

How Lipschitz Functions Characterize the Underlying Metric Spaces

Lei Li and Ya-Shu Wang

Abstract. Let X and Y be metric spaces and E, F be Banach spaces. Suppose that both X and Y are realcompact, or both E, F are realcompact. The zero set of a vector-valued function f is denoted by z(f). A linear bijection T between local or generalized Lipschitz vector-valued function spaces is said to preserve zero-set containments or nonvanishing functions if

$$z(f) \subseteq z(g) \iff z(Tf) \subseteq z(Tg), \text{ or } z(f) = \emptyset \iff z(Tf) = \emptyset,$$

respectively. Every zero-set containment preserver, and every nonvanishing function preserver when $\dim E = \dim F < +\infty$, is a weighted composition operator $(Tf)(y) = J_y(f(\tau(y)))$. We show that the map $\tau \colon Y \to X$ is a locally (little) Lipschitz homeomorphism.

1 Introduction

Let X and Y be metric spaces and let C(X) and C(Y) (resp. $C^b(X)$ and $C^b(Y)$) be the algebras of continuous (resp. bounded continuous) functions defined on X and Y, respectively. It is well known that every multiplicative linear bijection between C(X) and C(Y), or between $C^b(X)$ and $C^b(Y)$, gives rise to a homeomorphism between X and Y (see, e.g., [11, 9.7 and 9.8]). Similar good conclusions hold for multiplicative linear bijections between various Lipschitz function spaces on X and Y. For example, if the spaces Lip(X) and Lip(Y) of Lipschitz functions are algebraic isomorphic, then the underlying metric spaces are Lipschitz homeomorphic [9].

In the vector-valued case, there is no multiplicative structure equipped with the vector spaces C(X, E) and its various subspaces when E is a Banach space. Fortunately, we can still consider some structures related to zero sets. Denote the *zero set* and *cozero set*, respectively, of a (scalar or vector-valued) function f defined on X by

$$z(f) = \{x \in X : f(x) = 0\}$$
 and $coz(f) = \{x \in X : f(x) \neq 0\}$

A linear map T between vector-valued function spaces defined on X and Y is said to be *separating* [3,6,12], or *disjointness preserving* [1,2], if

$$coz(f) \cap coz(g) = \emptyset \implies coz(Tf) \cap coz(Tg) = \emptyset,$$

Received by the editors November 15, 2012; revised March 2, 2013.

Published electronically May 26, 2013.

Li is supported by The National Natural Science Foundation of China (11271199)

AMS subject classification: 46E40, 54D60, 46E15.

Keywords: (generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps.

364

and T is *biseparating* if the inverse implication also holds. In other words, T is biseparating exactly when

$$z(f) \cup z(g) = X \iff z(Tf) \cup z(Tg) = Y.$$

In recent years, disjointness structures have been intensely studied in many classes of function spaces (cf. [3-5,7,8,13-15]). As a good substitute for multiplication preservers, (bijective) biseparating linear maps between (scalar or vector-valued) continuous functions always provide homeomorphisms when X and Y are compact (see, e.g., [10]). However, it is a rather different case when X and Y are not compact. An example in [11, 4M] provides us with non-homeomorphic realcompact spaces X and Y such that $C^b(X)$ and $C^b(Y)$ are isometrically algebraic and lattice isomorphic.

In [16, 17], a bijective linear map T between (scalar or vector-valued) function spaces defined on completely regular spaces X and Y is called a (two directional) zero-set containment preserver if

$$z(f) \subseteq z(g) \iff z(Tf) \subseteq z(Tg),$$

and T is called a (two directional) nonvanishing function preserver if

$$z(f) = \emptyset \iff z(Tf) = \emptyset.$$

Li and Wong [16, 17] showed that every linear zero-set containment preserver, and every nonvanishing function preserver when $\dim E = \dim F < +\infty$, between (scalar or vector-valued) continuous functions defined on realcompact spaces X and Y provides a homeomorphism between X and Y. They also studied other classes of continuous functions including scalar Lipschitz functions.

This paper works with vector-valued Lipschitz functions. In 2009, Araujo and Dubarbie [7] showed that if there is a linear biseparating map between spaces of vector-valued bounded Lipschitz functions on *complete* metric spaces X and Y, then X and Y are Lipschitz homeomorphic. In 2010, Leung [15] extended this to generalized Lipschitz function spaces, and provided a (topological) homeomorphism between X and Y. On the other hand, Jiménez-Vargas, Villegas-Vallecillos, and Wang [13,14] worked on the same problem for spaces of vector-valued little Lipschitz functions defined on *locally compact* metric spaces X and Y and showed that X and Y are locally Lipschitz homeomorphic if the biseparating map is continuous. We note that the classical spaces Lip, $\operatorname{lip}^{\alpha}$, and Lip^{b} of Lipschitz, little Lipschitz and bounded Lipschitz functions, respectively, are special cases of generalized Lipschitz function spaces $\operatorname{Lip}_{\Sigma}(X,E)$. However, local Lipschitz function spaces $\operatorname{Lip}_{\operatorname{loc}}(X,E)$ are not generalized Lipschitz function spaces.

Suppose X and Y are (not necessarily complete or locally compact) metric spaces and E and F are Banach spaces such that both X and Y are realcompact, or both E and F are realcompact. Using results in [17] we see that every bijective linear zero-set containment preserver, and every nonvanishing function preserver when dim $E = \dim F < +\infty$, between (local or generalized) Lipschitz function spaces is a weighted composition

$$(Tf)(y) = J_{\nu}(f(\tau(y))),$$

where $J_y \colon E \to F$ is a linear bijection and $\tau \colon Y \to X$ is a homeomorphism between the underlying (not necessarily complete or locally compact) metric spaces. The preserver T is continuous if and only if all fibre linear maps J_y are bounded. In these cases, τ is a locally (little) Lipschitz homeomorphism (Theorems 3.5, 3.8, and 3.9) from Y onto X.

2 Various Preservers on Nicely Regular Subspaces

Definition 2.1 ([17, Definition 3.1]) Let X be a completely regular space and let E be a locally convex space. Let $\mathcal{A}(X, E)$ be a vector subspace of C(X, E), and let

$$\mathcal{A}(X) := \{ \psi \circ f : f \in \mathcal{A}(X, E), \psi \in E^* \}$$

be the subset of C(X) consisting of coordinate functions of all f in A(X, E). We call A(X, E) *nicely regular* if the following conditions hold:

- (A1) A(X) is self-adjoint if $\mathbb{K} = \mathbb{C}$ and its hermitian part ReA(X) is a vector sublattice of C(X) containing all constant functions.
- (A2) For any f in A(X) and any e in E, the function $f \otimes e$ is in A(X, E). (Here, we denote by $f \otimes e$ the vector-valued function $x \mapsto f(x)e$ for the scalar-valued function f and the vector $e \in E$.)
- (A3) Z(X) = Z(A(X)).
- (A4) If $h_n \ge 0$ is a bounded function in A(X) for n = 1, 2, ..., then there is a strictly positive sequence $\{\alpha_n\}$ such that the sum $\sum_n \alpha_n h_n$ converges pointwise to a function in A(X).

Recall that the *support* supp(f) of a function f is the closure of its cozero set, coz(f). A map T between function spaces is called a *support containment preserver* if

$$supp(f) \subseteq supp(g) \implies supp(Tf) \subseteq supp(Tg).$$

Proposition 2.2 Suppose that A(X, E) and A(Y, F) are nicely regular subspaces of C(X, E) and C(Y, F), respectively. Assume that $T: A(X, E) \to A(Y, F)$ is a linear bijection. Consider the following conditions:

- (i) T preserves zero-set containments;
- (ii) *T preserves nonvanishing functions*;
- (iii) T is biseparating;
- (iv) T preserves support containment and separating;
- (v) T and T^{-1} preserve support containments.

Then we have that (i) \implies (ii) \implies (iii) \iff (iv) \iff (v).

Proof For the equivalences, we need only to verify two claims.

Claim 1 If T is biseparating, then T preserves support containments.

Let $f, g \in \mathcal{A}(X, E)$ with supp $(f) \subseteq \text{supp}(g)$. If there exists y_0 in supp(Tf) such that $y_0 \notin \text{supp}(Tg)$, then there is an open neighborhood U_0 of y_0 such that

 $U_0 \cap \operatorname{supp}(Tg) = \emptyset$. Therefore, we can choose y' in $U_0 \cap \operatorname{coz}(Tf)$ and a function h in $\mathcal{A}(X, E)$ with $z(Th) = Y \setminus U_0$, and thus $(Th)(y') \neq 0$. Note that $\operatorname{coz}(Th) \cap \operatorname{coz}(Tg) = \emptyset$. Then we can derive that $\operatorname{coz}(h) \cap \operatorname{coz}(g) = \emptyset$, since T^{-1} is separating, and hence $\operatorname{coz}(h) \cap \operatorname{coz}(f) = \emptyset$. Since T is separating, $\operatorname{coz}(Th) \cap \operatorname{coz}(Tf) = \emptyset$. This is a contradiction, because $y' \in \operatorname{coz}(Th) \cap \operatorname{supp}(Tf)$. This asserts that

$$\operatorname{supp}(f)\subseteq\operatorname{supp}(g)\Longrightarrow\operatorname{supp}(Tf)\subseteq\operatorname{supp}(Tg).$$

Claim 2 If T preserves support containments, then T^{-1} is separating.

Let $coz(Tf) \cap coz(Tg) = \emptyset$ and suppose $x_0 \in coz(f) \cap coz(g)$. Then there is an open neighborhood V_0 of x_0 such that $V_0 \subseteq coz(f) \cap coz(g)$. So we can find k in $\mathcal{A}(X, E)$ such that $k(x_0) \neq 0$ and $z(k) = X \setminus V_0$. That is, $coz(k) \subseteq coz(f) \cap coz(g)$. Since T preserves support containments,

$$supp(Tk) \subseteq supp(Tf) \cap supp(Tg)$$
.

Since $coz(Tf) \cap coz(Tg) = \emptyset$, we see that

$$coz(Tk) \subseteq supp(Tf) \subseteq Y \setminus coz(Tg),$$

and hence $coz(Tk) \cap coz(Tg) = \emptyset$. This implies that Tk = 0 and hence k = 0, which derives a contradiction. This tells us that T^{-1} is separating.

The other implications follow from [17, Lemmas 3.3 and 3.6].

3 Establishing Lipschitz Homeomorphisms Between Underlying Metric Spaces

Recall that a mapping $\tau\colon X\to Y$ between metric spaces X and Y is said to be *locally Lipschitz* if each point of X has a neighborhood on which τ is Lipschitz. If τ is bijective, and both τ and τ^{-1} are locally Lipschitz (respectively, Lipschitz), then τ is said to be a *locally Lipschitz homeomorphism* (respectively, *Lipschitz homeomorphism*). In [19, Theorem 2.1], Scanlon showed that $\tau\colon X\to Y$ is locally Lipschitz if and only if τ is Lipschitz on each compact subset of X.

Let (X, d_X) be a metric space and E be a Banach space. The vector space of all locally Lipschitz functions from X into E is denoted by $\operatorname{Lip}_{\operatorname{loc}}(X, E)$. For each nonempty compact subset K of X, a seminorm ρ_K : $\operatorname{Lip}_{\operatorname{loc}}(X, E) \to [0, +\infty)$ is given by

$$\rho_K(f) = L_K(f) + ||f||_K$$

where

$$L_K(f) = \sup \left\{ \frac{\|f(x) - f(y)\|}{d_X(x, y)} : x, y \in K, x \neq y \right\} \quad \text{and} \quad \|f\|_K = \sup_{x \in K} \|f(x)\|.$$

The set of all seminorms ρ_K , where K runs through all nonempty compact subsets of X, generates a Hausdorff complete locally convex vector topology on $\text{Lip}_{\text{loc}}(X, E)$.

For any closed subset *C* of a metric space *X*, it is obvious that the function

$$f_C(x) = \min\{1, d_X(x, C)\}\$$

is a bounded Lipschitz function and $z(f_C) = C$. Therefore,

$$Z(\operatorname{Lip}(X,E)) = Z(\operatorname{Lip}_{\operatorname{loc}}(X,E)) = Z(\operatorname{Lip}^{b}(X,E)) = Z(\operatorname{Lip}(X)) = Z(X).$$

Here, Z(A) denotes the collection of all the zero sets of functions in A, and we write Z(X) = Z(C(X)) for simplicity.

In [15], Leung defined a new class of spaces, the generalized Lipschitz function space $\operatorname{Lip}_{\Sigma}(X, E)$. We say that $\sigma \colon [0, +\infty) \to [0, +\infty]$ is a *modulus function* if σ is nondecreasing, $\sigma(0) = 0$, and σ is continuous at 0. A nonempty set Σ of modulus functions is called a *modulus set* if the following two conditions are satisfied:

(MS1) For any $\sigma_1, \sigma_2 \in \Sigma$, there exist $\sigma \in \Sigma$ and $K < +\infty$ such that $\sigma_1 + \sigma_2 \le K\sigma$. (MS2) For every sequence $\{\sigma_n\}$ in Σ and every non-negative summable real sequence $\{a_n\}$, there are $\sigma \in \Sigma$ and $K < +\infty$ such that $\sum a_n(\sigma_n \wedge 1) \le K\sigma$.

Let Σ be a modulus set. Let X be a metric space and E be a Banach space. The generalized Lipschitz function space $\operatorname{Lip}_{\Sigma}(X,E)$ is the set of all vector-valued functions $f\colon X\to E$ such that $\omega_f\leq K\sigma$ for some $\sigma\in\Sigma$ and $K<+\infty$. Here, $\omega_f\colon [0,+\infty)\to [0,+\infty]$ is defined by

$$\omega_f(\varepsilon) = \sup\{\|f(x_1) - f(x_2)\| : d_X(x_1, x_2) \le \varepsilon\}.$$

When E is the scalar field, $\operatorname{Lip}_{\Sigma}(X, E)$ is abbreviated to $\operatorname{Lip}_{\Sigma}(X)$. The spaces of Lipschitz, little Lipschitz, bounded Lipschitz, and uniformly continuous functions are special cases of the generalized Lipschitz function space.

A generalized Lipschitz function space $\operatorname{Lip}_\Sigma(X)$ is said to be *Lipschitz normal* if for every pair of subsets U,V of X with d(U,V)>0, there exists f in $\operatorname{Lip}_\Sigma(X)$ such that $0\leq f\leq 1$, f=0 on U, and f=1 on V. We will say that $\operatorname{Lip}_\Sigma(X,E)$ is Lipschitz normal if $\operatorname{Lip}_\Sigma(X)$ is. In the sequel, all generalized Lipschitz function spaces $\operatorname{Lip}_\Sigma(X,E)$ are assumed to be Lipschitz normal. In particular, $Z(\operatorname{Lip}_\Sigma(X))=Z(X)$ ([15, Lemma 3]).

Both $\operatorname{Lip}_{\operatorname{loc}}(X, E)$ and $\operatorname{Lip}_{\Sigma}(X, E)$ are nicely regular. In other words, they satisfy the conditions $(\mathcal{A}1)$ – $(\mathcal{A}4)$ of Definition 2.1.

Recall that a metrizable space is realcompact if and only if its cardinality is a non-measurable cardinal. In particular, all separable metric spaces and separable Banach spaces are realcompact. See, e.g., [11, Theorem 15.24].

For the rest of this paper, *X* and *Y* are metric spaces and *E*, *F* are Banach spaces such that both *X* and *Y* are realcompact, or both *E* and *F* are realcompact.

Theorem 3.1 Suppose that A(X, E) and A(Y, F) are nicely regular subspaces of C(X, E) and C(Y, F), respectively. Let T be a linear bijection from A(X, E) onto A(Y, F).

(i) If T preserves zero-set containments, then there exists a homeomorphism $\tau \colon Y \to X$ such that

(3.1)
$$T(f)(y) = J_{y}(f(\tau(y))).$$

Here, all the fiber maps $J_{y}(e) = T(1 \otimes e)(y)$ are bijective and linear from E onto F.

(ii) The same conclusions hold provided T preserves nonvanishing functions instead and one (and thus both) of E and F is of finite dimension.

Proof These are applications of [17, Theorems 3.5, 4.4, and 5.1].

Remark 3.2 For the generalized Lipschiz spaces, a form of Lipschitz continuity of the map τ in (3.1) has been obtained by Leung [15, Proposition 26].

Furthermore, we want to obtain some metric properties of the homeomorphic map $\tau: Y \to X$. Recall that, for an arbitrary but fixed point x_0 in X, a complete norm can be defined on Lip(X) by

$$||f||_{\text{Lip}} = \max\{|f(x_0)|, L_f\}.$$

Here, L_f is the Lipschitz constant of f. When the base point x_0 is changed to another point x in X, we might get a different, but equivalent, norm on Lip(X). In particular, the point evaluation $f \mapsto f(x)$ is a bounded linear functional of Lip(X).

Lemma 3.3 Let X and Y be metric spaces. Any composition map T: Lip(X) \rightarrow Lip(Y) defined by $Tf = f \circ \tau$ is automatically continuous for the respective Lipschitz norm.

Proof Let $\{f_n\}$ be a sequence in Lip(X) with $||f_n||_{\text{Lip}} \to 0$ and $||Tf_n - g||_{\text{Lip}} \to 0$ for some g in Lip(Y). For any y in Y, the point evaluations at y and $x = \tau(y)$ are continuous on Lip(Y) and Lip(X), respectively. Since

$$|f_n(x) - g(y)| = |f_n(\tau(y)) - g(y)| = |(Tf_n - g)(y)| \to 0$$
 and $f_n(x) \to 0$,

we derive that g(y) = 0, for all $y \in Y$. Having a closed graph, T is bounded.

By arguments similar to those in [9, Theorem 3.9 and Lemma 3.15], we obtain the following lemma. We will give a short sketch of the proof in the interest of selfcontainment.

Lemma 3.4 Let X and Y be metric spaces, and let $\tau: Y \to X$ be a homeomorphism.

- (i) If f ∘ τ ∈ Lip(Y) for all f in Lip(X), then τ is Lipschitz.
 (ii) If f ∘ τ ∈ Lip^b_{loc}(Y) for each f in Lip^b_{loc}(X), then τ is locally Lipschitz.

Proof (i) Fix $x_0 \in X$ and $y_0 = \tau^{-1}(x_0) \in Y$ to define the Lipschitz norm on Lip(X) and Lip(Y), respectively. The map T: Lip(X) \rightarrow Lip(Y) given by $Tf = f \circ \tau$ is a unital vector lattice isomorphism. Then T is continuous by [9, Theorem 3.8]. For any $x_1, x_2 \in X$, we have that

$$d_X(x_1, x_2) = \sup \left\{ \frac{|f(x_1) - f(x_2)|}{L_f} : f \in \text{Lip}(X), L_f \neq 0, f(x_0) = 0 \right\}.$$

Indeed, when we choose $f = d_X(\cdot, x_1) - d_X(x_0, x_1)$, we can prove the above equality.

Thus for each $f \in \text{Lip}(X)$ with $f(x_0) = 0$, we have $||f||_{\text{Lip}} = L_f$. By the continuity of T, we can derive that

$$L_{Tf} \leq ||Tf||_{Lip} \leq ||T|| \cdot ||f||_{Lip} = ||T|| \cdot L_f.$$

So for any $y_1, y_2 \in Y$ we obtain

$$\begin{split} d_X \Big(\tau(y_1), \tau(y_2) \Big) \\ &= \sup \Big\{ \frac{|f(\tau(y_1)) - f(\tau(y_2))|}{L_f} : f \in \operatorname{Lip}(X), L_f \neq 0, f(x_0) \neq 0 \Big\} \\ &\leq \sup \Big\{ \|T\| \frac{|(Tf)(y_1) - (Tf)\tau(y_2)|}{L_{Tf}} : f \in \operatorname{Lip}(X), L_{Tf} \neq 0, (Tf)(y_0) \neq 0 \Big\} \\ &\leq \|T\| \cdot d_Y(y_1, y_2). \end{split}$$

(ii) For any compact subset K of Y, it suffices to show that τ is Lipschitz on K. Indeed, for each $f \in \text{Lip}(\tau^{-1}(K))$, we can extend it to be a Lipschitz funtion on Y, which is also denoted by f. By the assumption we can derive that $f \circ \tau \in \text{Lip}_{\text{loc}}^b(Y)$, and hence $f \circ \tau$ is Lipschitz on K. So by (i) we have that τ is Lipschitz on K.

Theorem 3.5 Assume that $T: \operatorname{Lip}_{\operatorname{loc}}(X, E) \to \operatorname{Lip}_{\operatorname{loc}}(Y, F)$ is a bijective weighted composition operator

$$T(f)(y) = J_y(f(\tau(y))).$$

Then $\tau: Y \to X$ is a locally Lipschitz homeomorphism. Moreover, T is continuous if and only if all fiber linear bijections J_{γ} are bounded.

Proof Recall that the continuity of T means that for any compact subset K in Y and real number C > 0, there exist a compact subset W in X and a real scalar M > 0 such that $\rho_K(Tf) < C$ whenever $\rho_W(f) < M$. It is then obvious that the continuity of T ensures the boundedness of all J_V .

Conversely, for any compact subset $K \subset Y$ and C > 0, if $\tau \colon Y \to X$ is a homeomorphism, then $W = \tau^{-1}(Y)$ is a compact subset of X. So we can see that

$$Lip(W, E) = \{f|_W : f \in Lip_{loc}(X, E)\} \text{ and } Lip(K, F) = \{g|_K : g \in Lip_{loc}(Y, F)\}$$

are Banach spaces. When we define $U: \operatorname{Lip}(W, E) \to \operatorname{Lip}(K, F)$ by

$$(Uf)(y) = J_{y}(f(\tau(y))), \quad \forall y \in K, f \in \text{Lip}(W, E),$$

it follows from the closed graph theorem that U is a bounded linear bijection and $U(f|_W) = (Tf)|_K$ for all $f \in \operatorname{Lip}_{\operatorname{loc}}(X, E)$. Therefore, for any $f \in \operatorname{Lip}_{\operatorname{loc}}(X, E)$ with $\rho_W(f) < \frac{C}{\|U\|}$, we can derive that $\|f|_W \| = \rho_W(f) < \frac{C}{\|U\|}$, and then

$$\rho_K(Tf) = \|(Tf)|_K\| = \|U(f|_W)\| \le \|U\| \cdot \|f|_W\| < C.$$

This implies that $T: \operatorname{Lip}_{\operatorname{loc}}(X, E) \to \operatorname{Lip}_{\operatorname{loc}}(Y, F)$ is continuous.

We next show that τ is a locally Lipschitz homeomorphism without assuming the continuity of T. By Lemma 3.4 and [19, Theorem 2.1], τ is local Lipschitz if for each $f \in \operatorname{Lip}_{\operatorname{loc}}^b(X)$, $f \circ \tau$ is Lipschitz on every compact subset K of Y containing at least two points.

Claim 1 For any e in E with ||e|| = 1, we have $\inf_{y \in K} ||T(1 \otimes e)(y)|| > 0$.

This is obvious, as the continuous function $y \mapsto ||T(1 \otimes e)(y)||$ never vanishes on the compact subset $K \subseteq Y$.

It follows from Claim 1 that $y \mapsto 1/\|T(1 \otimes e)(y)\|$ defines a function in Lip(K), and then, by [18], it can be extended to a scalar-valued bounded Lipschitz function on Y.

Claim 2 For each f in $Lip_{loc}^b(X)$, the function $f \circ \tau$ is Lipschitz on $K \subseteq Y$.

Observe that for all $f \ge 0$ on X, we have $f \circ \tau \ge 0$ on Y and

$$| f \circ \tau(y) || T(1 \otimes e)(y) || - f \circ \tau(y') || T(1 \otimes e)(y') || |$$

$$= | || J_{y}(f(\tau(y))e) || - || J_{y'}(f(\tau(y'))e) || |$$

$$= || T(f \otimes e)(y) || - || T(f \otimes e)(y') || |$$

$$\leq || T(f \otimes e)(y) - T(f \otimes e)(y') ||$$

$$\leq L_{K}(T(f \otimes e)) d_{Y}(y, y'), \quad \forall y, y' \in K.$$

That is, $f \circ \tau(\cdot) \| T(1 \otimes e)(\cdot) \|$ is Lipschitz on K. Hence $f \circ \tau$ is Lipschitz on K. For any f in Lip $_{loc}^b(X)$, by writing f as a linear combination of at most four positive functions, we derive that $f \circ \tau$ is Lipschitz on K.

By a similar argument, τ^{-1} is also locally Lipschitz on X. We thus see that τ is a locally Lipschitz homeomorphism, which completes the proof.

We say that a modulus function σ is of bounded type O(t) if there is a finite positive constant L_{σ} such that $\sigma(t) \leq L_{\sigma}t$ for all $t \geq 0$.

Theorem 3.6 Assume that Σ and Σ' consist of modulus functions σ of bounded type O(t). Assume also that $\operatorname{Lip}^b(X) \subseteq \operatorname{Lip}_{\Sigma}(X)$ and $\operatorname{Lip}(Y)^b \subseteq \operatorname{Lip}_{\Sigma'}(Y)$. If $T \colon \operatorname{Lip}_{\Sigma}(X, E) \to \operatorname{Lip}_{\Sigma'}(Y, F)$ is a bijective weighted composition operator

$$T(f)(y) = J_y(f(\tau(y))),$$

then $\tau: Y \to X$ is a locally Lipschitz homeomorphism.

Proof For any compact subset K of Y containing at least two points and each f in $\operatorname{Lip}_{\operatorname{loc}}^b(X)$, by [18], the restricted function $f|_{\tau(K)}$ in $\operatorname{Lip}(\tau(K))$ can be extended to a g in $\operatorname{Lip}_b^b(X) \subseteq \operatorname{Lip}_\Sigma(X)$. Since $\operatorname{Lip}_\Sigma(X, E)$ is Lipschitz normal, there exists h in $\operatorname{Lip}_\Sigma(X)$ such that $0 \le h \le 1$ and h = 1 on $\tau(K)$. Note that $gh \in \operatorname{Lip}_\Sigma(X)$. For any y in K, we have

$$T(gh \otimes e)(y) = J_{\nu}(gh(\tau(y))e) = (gh)(\tau(y))J_{\nu}(e) = f(\tau(y))T(1 \otimes e)(y).$$

Moreover, for any y, y' in K, we can derive that

$$|f \circ \tau(y)||T(1 \otimes e)(y)|| - f \circ \tau(y')||T(1 \otimes e)(y')|| |$$

$$\leq ||T(gh \otimes e)(y) - T(gh \otimes e)(y')||$$

$$\leq \omega_{T(gh \otimes e)}(d_Y(y, y')) \leq M\sigma(d_Y(y, y')) \leq ML_{\sigma}d_Y(y, y'),$$

for some σ in Σ' and some finite constants $M, L_{\sigma} > 0$. That is,

$$(f \circ \tau)(\cdot) || T(1 \otimes e)(\cdot) ||$$

is Lipschitz on K. It then follows from the similar argument of Theorem 3.5 that $f \circ \tau$ is Lipschitz on K. Hence, τ is a locally Lipschitz homeomorphism.

Corollary 3.7 Suppose that $T: \operatorname{Lip}(X, E) \to \operatorname{Lip}(Y, F)$ is a linear bijection preserving zero-set containments, or nonvanishing functions when E or F is of finite dimension, then X and Y are locally Lipschitz homomorphic and T carries the form (3.1).

Next we consider some special classes of generalized Lipschitz function spaces.

Theorem 3.8 Assume that $T: \operatorname{Lip}^b(X, E) \to \operatorname{Lip}^b(Y, F)$ is a bijective weighted composition operator

$$T(f)(y) = J_{\nu}(f(\tau(y))).$$

Then $\tau: Y \to X$ is a locally Lipschitz homeomorphism. Moreover, T is continuous if and only if all fiber linear bijections J_v are bounded.

Proof By Theorem 3.6, τ is a locally Lipschitz homeomorphism.

Now, suppose that T is continuous. For any y in Y and e in E, we have

$$||J_{\nu}(e)|| = ||T(1 \otimes e)(y)|| \le ||T|| ||e||.$$

This tells us that all J_y are bounded linear bijections. On the other hand, the continuity of T will follow if it has a closed graph. Suppose that $f_n \in \text{Lip}^b(X, E)$ with $f_n \to 0$ and $T f_n \to g_0 \in \text{Lip}^b(Y, F)$. As

$$||(Tf_n)(y)|| = ||J_v(f_n(\tau(y)))|| \le ||J_v||||f_n|| \to 0,$$

we see that $g_0(y) = 0$ for all y in Y, and hence $g_0 = 0$. This implies that T is bounded.

Let (X, d_X) be a metric space, α a real number in (0, 1), and E a real or complex Banach space. Let X^{α} denote the same set X together with the new metric $d_X^{\alpha}(x, y) := d_X(x, y)^{\alpha}$. Denote by $\text{Lip}(X^{\alpha}, E)$ the Banach space of all vector-valued functions $f: X \to E$ such that

$$p_{\alpha}(f) = \sup \left\{ \frac{\|f(x_1) - f(x_2)\|}{d_X(x_1, x_2)^{\alpha}} : x_1, x_2 \in X, \ x_1 \neq x_2 \right\}$$

and

$$||f||_{\infty} = \sup \{||f(x)|| : x \in X\}$$

are finite, endowed with the sum norm

$$||f||_{\alpha} = p_{\alpha}(f) + ||f||_{\infty}.$$

The *little Lipschitz function space* $\operatorname{lip}^{\alpha}(X, E)$ denotes the closed subspace of $\operatorname{Lip}(X^{\alpha}, E)$ consisting of functions f with

$$\lim_{d_X(x_1,x_2)\to 0} \frac{\|f(x_1)-f(x_2)\|}{d_X(x_1,x_2)^{\alpha}}=0.$$

Theorem 3.9 Assume that $T: \operatorname{lip}^{\alpha}(X, E) \to \operatorname{lip}^{\alpha}(Y, F)$ is a linear bijection preserving zero-set containments, or preserving nonvanishing functions when E or F is of finite dimension. Then T carries the form (3.1),

$$T(f)(y) = J_y(f(\tau(y))),$$

such that $\tau: Y \to X$ is a locally little Lipschitz homeomorphism. Moreover, T is continuous if and only if all fiber linear bijections J_v is continuous.

Proof Since both $\operatorname{lip}^{\alpha}(X, E)$ and $\operatorname{lip}^{\alpha}(Y, F)$ are nicely regular, it follows from Theorem 3.1 that T carries the stated weighted composition form. The rest of the proof is basically the same as for Theorem 3.5. For any compact subset K of Y containing at least two points, we can define a bounded linear map S: $\operatorname{lip}^{\alpha}(\tau(K)) \to \operatorname{lip}^{\alpha}(K)$ by

$$(Sf)(y) = f(\tau(y)), \quad \forall y \in K.$$

For any fixed y_1 , y_2 in K, define a function f_1 by

$$f_1(x) = \min\{\gamma, d_X(x, \tau(y_1))\}, \quad \forall x \in \tau(K),$$

where $\gamma > 0$ is the finite diameter of the compact metric space $\tau(K)$. Then f_1 is in $\text{lip}^{\alpha}(X)$, since

$$\frac{|d_X(x,\tau(y_1)) - d_X(x',\tau(y_1))|}{d_X(x,x')^{\alpha}} \le d_X(x,x')^{1-\alpha}.$$

Since Sf_1 is little Lipschitz, we can derive that

$$\begin{split} \frac{d_X(\tau(y_1), \tau(y_2))}{d_Y(y_1, y_2)^{\alpha}} &= \frac{|f_1(\tau(y_1)) - f_1(\tau(y_2))|}{d_Y(y_1, y_2)^{\alpha}} \\ &= \frac{|(Sf_1)(y_1) - (Sf_1)(y_2)|}{d_Y(y_1, y_2)^{\alpha}} \to 0 \end{split}$$

as $d_Y(y_1, y_2) \to 0$. Hence τ is little Lipschitz on K.

The "moreover" part follows the same way as in proving Theorem 3.8, since little Lipschitz function spaces are Banach spaces.

Remark 3.10 (i) In the above theorems, when T is continuous, the map $y \mapsto J_y$ is continuous from Y into $(\mathcal{L}(E, F), SOT)$.

(ii) It is plausible that Theorems 3.8 and 3.9 might provide us a Lipschitz or little Lipschitz homeomorphism τ between the metric spaces X and Y. However, as indicated in [9] it is not always possible. For example, set $X = \mathbb{R}$ with the usual Euclidean metric d and $Y = (\mathbb{R}, \widetilde{d})$ with the bounded metric $\widetilde{d}(x, y) = \min\{1, d(x, y)\}$. Then $\operatorname{Lip}^b(X) = \operatorname{Lip}^b(Y)$ and $\operatorname{lip}^\alpha(X) = \operatorname{lip}^\alpha(Y)$ for all α in (0, 1), but X and Y are not Lipschitz or little Lipschitz homeomorphic. Note however that X and Y are locally (little) Lipschitz homeomorphic.

Acknowledgment We would like to express our thanks to the referee for several helpful comments that improved the presentation of this paper.

References

- [1] Yu. A. Abramovich, Multiplicative representation of disjointness preserving operators. Nederl. Akad. Wetensch. Indag. Math. 45(1983), no. 3, 265–279. http://dx.doi.org/10.1016/1385-7258(83)90062-8
- [2] Yu. A. Abramovich, A. I. Veksler, and A. V. Kaldunov, On operators preserving disjointness. Soviet Math. Dokl. 20(1979), 1089–1093.
- [3] J. Araujo, Separating maps and linear isometries between some spaces of continuous functions. J. Math. Anal. Appl. 226(1998), no. 1, 23–39. http://dx.doi.org/10.1006/jmaa.1998.6031
- [4] _____, Realcompactness and spaces of vector-valued functions. Fund. Math. 172(2002), no. 1, 27–40. http://dx.doi.org/10.4064/fm172-1-3
- [5] _____, Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity. Adv. Math. 187(2004), no. 2, 488–520. http://dx.doi.org/10.1016/j.aim.2003.09.007
- [6] J. Áraujo, E. Beckenstein, and L. Narici, Biseparating maps and homeomorphic real-compactifications. J. Math. Anal. Appl. 192(1995), no. 1, 258–265. http://dx.doi.org/10.1006/jmaa.1995.1170
- J. Araujo and L. Dubarbie, Biseparating maps between Lipschitz function spaces. J. Math. Anal. Appl. 357(2009), no. 1, 191–200. http://dx.doi.org/10.1016/j.jmaa.2009.03.065
- [8] L. Dubarbie, Separating maps between spaces of vector-valued absolutely continuous functions. Canad. Math. Bull. 53(2010), no. 3, 466–474.
- [9] M. I. Garrido and J. A. Jaramillo, Homomorphisms on function lattices. Monatsh. Math. 141(2004), no. 2, 127–146. http://dx.doi.org/10.1007/s00605-002-0011-4
 [10] H.-L. Gau, J.-S. Jeang, and N.-C. Wong, Biseparating linear maps between continuous vector valued
- [10] H.-L. Gau, J.-S. Jeang, and N.-C. Wong, Biseparating linear maps between continuous vector valued function spaces. J. Aust. Math. Soc. 74(2003), no. 1, 101–109. http://dx.doi.org/10.1017/S1446788700003153
- [11] L. Gillman and M. Jerison, Rings of continuous functions. The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, NJ, 1960.
- [12] S. Hernandez, E. Beckenstein, and L. Narici, Banach-Stone theorems and separating maps. Manuscripta Math. 86(1995), no. 4, 409–416. http://dx.doi.org/10.1007/BF02568002
- [13] A. Jimènez-Vargas, M. Villegas-Vallecillos, and Y.-S. Wang, *Banach-Stone theorems for vector-valued little Lipschitz functions*. Publ. Math. Debrecen **74**(2009), no. 1–2, 81–100.
- [14] A. Jimènez-Vargas and Y.-S. Wang, Linear biseparating maps between vector-valued little Lipschitz function spaces. Acta Math. Sin. (Engl. Ser.) 26(2010), no. 6, 1005–1018. http://dx.doi.org/10.1007/s10114-010-9146-8
- [15] D. H. Leung, Biseparating maps on generalized Lipschitz function spaces. Studia Math. 196(2010), no. 1, 23–40. http://dx.doi.org/10.4064/sm196-1-3
- [16] L. Li and N.-C. Wong, Kaplansky theorem for completely regular spaces. Proc. Amer. Math. Soc., to appear.
- [17] L. Li and N.-C. Wong, Banach-Stone theorems for vector valued functions on completely regular spaces. J. Math. Anal. Appl. 395(2012), no. 1, 265–274. http://dx.doi.org/10.1016/j.jmaa.2012.05.033
- [18] E. J. McShane, Extension of range of functions. Bull. Amer. Math. Soc. 40(1934), no. 12, 837–842. http://dx.doi.org/10.1090/S0002-9904-1934-05978-0
- [19] C. H. Scanlon, Rings of functions with certain Lipschitz properties. Pacific J. Math. 32(1970), 197–201. http://dx.doi.org/10.2140/pjm.1970.32.197

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China e-mail: leilee@nankai.edu.cn