VARIATIONAL ASPECTS OF THE
ABEL AND SCHRODER FUNCTIONAL EQUATIONS
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Given an analytic function f, the successive iterates
of f are defined by

f[o](z) =z, f[n+1](z) = f{f{n](z)} for every =z .

In particular f[1](z) = f{ f[o](z)} = f(z) . Extensive study

has been given [1] to the problem of generalizing the iterates

[n] [t]

, for integer n, to f for arbitrary t, where the

t] .
iterative character of f[ ] is to be preserved by the
conditions,

490y = 2 ana A1ty = ot

s and t.

(z) for arbitrary

Certain functional equations are closely related to this
problem, the most well known [1] being

g{f(z)} = o+ g(z), Abel's functional equation
(usually one takes a =1),

g{f(z)} = aglz), Schroder! s functional equation,

g{f(z)} = {g(z)} % Bottcher!'s functional equation,

where the function f is assumed given and g is the function
to be found. Repeated substitutions of f(z) into these equations
yields, respectively,
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In view of the simplicity of the right hand sides of these
equations, it is natural to define generalized iterates of f by
means of the equations

A0 = et ga) (1)

) = 1t gy (2)

) = e (3)
where g['” denotes the inverse function of g, (and hence the

usual problems associated with inverse functions must be
considered).

t
If f[ ](z) is defined for all real t, then each complex
number z =z determines a curve given parametrically in

o
t
terms of t by z :f[ ](z ) » which will be called the iteration
o

trajectory of f through z - Itwas noted by Schréder [2]

that an analytic solution, g , of the Abel or Schréder equation
for real «, defines a conformal mapping w = g(z) which maps
the iteration trajectories of f into straight lines; lines through
the origin when g is a solution of Schrdder' s equation, and
horizontal lines when g is a solution of Abel's equation.

Following the vein of Schréder' s observation, in this
paper we wish to point out a simple but interesting variational
relation between the iteration trajectories of an analytic
function and the Abel, Schrdder, and related functional
equations. To begin our discussion, we need the following
lemma, which is a particular case of a well known theorem [3]
and is given here merely for completeness.

LEMMA 1: The Euler equations for the functional
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] .2 .2
jG(x,y) \/ x +y dt (4)
C

where C 1is the curve given by x=x(t), y =y(t), and
G(x,y) > 0, can be written in the form

.. 2.2 .
fG(x,y)X (y -x) G (x,y) - 2xy Gy(x,y)

\
l G(x, y)y

.. .2 .2
-2xy G (x,7) - (y -x ) G (x,y) (5)
X Y

when the parameter t is chosen as the arc length along C 1in
the Riemannian geometry determined by (4), (and hereafter
designated as the G-length).

Proof: From the definition of t it follows that along C

t
d -/.2 .2 .2 .2
1= o {J) GyN\f X+y7 dt) = Gyl &7+ L (6)

(¢}

The Euler equations for (4) are

) [ - d [G X, y)X ’\
GX(X,Y X +y E < (7.17 = 0 and
[\/x +y
N % y); ?
(x.y) Tmz (=0
x +y :(
which, making use of (6), become
a | x|
Gx(x,y) - G(x,y) i \.2 .2( 0 and
X +y
d .
G (x,y) - G(x,y) Ty 4 Zy > 0
v (x"+y

Carrying out the indicated differentiations and solving the
system for % and y yields the desired equations (5).
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THEOREM: Let g be an analytic function and set
G(x,y) = |g'(€)| . Then the extremals of the functional

[ Glxy) s<2+§rz dt (7)

C
are explicitly given by

x(t) + iy(t) = g[_l] {at + g(z)} where o and z are
arbitrary constants. Hence every extremal x(t) + i y(t) is the
iteration trajectory, through z , of an analytic function f,
where f is defined by

f(z) = g['”{a+ g(z)} .

Moreover, in view of (1), it is clear that g is an Abel function
for f, and that the index of iteration, t, in f[t](z) =

g[_”{ at + g(z)}, 1is the G-length (up to a constant factor)
as measured by (7) along the iteration trajectory from =z to
f[t](z) .

Proof: The modified Euler equations (5) can be written
in the form

" G _(xy) G (x,y) l
Xx+iy = -(x+ iy) ¢ | L

i —_ ), 8
| Gl y) TGk y) (8)

Since [ nlg' (g)l = {n G(x,y) is the real part of the analytic
0
function fn g'(¢), it follows that -é—;{l n G(x,y)} is the

e}
real part, and - 5~ {£ n G(x,y)} the imaginary part, of the
Yy

analytic function %g{ﬂ n g'(£)}. Hence (8) becomes
- L Ung B (ki) = - g (x+iy))
- dg g YT T q g RS

Integration yields
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[

:m) or g'(x+iy)(3§+i}'/) = a,

x + iy

where o is an arbitrary complex number. A second integration
yields

g{x+ iy) = at+ B, (9)

where P is an arbitrary complex number which we choose so
that B =g(z) , for arbitrary z . It follows that

R L At
where g{f(z)} = a+ g(z).

It may readily be verified that equations (5), by multiplying
the first by X and the second by y and adding, imoly that
along C,

2 t

d .2 .2

0= —, JfG(x,y) X4y dty .

dt lt r
o

Hence, in the modified Euler equations (8), the parameter is a

constant multiple of the G-length along C , and since

0
f[ ](z) =z , the theorem follows.

COROLLARY 1: Let f be an analytic function whose
t
corresponding analytic Abel function is g, so that g{f[ ](z)} =

t
at + g(z) . Then f[ ](z) is a geodesic in the Riemannian
geometry defined by

J lg'(=)] eyt at, (7")
C

and f(z) is merely a uniform translation in this geometry.

t
Proof: By the theorem f maps f[ ](z) into f (z)
which is one unit, as measured by (7'), along the geodesic.

[t+1]
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t
COROLLARY 2: The generalized iterates f[ ](z) of
f(z) , as defined by the Abel, Schréder, and Bottcher
functional equations (1), (2), (3) for arbitrary « , are the

\/2. ,

extremals through =z of the functionals

/ ]g'(z)l'\/ 4y ar,

Vit

respectively, with the parameter t as the respective G-length

[0](2) to f[t](z).

g'(z)
g(z)

Ji( anz)

of the iteration trajectory from =z =f

Proof: Let gA and gB denote the Abel, Schroder,

[t]

s gS,
and Bottcher functions for f
t
(f[t](z) [ ] , and taking the logarithm of both sides

(z) , respectively. Then

ylelds {n gg {f[t](z Y} o= atﬂn gB(z) , that is, gs(z) =4n gB(z).

(1],

t
Similarly from g {f(z)} =« gs(z) , it follows on

t
taking logarithms, that £n gg {f[ ](z)} =tlna+{n gs(z) .
o
Hence gA(z) * Tna in gs(z) . Thus
(z) = In g _(z) Inin (z)
z) = . = .
gA In o gS “ In o gB

and the corollary follows from Theorem 1 by merely replacing
glq(z) by the appropriate expression.

COROLLARY 3: Given the iteration family of functions

[t

(z) , let gA(z) and gs(z) be corresponding Abel and

Schroder functions, respectively; that is

f[t](z) = g&i]{ at + gA(z)} = gls—i] {bt-gs(z)} (10)
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forreal b>0, b#1.

Then the curves (iteration trajectories) given parametrically by
(z ), for arbitrary fixed z ,
o

are common extremals of the functionals

: .2 .2 , 2 .2
jlgk(z)] N/ X +yT at, j{g's(z)] X4y dt,

where, however, no relation between the t in the Schroder
part of (10) and the corresponding G-length is implied.

Proof: As in the proof of theorem 1 the extremals are
given respectively by (see (9))

(-]

e vpy gg lat+ B}, (11)

g8

where t is the G-length as defined by the respective functionals.

In the first expression, set a=a and f = gA(z) . In the second
T

expression replace t by the parameter T givenby t=b and

choose B=0. a= gs(z) . Since b >0 is real, T 1is real.

(]

The extremals (11) then become f
proving the corollary.

(z) as defined in (10),

The above analysis may of course be generalized since
the Abel, Schréder and Bottcher equations are merely particularly
simple examples of the following more general method of finding

t t
f[ ](z) for arbitrary t. Let ¢(z) be such that ¢[ ]
for arbitrary t. If a function g(z) can be found such that

(z) is known

[n]

e(€2)} = o{g@)} » then g{2)) = oMle(a)

which suggests the definition

Al = el gy
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The Abel, Schroder and Bottcher equations arise when
Mz)=a+ 2z, &z)=a.z, and ¢(z) = 29, respectively.

t .
Finally we note that g{f[ ](z)} = ot + g(z) , by differenti-
ating both sides with respect to t, implies that

9
g' {f[t](z)} - 5. f (@) =a. (12)

3 0
Let t=0, and let Y f[t](z) = L(z) . Since f[ ](z) =z,

(12) becomes

g'(z) = T(2)

The function I(z) is used extensively by Jabotinsky [1] in his
study of generalized iterates. In particular, differentiating

f[s]{ f[t](z)} - f[t]{ f[s](z)}

with respect to t and setting t =0 vyields
0 [s s
—a—zf[ ](z) . L(z) = L{ f[ ](z)}

whence the one parameter family of functions (s the parameter)

w o= f[s](z) all satisfy the differential equation

dw

L{w) = I(z) . e

(13)

In terms of I1.(z), the functional (7) becomes

Y ;{ +.
Y
—_— dt .
J T

C
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