Glasgow Math. J. 41 (1999) 239-269. © Glasgow Mathematical Journal Trust 1999. Printed in the United Kingdom

WEIGHTED BIHARMONIC GREEN FUNCTIONS FOR
RATIONAL WEIGHTS

MIROSLAV ENGLIS
Mathematical Institute of the Academy of Sciences, Zitnd 25, 11567 Prague 1, Czech Republic
E-mail: englis@math.cas.cz

(Received 11 July, 1997)

Abstract. We present an algorithm for computing the Green function of the
weighted biharmonic operator A|P|"2A on the unit disc (with Dirichlet boundary
conditions) for rational functions P. As an application, we show that if P is a
Blaschke product with two zeros «;, oy the Green function is positive if and only if
() —an)/(1 —@jan)] < %«/ﬁ, and also obtain an explicit formula for the Green
function of the operator A|G|™2A, where G is the canonical zero-divisor of a finite
zero set on the Bergman space.

0. Introduction. Let D be the unit disc in the complex plane C and w € C*°(D) a
function positive on the closed disc D except for a finite set S of singularities inside
D, where it is allowed to have a zero; such functions will be termed weights. We will
be interested in the weighted biharmonic operators Aw~'A, where A is the Lapla-
cian. For f € C*(D), a function v is said to be a solution to the equation Aw™'Ay = f
if v e W,(D), the second-order Sobolev space on D, and there exists a function
F € W5(D) such that AF = f and wF = Av. It follows by the standard elliptic reg-
ularity theorems that in fact F € C*°(D) and v € C*°(D). The Green function u(x, y)
for the operator Aw™'A is the solution to the boundary value problem
{ Aow(x) " Agu(x, y) = 8(x —y) (8 is the delta function), 0.1)

u(x, y) = Veu(x, y) =0 for x € oD, '

for each fixed y € D. This must again be understood in the sense that u, = u(-, y)
belongs to W9(D) and

Auy = w((, ) +1y), (0.2)

where I'(x, y) is the ordinary Green function for the Laplace operator A and f, is
harmonic on D. By elliptic regularity, one then has u, € C*(D\{y}) N C'(D) and, as
Aw~'A is properly elliptic on any domain obtained from D upon deleting suffi-
ciently small discs around each point in S, also u, € C*(D\(SU { y})) [6, Theorem
7.36]; thus in fact

u(-,y) € C*MD\{yh n (D), (0.3)

and also the function f; in (0.2) belongs to C>(D). Standard arguments show that
the Green function, if it exists, indeed does the job we expect it to do; that is, for
f€ C®(D) the convolution with u gives the solution v € C*(D) to the equation
Aw~'Ay = f that vanishes on the boundary together with its first order derivatives;
this justifies the name.
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Quite recently, a lot of attention has been attracted by the problem of positivity
of these Green functions, for various weights w. The motivation for this comes
mainly from applications in the theory, initiated by Hedenmalm, of contractive
zero-divisors and factorization of functions in Bergman spaces; cf. [2], [3], [8].

Namely, for a finite sequence & = {oy, ..., a,} of points in D, let N'= A be the
subspace of the Bergman space A*(D) = {f € L*(D) : / is holomorphic on D} con-
sisting of functions that vanish at «, ..., @, (counting multiplicities), and G = G4
the function in the unit ball of A' which maximizes Re f(0) among all /'€ N with
I/l < 1

GeN,|G| <1, ReG(0)= max{Ref(O) SeN IS < 1}. (0.4)

(If some of the points «; coincide with the origin, this has to be modified by taking
instead Ref)(0), where m is the number of occurrences of 0 in the sequence
ay, ..., o,.) It turns out that these functions, called extremal functions of the zero
sets «, share many properties characteristic for the Blaschke products in the Hardy
space H?> on the unit circle. More precisely, the function G vanishes precisely at
o, ..., a, in D (counting multiplicities), and for any '€ N one has f/G € A*(D) and

1761 <11/ (0.5)

that is, G is a contractive divisor of A into 4%(D). Of course, one cannot expect the
analogy to go very far. For instance, the < sign cannot be replaced by equality in
(0.5), and also the assignment oG4 is not multiplicative; i.e. it is not true that
Guaup = GoGg. However, one can still hope for a somewhat weaker property than
multiplicativity of G, to be valid, namely, the domination property. The latter means
that for any zero-set & which is contained in another zero-set 3, it is true that for all
f € Ng we have

I1/7Ggll = 1 //Gll- (0.6)

The original proof of (0.5) by Hedenmalm proceeded via an involved explicit
calculation with power series. Later, a simpler proof was found by Duren, Kha-
vinson, Shapiro and Sundberg [2] which established (0.5) as a consequence of the
fact that the Green function for the biharmonic operator A% on D is positive. By a
slight modification [8] their argument also shows that (0.6) holds for a given finite
zero-set & and any finite zero-set O « provided that the Green function for the
weighted biharmonic operator A|G«| A on D is positive. With minor modifica-
tions, the whole theory also extends to weighted Bergman spaces A*(D, p) =
{f € L*(D, p) : f'is holomorphic on D} with suitable weight functions p. Here “sui-
table” means, roughly, that (i) the space A%(D, p) contains all polynomials, (ii) they
are dense in it, (iii) the reproducing kernels K(-, y) of A*(D, p) extended to a con-
tinuous function on the closed disc D for each y € D, (iv) K(-, 0) does not vanish in
D, and (v) for a zero set « consisting of a single point, the corresponding extremal
function G, (defined again as the solution of the extremal problem (0.4), but with
the norms being taken in A%(D, p)) vanishes at that point only and nowhere else in
D. Of course, (i) is just equivalent to p being integrable over D; (ii)—(iv) are auto-
matically fulfilled if p is radial, i.e. depends only on the modulus |z|; and (V) is
known to hold whenever logp is subharmonic, and also, for instance, for
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o(z) = (1 — |z]?)? for 0 < ¢ < 1 (but not for ¢ > 1). An argument as in [2] then shows
that, if the Green function for the operator A(p|K(-, 0)]*) "' A on D is positive, (i)—(v)
already imply that G, vanishes precisely on « in D for any finite zero-set «, that it
extends continuously to D and has no zeros on 9D, and that an analogue of (0.5)
holds on A4%(D, p). The contractive divisor is then Gu(z)/K(0,0)/K(z,0), which
reduces to a constant multiple of G if the weight p is a radial function. Similarly,
modifying the procedure in [8] in an obvious way, it can likewise be shown that (0.6)
holds for a given finite zero-set o« and any finite zero-set § O « on A*(D, p) with
“suitable” weight p provided the Green function for the weighted biharmonic
operator

AplGalH) ' A (0.7)

on D is positive. (Taking « to be the empty set, Gy = K(-, 0)/,/K(0, 0), and so we
recover the previous operator A(p|K(-, 0)]*) "' A as a special case.)

For the unweighted biharmonic operator A> on a domain € in the plane, the
question of positivity of the Green function is of an old date. In that case, the Green
function is related to bending of a clamped plate of the shape of Q and to creeping
flow on 2, and the question concerning its positivity comes back to Hadamard and
Boggio (see the discussion in [9] for more details and references); the answer is
known to be affirmative for a few domains (the disc, Pascal’s limagon, images of D
under polynomial conformal maps ¢ that are (coefficientwise) sufficiently close to
the identity [16]) and negative for many others (sufficiently eccentric ellipses, suffi-
ciently elongated rectangles, etc.; if we allow © to be unbounded or multiply con-
nected, we can also add the infinite strip and all annuli [5]). Observe that if ¢ is a
conformal map of D onto a simply connected €2, the pullback via ¢ of the Green
function for A? on € is the Green function for Al¢/|™>A on D; thus, some of the
results just mentioned can also be interpreted as results about weighted biharmonic
operators Al¢'|2A on D. For radial weights w, a number of results have been
obtained by Shimorin [12], [13], [14] and Hedenmalm [8], [10] for w(z) = (1 — |z|?)7,
—1 < ¢ <1, and by Shimorin [15], for w radial, integrable, log-subharmonic and
sufficiently smooth. However, apart from the computation of Hedenmalm [9] for
w = |z|%, ¢ > —1, and his formula (containing a small error) for the Green function
of A|G«|>A for p = 1 and « consisting of a single point in D [8], to this day nothing
seems to be known about the weighted biharmonic Green functions and their posi-
tivity for weights of the form w = | f|* with fa holomorphic function which vanishes
somewhere in D. In particular, the question of the positivity of the Green function
for the operator (0.7) even in the simplest unweighted case p = 1 remains open at
present.

In this paper we will consider weighted biharmonic operators on D of the form
A|P|2A, where P is a rational function. We present an algorithm which, for a given
P, makes it possible to calculate the corresponding Green function explicitly; more
precisely, the calculation is reduced to solving a system of m linear equations for
certain coefficients, where m is the number of points o in D for which either
P'(@) =0 or P(1/@) is a pole (multiple zeros and poles being counted in an appro-
priate way). Further, we can rigorously prove the existence of the Green function for
any rational P. Note that for the operator A|P/|"2A, being singular and hence not
elliptic in general, this does not readily follow from general PDE theory. All this
is done in Section 1. As a first application we consider in Section 2 the case in which
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P is a Blaschke product, and derive an explicit formula for the Green function if P is
of length two (Theorem 2.4); it turns out that the Green function is positive if and
only if the hyperbolic distance of the two zeros does not exceed %m It is con-
ceivable that for a general Blaschke product P the corresponding Green function is
positive if and only if the zeros of P are not spaced “too widely apart” in D. The
third section is devoted to the most interesting case of the operators A|G4| A,
where G, are the extremal functions of finite zero-sets « introduced above (p = 1).
We even consider their more general analogues obtained upon replacing Re f(0) by
Ref(ap) in (0.4), for some oy € D. Our main result is a formula for the Green func-
tion in terms of the Gramm matrix (Gj) = {(1 — akaj)*z}: 4o and its inverse (4;)
(Theorem 3.1); this formula also admits an interesting rephrasement in terms of
Toeplitz or “model” operators (truncations of the adjoint of the Bergman shift to its
invariant subspace) on 4%(D). For the most part it is assumed that the points

o, - ..,a, are mutually distinct, yet the operator rephrasement just mentioned
implies immediately that the formula, in fact, extends by continuity to all
(o, a1, ..., a,) € D' and further the resulting Green function depends con-

tinuously on the ;. We also establish the positivity of the Green function in the case
n =1, for any o, a; € D (thereby extending Hedenmalm’s result for ¢y = 0 men-
tioned above), and for n =2, ¢y =0, and any o] = —ay € D. For n > 1, we are
unable to prove the positivity in general, but indicate that it is probably a con-
sequence of a much stronger assertion concerning positive-definiteness of a certain
quadratic form o(¢, &) in (n+ 1)* variables &, j,k=0,1,...,n (Conjecture 3.5)
whose coefficients are associated with Gy and Ay in a fairly simple way.
Throughout the paper, it will be convenient to normalize the Lebesgue measure
so that D has area 1 (instead of 7) and to adopt a slightly nonstandard definition of
the Laplacian which differs from the usual one by a factor of 4. This has the
advantage that the constant function one has unit norm in 42(D), A|f]> = | f'|?, for
any holomorphic f, and the Green function for the operator A on D is simply
x—y
1 —7yx

['(x,y) =log

without the factor 1/4x in front.

1. Preliminaries. Let P be a nonconstant function holomorphic on D, p = P’ its
derivative, S = {z € D : p(z) = 0} the zeros of p in D, 8 = 9/0z, d = 9/0z the Wirtin-
ger operators, A = 99 the Laplacian divided by 4. We shall assume throughout that
S C D; i.e. that p = P’ has no zeros on the boundary aD (so that S is a finite set).

The Green function for the weighted biharmonic operator Alp|™2A is, as
observed in the Introduction, a function u(x,y) which for y fixed is in
C'(D) N C>*(D\{y}) and satisfies the equation

2
Au(x,y) = |P(x)|2(10g lx__;;‘ +2Re /10(x)> Vx € D\{y}, (1.1)

for some hy holomorphic on D, and the boundary conditions

u(x,y)=0 Vx e aD, (1.2)
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%(x,y)za—Z(x,y)zo Vx € dD. (1.3)
0x ox

The function Ay depends on y.
Introduce the notation
P(x) = P(x) — P(y).

RRSCEE) (R o)
1=yl
Again these functions depend on y even though this fact is not explicitly reflected by
the notation.
Let O stand for the set of functions holomorphic on the closed disc D; (that is,
holomorphic on D and C* on D).

PROPOSITION 1.1 If the Green function (1.1) exists, then for each y € D there are
functions H and h holomorphic on D such that

u(x, y) = [P(x))? logl — Y 2 4 2Re[h(x) — B(x)H(x)] V¥x e D. (1.4)

The functions H and h are uniquely determined up to a transformation

H—H+n+i0P, h—h+iE+7P, ne C,&,0 € R, (1.5)
and satisfy
Re[h —PH] =0 on dD, (1.6)
@—ﬁH’—pH—i—h':O on 4D, (1.7)
W{T—H/ e 0. (1.8)

Conversely, for any two functions H, h satisfying (1.6)—(1.8), (1.4) is the Green func-
tion for Alp| > A.

Proof. Let H be a primitive to the (holomorphic) function P/¢ — phgy, where hy is
the function appearing in (1.1). Since

Ay |P| log

+2Re[p73/§] (1.9)

2
‘ IpI? log
yx

1 - 1 -

A(PH + PH) = 2Re [%P - Iplzho},

we see that the difference of u(x,y) and [P|*log|; = |> — (PH + PH) must be a
harmonic function, and hence of the form /4 + & for some holomorphic function /.
This proves the existence. The uniqueness claim is straightforward.
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Since for x € aD

u(x, y) = 2Re[h — PH],

_IPP

; —PH — pH+ I, (1.10)

ou
&(-xv y)

ou . :
—Z A (since (1.4) is real-valued),
ax ox

the equalities (1.6) and (1.7) follow from the boundary conditions (1.2) and (1.3).
Also (1.8) is satisfied as P/¢ — H = phy, in view of the definition of H.
The converse part is immediate from (1.9) and (1.10). [

Of course, the functions H and 4 again depend on y.

We remark that it is immediate from (1.4) that for y fixed u(x, y) is in fact real-
analytic on D\{y}.

Let G = CU {oo} denote the Gauss sphere. For a meromorphic function f and
a € G we denote by pmult(f; @) the multiplicity of the pole of fat a (pmult(f; a) =0
if there is no pole); similarly zmult( f; a) = pmult(1/f; a) denotes the multiplicity of
the zero at a.

PROPOSITION 1.2 Suppose that the Green function (1.1) exists and that P is a
rational function. Then H and h are also rational functions and Vz € G\D,

pmult(H; z) < max(pmult(P; z), zmult(p, 1/2)),

pmult(/z; z) < max(pmult(P; z), zmult(p, 1/2)). (11D
Proof. Define

K@) =H{1/2). Q) =P1/2). i) =h{/2). (1.12)

These are holomorphic functions on G\D; on the unit circle we have
K@) =HE). Q@) =PG). hz)=h). (1.13)

The conditions (1.6) and (1.7) can thus be rewritten

h+h=QH+PK onaD, (1.14)
pK:PTQ—QH’+h’ on dD. (1.15)

The LHS of the last equality is a function meromorphic on G\D, while the RHS is
meromorphic on D; it follows that both sides extend to meromorphic functions on
G; that is, rational functions. Hence (1.15) prevails on all of G. By (1.8), (1.15) can
be rewritten as

K=Qhy+H/p YzeD
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with /g holomorphic on D, and it follows that
pmult(K; z) < max(pmult(Q; z), zmult(p, z)) Vz € D.

Passing back to H via (1.12) gives the first inequality in (1.11). This settles H. From
(1.15), we now see that /' is also a rational function. Write

¢
h/ — J

@) Z .
where r(z) has only poles of order at least two and z;, j=1,2,..., are the simple
poles of /' indexed so that 1 < |z1] < |z;| <.... Let Q be the domain obtained by
deleting from G the line segments [z;, oo] and [0, 1/Z;] (j = 1,2, ...). On © we have

h(z) =) cjlog(z — z) + R(2),
J

1 —73z; ~
ZjZ—i—R(Z),

z

h(z) = ¢log
J
where R(z) and R(z) := R(1/Z) are rational functions. In view of (1.14) it follows
that

1—-Zz . .
I~ defines a rational function S.

S(z) = Z cjlog(z — zj) + ¢ log -
7

If ¢; #0, then as z — z, S(z) = oo and (z — z;)S(z) — 0; this cannot happen for a
rational function. Thus ¢; = 0. Proceeding by induction we show that all ¢; = 0, so
that /' has no simple poles and / is a rational function as well. By uniqueness, (1.14)
prevails on all of G; consequently, for any z € G\D we have

pmult(/; z) = pmult(h + I z) = pmult(PK 4+ QH; z) < max(pmult(P; z), pmult(H; z))

and the second claim in (1.11) follows. []

THEOREM 1.3 Let P be a nonconstant rational function with no poles in D. Then
the Green function for the weighted biharmonic operator A|P'|72A exists.

Proof. By Proposition 1.1, it suffices to find (for each y) H € O such that, in the
notation (1.12),

ye(?ande—i— QH’—P—feo. (1.16)

Indeed, let 4 be the holomorphic primitive to pK + QH' — PQ/¢ on D, normalized
so that

Re h(1) = Re[P(1)H(1)). (1.17)

Then (1.7) and (1.8) hold, and by the equalities (1.10), Re[s — PH] is constant on
aD. In view of (1.17), this constant must be zero, so that (1.6) is satisfied as well, and
the existence of the Green function follows by Proposition 1.1.
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By Proposition 1.2, it further suffices to look for H among rational functions
satisfying (1.11); adjusting the n in (1.5) if necessary, we may also assume that
H(y) =

For simplicity, we treat in detail only the case when P has only simple poles in G
and p = P’ has only simple zeros in D. The general case involves no new ideas, only
more technicalities.

Thus let a, oz, ...,y be all the points z in D for which either p(z) =0 or
P(1/Z) = oc0; we can assume that «f,...,q, are all the zeros of p in D and
1/@py1, - -, 1/ay are all the poles of Pin G (0 < M <n < N);clearly N > 1as P is
nonconstant. The function P(z) = P(z) — P(y) has the same poles as P and, further,
a zero at y; it follows that it is of the form

ai(z
o= Z(l el (119

for some numbers g; (depending on y), where
Ctj:O, j:1,2,...,M,
a#0, j=M+1,...,N.

In view of the observation in the penultimate paragraph, we shall look for H in the
form

si(z
e = Z(l =) (119

where s; are coeflicients to be determined. Observe that
N

Ho=Y —% 1.20
2) ;(1_0_6_/2)2 (1.20)

Introduce the quantities

Plew) _ 1=y ¢ %
fox) 1 =Yoo= (1 — @)1 — @)

Ry = (1.21)

Since all the zeros of p in D are assumed to be simple, the first condition in (1.16)
takes the simple form

H(a) =R, (k=1,...,n);

that is, by (1.20),

N

J=1

where we have introduced the matrix
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Gy = (1 — @og) 2. (1.23)

The only possible poles of K and Q in D are at z = oy (k =1, ..., N); thus the sec-
ond condition in (1.16) is equivalent to

lim (z — ) (pK + QH' = PQ/0) =0 (k=1,....N).

Since
lim (z — ox)K(z) =5k, lim(z — o) Q(2) = a,
I I
this gives
Ple)Si + aH (o) = ax Ry
or
N
Pl)Se +ax Yy Gysi=aRe (k=1,...,N). (1.24)
j=1

For k =1, ..., n these equalities follow from (1.22), since p(ax) = 0; thus we need to
consider them only for n < k < N.
Consider quite generally the system

N
ZGk/S/:Rk (k=1,...,n),
Jj=1

N
@ 'pleoi+ ) Gysy=Re (k=n+1,...,N),
J=1

N (1.25)
Zikﬂ/ =R (k=1,....n),
j=1
_— N J— _
a ' padsi+ Y Gyoy=Re (k=n+1,....N),
j=1
of 2N linear equations in 2N unknowns sy, ..., Sy, 01, . .., on. Assume that we know
that all solutions of the corresponding homogenous system
N
D Gysi=0 (k=1,....n).
j=1
N
a;'plaot Yy Gys;=0 (k=n+1....N),
! (1.26)

N

ZE@UJ‘:O (k=1,...,n),

J=1

N
ag' plen)si+ Y Gyoy=0 (k=n+1,....N),
J=1
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are given by

s; = caj, ;= —c@, (c € C). (1.27)

By a familiar theorem of linear algebra, it will then follow that the system (1.25) is
solvable if and only if

N N N
ZC_CZJRJ + Z(—Eaj)ﬁj =0 Vce C; i.€. Za]ﬁj (S R,
j=1 j=1 j=1

and in that case a solution will exist that satisfies oy = 5; and will be unique up to a
transformation s —>si + ifay, oy — oy — i0ad; (6 € R). As in our case

N N N —

_ 1 - aid;
SR =y U -bPa
k=1

J,k=1 (1 - aky)(l - yaj)(l - Ekaj)

is indeed real (even positive), we shall thus obtain a solution to (1.22) and (1.24), and
hence also the function H, which will be unique up to a transformation
H— H + 0P, in agreement with (1.5); this will complete the proof.

Now suppose that (s, o) is a solution to the homogenous system (1.26). Let H be
the corresponding function given by (1.19), H the analogous function with o; in the
place of s;, and K and K the corresponding functions associated to H and H by
(1.12). Reversing the procedure used above to obtain (1.22) and (1.24), it is readily
seen that the system (1.26) is equivalent to four conditions

H/peO,
pK+QH €0,
H/peo,
pK+ QH € O.

(1.28)

Let /4 and h be holomorphic primitives to pl% + QH' and pK+ OH', respectively,
normalized so that the function

y=PH+PH—h—h
vanished at z = 1. In view of the second and fourth conditions in (1.28), we have

dv = dv = 0 on 9D; it follows that v is constant on dD, and owing to the normal-
ization this constant must be zero. Thus

y, Vv =0 on dD. (1.29)

Let H = pfand H = pf; withf;f'e O. Then, by Green’s formula and (1.29), we have

:med+h={ﬁ¥-ﬁ+ﬂa

D D
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since Av = pﬁ +pH = |p|2(f+f). It follows thatf—i—]_’: Oorf= —f: cl, for some
complex number ¢. This means that H' = ¢p, H = —¢p and H = ¢P, H = —¢P, so
that s = ca, @ = —¢a, and (1.27) follows. This completes the proof.

In the general case when P is allowed to have higher-order poles and p multiple
zeros in D, the equations (1.22) and (1.24) and the system (1.25) will get somewhat
more complicated, since the higher derivatives of p and P/¢ at various oy enter the
picture; however, the reduction of the corresponding homogenous system to the
conditions (1.28) as well as the subsequent argument with the function v work
without change so that the only solutions to the homogenous system are again given
by (1.27) and the solvability of the corresponding non-homogenous system follows
by a lengthy yet routine calculation. As we won’t need this case in the sequel, we
skip the details and leave them to the interested reader. []

Recall that the Green function for the ordinary (unweighted) biharmonic
operator A is given by the formula

2
+(1 = |x[H(1 - |y|2)];

x j—
Ulx. ) = [|x — W log=—=

-y
see e.g. [7, p. 272].

PROPOSITION 1.4. Let P be a nonconstant rational function holomorphic on D. For
y € D denote

k(y) ;= max(pmult(P; 1/y), zmult(p; y))

and let N = ZyeD k(y); (this is a finite sum). Then the Green function for the weighted
biharmonic operator A|P'|72A is of the form

P(z) — P(y) (1= 1z*(1 = [P’ R(z, 2, ,7)

2
uz,y) = ’ﬁ Uz, y) + 5
'HyeD(l - 72))((}/) HyeD(l - )_/y)K(y)

where R(z,Z,y,¥) is a polynomial of degree at most N — 2 in each of the indicated
variables (R =0 ifN < 2).

Proof. By Proposition 1.2 the functions H, / in (1.4) are rational functions with
no poles in D and with a pole of multiplicity at most «(y) at each 1/y (y € D).
Consequently, they can both be expressed as

a polynomial in z of degree at most N
[T,ep(1 =72 ’

(the product in the denominator has only finitely many terms different from 1). Since
pmult(P; 1/7) < k(y), the function P must likewise be of this form, and P/(z — y) is
even of the same form with the numerator of degree at most N — 1. Substituting this
information into (1.4), we see that the difference

2

2
Uz, p) = —(1 — 1211 = [y —(PH + PH) + (h+ 1)

u(z. ) — ‘i

=y =y

(1.30)
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must be a rational function of z, Z of the form
Pz(Z, 2)

2
HyED(l _ 7Z)K(y)

for some polynomial P,(z,Z) of z and Z of degree at most N in each of these two
variables. This expression must in addition be symmetric in y and z, since the Green
functions u and U are, and hence so is the difference on the left-hand side of (1.30).
Thus the right-hand side of (1.30) must actually be a rational function of z, z, y and
y of the form

Ps3(z,Z,»,7)
Myen( = 727 T, en1 = 20|
yeD v yeD vy

for a polynomial Ps3(z,Z, y,y) of degree at most N in each of the indicated variables.
Finally, as both u and U vanish on the boundary (off the diagonal z = y) together
with their gradients, the same must hold for the difference (1.30) and, consequently,
also for the polynomial in the numerator of the last formula. Thus P; can be
factorised as

(1 =121 = [PI)*R(z, 2, , 7)

for a certain polynomial R of degree not exceeding N — 2 in each variable. The proof
is complete. []

PROPOSITION 1.5. Let P be a non-constant rational function holomorphic on D.
Assume that P has only simple poles in G and p = P' has only simple zeros in D. Let
ay, ..., ay be the points in D for which either p(z) = 0 or P(1/Z) = co. Then the Green
function for the weighted biharmonic operator A|P'| 7> A is given by

2

P(x) — P(y)

) = PO Uy 4 = PR = P e 3D

with
o(x,y) = ,;N:I = ;ji)((y : D o (1.32)
= XN: AskLy (1.33)

sk (=)l —aX)(1 —ary)(1 - ayy)’

where ejx are rational functions of y,y and Ajxpy are constants. Let further
a, Ri(j=1, ..., N) be the numbers defined by (1.18) and (1.21), respectively, and (s;) a
solution of the system (1.22), (1.24). Then

oo 1 — yP)(1 — @yak)asa
ex(y,y) = JEK |:( [yI7)( KAk

=P —gax)l A—apd —axy) (agss+ aﬁk):| (1.34)
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and Ajxpy can be obtained by taking the limit
Ajgiv = }li]f/f_l (I —ary)(1 —auy)esx(y, y)- (1.35)
—1/ay
F=1/ay

(If L# M,y and v should be treated formally as two independent variables.) In
particular,

E?JK:OifC(JOlK:O, AJKLMZOifOtJOlKOlLOlM:O. (136)

Proof. In view of the preceding proposition the Green function is of the form
(1.31) with

R(x.X,y.)
N - N
[T= (1 —@x)(1 —@y)

R(x,X,y,7) being a polynomial of degree at most N — 2 in each variable. For an
arbitrary polynomial f of degree less than N — 1, we have the standard partial frac-
tions decomposition

S 3 A4
L0 -z = 1-ax
for appropriate constants A;, and 4; = 0 if «; = 0. Applying this procedure repeat-
edly to each variable, we infer that these are the partial fractions decompositions

(1.32) and (1.33), and that (1.36) holds. The coefficients e,x, 4,k can be recap-
tured by taking the limits

R(x, & y,n) - (1 —amx)(1 —agé)

esx(y,m) = lim - - : (1.38)
=TT (1= @01 = )1 — @)1 — am)
Asxey = lm (1 —apy)(1 —aym) - esx(y, 1)- (1.39)

n—1/aps

By virtue of the well-known uniqueness theorem (cf. Bochner and Martin [1, Pro-
position 11.4.7]), a holomorphic function f{x, y) in C" x C" is uniquely determined
by its restriction to the “anti-diagonal” x = y. In our case, this means that we can
obtain R(x, &, y,n), ejx(y, n), etc., from R(x, X, y,¥), e;x(y,y), etc., by treating x, X
and y,y formally as independent variables, and then replacing each occurrence of X
by & and of 7 by 5. In particular, (1.39) is just (1.35), and (1.38) can be rewritten as
(in view of (1.30), (1.31) and (1.37))

(I —ax) — ax§) W(x, §)

HODZ e (= xR0 — DY
where
W, 8) i (1 = IyPY1 = 38) 3 O = P HE ~ PEOH() + hx) + i
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Let us evaluate this limit. Owing to (1.36), we can assume that ajagx # 0. From
(1.18) we see that

lim (1 =) PO __ar
x—1/ay -y 1 —oyy
,P(%) . /j ag
lim (1— = lim (1— _ ,
A O ; (T —a@)(1—ay) 1—axy

and similarly from (1.19)

lim (1 —ayx)H(x) =

x—1/a;

and similarly for H(€), and also clearly

lim (1 — @)l — axb)h(x) =0

x> /@61 jag

since A(x) does not depend on &; similarly for @ Putting these pieces together,
(1.34) follows.

2. The case of Blaschke products. We now investigate the Green function of
A|P'|72A for P a Blaschke product. Observe that, as we have already remarked in
the Introduction, if ¢ is a conformal map of D onto a Jordan domain €, then the
ordinary biharmonic operator A? on Q is transformed by ¢ into the weighted
biharmonic operator A|¢'|2A on D (cf. Proposition 2.6 below). For ¢ an arbitrary
holomorphic function on D, the Green function for A|¢/|">A on D can thus be
interpreted as the pullback of the ordinary (unweighted) biharmonic Green function
on the Reimann surface 2 = ¢(D). For ¢ a Blaschke product, in particular, we are
thus dealing with the Green function for A% on a certain Riemann surface €2 sheeted
over the unit disc D (with branch points at the zeros of ¢').

Let B be a finite Blaschke product. The following lemma is very probably not
new but its brief proof is included here for convenience.

Lemwma 2.1. If B is a Blaschke product of degree n, then B' has precisely n — 1
zeros in D, counted according to multiplicities.

Proof. Let ay, ..., a, be the distinct zeros of B and ky, ..., k;, their respective
multiplicities. Since for Blaschke products B(1/X) = B(x) for any x, the function
o(x) := xB'(x)/B(x) enjoys the symmetry property

o(x) = o(1/%) VxeG. .1)
If B(0) # 0, and
- (1 — lo)x
o(x) = ]X: jm (2.2)
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then o is a rational function of order 2m, with simple poles at o; and
1/@,(j=1,...,m). Thus o has 2m zeros in G; as o(x)=Y.", kil — |a;|*)/
|l —@x|> > 0 on the unit circle, it follows from (2.1) that there must be m zeros in
Q :=D\{a, ..., a,} and the other m in G\D. Since on  the zeros of zB' and of ¢
obviously coincide, we see that zB' has m zeros in 2 and so B’ has m — 1 zeros there.
Together with the zeros of multiplicity k;—1 at each o this gives
(m—1)4+m—m)=n—1zeros of B in D.

If B(0) =0, then say, o) =0, and (2.2) shows that o is of order 2m — 2, with
simple poles at ; and 1/@; for j # 1. Thus it has 2m — 2 zeros in G of which, by (2.2)
again, m — 1 lie in Q := D\{0, o, ..., a,,} and the other m — 1 in G\D. As before
this implies that zB' has m — 1 zeros in 2, so that B" has m — 1 zeros in  as well and
together with the zeros at 0,ap,...,0,, this again yields a total of
(m—m)+(m—1)=n—1zeros of B in D. []

The same argument also shows that B’ has m — 1 zeros in G\D (with at least a
double zero at infinity) if B(0) # 0, and m zeros there (with no zero at the infinity) if

B(0) = 0.

COROLLARY 2.2 Let P be a Blaschke product of length n, with distinct zeros
ai, ..., o of multiplicities ki, ..., kn (3L, kj = n), respectively and /31, .oy By the
distinct zeros of P’ in D\{«ay, .. am} wzth multiplicities ooy (Z/ =m—=1).

Then the Green function of the operator A|P|72A on D is given by

(1 =121 = [y’ R(z, 2, »,7)

U(z y)+ — — 5
)n;;a —@2)"(1 =) [TL, (1 = B2)'(1 = B)l

u(z.y) = ‘P(Zi -

with R(z,Zz,y,y) a real-valued polynomial, symmetric in z and y, of degree not
exceeding n +m — 3 in each variable (R = 0 if n+ m < 3).

Proof. In the notation of the preceding section (o) =ki(j=1,...,m),
k(B) =16(j=1,...,q), and «(y) =0 for all other y in D. Thus N=n+m — 1, and
an application of Proposition 1.4 completes the proof. []

COROLLARY 2.3. For P(z) = (¢ € D), the Green function of A|P'|72A is
equal to

_1 a7’

P(z) -

2
uz, y) = ' Uiz, y).

In particular u(z, y) > 0, Vy, z € D.
Proof. Indeed, in this case n = m = 1, so that R(z,Z,y,7) = 0. ]

The positivity of u in the last case has been established by a different method in
[4]; in fact it is a simple consequence of the positivity of U(z, y) and the transfor-
mation formula for the weighted biharmonic operators under a conformal mapping
mentioned at the beginning of this section. Similarly, for P a Blaschke product with
a single zero of multiplicity n at « € D the corresponding polynomial R has degree at
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most n — 2; for « = 0, a formula for u in this case has been derived in [9], while the
positivity (for any «) was also proved in [4]. The first nontrivial case is thus that of a
Blaschke product P with two different single zeros in D.

Let us first consider two zeros symmetric with respect to the origin.

THEOREM 2.4. Let P = (2> — A?)/(1 —2222) be a Blaschke product with zeros
+A4, A € D\{0}. Then the Green function of A|P|>A is given by
U(z,y)

(=272 =P a4t
(1= A 21— A2 24— 14

Uz, y) = ‘P (@) -

Re[4 — |A[* + 84 yz + 4|41,

Proof. In this situation we have

1— 14 (2 — (1 — |4
———— P=P(z)— P
(1 =422 G- = (1—A2) (1 -4

and so we are in a position to apply Proposition 1.5, with N =3, a; =0, ap = A4,
a3 = —A, to obtain

a =0, a=(1—A"/Q24) =1/ple), a3=1/p(ez) = —a. (2.4

The Grammian (1.23) satisfies Gy = G33 = (1 — |A|?) ™2, Ga3 = Gz = (1 + |4>) 72,
Gy = Gyij = 1, so that the system (1.22), (1.24) takes the simple form

S1+ 8 4+ 53 = Ry,
S2/d + aafs) + Gnsy + Gazss] = Ro,
53/a3 + asls1 + Gy + Gzss] = Rs,

with R;, Ry, R; given by (1.21). Subtracting appropriate multiples of the first equa-
tion from the other two yields

S1+ 8 +s3=k,

= Z[@ 41)(1 +|A|2)2a—i+(2+|A|2)(1 A *] ki,

§3 2 2 252 2 2 2 53
[(2+|AI YA — A1) =+ Q2 — [A])(1 + 14]%) —] = ka,

az a3

where
YT — 1414
ki Ry = YDA = A
1—A)?

ki = Ry — @R =0 (1 —141H01 +|J/|2+|A|2Ay A1)

21 = A'y)(1 - 34)
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1 — P = 1490 + |y)? — |4 Ay — |A*y)?
k2::R3—a3R1:( [y — | I)(_2 yI©— 14|74y — | IIyI)'
2(1 = A" y*)(1 +74)

Denoting § := 2 + ;—: and R := ;—22 — ‘;—2, it follows that

S = (k1 + k) — S, (2.5)

R = (ky — k2) ~ 514PG ~ |4F)R. 2.6)

By Proposition 1.5, the Green function for the operator A|P|>A is of the form
(1.31), where

en €33 €23 + €32
1 —Az? |14+ 4z? (1 —Az)(1+42) (1 4+ Az)(1 — 43)’

c(z,y) = | (2.7)

with ej given by (1.34). Let us evaluate ey, for instance. We have

_ _ fS2 S 2R+ﬁ+S+§
D)+ a5 = ||| —+=) = |l ———.
ar as 2

Adding up the equation (2.6) and its conjugate shows that

2 252
oD

_ (=P — 4P
11— A%y

(L4 14 + yP? = 1A yHGA + Ap),

and using (2.5) it transpires that

(1= 0 = 141" [2(1 AP + P~ APYP0A + A) 1]‘

R+R+S+S= —
11— A2 Q2 — AP+ 141+ (917

Inserting this expression into (1.34) and (1.35), and using (2.4), we arrive after some
simplifications at the formula
(=AY 2+ 24y 4254 — AP
PR - ayP

In a completely similar manner it can be shown that

(1= A" 2—24y —2y4 — |4
€33 = . —
P82 - 14P) 11— 422

and

(=A%) 2+ 24y — 254+ |AP
82+ |4) 11— A2 '

e =exn
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(We omit the details.) Substituting these three formulae back into (2.7), we finally
obtain after a short calculation

) 84— 141 _

—4Re[4 — |A|* + 84%yz + 4]|4|*y7),
(1Al (4 — 4] y [4]"yz]

oz, ) |1 = A2 - 1 — A%y

and the assertion of the theorem follows. []

COROLLARY 2.5 In the situation of Theorem 2.4, the Green function u is positive on
D x D if and only if |A|* < 2/5.

Proof. For |4] < 4/2/5 and any z, y € D, we have

Re(d — |A|*+ 8A4%yz + 4|41*y2) > 4 — |A|* = 8|47 — 4|4]* = 4>+ 2)(2 — 5|41%) = 0

and the positivity of u follows from the well known fact that U(z, y) > 0 on DxD.
For the converse, let us take y = —z € D. Since P is an even function, the first
term on the RHS of (2.3) then disappears, and we get

O E RO s

4 2.2 4,_12
=4 _2222|42(4_|A|4)Re[4—|/4| — 84222 — 4|41* |22,

u(z, —z)

As z — A/|A| € 9D, the expression in the square brackets tends to
4—5|A* = 8|4 = (4] +2)(2 — 5|4

which is negative if |4|> > 2/5. Thus for |A| > /275, u(z, y) assumes negative values
in the vicinity of the point (4/|A|, —A/|A4]|) in DxD. ]

A similar argument as in the proof of Theorem 2.4 can be applied also in the
case of 4 = 0 (i.e. a double zero at the origin, P(z) = z?) which we have excluded so
far. The result is

1
u(z, y) =12+ UG ») + 50 = A = 1Y,

which, of course, agrees with the formula in [9] and also with the formula (2.3) if we
set A = 0; thus Theorem 2.4 and Corollary 2.5 remain valid for 4 = 0 too.

A simple conformal invariance argument frees us from the assumption that the
zeros be symmetric with respect to the origin and leads to the main result of this
section.

PROPOSITION 2.6. Let ¢ be a univalent holomorphic function on D and P a holo-
morphic function on ¢(D). Then the Green functions of the operators A|P'|">A on ¢(D)
and A|(P o ¢) | 2A on D are related by

uPo¢(x7 y) = MP(¢(X)1 ¢(y))
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In particular, if ¢ is a linear fractional mapping of D onto itself, P a Blaschke product
with zeros ay,aa, ..., and P, a Blaschke product with zeros ¢~ (o), ¢~ (2), ...
(counting multiplicities), then the Green functions up and up, are related by

up,(x, ) = Up(¢(x), p(»)).

Proof. Denote, temporarily, X :=¢(x) and Y:=¢(y). Since (Pog¢) =
@ - (P o) and A(Fo ¢) = |¢/|*> - (AF) o ¢ for any function F, we see that

I(P o @) |72 Asup(p(x), () = |P'(X) 219/ (%) 72 - 1§/ (x)* Axup(X, Y)

2
= (log X

1-YX

+2Re hO,P(X)> ;

whence

2

X —
AI(P o ¢)17 Aup(¢(x), () = Ay log|————

2

= I Axlogl—=
= ¢/ (X)*8y(X) = 8,(x),

where § stands for the delta function. Since up(¢(x), #(y)) together with its first par-
tial derivatives vanish on the boundary, it follows that up(¢(x), ¢()) is indeed the
Green function for A|(P o ¢)'|2A.

For the second assertion, just observe that P o ¢ is a Blaschke product whose
zeros coincide with those of P, (including multiplicities); hence, P o ¢ = ¢P,, for
some unimodular constant &, and the claim follows. []

THEOREM 2.7. Let P be a Blaschke product of length two with zeros a1, oy € D.

o] —0)

Then the Green function of the operator A|P'|72A is positive if and only if ‘ﬁ‘ =
£4/10=0.9035....

Proof. Choose a Mobius map ¢ (a linear fractional mapping of D onto itself)
that carries «, @y into a pair of points symmetric with respect to the origin, 4 and
—A, say. By the preceding proposition and Corollary 2.5, the Green function of
A|P|72A is positive if and only if |A4|> < 2/5. Since Mébius maps preserve the
hyperbolic distance, we have

oap — Q3

_'A—GA)_ 2|4
T —A(=A)| 14141

1 —aan

Note that the last expression is an increasing function of |A| on [0,1]. Thus
|A| < 4/2/5 if and only if

o] — o) 2«/2/5 2
— | <= =2 V0,
1 —aan l+5 7

and the proof is complete. []

https://doi.org/10.1017/5S0017089599970957 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599970957

258 MIROSLAV ENGLIS

3. The case of canonical divisors. Let o, as, ..., o, be mutually distinct points in
D, A4*(D) the Bergman space of square-integrable analytic functions on D,
N ={fe 4*(D): fla;) =0, Vj} the subspace of functions that vanish at ay, ..., a,,
B a point in D\{«y, ..., «,}, p a nonzero multiple (say aj) of the orthogonal projec-
tion in A42(D) of the function (1 — Bz)~2 into A, and P the primitive of p normalized
so that P(0) = 0.

Recall that the function g.(z) := (1 — Xz)> is the reproducing kernel of 42%(D);

(f. gv) =f(x), ¥f € A*(D). By elementary Hilbert space geometry it therefore
follows that if ay is chosen so that ||p|| =1 and p(8) > 0, p will be precisely the
function G which maximises the value Ref{f) amongst all functions fe N of
norm not exceeding one:

Gup €N, Gapll = 1, Gaip (B) = max{Ref(B) : fe N, | fI < 1}.

In particular, for 8 = 0, G4, is Hedenmalm’s canonical zero divisor G for the zero
set @ = {ay, ..., a,} as discussed in the Introduction.
Since

Nt = span{(1 —wz) )= 1,2,....n},

we have
=34 3.1)
= (I —a2)
Z
P(z) = Z —an (3.2)
for some ay, ..., a,, where ay # 0, by hypothesis, and where we have set oy := 8. The

coefficients g; satisfy

D a1 —Foy) P =plax) =0 (k=1.2,....n),

=0

; (3.3)
>4l —@p) ™ = p(p).
=0
Also
n 1 .
PB) = (p.gp) = (P, 8+ Y axu/a0) = (p, o0 = plP/a. (3.4)
f=1
In other words if we denote by G the (n + 1) x (n + 1) matrix
G = {Gij}zj‘:o’ Gj= (1 —way) (3.5)
and let {A;}; _, be its inverse, then
2
a; = %Ajo. (36)
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In particular, |ag|> = ||plI> 400, So that we have

lao|? do do
=l = a= Ay,
IpIP =" pB =0 =S4
It is part of Hedenmalm’s theory [8] that p has only simple zeros at «, . .., o, and no

other zeros in D. Incidentally, this also implies that all a; are nonzero; if, for
instance, a, = 0, then Gq,, _a, ;8 = Ga,....a,:p Would have an extra zero at «,. We are
thus in a position to apply Proposition 1.5. The equations (1.22) and (1.24) take the

form
> sGy=Re (k=1.2,....n), (3.7)
;' p(B)So + Y _ 51Goj = Ro, (3.8)
j=0

with Rj given by (1.21). This can be solved explicitly. Adjusting 6 in (1.27) if neces-
sary we may assume that sy/ay € R. Since by (3.3) we have

Y 4Gy =0(k=1....n. Y aGy=pp.
=0 =0

we can write (3.7)—(3.8) as

Z(ajso +aps))Gyj = aoRi, k=0,1,...,n.
j=0
Consequently
aySo + agSy, = ZGOAmkRk (k =01,..., n)s
k=0

and we thus arrive at the solution

1<
25;1‘10/{ k= o ”22 Re,
Sm = i:AmkRk 2 2 Z a/c
p || ||

(3.9)

By Proposition 1.5 the sought Green function u is of the form (1.31) with ¢(x, y)
given by

n

Ajxim
_ , 3.10
o) J,K,Z,/;/I:O (1 = @)1 — axX)(1 —a@ry)(1 — auy) oo
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where the coefficients 4,k can be obtained from (1.35), with e;x given by (1.34).
Let us evaluate the limit (1.35). Owing to (1.36) we can assume that ooy, # 0. From
(1.21) it then follows that

. _ a
Tim (1= @)1 — aam)Re = =Sy 7————
y=>1/agn—>1/ay 1 —opoy
Substituting this into (3.9) yields
. _ ar A ajayar
dim (1 =)l —aumn)sy = —— 5
y=>1/apn—>1/ay aray  2pllaay

and similarly, upon writing K in the place of J, interchanging L and M, and taking
complex conjugates,

ayArx agaray

lim (1 =)l —aun)sk = —— :
v farn—1/ay aray  2plParay

Also clearly

(I =)l —aun)
y=Van—1/ey (1 —oyp)(1 — agn)

=8;1.0km-

Feeding this into (1.34) we conclude that the desired limit (1.35) satisfies

N P _ _
( —ayox) (1 —dran)” | (I —ayax)( —aron) _
— 5 JKLM = — —— ajaxdsLékm
((XJ(XK(XLO!M) QJOKE LM
amajArg +aga Ay ajagaray
OLJOROLO N IpIlPajoxcon

Substituting for a; from (3.6) and using (3.4) we finally obtain
4
Ip(ﬂ)2l y
lpll
+ Ago A Ao ALk + AcoAroAok A — AJOAOKALOAOMi|-

Ajxim = adjogaroyGryGar -

o« [_ Ao AnAokdsLékm
Ggy

(3.11)

Even though this formula has been derived for ayays # 0, it gives the correct answer
even if oy or oy, vanish, since 4,g73 = 0 in that case by (1.36). Thus (3.11) is valid
forall J, K, L, M.

We have arrived at the following theorem.

THEOREM 3.1. Let oy, an, ..., o, and ag = B be distinct points in D and p a func-
tion satisfying

n

P& =Y a1 =) plo) =0 (k = 1.2.....n), p(B) #0. (3.12)
Jj=0
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Then the Green function for the operator Alp| ™A is equal to

P(x) — PO
u(x, y) = ‘7 Ux, y)
X—=Yy

B L G.13)

+ (1= XA = p1»? P > akemXs Xk YL Yy,
IPI ) k' Thi=o

where
AooA0Aoxdird
ajkIM = GKJGML|: -2 JOGOK LM+ AgoAj Ao ALk
& (3.14)

+ AooAroAox A — AJoAOKALoAOM]-

Here P is a primitive to p, U(x, y) is the Green funclion for the ordinary bilaplacian
A X =/l —ax), Y, _a,/(l — @), and {4, } o 15 the inverse of the Gram-
mian matrix G = {G/k}]k o Gy = (1 — o )2

The following special case has been independently obtained by a different
method by Hedenmalm (unpublished).

COROLLARY 3.2. Let p be the canonical zero-divisor of a finite zero-set
{aq, ..., an} consisting of distinct points in D\{0}. Then the Green function for the
operator Alp|* A is equal to

P(x) —

P

u(x. ) = ' U, )+ (1 — PR = rPRo0) 2 x

n

x> X/XgY YuGriGur - Bk Ty |:—
JK.LM=1

8718 1

L T 2]

Grriilly MLk iy p(0)
(3.15)

Here P is a primitive to p, U(x, y) is the Green function for the ordinary bilaplacian
A2, X£ =a;/(1 - ajx),_Yj :—2&]/(1 y), {/L,k}jk | Is the inverse of the n x n matrix
{Gik}j,k=1’ Gﬂx = (1 - akaj) and Mi = Zj—l Mij-

Proof. As we have already observed at the beginning of this section, the cano-
nical divisor p is a function of the form (3.12) which in addition satisfies

Ipll = 1, p(0) = lipl*/ao > 0, B=0.

Thus we can apply the last theorem. Since by (3.3) and (3.6) we have

4 Ay a o
Z(Amk ”m”2>Gk] ( mj — AmOGOj) - ”])ﬁ <Z ijdk - Gj0a0>
k=0

k=1
aOam am
= ‘Sm‘_GO')_ P(Ol) (]Cl()
<’ Ipl> " ||p||2( i) = Godo)

= Omjs
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for any j,m = 1, ..., n, the coefficients u,,;, are connected with 4, by the relation

Amk = Mk + Amay. (3.16)

n
Further, by (3.3) ) Gija; = —Groap = —ap for k=1, ..., n, whence
j=1

1

n
am = — Zﬂmkao = —aoim = — s Mm- (317)
= p(0)

Finally, as 8 = 0, we have X = Yy = 0 and so the summation in (3.13) is effectively
carried out only over J, K, L, M from 1 to n. Inserting (3.16) and (3.17) into (3.13),
we therefore obtain (3.15). [J

Let us record also the following invariance property of the sum in (3.13).

PROPOSITION 3.3. For x = (x;)i_y and y = (y;)i=g, two vectors in C"*t denote

n

1 _
Ga],...,an;ﬂ(xs Y) S A_(Z)O]- ](;zo AjkimXj Xk V1Y s (318)

with @iy, given by (3.14). Then for any holomorphic self-map ¢ of the unit disc D

Og(@r),.p(@): oA (Xs ¥) = Oy, (X, Y)-

Proof. Let ¢(z) = e(z — @) /(1 — @z), « € D, |¢] = 1. A simple calculation reveals
that
(1 — @)1 — o)
(1 — @)1 — aa))

2
(1 — plan)d(e))’ = [ ] = (1 — @)’ - (@) (o).

Thus upon replacing {o;} by {&(ej)}, the matrix (Gy) changes into
(Gix /(@' ()@’ (), so that its inverse (A;) changes into (¢'(a)¢'(ax)Ajx), and the
assertion follows. []

In terms of o, the formula (3.13) for the Green function becomes

2
u(x, y) = U(x, y)

1= 1% = PPIp 10w o o ’ @ _
+ (=X = )Pl 0. —ax) \I—ay

For n =1, the sum (3.18) is easily evaluated explicitly:

‘P(X) - P(y)
xX—y

(3.19)

(1 — |a?)* oo N
1—a@pl* — (1 — a1 — 18P

Thus we obtain the following result.

Oup(X,y) = | xo — x1%y0 — »i1%.

PRroOPOSITION 3.4. Consider the situation as in Theorem 3.1, withn=1, a1 = «,
oy = B. Then the Green function is given by the formula
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‘P(Z)

U(Z, »)

(1- |a|2) (=17’ IpIPA = 2P =)
Q=15 |4 —a@) —an - B — By

In particular, u(z, y) is positive on D x D.

u(z, y) =

For n > 1 the biquadratic form (3.18) becomes fairly complex and the author
was unable to obtain a closed expression for it even in the simplest case n = 2.
Computer-based calculations, however, seem to give evidence in support of the fol-
lowing conjecture.

CONIJECTURE 3.5. Denote

n

Z ajklm%_./’lﬁkm (Sa ne C(H-H)-)- (320)
ok, l,m=0

Qot],“.,Ol,,;ﬂ(Sa 77) = A—(2)0

The quadratic form Qq, .. a,.p(€, &) in the (n+ 1)? complex variables (5!/‘)_7:0 is positive

semidefinite.
In particular, taking & = x;y1, 04, a,:p(X,¥) = 0 for all x,y € C" and mutually
distinct points oy, o, ..., oy, B € D.

REMARK. The analogous quadratic form obtained from (3.18) upon introducing
instead the variables 7;, = x;y,, is not positive semidefinite in general. A counter-
example is n = 2 and «y = 0, o = 1/3, ap = 2/3; the quadratic form has then three
positive, five zero and one negative eigenvalues. We also remark that the points
ai, ..., oy, Benter into (3.18) and (3.20) (i.e., into aj;,) only through the coefficients
of the matrices (Gjx) and (4), and thus it makes sense to define o(x, y) and o(¢, 1),
more generally, for any positive definite (or even nonsingular) matrix G and its
inverse A, and question their positivity in this more general setting. Then it is
possible to obtain ‘“‘counterexamples” to Conjecture 3.5 as well, but neither the

I VAR VAVE)
corresponding matrices G (one of them is e.g. G=| 1//3 1 1/3 for
1/V/3 1/3 1

n = 2) nor even any of their conjugates D*GD by diagonal matrices D are of the
form (3.5) for wy, @y, € D. The author does not know which positive definite
matrices arise as D*GD with D diagonal and G as in (3.5)—that is, in other words,
what arrangements of angles can there occur between multiples of the reproducing
kernels g, . . ., g, € A*(D) of m distinct points in D. For m = 2, these are precisely
all positive definite matrices whose off-diagonal terms are non-zero.

Owing to the following invariance property, it would be enough to verify Con-
jecture 3.5 for 8 =0.

PROPOSITION 3.6. For any holomorphic self-map ¢ of the unit disc D, we have

Op(ar).....pten): () (&> M) = Oan.....c0n: (5 M)-

Proof. This is the same as Proposition 3.3. []
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We close by mentioning a curious operator-theoretic interpretation of the
biquadratic form (3.18). Consider quite generally a Hilbert space H of dimension
n+ 1 spanned by linearly independent vectors go, g1, - - . , g (n0t necessarily unit or
orthogonal) and let vy, ..., y, be the dual basis:

|1 j=k,
The corresponding Grammians
Gic = (gk &j)s A = (Vi v)) (3.22)

are then related by G = A~'. For any (n+ l)-tuple of complex numbers
x = (xo, - .., X,), define the operator X on H by

XY gy Y Xie (3.23)
J J

(that is, {y_/} is a complete system of eigenvectors for X with X; the corresponding
eigenvalues), and let Y be defined similarly for y = (yy, ..., y,). One easily computes
that the adjoint operators are given by

X" Gy D X AmGronYi
7

Jok,m

and similarly for Y. In particular,

(XX* Y0, YY* yO) = < Z kamAmOkayka Z yKyMAMOGKMyK>
KM

k,m

= > XXk GimGrrk Amo Aors A
k,m, K, M

= Z XXk Y1V GriGrmiAjo Aom Ak
Jkm

In the special case y; = 1, Vj this gives

(XX*y0, 0} = IX*9lI> = D %% Grudjo Aok
Jk

and similarly for Y. Also the n-tuple (x¢yo, ..., X,y,) corresponds to the operator
XY(= YX), so that

IX*Y*y0l* = > %%y Gridjo Aok
T

Finally note that |yy]> = Ao by definition. Putting everything together we thus see
that
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(XX*70. YY) (Y0, XX*p0)  IX*nolP 1Y 90l IX*Ypol® _

lIvoll® lIvoll® yoll® lyoll®
1 u o
= Z xkaylymkaGml[AooAjoAOmA/k + AooAiAok Ajm (3.24)
00 j,k,l,m=0
Ajo Aok
— Ajo Aok A Aom — A008iSkm /G—]
kj
Let us now apply this to the situation in which g; = (1 —&jz)*z € A*(D) are the
reproducing kernels for some distinct points «,...,«, € D. The corresponding
Grammian (3.22) then coincides with (3.5), H = 4*(D) & M, where M = N(xu{ﬂ} is
the subspace of functions that vanish at «y, ..., «,, and the vector y, of the dual

basis (3.21) is, in view of (3.3) and (3.4), given by

dy
Yo=—">3D-
Ipl?

Comparing (3.24) with (3.18) we get

XX*p, YY*p)  IX*Y*plI*  IX*pI2IIY*pl?
R T ety G2

where X and Y are operators on H given by (3.23). These operators can be expressed
in terms of the operator S of multiplication by z on A%(D) (the Bergman shift):

S: A*(D) — A*(D), (SH)(z2) := zf(2). (3.26)

Indeed, in terms of the dual basis (3.21), (3.23) becomes
XY g Y Xicg).
J J

On the other hand, it is well known that $*g; = @;g;. (In particular, H is an invariant
subspace for S*.) Thus if ¢, is a function holomorphic in a neighbourhood of D =
Spectrum(.S*) such that

then ¢.(S*) = X* on H. Similarly for Y.
In particular, for x;=wa;/(1 —a@x) with some xeD, one can take
¢x(z) = z/(1 — xz); using (3.19), we thus obtain the following proposition.

PrROPOSITION 3.7. Let «y, ..., a, and oy = B be mutually distinct points in D, S
the Bergman shift (3.26) and H the orthogonal complement in A*(D) of the subspace
of functions that vanish at oy, ay,...,o,. For any x €D, let S&:H — H be the
restriction of the operator S*(1 —xS*)~' 1o its invariant subspace H, and let
Sc:H — H be its adjoint. Let S} and S, be defined similarly for y € D. Then the
Green function (3.13) from Theorem 3.1 is equal to
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P(x
u(x,y)—‘ ) — U(x,y)+(1—|x|2)2(l — ID2lplPeCx, ), (3.27)
where
SES* > 1Stp A 2 S.S*p, S, S*
C(x,y):_ll T }fll _Isw I2[1S%pl +2Re< Stp 2} },p>. (3.28)
Pl Ipll* pll

REMARK. Explicitly, the operator S, is given by S, = Py S(1 — YS)*llH, where
Py is the orthogonal projection from A4%(D) onto M. In fact, the operators ¢,(S*)
above are just the Toeplitz operators on 4%(D) with coanalytic symbols, while the S,
are a Bergman-space analogue of the “‘model operators” of dilation theory on H>
(cf. [11, Chapter VIII]). [

COROLLARY 3.8. Let & = {«y, ..., a,} be a sequence of points in D (not necessa-
rily distinct), B any point in D, and G.p the (unique) solution of the extremal problem

max{Ref"(B); || fI| < 1, [ vanishes on « (including multiplicities)}, (3.29)

where m is the multiplicity of B in the sequence &. Then the corresponding Green
Sunction uq.p(x, y) of the operator A|Gg, ,3|_2A on D (exists and) depends continuously
onai,...,o, BebD.

Proof. Set as before «p := 8 and consider the operators
Top: f2) = f2) - [ e =)
J=0

This is a family of bounded operators on 4%(D) which depends norm-continuously
on (a; B) € D"*!; moreover, they are bounded below; | Tecpfll = ca:pll 1| for some
ca:p > 0, and uniformly so when (o; ) ranges in a compact subset of D", Both
properties remain in force also for the positive operators Py.g = T‘k pToap > Ci gl
using the holomorphic functional calculus, we infer that the P“ b depend hkew1se
continuously on (x; B). Hence, so do the partial-isometry components
Wap =T ﬂP % in the polar decomposition of Ta.p (Wx.p is in fact an isometry of
AZ(D) onto the subspace Mg = N“U{ﬁ of functions which vanish at a1, ..., ay,, B
counting multiplicities) and the product Wy, W5, 5, which is the orthogonal projec-
tion onto Range(Tx,g) = Mq.p, as well as the projection I — Wy, Wy 5 onto the
orthogonal complement Ha.p = A*(D) © My p. A similar argument applies, of
course, to the operators

To: (D) —f0) [ [e =)
j=1

obtained upon omitting the point B, and shows that the orthogonal projection of
A*(D) onto Ny depends continuously on aeD". As Ny D Mqyp and
Na© Mup=CGqp is precisely the one-dimensional subspace spanned by the
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solution G4;p of the extremal problem (3.29), we see that this one-dimensional sub-
space, call it G4.4, also depends continuously on (e; B). Thus both the operators
(I = WeapWy.p)- S(1 —%8) . (I = Wep Wep) =Sy and Sy in (3.28) depend con-
tinuously on («; ), and so does the one-dimensional subspace spanned by the p
there; as (3.28) is evidently homogenous of degree 0 in p, it follows that the expres-
sion ¢(x, y) given by (3.28) with p = G4.4 extends by continuity (for each fixed x and
) to a continuous function on all («; ) € D"*! (i.e. even to the g, o1, . . ., o, which
are not mutually distinct). Similarly, the number

2

P(x) —
.

‘ J p(2)dz

[x.5]

(3.30)

is unchanged if we replace p by ep with a unimodular e, so that it yields the same
value regardless of the choice of the unit vector p in the one-dimensional space Gu. g,
and this value thus varies continuously with («; 8); the same is of course true for
IpII>(= 1), and so we finally see that the expression u(x,y) given by (3.27) with
p = Gu.p defines, for each fixed x and y, a continuous function on all D"+, How-
ever, both (3.30) and c(x, y) are rational functions in g, a1, ...,®, (since Gy,
det(Gj) and, hence, 4j are); thus the identity

AGac ()72 Asttasp(x, ) = T(x, )] = 0 Vx,y € D,

which we know to hold true when «, a1, ..., «, are mutually distinct by the last
proposition, must in fact be valid universally. []

REMARK. One more virtue of the formula (3.25) is that it shows immediately
that o(x,y) = 0 if x or y is a scalar multiple of (1,1,1,...,1). In terms of the quadratic
form (3.20) this means that

o&,n=0,Vn ifé=rjoré&=cy,

where (r7); := 8; and (c,); := 8;;. Thus the subspace Ny C c+’ spanned by r; and
cr, I=0,1,...,n (its dimension is 2n+ 1, since ) ,r; =), c;) is contained in the
kernel of the quadratic form o(&, £). Moreover, the two subspaces

Ny= {SGNéZEi/‘ZSﬁ}7 N = {56/\@?5&:—5/1']

are easily seen to be orthogonal under o, a reflection of the fact that o(x, y) is sym-
metric in x and y. Thus if £ = & + &, + &_ is the splitting of a vector & € ™ into
its Mo, N and N_ components and g, o_ stand for the restrictions of ¢ to N'; and
N _, respectively, then

Q(S’ S) = Q*(€*9 5*) + Q+($+v §+)

The subspaces N, and N _ have dimensions n(n+ 1)/2 and n(n —1)/2 and are
spanned by the vectors s;; and djy, respectively, where

(D = 1)y =1, (1) = 1)y = —1, (SIJ)g/ = 0 otherwise (0 < I < J < n),
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and

i)y = din)or = din)go = 1. (d1y) ; = (d1)yo = (d1y)o; = —1,
(di); = 0 otherwise (1 < 1 < J < n).

For n =2, N _ consists just of scalar multiples of d,, and for oy = 0 a rather
laborious computation reveals that

(1 = o1 = oo PPl — @l
ot 1oz Pty — en]?
2 2 — 2 2 2 21-2 .
x [2(2 = | |* = e )1 — @eal® +2(1 — | )1 = Joa]?) + |ejea(e) — a)|*] > > 0;

o(dy2, dip) = 36

so by Proposition 3.6 at least the quadratic form g_ is positive definite for any
o, o1, 0 € D.

EXAMPLE. n =2, ap = 0, oo = —a;. Denote X = |a;|* = |az|* and let M be the
(3x3) matrix of o, with respect to the basis {s;;} above. Then M has eigenvalues ar,
a(s & /1), where

9(1 — X2)?
a= 5 5 > 0
16X4(3 — X2)*(1 + X?)
r=2X(1+ X7 +2X> - xH >0,
s=9+34X> +48X* +6X° — X* > 0,
t = 81 + 580X% + 1860X* + 3340X° + 3046X°
+ 668X — 28412 — 108X +33X'% > 0,

and
& —1=32X1 - X)’(1+ X)’1 +4x> - xH > 0.

In particular, g, is also positive definite. Thus the Green function for the operator
A|G|72 A, with G the canonical divisor for a 2-point zero-set {o, —a} C D, is positive.
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