a positive integer.

Proof Assume that

H1( f̂ , ĝ) − H0( f̂ , ĝ) 6≡ m
(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

.

We shall deduce the desired inequality. Let z0 be a zero of f̂ ′ (and ĝ ′) of order m. If
f̂ (z0) = 0, then the order is m + 1. If f̂ (z0) 6= 0, then ĝ(z0) 6= 0. From (1) we can
easily see that H0( f̂ (z0), ĝ(z0)

)

= 0. Applying Lemma 6 to f = f̂ ′ and g = ĝ ′ and

noting (2), we deduce that z0 is a zero of H1( f̂ , ĝ) − m(H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

. Thus

z0 is a zero of H1( f̂ , ĝ) − H0( f̂ , ĝ) − m(H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

. Note that if z0 is a zero

of f̂ ′ of order m and a zero of f̂ , then z0 is a zero of f̂ of order m + 1. Therefore,

N=m

(

r,
1

f̂ ′

)

≤ N=m+1

(

r,
1

f̂

)

+ N
(

r,
1

H1( f̂ , ĝ) − H0( f̂ , ĝ) − m
(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

)

.

The conclusion follows from this and the First Fundamental Theorem.

Lemma 12 Let f̂ and ĝ be non-polynomial meromorphic functions. Suppose that f̂

and ĝ share 0 CM. Then either

N=m

(

r,
1

f̂

)

≤ T
(

r, H1( f̂ , ĝ) − H0( f̂ , ĝ)
)

+ T
(

r, H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

+ O(1)

or

H1( f̂ , ĝ) − H0( f̂ , ĝ) =
m − 1

m + 1

(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

,

where m ≥ 2 is a positive integer.

Proof We suppose that

H1( f̂ , ĝ) − H0( f̂ , ĝ) 6≡
m − 1

m + 1

(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

.

Let z0 be a zero of f̂ (and ĝ) of order m. Applying Lemma 6 to f = f̂ and g = ĝ, we
obtain, near z = z0,

H1( f̂ , ĝ) − H0( f̂ , ĝ) =
1

m
A(z0) + O(z − z0)

and

H2( f̂ , ĝ) − H1( f̂ , ĝ) =
m + 1

(m − 1)m
A(z0) + O(z − z0).

https://doi.org/10.4153/CJM-2004-052-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-052-6


Meromorphic Functions Sharing the Same Zeros and Poles 1201

Thus z0 is a zero of H1( f̂ , ĝ) − H0( f̂ , ĝ) − m−1
m+1

(H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

. This implies
that

N=m

(

r,
1

f̂

)

≤ N

(

r,
1

H1( f̂ , ĝ) − H0( f̂ , ĝ) − m−1
m+1

(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

)

.

The conclusion follows from this and the First Fundamental Theorem.

Lemma 13 Let f̂ and ĝ be non-polynomial meromorphic functions. Suppose that

there exists an integer q such that

(23) H1( f̂ , ĝ) − H0( f̂ , ĝ) = q
(

H2( f̂ , ĝ) − H1( f̂ , ĝ)
)

6≡ 0.

Then

N≥2

(

r,
1

f̂

)

≤ N
(

r,
1

H1( f̂ , ĝ) − H0( f̂ , ĝ)

)

and

N
(

r,
1

f̂ ′

)

≤ N=q

(

r,
1

f̂ ′

)

+ 2N
(

r,
1

H1( f̂ , ĝ) − H0( f̂ , ĝ)

)

.

Proof Let z0 be a zero of f̂ of multiplicity m ≥ 2. Then from Lemma 6 we deduce
that, near z = z0,

H1( f̂ , ĝ) − H0( f̂ , ĝ) =
1

m
A(z0) + O(z − z0)

and

H2( f̂ , ĝ) − H1( f̂ , ĝ) =
m + 1

(m − 1)m
A(z0) + O(z − z0).

It follows from these two expressions and (23) that

(

1 −
2

m + 1
− q
)

A(z0) = 0.

Since m ≥ 2 and m and q are integers, 2
m+1

is not an integer, and we deduce that

1 − 2
m+1

− q 6= 0. Thus A(z0) = 0 and z0 is a zero of H1( f̂ , ĝ) − H0( f̂ , ĝ). This gives
the first inequality.

Now, for any zero z0 of f̂ ′ of multiplicity m 6= q, if f̂ (z0) = 0, then z0 is a zero of

f̂ of order m + 1. If f̂ (z0) 6= 0, then z0 is a zero of H0( f̂ , ĝ). Applying Lemma 6 to
f = f̂ and g = ĝ, we see that z0 is a zero of H2( f̂ , ĝ) − m+1

m
H1( f̂ , ĝ). It follows from

this, (23) and m 6= q that z0 is a zero of H1( f̂ , ĝ). Thus

N
(

r,
1

f̂ ′

)

− N=q

(

r,
1

f̂ ′

)

≤ N≥2

(

r,
1

f̂

)

+ N
(

r,
1

H1( f̂ , ĝ) − H0( f̂ , ĝ)

)

.

The second inequality follows from this and the first inequality.
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Lemma 14 Let f and g be non-polynomial meromorphic functions. Suppose that

there exists an integer q such that

(24) H3 − H2 = q(H4 − H3) 6≡ 0.

Then

N≥2(r, f ) ≤ N
(

r,
1

H3 − H2

)

.

Proof Let p0 be a pole of f with multiplicity m ≥ 2. Then from Lemma 6 we
deduce that, near z = p0,

H3 − H2 = −
m − 1

(m + 1)(m + 2)
A(z0) + O(z − p0)

and

H4 − H3 = −
m − 1

(m + 2)(m + 3)
A(z0) + O(z − p0).

It follows from (24) that

(

1 +
2

m + 1
− q
)

A(p0) = 0.

Since m ≥ 2 and m and q are integers, 2
m+1

is not an integer, and we deduce that
1 + 2

m+1
− q 6= 0. Thus A(p0) = 0, and so, p0 is a zero of H3 − H2.

Lemma 15 Let f̂ and ĝ be non-polynomial meromorphic functions such that f̂ and ĝ

share 0 and ∞ CM. Assume that

(25)
f̂ ′

f̂
= c

ev − 1

L
,

ĝ ′

ĝ
=

e−v(ev − 1)

L
,

where

L(z) = (1 − c)z + d

for two constants c and d and v(z) is an entire function. Then f̂ and ĝ have no poles and

they have at most one zero.

Proof Note that any zeros and poles of f̂ will be poles of f̂ ′/ f̂ . If c = 1, then L(z)
is a constant and we see from (25) that f̂ and ĝ have no poles and no zeros. Next we

suppose that

(26) c 6= 1.

Then L(z) has one zero. Thus, by (25), f̂ and ĝ have either one pole or one zero.
If f̂ (and ĝ) has a pole p0, then p0 is the zero of L. Let

(27) f̂ =
1

L
eα, ĝ =

1

L
eβ ,
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where α and β are entire functions. Note that L ′(z) = 1 − c. We deduce from this,
(1) and (25) that

(28) f̂ ′
= c

ev − 1

L2
eα, ĝ ′

=
1 − e−v

L2
eβ .

On the other hand, differentiating (27) gives

f̂ ′
=

α ′L − L ′

L2
eα, ĝ ′

=
β ′L − L ′

L2
eβ .

Combining these with (28) we obtain

α ′
=

cev − 2c + 1

L
, β ′

=
2 − c − e−v

L
.

Since α ′ and β ′ are entire functions, then

c ev(p0) − 2c + 1 = 0, 2 − c − e−v(p0)
= 0.

This implies that c = 1, which contradicts (26).

5 Proof of Theorem 1

By Example 1 in Section 1, we need only prove that n = 4 solves the problem. Ob-
viously, we can suppose that f and g are not polynomials, otherwise, conclusion (i)
holds since f and g have the same zeros and poles.

Let F j , G j and H j be as in (1). By Lemma 6, all H j ( j ≤ 4) are entire functions. It

follows from Lemma 5, (20) and the lemma on logarithmic derivatives that

T(r, Hi+1 − Hi) = m(r, Hi+1 − Hi)

≤ m(r, Fi+1 − Fi) + m(r, Gi+1 − Gi) + O(1)

= m
(

r,
F ′

i

Fi

)

+ m
(

r,
G ′

i

Gi

)

+ O(1) = S
(

r,
f ′

f

)

for i = 0, 1, 2, 3. Thus we have

(29) T(r, H j − Hi) = S
(

r,
f ′

f

)

, (0 ≤ i < j ≤ 4).

Next we distinguish four cases.

Case 1 Hi ≡ 0 for some i with 1 ≤ i ≤ 4. We consider only i = 4, since the cases
where i < 4 are easier and similar. From H4 ≡ 0 and (2) we deduce that there exist
constants c (6= 0), c1, c2, c3 and c4 such that

(30) f = cg + P
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and

(31) f ′
= cg ′ + P ′,

where P(z) = c1z3 + c2z2 + c3z + c4. Since f and g share 0 and ∞ CM, there exists an
entire function β(z) such that

(32) g = eβ f .

If β is identically constant, then we obtain (i). If β 6≡ const., we deduce from (32)

and (30) that

(33) f (z) =
P(z)

1 − c exp
(

β(z)
) , g(z) =

P(z)

exp
(

−β(z)
)

− c
.

If P ′(β ′P−P ′) 6≡ 0, then P ′ 6≡ 0 and β ′P−P ′ 6≡ 0. Differentiating the first equation
in (33) we get

f ′(z) =
c(β ′P − P ′)eβ + P ′

(1 − ceβ)2
.

Note that eβ has no zeros and poles. It thus follows from Nevanlinna’s Small Function
Theorem that f ′ has infinitely many zeros. Since f ′ and g ′ share 0 CM, it follows
from (31) that P ′ has infinitely many zeros, and so P ′ ≡ 0, which is a contradiction.
Thus P ′(β ′P−P ′) ≡ 0, which yields either P ′ ≡ 0 or β ′P−P ′ ≡ 0. If β ′P−P ′ ≡ 0,

then β ′
= P ′/P. Since β is entire, then P(z) has to be a constant. If P ′ ≡ 0, then P(z)

is also a constant. We thus obtain (iv) from (33).

Case 2 H j − H j−1 ≡ 0 for some j with 1 ≤ j ≤ 3. By integration, it fol-
lows from (1) and (2) that there exists a non-zero constant c such that f ( j)/g( j)

=

c f ( j−1)/g( j−1), i.e.,

F j−1 = cG j−1.

Keeping in mind that f ( j−1) and g( j−1) share 0 and ∞ CM, if f ( j−1) and g( j−1) have
either common zeros or common poles, by local expansions we deduce from the
above equation that c = 1. Thus H j−1 = F j−1 − G j−1 = 0 and this reduces to
Case 1. Now suppose that f ( j−1) 6= 0,∞ and g( j−1) 6= 0,∞. Then, by the above

equation, there exists an entire function α(z) such that

g( j−1)
= eα, f ( j−1)

= c1 ecα.

Differentiating these equations twice we get

f ( j+1)

g( j+1)
= c1c

Ψ − c

Ψ − 1
e(c−1)α,

where Ψ(z) = (1/α ′) ′. Since f ( j+1) and g( j+1) share 0 CM, Ψ does not assume c

and 1. In addition, by definition, Ψ has no simple poles. It follows from Nevanlinna’s
Second Fundamental Theorem that

T(r, Ψ) ≤ N≥2(r, Ψ) + S(r, Ψ) ≤
1

2
T(r, Ψ) + S(r, Ψ).
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Thus Ψ is a constant, and so 1
α ′

is linear. But α is entire, and so α ′ is a constant, and
α is a linear polynomial. Hence

g( j−1)(z) = eaz+b, f ( j−1)(z) = ecaz+d,

where a, b, c, d, are constants, a 6= 0 and c 6= 1. Thus f and g have hyper-order 0, so

case (v) of Lemma 10 does not occur, and the conclusion follows from Lemma 10.

Case 3 H1 − 2H0 ≡ 0. From (1) we deduce that f ′/g ′
= c( f /g)2, i.e., f ′/ f 2

=

cg ′/g2. Integration yields that 1/ f = c/g + c1 for some constant c1. If c1 = 0, then
we obtain (i). If c1 6= 0, then f and g are entire and f (c + c1g) = g. Since f and g

share 0 CM, there exists a non-constant entire function α(z) such that c + c1g = eα(z).
This implies that f (z) =

1
c1

− c
c1

e−α(z) and g(z) =
1
c1

eα(z) − c
c1

. Thus

f ′ ′(z)

g ′ ′(z)
= c

Ψ(z) + 1

Ψ(z) − 1
e−2α(z),

where Ψ(z) = (1/α ′) ′. Since f ′′ and g ′ ′ share 0 CM, Ψ does not assume 1 or −1.
In addition, by definition, Ψ cannot have simple poles. It follows from Nevanlinna’s
Second Fundamental Theorem that

T(r, Ψ) ≤ N≥2(r, Ψ) + S(r, Ψ) ≤
1

2
T(r, Ψ) + S(r, Ψ).

Thus Ψ is a constant. Since α is entire, α ′ is constant and so α is linear. This
gives (iii).

Case 4 None of the above three cases holds, i.e.,

(34) Hi 6≡ 0 (i = 0, . . . , 4), H j − H j−1 6≡ 0 ( j = 1, . . . , 3), H1 − 2H0 6≡ 0.

If z0 is a simple pole of f and g, then, by Lemma 6, H2(z0) = H1(z0) = 0. Thus by
(29),

(35) N=1(r, f ) ≤ N
(

r,
1

H2 − H1

)

= S
(

r,
f ′

f

)

.

If z0 is a simple zero of f and g, then by Lemma 6, H1(z0) − 2H0(z0) = 0. By (29),

(36) N=1

(

r,
1

f

)

≤ N
(

r,
1

H1 − 2H0

)

≤ T(r, H1 − 2H0) + O(1)

= m(r, H0) + S
(

r,
f ′

f

)

≤ m
(

r,
f ′

f

)

+ m(r,
g ′

g
) + S

(

r,
f ′

f

)

.

Next, we deal with multiple zeros and poles of f or g. We shall prove that

(37) N≥2(r, f ) + N≥2

(

r,
1

f

)

≤ 3m
(

r,
f ′

f

)

+ 3m
(

r,
g ′

g

)

+ S
(

r,
f ′

f

)

.
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To this end, we set

(38) Q(z) =
1

H0

−
2

H1

+
1

H2

and consider two situations.
At first, we suppose that Q(z) 6≡ 0. Let z0 be a zero of f with multiplicity m ≥ 2.

Then, by assumption, z0 is also a zero of g with multiplicity m. Suppose that, near
z = z0, f and g have expansions as in Lemma 6. If A(z0) =

a2

a1

− b2

b1

= 0, then

H2(z0) − H1(z0) = 0. If A(z0) 6= 0, then by Lemma 6, near z = z0,

1

H0

=
1

A(z0)
−

1

A(z0)2

[

2B(z0) −C(z0)
]

(z − z0) + · · · ,

(39)

1

H1

=
m

m + 1

1

A(z0)
−

1

A(z0)2

[

2
m(m + 2)

(m + 1)2
B(z0) −C(z0)

]

(z − z0) + · · · ,

(40)

1

H2

=
m − 1

m + 1

1

A(z0)
−

1

A(z0)2

[

2
(m − 1)(m + 2)

m(m + 1)
B(z0) −C(z0)

]

(z − z0) + · · · .

(41)

It follows from (38)–(40) and the above equality that, near z = z0,

(42) Q(z) =
4B(z0)

m(m + 1)2A(z0)2
(z − z0) + O

(

(z − z0)2
)

.

Thus z0 is either a zero of H2 − H1 or a zero of Q(z).
Similarly, for any pole p0 of f and g with multiplicity m ≥ 2, let f and g have

the same expansions, near z = p0, as in Lemma 6. If A(p0) =
c2

c1

− d2

d1

= 0, then
H2(p0) − H1(p0) = 0. If A(p0) 6= 0, then, near z = p0,

1

H0

=
1

A(p0)
−

1

A(p0)2

[

2B(p0) −C(p0)
]

(z − p0) + · · · ,

(43)

1

H1

=
m

m − 1

1

A(p0)
−

1

A(p0)2

[

2
m(m − 2)

(m − 1)2
B(p0) −C(p0)

]

(z − p0) + · · · ,

(44)

1

H2

=
m + 1

m − 1

1

A(p0)
−

1

A(p0)2

[

2
(m + 1)(m − 2)

m(m − 1)
B(p0) −C(p0)

]

(z − p0) + · · · .

(45)

It follows from (37), (43)–(45) that, near z = p0,

(46) Q(z) =
4B(p0)

m(m − 1)2A(p0)2
(z − p0) + O

(

(z − p0)2
)

.
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Thus, p0 is either a zero of H2 − H1 or a zero of Q(z).
Combining (29) and the above discussion about the zeros and poles of f , we ob-

tain

N≥2(r, f ) + N≥2

(

r,
1

f

)

≤ N
(

r,
1

Q

)

+ N
(

r,
1

H2 − H1

)

≤ N
(

r,
1

Q

)

+ S
(

r,
f ′

f

)

.

Since all Hi (i ≤ 4) are entire, then (37) follows from (3), (1), (2), (38) and the First
Fundamental Theorem.

Now we consider the case Q(z) ≡ 0. Thus, (38) gives

(47) H1H2 − 2H0H2 + H0H1 ≡ 0.

We write this in the form

(48) H2 = HH0

for

(49) H =
H2 − H1

H1 − H0

.

From (29) we see that

T(r, H) ≤ T(r, H2 − H1) + T(r, H1 − H0) + O(1) = S
(

r,
f ′

f

)

.

Now by (1) and (20),

f ′ ′ ′

f ′ ′
= P

( f ′

f

)

+
f ′

f
,

g ′′ ′

g ′ ′
= P

( g ′

g

)

+
g ′

g
,

where

P
( f ′

f

)

=
( f ′′/ f ′) ′

f ′ ′/ f ′
+

( f ′/ f ) ′

f ′/ f
, P

( g ′

g

)

=
(g ′ ′/g ′) ′

g ′ ′/g ′
+

(g ′/g) ′

g ′/g
.

Thus by (1) and (2), H2 = H0 + P( f ′

f
)−P( g ′

g
). Substituting this into (48), we obtain

(50) (H − 1)H0 = P
( f ′

f

)

− P
( g ′

g

)

.

If H ≡ 1, then H2 = H0 by (48), and so, H = −1 by (49), which is a contradiction.

Thus, H 6≡ 1. Now by (3), Lemma 5 and the expressions of P(
f ′

f
) and P(

g ′

g
), we have

m
(

r, P
( f ′

f

))

= S
(

r,
f ′

f

)

, m
(

r, P
( g ′

g

))

= S
(

r,
f ′

f

)

.
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It follows from (50) that

T(r, H0) = m(r, H0) ≤ T(r, H) + m
(

r, P
( f ′

f

))

+ m
(

r, P
( g ′

g

))

+ O(1)

= S
(

r,
f ′

f

)

,

which, with (29), implies

(51) T(r, Hi) = S
(

r,
f ′

f

)

, (i = 0, 1, 2).

Let

(52) Φ =
1

H0

−
1

H1

.

We claim that Φ
′ 6≡ 0. Otherwise, there exists a constant c such that

(53)
1

H0

−
1

H1

= c.

By (38) and the assumption that Q ≡ 0, we have

(54)
1

H1

−
1

H2

= c.

If c = 0, then H2 − H1 = 0, which contradicts (34). If c 6= 0, then from (53) and

(54) and the fact that all H j ( j ≤ 4) are entire, it follows that H1 6= − 1
c
, 1

c
,∞. Thus

H1 is a non-zero constant, so are H0 and H2 by (53) and (54). Hence, there exist
three non-zero constants ci (i = 0, 1, 2) such that Hi = ci . By integration, there exist
constants di (i = 0, 1, 2) such that

f = ec0z+d0 g, f ′
= ec1z+d1 g ′, f ′ ′

= ec2z+d2 g ′′.

By differentiating the first equation twice and the second equation once and using all

six equations we get

c2
0e(2c1−c0−c2)z+2d1−d0−d2 + c0(c1 − c0)e(c1−c0)z+d1−d0 − c0(c1 − c0)e(c1−c2)z+d1−d2 = c2

0.

It follows from Lemma 8 that c0 = c1 = c2, i.e., H0 = H1 = H2, which contradicts
(34). Thus Φ

′ 6≡ 0.
Let z0 be a zero of f and g with multiplicity m ≥ 2 such that

H2(z0) − H1(z0) 6= 0.

Then A(z0) 6= 0 by Lemma 6. From (42) and Q ≡ 0 we deduce that B(z0) = 0.
Combining this with (39), (40) and (52), we obtain, near z = z0,

Φ
′(z) =

1

(m + 1)A(z0)
+ O
(

(z − z0)2
)

,
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and so, Φ
′(z0) = 0. Similarly, if p0 is a multiple pole of f and g such that H2(p0) −

H1(p0) 6= 0, then we deduce from Lemma 6, (43), (44), (46) and (52) that Φ
′(p0) =

0. It follows from (3), Lemma 5, (31), (51), (52) and the above discussion that

N≥2(r, f ) + N≥2

(

r,
1

f

)

≤ N
(

r,
1

H2 − H1

)

+ N
(

r,
1

Φ ′

)

= S
(

r,
f ′

f

)

.

This also proves (37).
Now, by (3) and (35)–(37) we have

(55) T
(

r,
f ′

f

)

≤ 5m
(

r,
f ′

f

)

+ 4m
(

r,
g ′

g

)

+ S
(

r,
f ′

f

)

.

From (3) Lemma 3 and Lemma 5, we have

m
(

r,
f ′

f

)

≤ m
(

r,
f ′ ′

f ′

)

+ S
(

r,
f ′

f

)

≤ 2
[

N=1

(

r,
1

f ′

)

+ N
(

r,
1

f ′ ′′

)

− N>2

(

r,
1

f ′

)]

+ S
(

r,
f ′

f

)

and

m
(

r,
g ′

g

)

≤ m
(

r,
g ′′

g ′

)

+ S
(

r,
g ′

g

)

≤
[

N=1

(

r,
1

g ′

)

+ N
(

r,
1

g ′ ′ ′

)

− N>2

(

r,
1

g ′

)]

+ S
(

r,
f ′

f

)

= 2
[

N=1

(

r,
1

f ′

)

+ N
(

r,
1

f ′ ′ ′

)

− N>2

(

r,
1

f ′

)]

+ S
(

r,
f ′

f

)

.

Substituting these two inequalities into (55) and using Lemma 4, we get

(56) T
(

r,
f ′

f

)

≤ 1962
[

N=1

(

r,
1

f ′

)

+

108
∑

i=1

N=i

(

r,
1

f ′ ′ ′

)]

+ S
(

r,
f ′

f

)

.

In addition, by (55), Lemmas 3 and 4,

(57) T
(

r,
f ′

f

)

≤ 36
[

N=1(r,
1

f
) +

108
∑

i=1

N=i

(

r,
1

f ′ ′

)]

+ S
(

r,
f ′

f

)

.

Similarly, by N(r, g ′/g) = N(r, g) + N(r, 1/g) = N(r, f ′/ f ) we have

T
(

r,
g ′

g

)

≤ 1962
[

N=1

(

r,
1

f ′

)

+

108
∑

i=1

N=i

(

r,
1

f ′ ′ ′

)]

+ S
(

r,
g ′

g

)

and

T
(

r,
g ′

g

)

≤ 36
[

N=1(r,
1

f
) +

108
∑

i=1

N=i

(

r,
1

f ′ ′

)]

+ S
(

r,
g ′

g

)

.

Next, we consider two subcases.
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Case 4.1

(58) N=1

(

r,
1

f ′

)

= S
(

r,
f ′

f

)

.

If
∑108

i=1 N=i

(

r, 1
f ′ ′ ′

)

= S
(

r, f ′

f

)

, then
f ′

f
is constant by (56), so is

g ′

g
. This is (ii). If

∑108
i=1 N=i

(

r, 1
f ′ ′ ′

)

6= S
(

r, f ′

f

)

, then there exists a positive integer q (1 ≤ q ≤ 108)

such that

(59) N=q

(

r,
1

f ′ ′′

)

6= S
(

r,
f ′

f

)

.

Now, we discuss three situations:

Case 4.1.1

(60) N=1

(

r,
1

f ′ ′

)

+ N=q+1

(

r,
1

f ′ ′

)

= S
(

r,
f ′

f

)

.

Applying Lemma 11 with m = q, and f̂ = f ′ ′ and ĝ = g ′ ′, we have from (59), (60),
(29) and (2) that

(61) H3 − H2 = q(H4 − H3).

By applying Lemma 13 to f̂ = f ′ ′ and ĝ = g ′ ′ and noting (2), we deduce from (29),
(35), (60), (61) and Lemmas 13 and 14 that

(62) N(r, f ) + N
(

r,
1

f ′′

)

= S
(

r,
f ′

f

)

and

(63) N
(

r,
1

f ′ ′ ′

)

≤ N=q

(

r,
1

f ′ ′ ′

)

+ S
(

r,
f ′

f

)

.

Now by (3), (1), Lemma 3 and the First Fundamental Theorem,

N=q

(

r,
1

f ′ ′ ′

)

= N=q

(

r,
1

F2

)

+ N=q+1

(

r,
1

f ′ ′

)

− Nq+1

(

r,
1

f ′ ′

)

≤ m(r, F2) + N(r, f ) + (q + 1)N
(

r,
1

f ′ ′

)

− m
(

r,
1

F2

)

+ S
(

r,
f ′

f

)

(64)

= m(r, F1) − m
(

r,
1

F2

)

+ N(r, f ) + (q + 1)N
(

r,
1

f ′ ′

)

+ S
(

r,
f ′

f

)

≤ 2N=1

(

r,
1

f ′

)

+ 2N
(

r,
1

f ′ ′ ′

)

+ N(r, f ) + (q + 1)N
(

r,
1

f ′ ′

)

− m
(

r,
1

F2

)

+ S
(

r,
f ′

f

)

.
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It follows from (58), (60), (62) and (63) that

(65) (q − 2)N=q

(

r,
1

f ′ ′ ′

)

+ m

(

r,
1

F2

)

= S
(

r,
f ′

f

)

.

By the same reasoning we obtain

(66) (q − 2)N=q

(

r,
1

g ′ ′ ′

)

+ m
(

r,
1

G2

)

= S
(

r,
f ′

f

)

.

From (59) and (65) we see that q ≤ 2. Next, we discuss q = 2 and q = 1, respectively.

If q = 2, then (66) and (65) give

(67) m
(

r,
1

F2

)

= S
(

r,
f ′

f

)

, m
(

r,
1

G2

)

= S
(

r,
f ′

f

)

.

From (61), (2) and (20) we obtain

F ′
2

F2

−
G ′

2

G2

= q

(

F ′
3

F3

−
G ′

3

G3

)

= 2

(

F ′
3

F3

−
G ′

3

G3

)

.

An integration gives
F2

G2

= c
( F3

G3

) 2

,

where c is a non-zero constant. It is easy to verify that

F3 = F2 +
F ′

2

F2

, G3 = G2 +
G ′

2

G2

.

Thus we have

(68) cF2 − G2 = 2
G ′

2

G2

+
1

G2

( G ′
2

G2

) 2

− 2c
F ′

2

F2

+
c

F2

( F ′
2

F2

) 2

.

Note that m(r, F ′
2/F2) = S(r, F2) = S(r, f ′/ f ) by (1) and (5). Thus the same conclu-

sion also holds for G2. It follows from this, Lemma 5, (68) and (67) that

(69) m(r, cF2 − G2) = S
(

r,
f ′

f

)

.

Set U = cF2 − G2. Then m(r,U ) = S
(

r, f ′

f

)

by (69). We rewrite (68) in the form

U = 2
cF ′

2 −U ′

cF2 −U
+

1

cF2 −U

( cF ′
2 −U ′

cF2 −U

) 2

− 2c
F ′

2

F2

+
c

F2

( F ′
2

F2

) 2

.
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Multiplying both sides by F2(cF2 −U )3 gives

U F2(cF2 −U )3
= (cF ′

2 −U ′)F2(cF2 −U )2 + (cF ′
2 −U ′)2F2

− 2cF ′
2(cF2 −U )3 + c

( F ′
2

F2

) 2

(cF2 −U )3

= 2
(

c
F ′

2

F2

F2 −U ′
)

F2(cF2 −U )2 +
(

c
F ′

2

F2

F2 −U ′
) 2

F2

− 2c
F ′

2

F2

F2(cF2 −U )3 + c
( F ′

2

F2

) 2

(cF2 −U )3.

Now by expanding this equality and putting all the terms with F4
2 to the left-hand

side we get

c3
[

U − 2(1 − c)
F ′

2

F2

]

F4
2 = P(F2),

where P(F2) is a differential polynomial of F2 with coefficients in U , U ′, c and F ′
2/F2,

and the degree of P(F2) with respect to F2 is less than or equal to 3. Lemma 1 implies

m
(

r,
[

U − 2(1 − c)
F ′

2

F2

]

F2

)

= S
(

r,
f ′

f

)

, m
(

r,U − 2(1 − c)
F ′

2

F2

)

= S
(

r,
f ′

f

)

.

If U − 2(1 − c)
F ′

2

F2

6≡ 0, then

m(r, F2) ≤ m
(

r,
[

U − 2(1 − c)
F ′

2

F2

]

F2

)

+ m

(

r,
1

U − 2(1 − c)
F ′

2

F2

)

+ O(1)

≤ N
(

r,U − 2(1 − c)
F ′

2

F2

)

+ S
(

r,
f ′

f

)

≤ N(r, f ) + N
(

r,
1

f ′ ′

)

+ N
(

r,
1

f ′ ′ ′

)

+ S
(

r,
f ′

f

)

.

It follows from (64) with q = 2, (62) and (63) that

N=2

(

r,
1

f ′ ′ ′

)

≤ N=2

(

r,
1

f ′ ′ ′

)

+ S
(

r,
f ′

f

)

.

Since N=2

(

r, 1
f ′ ′ ′

)

= 2N=2

(

r, 1
f ′ ′ ′

)

, we obtain N=2

(

r, 1
f ′ ′ ′

)

= S
(

r, f ′

f

)

, which

contradicts (59). Thus U − 2(1 − c)
F ′

2

F2

≡ 0. If c 6= 1, then we have

N
(

r,
1

f ′ ′ ′

)

≤ N
(

r,
F ′

2

F2

)

= N(r,U ) = N(r, cF2 − G2)

= N(r, f ) + N
(

r,
1

f ′ ′

)

,
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and so, by (62), N
(

r, 1
f ′ ′ ′

)

= S
(

r, f ′

f

)

, which contradicts (59). If c = 1, then U = 0

and F2 = G2, i.e., H2 ≡ 0, which contradicts (34).

If q = 1, then (59) and (61) are

(70) N=1

(

r,
1

f ′ ′ ′

)

6= S
(

r,
f ′

f

)

and

H3 − H2 = H4 − H3,

respectively. Integrating the above equation we get

(71)
F2

G2

= c
F2 + F ′

2/F2

G2 + G ′
2/G2

, c ∈ C − {0}.

We rewrite this in the form

c + c
F ′

2

F2
2

= 1 +
G ′

2

G2
2

.

By integration we have

(72) L(z) =
1

G2

−
c

F2

, L(z) = (1 − c)z + d,

for some constant d. If L(z) ≡ 0, then c = 1 and d = 0. By (72), F2 = G2, i.e.,

H2 = 0, which contradicts (34). Next, we consider the case

(73) L(z) 6≡ 0.

By our assumptions, there exist entire functions u(z) and v(z) such that

(74) F1 = euG1, F2 = c G2 ev.

We deduce from (72) that

(75) F2 = c
ev − 1

L
, G2 =

e−v(ev − 1)

L
.

Applying Lemma 15 with f̂ = f ′ ′ and ĝ = g ′ ′, we imply that f ′ ′ and g ′ ′ have no
poles and have at most one zero which is the zero of L. Hence we may suppose that

f ′ ′
= Leα, g ′′

= Leβ ,

where α and β are entire. From this, (1) and (75) we deduce that

(76) f ′ ′ ′
= c (ev − 1) eα, g ′′ ′

=
(

1 − e−v
)

eβ .

Since

F2 = F1 +
F ′

1

F1

, G2 = G1 +
G ′

1

G1

,
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by (74) we have

F2 = euG1 + u ′ +
G ′

1

G1

= euG1 + u ′ + G2 − G1.

Substituting (75) into this equation we get

G1(1 − eu) = u ′ +
1

L
(1 − e−v)(1 − c ev).

Differentiating this equation and using (75) and G2 = G1 +
G ′

1

G1

we obtain

(77) h1 ev − h2 eu + h3 eu−v − eu−2v + h4 e−v − c2 e2v + h5 eu+v − h6 = 0,

where

(78) h1 = 2cLu ′ + cLv ′ + 3c2,

h2 = 2Lu ′ + L2u ′2 + cLu ′ − L2u ′ ′ + 2c + c2,

h3 = 2Lu ′ + Lv ′ + 3,

h4 = Lu ′ − Lv ′ − 1 + 2c,

h5 = cL(u − v) ′ + 2c − c2,

h6 = L2u ′2 + (1 + 2c)Lu ′ + 2c + 2c2 − 1 + L2u ′ ′.

Next, we consider three subcases.

Case 4.1.1.1 There exists a set I with infinite measure such that

T(r, eu) = o
(

T(r, ev)
)

r ∈ I.

We rewrite (77) in the form

−c2 e2v + (h1 + h5 eu) ev + (h3 eu + h4) e−v − eu e−2v − (h2 eu + h6) = 0.

From Lemma 8 we deduce that c = 0 which contradicts (71).

Case 4.1.1.2 There exists a set I with infinite measure such that

T(r, ev) = o
(

T(r, eu)
)

r ∈ I.

We rewrite (77) in the form

(−h2 + h3 e−v − e−2v + h5 ev)eu + (−h1 ev + h4e−v − c2 e2v − h6) = 0.
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This and Lemma 8 imply

−h2 + h3 e−v − e−2v + h5 ev
= 0, −h1 ev + h4 e−v − c2 e2v − h6 = 0.

By (78), these two equations are equivalent to

−L2u ′2 + L2u ′ ′ + [−(2 + c)L + 2Le−v + cL ev]u ′

+ [−2c − c2 + (Lv ′ + 3) e−v − e−2v − (cLv ′ − 2c + c2) ev] = 0

and

− L2u ′2 − L2u ′′ + [−(1 + 2c)L + L e−v + 2cL ev]u ′

+ [2c + 2c2 − 1 − (Lv ′ + 1 − 2c) e−v − c2 e2v + (cLv ′ + 3c2) ev] = 0,

respectively. From these two equations we get

2L2u ′ ′ + L(c − 1 + e−v − c ev)u ′ + 1 − 4c − 3c2

+ 2(Lv ′ + 2 − c) e−v − e−2v + c2 e2v2c(Lv ′ − 1 + 2c) ev
= 0

and

− 2L2u ′2 + 3L(−1 − c + e−v + c ev)u ′ + c2 − 1

+ 2(c + 1) e−v − e−2v − c2 e2v + 2c(1 + c) ev
= 0.

Differentiating the last equation and eliminating u ′ and u ′ ′ in the three equations,
we obtain

24L8e−6v +

j=5
∑

j=−5

P j(L, v ′)e jv − 24c6L8e6v
= 0,

where P j(L, v ′) are differential polynomials in v ′ and L. If v is a constant, then

N
(

r, 1
f ′ ′ ′

)

= 0 by (76), which contradicts (70). If v is non-constant, then from

the above equation and Lemma 8 it follows that L ≡ 0, which contradicts (73).

Case 4.1.1.3 Neither Case 4.1.1.1 nor Case 4.1.1.2 holds. Then

T(r, eu) = O
(

T(r, ev)
)

, T(r, ev) = O
(

T(r, eu)
)

for all r > 0 except possibly for a set of values of r with finite linear measure. From

(78) we see that

T(r, h j) = o
(

T(r, eu), T(r, ev)
)

, (r /∈ E, j = 1, . . . , 6),

where E is a set of finite measure.
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Case 4.1.1.3.1 There exists a set I with infinite measure such that

T(r, eu−v) = o
(

T(r, eu)
)

, T(r, eu−v) = o
(

T(r, ev)
)

, r ∈ I.

We rewrite (77) in the form

(h5 eu−v − c2) e2v + (h1 − h2 eu−v) ev + (h4 − eu−v) e−v − h6 = 0.

This and Lemma 8 assert that

(79) h6 = 0, h5 eu−v − c2
= 0, h1 − h2 eu−v

= 0, h4 − eu−v
= 0.

Eliminating eu−v we obtain

(80) h5h4 − c2
= 0, h1 − h2h4 = 0.

From (78), (79) and Lemma 1 we imply that u ′
= const. and L = const., i.e., c = 1,

L = d. It follows from this, (78) and (80) that v ′ is constant. Noting that eu−v
=

h4 = d(u−v) ′ + 1, we deduce that u−v = const. Combining all these facts with (80)
we get u ′

= v ′
= 0, i.e., v is a constant. By this and (76), f ′ ′ ′ 6= 0, which contradicts

(70).

Case 4.1.1.3.2 There exists a set I with infinite measure such that

T(r, eu−2v) = o{T(r, eu), T(r, ev)}, r ∈ I.

We rewrite (77) in the form

h5 eu−2ve3v − (h2 eu−2v + c2) e2v + (h1 + h3 eu−2v) ev + h4 e−v − (eu−2v + h6) = 0.

By Lemma 8,

h5 = h4 = 0, h1 + h3eu−2v
= 0,

h2eu−2v + c2
= 0, eu−2v + h6 = 0.

From h5 = h4 = 0 and the expressions for h4 and h5 in (78) we deduce that c = 1
and so L ≡ d by (72). Now eliminating eu−2v in the above equations gives

h2h6 = c2
= 1.

Substituting the expressions for h2 and h6 in (78) into this, we obtain

d4(u ′)4 + P3(u ′) = 0,

where P3(u ′) is a differential polynomial of u ′ of degree ≤ 3. This and Lemma 1 im-
ply that u ′ is a constant, and so v ′ is also a constant by h5 ≡ 0 (in fact, we can further
deduce that du ′

= −2, dv ′
= −1 and eu−2v

= −1). Thus v is linear. Therefore
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f ′ ′ and g ′′ have hyper-order 1 by (76), and so, f and g also have hyper-order 1 by
Chuang [2]. By Lemma 10, we need only consider case (v):

f (z) = Aeexp(az+b), g(z) = Beexp(−az−b), (ABa 6= 0).

Differentiating the equation for f twice we obtain

f ′ ′(z) = Aa2(eaz+b + 1)eaz+b+exp(az+b).

Thus f ′ ′ has infinitely many zeros, which contradicts (76).

Case 4.1.1.3.3 There exists a set I with infinite measure such that

T(r, eu+v) = o{T(r, eu), T(r, ev)}.

We rewrite (77) in the form

−c2e2v + h1ev + (h5eu+v − h6) − (h2 eu+v)e−v + (h3 eu+v)e−2v − eu+ve−3v
= 0.

By Lemma 8, c = 0, which is a contradiction to (71).

Case 4.1.1.3.4 None of the above three subcases hold. Then Lemma 8 and (77) give
a contradiction.

Case 4.1.2

(81) N=q+1

(

r,
1

f ′ ′

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 12 to m = q + 1, f̂ = f ′ ′ and ĝ = g ′ ′, it follows from (29), (81)
and (2) that

(82) H3 − H2 =
q

q + 2
(H4 − H3).

By the assumptions of Theorem 1, there exist three entire functions u(z), v(z) and
w(z) such that

(83) F1(z) = eu(z)G1(z), F2(z) = ev(z)G2(z), F3(z) = ew(z)G3(z).

Integrating (82) gives

F2

G2

= c2

( F3

G3

) q/(q+2)

,
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where c2 is a non-zero constant. This and (83) imply

(84) v(z) =
q

q + 2
w(z) + d1,

where d1 is a constant. Now we consider two subcases.

Case 4.1.2.1

Nq+2

(

r,
1

f ′

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 12 with m = q + 2, f̂ = f ′ and ĝ = g ′, we have from (29) and (2)
that

H2 − H1 =
q + 1

q + 3
(H3 − H2),

which, upon an integration, becomes

(85)
F1

G1

= c1

( F2

G2

) (q+1)/(q+3)

,

where c1 is a non-zero constant. It follows from (83)–(85) that

(86) u(z) =
q(q + 1)

(q + 2)(q + 3)
w(z) + d2,

where d2 is a constant. Applying Lemma 7 with j = 1 we obtain

x1g1 + y1g2 + z1g1g2 = r1,(87)

x2g1 + y2g2 + z2g1g2 = r2,(88)

x3g1 + y3g2 + z3g1g2 = r3,(89)

where xi , yi, zi , ri (i = 1, 2, 3) are as in Lemma 7, and by (84) and (86), each member
in xi , yi , zi, ri (i = 1, 2, 3) has a representation of the form

K
∑

i=1

Pi[w ′] eαi w, K ∈ N,

where α1 > α2 > · · · ≥ 0, Pi[w ′] are differential polynomials in w ′ and

T(r, P[w ′]) = S
(

r,
f ′

f

)

.
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By simple calculations we see that

x1 = exp
{ q

q + 2
w + d1

}

− 1,

x2 = −v ′ exp
{(

1 + 2
q

q + 2

)

w + 2d1

}

+ · · · ,

x3 = −[v ′(2v ′ + w ′) + v ′ ′] exp
{(

2 + 3
q

q + 2

)

w + 3d1

}

+ · · · ,

y1 = − exp
{ q(q + 1)

(q + 2)(q + 3)
w + d2

}

+ 1,

y2 = u ′ exp
{(

1 +
q

q + 2
+

q(q + 1)

(q + 2)(q + 3)

)

w + d1 + d2

}

+ · · · ,

y3 = [u ′ ′ + u ′(u ′ + v ′ + w ′)] exp
{(

2 + 2
q

q + 2
+

q(q + 1)

(q + 2)(q + 3)

)

w + 2d1 + d2

}

+ · · · ,

z1 = −u ′,

z2 = u ′′ exp
{(

1 +
q

q + 2

)

w + d1

}

+ · · · ,

z3 = [(v ′ + w ′)u ′ ′ + u ′ ′ ′] exp
{

2
(

1 +
q

q + 2

)

w + 2d1

}

+ · · · ,

r1 = 0,

r2 = exp
{(

1 + 2
q

q + 2

)

w + 2d1

}

+ · · · ,

r3 = (3v ′ + w ′) exp
{(

2 + 3
q

q + 2

)

w + 3d1

}

+ · · · ,

where we only list the largest term with respect to αi . Combining all these represen-

tations with (84) we deduce from (87)–(89) (where we look at (87)–(89) as a system
of linear equations in the unknowns g1, g2 and g1g2) that the largest term with respect
to αi in the determinant of the coefficients of (87)–(89) is

L(D) = P1 exp
{(

3 + 4
q

q + 2
+

q(q + 1)

(q + 2)(q + 3)

)

w + 4d1 + d2

}

,

where

P1 = −
2

q + 1

(

u ′u ′ ′ ′ − u ′ ′2 −
(

1 +
q + 3

q + 1

)

u ′ ′u ′2 +
q + 3

q + 1
u ′4
)

.

If the determinant of the coefficients of (87)–(89) is vanishing, then by Lemma 8,
P1 ≡ 0. Thus,

uu ′ ′ ′ − u ′ ′2 −
(

1 +
q + 3

q + 1

)

u ′ ′u ′2 +
q + 3

q + 1
u ′4 ≡ 0.
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By Lemma 1, u ′ is constant. It follows from the above equation that u ′
= 0, and so

v ′
= w ′

= 0 by (84) and (86). Thus u, v, w are constants. If ev 6= 1, then from (15)

with j = 1 and (83) we deduce that F1 and G1 are constants, thus f ′ ′ 6= 0, which
contradicts (81). If ev

= 1, then F1 = G1 by (83), and so H1 ≡ 0, which contradicts
(34). Therefore the determinant of the coefficients of (87)–(89) is non-vanishing. By
Cramer’s rule we obtain

g1 =
det(~r,~y,~z)

det(~x,~y,~z)
, g2 =

det(~x,~r,~z)

det(~x,~y,~z)
, g1g2 =

det(~x,~y,~r)

det(~x,~y,~z)
.

Thus,

(90) det(~r,~y,~z) det(~x,~r,~z) = det(~x,~y,~z) det(~x,~y,~r).

By (84) and the representations of x1, . . . , r3 above, the highest term with respect to

αi on the right-hand and the left-hand sides of (90) are

t(r) = P exp
{(

6 + 9
q

q + 2
+ 2

q(q + 1)

(q + 2)(q + 3)

)

w + 9d1 + 2d2

}

and

t(l) = P0 exp
{(

6 + 9
q

q + 2
+

q(q + 1)

(q + 2)(q + 3)

)

w + 9d1 + d2

}

,

respectively, where

P = −
( 2

q + 1

) 2[

u ′u ′ ′ ′ − u ′ ′2 −
(

1 +
q + 3

q + 1

)

u ′ ′u ′2 +
q + 3

q + 1
u ′4
]

×

[

u ′ ′ −
(

1 +
q + 3

q + 1

)

u ′2
]

and

P0 =

[

u ′ ′ ′ −
(

2
q + 3

q + 1
+ 1
)

u ′u ′ ′ +
(

2
q + 3

q + 1
− 1
)

u ′3
]

×

[

u ′ ′ ′ −
(

2
q + 3

q + 1
+ 1
)

u ′u ′ ′ +
( q + 3

q + 1

) 2

u ′3
]

.

It follows from these two equations, (90) and Lemma 8 that P ≡ 0, and so,

[

u ′u ′′ ′ − u ′ ′2 −
(

1 +
q + 3

q + 1

)

u ′ ′u ′2 +
q + 3

q + 1
u ′4
][

u ′′ −
(

1 +
q + 3

q + 1

)

u ′2
]

≡ 0.

This and Lemma 1 give m(r, u ′) = S(r, u ′). Note that, by the above equality, u ′ has
no poles. Thus T(r, u ′) = S(r, u ′). This implies that u ′ is a constant. Using the above

equality again, we imply that u ′ ≡ 0, and so v ′
= w ′

= 0 by (84) and (86). Thus,
u, v, w, are constants. If ev 6= 1, then from (15) with j = 1 and (83) we deduce that F1

and G1 are constants, thus f ′ ′ 6= 0, which contradicts (81). If ev
= 1, then F1 = G1

by (83), and so H1 ≡ 0, which contradicts (34).
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Case 4.1.2.2 Assume

N=q+2

(

r,
1

f ′

)

= S
(

r,
f ′

f

)

.

Applying Lemma 11 to f̂ = f and ĝ = g with m = q + 1, we have from the above
equality, (29), (81) and (2) that

H2 − H1 = (q + 1)(H3 − H2).

Integrating the last equation gives

F1

G1

= c1

( F2

G2

) (q+1)

,

where c1 is a non-zero constant. It follows from (83) and (84) that

(91) u(z) =
q(q + 1)

q + 2
w(z) + d2,

where d2 is a constant. If q = 1, then (84) and (91) become

v(z) =
1

3
w(z) + d1, u(z) =

2

3
w(z) + d2.

By the same reasoning as in Case 4.1.2.1 we arrive at the desired result, where we

replace q
q+2

and q(q+1)
(q+2)(q+3)

in (84) and (86) by 1
3

and 2
3
, respectively. If q ≥ 2, then (84)

and (91) give

(92) w(z) =
q + 2

q(q + 1)
u(z) + e1, v(z) =

1

q + 1
u(z) + e2,

where e1 and e2 are constants. Similarly as in Case 4.1.2.1, we replace (84) and (86)
by (92) and obtain the desired result.

Case 4.1.3 Assume

(93) N=q+1

(

r,
1

f ′ ′

)

= S
(

r,
f ′

f

)

, N=1

(

r,
1

f ′ ′

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 11 with m = q, f̂ = f ′ ′ and ĝ = g ′ ′, it follows from (29), (59) and
(2) that

(94) H3 − H2 = q(H4 − H3),

which, upon integration, becomes

(95)
F2

G2

= c
( F3

G3

) q

,
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where c is a constant. If q = 1, then

F2

G2

= c
F3

G3

= c
(

F2 +
F ′

2

F2

)/(

G2 +
G ′

2

G2

)

.

We rewrite this in the form

1 − c = c
F ′

2

F2
2

−
G ′

2

G2
2

.

By integration,

L(z) = −
c

F2

+
1

G2

,

where L(z) = (1 − c)z + d and d is a constant. If L(z) ≡ 0, then c = 1 and F2 = G2,

which contradicts (34). If L(z) 6≡ 0, then by (83) we obtain

f ′ ′ ′

f ′ ′
= F2 =

ev − c

L(z)
.

This implies that f ′ ′ has at most one zero. However, this contradicts (93) unless
f ′

f

is rational. By Lemma 9 we obtain the desired results. Next we let q ≥ 2 and consider
two subcases.

Case 4.1.3.1 Assume

(96) N=2

(

r,
1

f ′

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 12 to m = 2, f̂ = f ′ and ĝ = g ′, it follows from (29), (96) and (2)

that

H2 − H1 =
1

3
(H3 − H2).

From this, (83) and (95) we deduce that

(97) u(z) =
1

3
v(z) + d1, w(z) =

1

q
v(z) + d2,

where d1 and d2 are constants. Similarly, as in Case 4.1.2.1, we can derive the desired
results.

Case 4.1.3.2 Assume

N=2

(

r,
1

f ′

)

= S
(

r,
f ′

f

)

,

Applying Lemma with to m = 1, f̂ = f ′ and ĝ = g ′, we deduce from (29) and (93)
that

H2 − H1 = H3 − H2,
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which, upon integration, becomes

F1

G1

= c
( F2

G2

)

= c
(

F1 +
F ′

1

F1

)/(

G1 +
G ′

1

G1

)

,

where c is a constant. We rewrite this in the form

1 − c = c
F ′

1

F2
1

−
G ′

1

G2
1

.

By integration,

L(z) = −
c

F1

+
1

G1

,

where L(z) = (1 − c)z + d, and d is a constant. If L(z) ≡ 0, then c = 1 and
H1 = F1 − G1 = 0, which contradicts (34). If L(z) 6≡ 0, then by (83),

(98) F1 =
eu − c

L
, G1 =

1 − c e−u

L
.

It follows from (1) and Lemma 15 that f ′ and g ′ have at most one zero which is the
zero of L. Suppose that

f ′
= L eα, g ′

= L eβ .

From this and (98), we deduce that

α ′
=

1

L
(eu − 1), β ′

=
c

L
(1 − e−u)

and
f ′ ′

= (eu − c) eα, g ′ ′
= (1 − ce−u) eβ .

Differentiating this gives

f ′ ′ ′
=

1

L
[e2u + (Lu ′ − 1− c)eu + c] eα, g ′ ′ ′

=
c

L
e−2u[e2u + (Lu ′ − 1− c) eu + c] eβ.

Differentiating the above equations, we get

f (4)
=

eα

L2

[

e3u + (3Lu ′ − u − 3 + c)e2u

+
(

2 + L2u ′ ′ + L2u ′2 − (2 + c)Lu ′ + (2 − c)u
)

eu − 2c + c2
]

,

g(4)
=

ceβ−3u

L2

[

(2c − 1)e3u

+
(

(1 + 2c)Lu ′ − L2u ′2 + L2u ′ ′ + 1 − 2c − 2c2
)

e2u + 3c(c − Lu ′) eu − c2
]

.

From this and the Second Fundamental Theorem we can easily verify that f (4) and
g(4) do not share 0 CM, which is a contradiction.
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Case 4.2 Suppose

(99) N=1

(

r,
1

f ′

)

6= S
(

r,
f ′

f

)

.

We consider two subcases.

Case 4.2.1

N=2

(

r,
1

f

)

= S
(

r,
f ′

f

)

.

Let z0 be a simple zero of f ′ which is not a zero of f . Then by Lemma 6, z0 is a zero
of H1 − H0 − (H2 − H1). It follows from (29), (99) and Lemma 11 that

H1 − H0 = H2 − H1.

Integrating this, we get

F0

G0

= c
F1

G1

= c
F0 + F ′

0/F0

G0 + G ′
0/G0

,

where c is a nonzero constant. We rewrite this in the form

c − 1 + c
F ′

0

F2
0

=
G ′

0

G2
0

.

By integration we obtain

(100) L(z) =
1

G0

−
c

F0

,

where L(z) = (1 − c)z + d for some constant d. If L(z) ≡ 0, then c = 1 and F0 = G0

by (100), which implies H0 = 0, a contradiction to (34). If L(z) 6≡ 0, then similarly
as the Case 4.1.3.2, we can derive a contradiction.

Case 4.2.2

(101) N=2

(

r,
1

f

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 12 with m = 2, f̂ = f and ĝ = g, it follows from (2), (29) and
(101) that

(102) H1 − H0 =
1

3
(H2 − H1).

Integrating this gives
( F0

G0

) 3

= c
( F1

G1

)

,
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where c is a non-zero constant. Let z0 be a zero of f of order 2. Then by the above
equation, near z = z0,

1 = c + O(z − z0).

Thus c = 1 and

(103)
( F0

G0

) 3

=
F1

G1

.

By our assumptions, there exists an entire function u(z) such that

(104) F0 = euG0.

Since

G1 = G0 +
G ′

0

G0

= e−uF0 − u ′ +
F ′

0

F0

= e−uF0 − u ′ + F1 − F0,

we deduce from the above three equations that

(105) (e−u − 1)F0 + (1 − e−3u)F1 − u ′
= 0.

If, near z = z0, f has a simple zero z0 and f and g have the expansions given by
Lemma 6, then near z = z0,

F0 =
1

z − z0

+
a2

a1

+ O(z − z0),

F1 =
2a2

a1

+ O(z − z0).

From (105) we get

e−u(z0) − 1

z − z0

+
a2

a1

(

e−u(z0) − 1
)

+ 2
a2

a1

(

1 − e−3u(z0)
)

− u ′(z0)
(

e−u(z0) + 1
)

+ O(z − z0) = 0.

Thus,

e−u(z0) − 1 = 0

and
a2

a1

(

e−u(z0) − 1
)

+ 2
a2

a1

(

1 − e−3u(z0)
)

− u ′(z0)
(

e−u(z0) + 1
)

= 0.

This implies that u ′(z0) = 0. On the other hand, by (104),

H1 − H0 = F1 − G1 − (F0 − G0) = F1 − F0 − (G1 − G0) =
F ′

0

F0

−
G ′

0

G0

= u ′.

Thus H1(z0) − H0(z0) = 0. Therefore

(106) N=1

(

r,
1

f

)

≤ N
(

r,
1

H1 − H0

)

= S
(

r,
f ′

f

)
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by (31). If
∑108

i=1 N=i

(

r, 1
f ′ ′

)

= S
(

r, f ′

f

)

, then
f ′

f
is rational by (57) and (106), and

the conclusion follows. If
∑108

i=1 N=i

(

r, 1
f ′ ′

)

6= S
(

r, f ′

f

)

, then there exists q with

1 ≤ q ≤ 108 such that

(107) N=q

(

r,
1

f ′′

)

6= S
(

r,
f ′

f

)

.

By the assumptions of Theorem 1, there exist three entire functions, u(z), v(z) and
w(z), such that

(108) F0(z) = eu(z)G0(z), F1(z) = ev(z)G1(z), F2(z) = ew(z)G2(z).

Substituting (108) into (103) we get

(109) u(z) =
1

3
v(z) + d1,

where d1 is a constant. Next, we discuss two cases.

Case 4.2.2.1

(110) N=q+1

(

r,
1

f ′

)

6= S
(

r,
f ′

f

)

.

Applying Lemma 12 with m = q + 1, f̂ = f ′ and ĝ = g ′, we deduce from (110), (29)
and (2) that

(111) H2 − H1 =
q

q + 2
(H3 − H2).

Integrating (111) and then substituting (108) into it we obtain

(112) v(z) =
q

q + 2
w(z) + d2,

where d2 is a constant. We apply Lemma 7 with j = 0 and use (109) and (112). By
the same reasoning as in Case 4.1.2.1, we complete this case.

Case 4.2.2.2

N=q+1

(

r,
1

f ′

)

= S
(

r,
f ′

f

)

.

Applying Lemma 11 with m = q, f̂ = f ′ and ĝ = g ′, it follows from the above

equality, (107), (29) and (2) that

H2 − H1 = q(H3 − H2).

Integrating this equation and then substituting (108) into it we obtain

w(z) =
1

q
v(z) + d2.

By the same reasoning as in Case 4.1.2.1 where (84) and (86) were replaced by (109)
and the above equation, applying Lemma 7 with j = 0 we solve this case.
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This completes the proof of the theorem.
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