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Abstract. We present an algorithm for computing the Green function of the
weighted biharmonic operator �jP0jÿ2� on the unit disc (with Dirichlet boundary
conditions) for rational functions P. As an application, we show that if P is a
Blaschke product with two zeros �1, �2 the Green function is positive if and only if
j��1 ÿ �2�=�1ÿ �1�2�j � 2
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�����
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p

, and also obtain an explicit formula for the Green
function of the operator �jGjÿ2�, where G is the canonical zero-divisor of a ®nite
zero set on the Bergman space.

0. Introduction. Let D be the unit disc in the complex plane C and w 2 C1�D� a
function positive on the closed disc D except for a ®nite set S of singularities inside
D, where it is allowed to have a zero; such functions will be termed weights. We will
be interested in the weighted biharmonic operators �wÿ1�, where � is the Lapla-
cian. For f 2 C1�D�, a function v is said to be a solution to the equation �wÿ1�v � f
if v 2W2�D�, the second-order Sobolev space on D, and there exists a function
F 2W2�D� such that �F � f and wF � �v. It follows by the standard elliptic reg-
ularity theorems that in fact F 2 C1�D� and v 2 C1�D�. The Green function u�x; y�
for the operator �wÿ1� is the solution to the boundary value problem

�xw�x�ÿ1�xu�x; y� � ��xÿ y� (� is the delta function),
u�x; y� � rxu�x; y� � 0 for x 2 @D,

�
�0:1�

for each ®xed y 2 D. This must again be understood in the sense that uy � u��; y�
belongs to W0

2�D� and
�uy � w�ÿ��; y� � fy�; �0:2�

where ÿ�x; y� is the ordinary Green function for the Laplace operator � and fy is
harmonic on D. By elliptic regularity, one then has uy 2 C1�Dn y

� 	� \ C1�D� and, as
�wÿ1� is properly elliptic on any domain obtained from D upon deleting su�-
ciently small discs around each point in S, also uy 2 C1�Dn�S [ y

� 	�� [6, Theorem
7.36]; thus in fact

u��; y� 2 C1�Dn y
� 	� \ C1�D�; �0:3�

and also the function fy in (0.2) belongs to C1�D�. Standard arguments show that
the Green function, if it exists, indeed does the job we expect it to do; that is, for
f 2 C1�D� the convolution with u gives the solution v 2 C1�D� to the equation
�wÿ1�v � f that vanishes on the boundary together with its ®rst order derivatives;
this justi®es the name.
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Quite recently, a lot of attention has been attracted by the problem of positivity
of these Green functions, for various weights w. The motivation for this comes
mainly from applications in the theory, initiated by Hedenmalm, of contractive
zero-divisors and factorization of functions in Bergman spaces; cf. [2], [3], [8].
Namely, for a ®nite sequence � � �1; . . . ; �nf g of points in D, let N � N � be the
subspace of the Bergman space A2�D� � f 2 L2�D� : f�

is holomorphic on Dg con-
sisting of functions that vanish at �1; . . . ; �n (counting multiplicities), and G � G�
the function in the unit ball of N which maximizes Re f�0� among all f 2 N with
k f k � 1:

G 2 N ; kGk � 1; ReG�0� � max Re f�0� : f 2 N ; k f k � 1
� 	

: �0:4�

(If some of the points �i coincide with the origin, this has to be modi®ed by taking
instead Ref �m��0�, where m is the number of occurrences of 0 in the sequence
�1; . . . ; �n.) It turns out that these functions, called extremal functions of the zero
sets �, share many properties characteristic for the Blaschke products in the Hardy
space H2 on the unit circle. More precisely, the function G vanishes precisely at
�1; . . . ; �n in D (counting multiplicities), and for any f 2 N one has f=G 2 A2�D� and

k f=Gk � k f k; �0:5�

that is, G is a contractive divisor of N into A2�D�. Of course, one cannot expect the
analogy to go very far. For instance, the � sign cannot be replaced by equality in
(0.5), and also the assignment � 7!ÿ G� is not multiplicative; i.e. it is not true that
G�[� � G�G�. However, one can still hope for a somewhat weaker property than
multiplicativity of G� to be valid, namely, the domination property. The latter means
that for any zero-set � which is contained in another zero-set �, it is true that for all
f 2 N � we have

k f=G�k � k f=G�k: �0:6�

The original proof of (0.5) by Hedenmalm proceeded via an involved explicit
calculation with power series. Later, a simpler proof was found by Duren, Kha-
vinson, Shapiro and Sundberg [2] which established (0.5) as a consequence of the
fact that the Green function for the biharmonic operator �2 on D is positive. By a
slight modi®cation [8] their argument also shows that (0.6) holds for a given ®nite
zero-set � and any ®nite zero-set � � � provided that the Green function for the
weighted biharmonic operator �jG�jÿ2� on D is positive. With minor modi®ca-
tions, the whole theory also extends to weighted Bergman spaces A2�D; �� �
f 2 L2�D; �� : f
�

is holomorphic on Dg with suitable weight functions �. Here ``sui-
table'' means, roughly, that (i) the space A2�D; �� contains all polynomials, (ii) they
are dense in it, (iii) the reproducing kernels K��; y� of A2�D; �� extended to a con-
tinuous function on the closed disc D for each y 2 D, (iv) K��; 0� does not vanish in
D, and (v) for a zero set � consisting of a single point, the corresponding extremal
function G� (de®ned again as the solution of the extremal problem (0.4), but with
the norms being taken in A2�D; ��� vanishes at that point only and nowhere else in
D. Of course, (i) is just equivalent to � being integrable over D; (ii)±(iv) are auto-
matically ful®lled if � is radial, i.e. depends only on the modulus jzj; and (v) is
known to hold whenever log � is subharmonic, and also, for instance, for
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��z� � �1ÿ jzj2�q for 0 < q � 1 (but not for q > 1). An argument as in [2] then shows
that, if the Green function for the operator ���jK��; 0�j2�ÿ1� on D is positive, (i)±(v)
already imply that G� vanishes precisely on � in D for any ®nite zero-set �, that it
extends continuously to D and has no zeros on @D, and that an analogue of (0.5)
holds on A2�D; ��. The contractive divisor is then G��z�

��������������
K�0; 0�p

=K�z; 0�, which
reduces to a constant multiple of G� if the weight � is a radial function. Similarly,
modifying the procedure in [8] in an obvious way, it can likewise be shown that (0.6)
holds for a given ®nite zero-set � and any ®nite zero-set � � � on A2�D; �� with
``suitable'' weight � provided the Green function for the weighted biharmonic
operator

���jG�j2�ÿ1� �0:7�

on D is positive. (Taking � to be the empty set, G; � K��; 0�= ��������������
K�0; 0�p

, and so we
recover the previous operator ���jK��; 0�j2�ÿ1� as a special case.)

For the unweighted biharmonic operator �2 on a domain 
 in the plane, the
question of positivity of the Green function is of an old date. In that case, the Green
function is related to bending of a clamped plate of the shape of 
 and to creeping
¯ow on 
, and the question concerning its positivity comes back to Hadamard and
Boggio (see the discussion in [9] for more details and references); the answer is
known to be a�rmative for a few domains (the disc, Pascal's limac,on, images of D
under polynomial conformal maps � that are (coe�cientwise) su�ciently close to
the identity [16]) and negative for many others (su�ciently eccentric ellipses, su�-
ciently elongated rectangles, etc.; if we allow 
 to be unbounded or multiply con-
nected, we can also add the in®nite strip and all annuli [5]). Observe that if � is a
conformal map of D onto a simply connected 
, the pullback via � of the Green
function for �2 on 
 is the Green function for �j�0jÿ2� on D; thus, some of the
results just mentioned can also be interpreted as results about weighted biharmonic
operators �j�0jÿ2� on D. For radial weights w, a number of results have been
obtained by Shimorin [12], [13], [14] and Hedenmalm [8], [10] for w�z� � �1ÿ jzj2�q,
ÿ1 < q � 1, and by Shimorin [15], for w radial, integrable, log-subharmonic and
su�ciently smooth. However, apart from the computation of Hedenmalm [9] for
w � jzj2q, q > ÿ1, and his formula (containing a small error) for the Green function
of �jG�jÿ2� for � � 1 and � consisting of a single point in D [8], to this day nothing
seems to be known about the weighted biharmonic Green functions and their posi-
tivity for weights of the form w � j f j2 with f a holomorphic function which vanishes
somewhere in D. In particular, the question of the positivity of the Green function
for the operator (0.7) even in the simplest unweighted case � � 1 remains open at
present.

In this paper we will consider weighted biharmonic operators on D of the form
�jP0jÿ2�, where P is a rational function. We present an algorithm which, for a given
P, makes it possible to calculate the corresponding Green function explicitly; more
precisely, the calculation is reduced to solving a system of m linear equations for
certain coe�cients, where m is the number of points � in D for which either
P0��� � 0 or P�1=�� is a pole (multiple zeros and poles being counted in an appro-
priate way). Further, we can rigorously prove the existence of the Green function for
any rational P. Note that for the operator �jP0jÿ2�, being singular and hence not
elliptic in general, this does not readily follow from general PDE theory. All this
is done in Section 1. As a ®rst application we consider in Section 2 the case in which
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P is a Blaschke product, and derive an explicit formula for the Green function if P is
of length two (Theorem 2.4); it turns out that the Green function is positive if and
only if the hyperbolic distance of the two zeros does not exceed 2

7

�����
10
p

. It is con-
ceivable that for a general Blaschke product P the corresponding Green function is
positive if and only if the zeros of P are not spaced ``too widely apart'' in D. The
third section is devoted to the most interesting case of the operators �jG�jÿ2�,
where G� are the extremal functions of ®nite zero-sets � introduced above �� � 1�.
We even consider their more general analogues obtained upon replacing Re f�0� by
Ref��0� in (0.4), for some �0 2 D. Our main result is a formula for the Green func-
tion in terms of the Gramm matrix �Gjk� � �1ÿ �k�j�ÿ2

� 	n
j;k�0 and its inverse �Ajk�

(Theorem 3.1); this formula also admits an interesting rephrasement in terms of
Toeplitz or ``model'' operators (truncations of the adjoint of the Bergman shift to its
invariant subspace) on A2�D�. For the most part it is assumed that the points
�0; . . . ; �n are mutually distinct, yet the operator rephrasement just mentioned
implies immediately that the formula, in fact, extends by continuity to all
��0; �1; . . . ; �n� 2 Dn�1, and further the resulting Green function depends con-
tinuously on the �j. We also establish the positivity of the Green function in the case
n � 1, for any �0, �1 2 D (thereby extending Hedenmalm's result for �0 � 0 men-
tioned above), and for n � 2, �0 � 0, and any �1 � ÿ�2 2 D. For n > 1, we are
unable to prove the positivity in general, but indicate that it is probably a con-
sequence of a much stronger assertion concerning positive-de®niteness of a certain
quadratic form %��; �� in �n� 1�2 variables �jk; j; k � 0; 1; . . . ; n (Conjecture 3.5)
whose coe�cients are associated with Gjk and Ajk in a fairly simple way.

Throughout the paper, it will be convenient to normalize the Lebesgue measure
so that D has area 1 (instead of �) and to adopt a slightly nonstandard de®nition of
the Laplacian which di�ers from the usual one by a factor of 4. This has the
advantage that the constant function one has unit norm in A2�D�, �j f j2 � j f 0j2, for
any holomorphic f, and the Green function for the operator � on D is simply

ÿ�x; y� � log
xÿ y

1ÿ yx

���� ����2
without the factor 1=4� in front.

1. Preliminaries. Let P be a nonconstant function holomorphic on D, p � P0 its
derivative, S � z 2 D : p�z� � 0

� 	
the zeros of p in D, @ � @=@z, @ � @=@z the Wirtin-

ger operators, � � @@ the Laplacian divided by 4. We shall assume throughout that
S � D; i.e. that p � P0 has no zeros on the boundary @D (so that S is a ®nite set).

The Green function for the weighted biharmonic operator �jpjÿ2� is, as
observed in the Introduction, a function u�x; y� which for y ®xed is in
C1�D� \ C1�Dn y

� 	� and satis®es the equation

�xu�x; y� � jp�x�j2 log
xÿ y

1ÿ yx

���� ����2�2Re h0�x�
 !

8x 2 Dn y
� 	

; �1:1�

for some h0 holomorphic on D, and the boundary conditions

u�x; y� � 0 8x 2 @D; �1:2�
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@u

@x
�x; y� � @u

@x
�x; y� � 0 8x 2 @D: �1:3�

The function h0 depends on y.
Introduce the notation

P�x� � P�x� ÿ P�y�;

��x� � �xÿ y��1ÿ yx�
1ÿ jyj2 :

Again these functions depend on y even though this fact is not explicitly re¯ected by
the notation.

Let O stand for the set of functions holomorphic on the closed disc D; (that is,
holomorphic on D and C1 on D).

Proposition 1.1 If the Green function (1.1) exists, then for each y 2 D there are
functions H and h holomorphic on D such that

u�x; y� � jP�x�j2 log j xÿ y

1ÿ yx
j2 � 2Re�h�x� ÿ p�x�H�x�� 8x 2 D: �1:4�

The functions H and h are uniquely determined up to a transformation

H 7!ÿ H� �� i�P; h 7!ÿ h� i� � �P; � 2 C; �; � 2 R; �1:5�
and satisfy

Re�hÿ PH� � 0 on @D; �1:6�
jPj2
�
ÿ PH0 ÿ pH� h0 � 0 on @D; �1:7�

P=� ÿH0

p
2 O: �1:8�

Conversely, for any two functions H; h satisfying (1.6)±(1.8), (1.4) is the Green func-
tion for �jpjÿ2�.

Proof. Let H be a primitive to the (holomorphic) function P=� ÿ ph0, where h0 is
the function appearing in (1.1). Since

�xjPj2 log
xÿ y

1ÿ yx

���� ����2� jpj2 log
xÿ y

1ÿ yx

���� ����2�2Re�pP=��; �1:9�

��PH� PH� � 2Re
pP
�
ÿ jpj2h0

� �
;

we see that the di�erence of u�x; y� and jPj2 log j xÿy1ÿyx j2 ÿ �PH� PH� must be a
harmonic function, and hence of the form h� h for some holomorphic function h.
This proves the existence. The uniqueness claim is straightforward.
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Since for x 2 @D

u�x; y� � 2Re�hÿ PH�;
@u

@x
�x; y� � jPj

2

�
ÿ PH0 ÿ pH� h0; �1:10�

@u

@x
� @u
@x
�since �1:4� is real-valued�;

the equalities (1.6) and (1.7) follow from the boundary conditions (1.2) and (1.3).
Also (1.8) is satis®ed as P=� ÿH0 � ph0, in view of the de®nition of H.

The converse part is immediate from (1.9) and (1.10). &

Of course, the functions H and h again depend on y.
We remark that it is immediate from (1.4) that for y ®xed u�x; y� is in fact real-

analytic on Dn y
� 	

.
Let G � C [ 1f g denote the Gauss sphere. For a meromorphic function f and

� 2 G we denote by pmult� f; a� the multiplicity of the pole of f at a �pmult� f; a� � 0
if there is no pole); similarly zmult� f; a� � pmult�1=f; a� denotes the multiplicity of
the zero at a.

Proposition 1.2 Suppose that the Green function (1.1) exists and that P is a
rational function. Then H and h are also rational functions and 8z 2 GnD,

pmult�H; z� � max�pmult�P; z�; zmult�p; 1=z��;
pmult�h; z� � max�pmult�P; z�; zmult�p; 1=z��: �1:11�

Proof. De®ne

K�z� � H�1=z�; Q�z� � P�1=z�; ~h�z� � h�1=z�: �1:12�

These are holomorphic functions on GnD; on the unit circle we have

K�z� � H�z�; Q�z� � P�z�; ~h�z� � h�z�: �1:13�

The conditions (1.6) and (1.7) can thus be rewritten

h� ~h � QH� PK on @D; �1:14�

pK � PQ
�
ÿQH0 � h0 on @D: �1:15�

The LHS of the last equality is a function meromorphic on GnD, while the RHS is
meromorphic on D; it follows that both sides extend to meromorphic functions on
G; that is, rational functions. Hence (1.15) prevails on all of G. By (1.8), (1.15) can
be rewritten as

K � Qh0 � h0=p 8z 2 D
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with h0 holomorphic on D, and it follows that

pmult�K; z� � max�pmult�Q; z�; zmult�p; z�� 8z 2 D:

Passing back to H via (1.12) gives the ®rst inequality in (1.11). This settles H. From
(1.15), we now see that h0 is also a rational function. Write

h0�z� �
X
j

cj
zÿ zj

� r�z�;

where r�z� has only poles of order at least two and zj, j � 1; 2; . . ., are the simple
poles of h0 indexed so that 1 < jz1j � jz2j � . . .. Let 
 be the domain obtained by
deleting from G the line segments �zj;1� and �0; 1=zj� � j � 1; 2; . . .�. On 
 we have

h�z� �
X
j

cj log�zÿ zj� � R�z�;

~h�z� �
X
j

cj log
1ÿ zjz

z
� ~R�z�;

where R�z� and ~R�z� :� R�1=z� are rational functions. In view of (1.14) it follows
that

S�z� �
X
j

cj log�zÿ zj� � cj log
1ÿ zjz

z
defines a rational function S:

If c1 6� 0, then as z! z1, S�z� ! 1 and �zÿ z1�S�z� ! 0; this cannot happen for a
rational function. Thus c1 � 0. Proceeding by induction we show that all cj � 0, so
that h0 has no simple poles and h is a rational function as well. By uniqueness, (1.14)
prevails on all of G; consequently, for any z 2 GnD we have

pmult�h; z� � pmult�h� ~h; z� � pmult�PK�QH; z� � max�pmult�P; z�; pmult�H; z��

and the second claim in (1.11) follows. &

Theorem 1.3 Let P be a nonconstant rational function with no poles in D. Then
the Green function for the weighted biharmonic operator �jP0jÿ2� exists.

Proof. By Proposition 1.1, it su�ces to ®nd (for each y) H 2 O such that, in the
notation (1.12),

P=� ÿH0

p
2 O and pK�QH0 ÿ PQ

�
2 O: �1:16�

Indeed, let h be the holomorphic primitive to pK�QH0 ÿ PQ=� on D, normalized
so that

Re h�1� � Re�P�1�H�1��: �1:17�
Then (1.7) and (1.8) hold, and by the equalities (1.10), Re�hÿ PH� is constant on
@D. In view of (1.17), this constant must be zero, so that (1.6) is satis®ed as well, and
the existence of the Green function follows by Proposition 1.1.
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By Proposition 1.2, it further su�ces to look for H among rational functions
satisfying (1.11); adjusting the � in (1.5) if necessary, we may also assume that
H�y� � 0.

For simplicity, we treat in detail only the case when P has only simple poles in G
and p � P0 has only simple zeros in D. The general case involves no new ideas, only
more technicalities.

Thus let �1; �2; . . . ; �N be all the points z in D for which either p�z� � 0 or
P�1=z� � 1; we can assume that �1; . . . ; �n are all the zeros of p in D and
1=�M�1; . . . ; 1=�N are all the poles of P in G �0 �M � n � N�; clearly N � 1 as P is
nonconstant. The function P�z� � P�z� ÿ P�y� has the same poles as P and, further,
a zero at y; it follows that it is of the form

P�z� �
XN
j�1

aj�zÿ y�
�1ÿ �jz��1ÿ �jy� ; �1:18�

for some numbers aj (depending on y), where

aj � 0; j � 1; 2; . . . ;M;

aj 6� 0; j �M� 1; . . . ;N:

In view of the observation in the penultimate paragraph, we shall look for H in the
form

H�z� �
XN
j�1

sj�zÿ y�
�1ÿ �jz��1ÿ �jy� ; �1:19�

where sj are coe�cients to be determined. Observe that

H0�z� �
XN
j�1

sj

�1ÿ �jz�2
: �1:20�

Introduce the quantities

Rk :� P��k�
���k� �

1ÿ jyj2
1ÿ y�k

XN
j�1

aj
�1ÿ �j�k��1ÿ �jy� : �1:21�

Since all the zeros of p in D are assumed to be simple, the ®rst condition in (1.16)
takes the simple form

H0��k� � Rk �k � 1; . . . ; n�;

that is, by (1.20),

XN
j�1

Gkjsj � Rk �k � 1; . . . ; n�; �1:22�

where we have introduced the matrix
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Gkj :� �1ÿ �j�k�ÿ2: �1:23�

The only possible poles of K and Q in D are at z � �k �k � 1; . . . ;N�; thus the sec-
ond condition in (1.16) is equivalent to

lim
z!�k
�zÿ �k��pK�QH0 ÿ PQ=�� � 0 �k � 1; . . . ;N�:

Since

lim
z!�k
�zÿ �k�K�z� � sk; lim

z!�k
�zÿ �k�Q�z� � ak;

this gives

p��k�sk � akH
0��k� � akRk

or

p��k�sk � ak
XN
j�1

Gkjsj � akRk �k � 1; . . . ;N�: �1:24�

For k � 1; . . . ; n these equalities follow from (1.22), since p��k� � 0; thus we need to
consider them only for n < k � N.

Consider quite generally the system

XN
j�1

Gkjsj � Rk �k � 1; . . . ; n�;

aÿ1k p��k��k�
XN
j�1

Gkjsj � Rk �k � n� 1; . . . ;N�;

XN
j�1

Gkj�j � Rk �k � 1; . . . ; n�;

aÿ1k p��k�sk�
XN
j�1

Gkj�j � Rk �k � n� 1; . . . ;N�;

�1:25�

of 2N linear equations in 2N unknowns s1; . . . ; sN; �1; . . . ; �N. Assume that we know
that all solutions of the corresponding homogenous system

XN
j�1

Gkjsj � 0 �k � 1; . . . ; n�;

aÿ1k p��k��k�
XN
j�1

Gkjsj � 0 �k � n� 1; . . . ;N�;

XN
j�1

Gkj�j � 0 �k � 1; . . . ; n�;

aÿ1k p��k�sk�
XN
j�1

Gkj�j � 0 �k � n� 1; . . . ;N�;

�1:26�
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are given by

sj � caj; �j � ÿcaj; �c 2 C�: �1:27�

By a familiar theorem of linear algebra, it will then follow that the system (1.25) is
solvable if and only if

XN
j�1

cajRj �
XN
j�1
�ÿcaj�Rj � 0 8c 2 C; i:e:

XN
j�1

ajRj 2 R;

and in that case a solution will exist that satis®es �k � sk and will be unique up to a
transformation sk 7!ÿ sk � i�ak; �k 7!ÿ �k ÿ i�ak �� 2 R�. As in our case

XN
k�1

akRk �
XN
j;k�1

�1ÿ jyj2�akaj
�1ÿ �ky��1ÿ y�j��1ÿ �k�j�

is indeed real (even positive), we shall thus obtain a solution to (1.22) and (1.24), and
hence also the function H, which will be unique up to a transformation
H 7!ÿ H� i�P, in agreement with (1.5); this will complete the proof.

Now suppose that (s; �� is a solution to the homogenous system (1.26). Let H be
the corresponding function given by (1.19), Ĥ the analogous function with �j in the
place of sj, and K and K̂ the corresponding functions associated to H and Ĥ by
(1.12). Reversing the procedure used above to obtain (1.22) and (1.24), it is readily
seen that the system (1.26) is equivalent to four conditions

H0=p 2 O;
pK̂�QH0 2 O;

Ĥ0=p 2 O;
pK�QĤ0 2 O:

�1:28�

Let h and ĥ be holomorphic primitives to pK̂�QH0 and pK�QĤ0, respectively,
normalized so that the function

v � PĤ� PHÿ hÿ ĥ

vanished at z � 1. In view of the second and fourth conditions in (1.28), we have
@v � @v � 0 on @D; it follows that v is constant on @D, and owing to the normal-
ization this constant must be zero. Thus

v;rv � 0 on @D: �1:29�

Let H0 � pf and Ĥ0 � pf̂, with f, f̂ 2 O. Then, by Green's formula and (1.29), we have

0 �
�
D

�v � � f̂� f � �
�
D

jpj2 � j f̂� f j2;
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since �v � pĤ
0
� pH0 � jpj2�f̂� f�. It follows that f̂� f � 0 or f � ÿf̂ � c1, for some

complex number c. This means that H0 � cp, H0 � ÿcp and H � cP, Ĥ � ÿcP, so
that s � ca, � � ÿca, and (1.27) follows. This completes the proof.

In the general case when P is allowed to have higher-order poles and p multiple
zeros in D, the equations (1.22) and (1.24) and the system (1.25) will get somewhat
more complicated, since the higher derivatives of p and P=� at various �k enter the
picture; however, the reduction of the corresponding homogenous system to the
conditions (1.28) as well as the subsequent argument with the function v work
without change so that the only solutions to the homogenous system are again given
by (1.27) and the solvability of the corresponding non-homogenous system follows
by a lengthy yet routine calculation. As we won't need this case in the sequel, we
skip the details and leave them to the interested reader. &

Recall that the Green function for the ordinary (unweighted) biharmonic
operator �2 is given by the formula

U�x; y� � jxÿ yj2 log
xÿ y

1ÿ yx

���� ����2��1ÿ jxj2��1ÿ jyj2�
" #

;

see e.g. [7, p. 272].

Proposition 1.4. Let P be a nonconstant rational function holomorphic on D. For

 2 D denote

��
� :� max�pmult�P; 1=
�; zmult�p; 
��
and let N �P
2D ��
�; (this is a ®nite sum). Then the Green function for the weighted
biharmonic operator �jP0jÿ2� is of the form

u�z; y� � P�z� ÿ P�y�
zÿ y

���� ����2U�z; y� � �1ÿ jzj2�2�1ÿ jyj2�2R�z; z; y; y�Q

2D�1ÿ 
z���
�

Q

2D�1ÿ 
y���
�

��� ���2 ;
where R�z; z; y; y� is a polynomial of degree at most Nÿ 2 in each of the indicated
variables �R � 0 ifN < 2�.

Proof. By Proposition 1.2 the functions H; h in (1.4) are rational functions with
no poles in D and with a pole of multiplicity at most ��
� at each 1=
 �
 2 D�.
Consequently, they can both be expressed as

a polynomial in z of degree at most NQ

2D�1ÿ 
z���
�

;

(the product in the denominator has only ®nitely many terms di�erent from 1). Since
pmult�P; 1=
� � ��
�, the function P must likewise be of this form, and P=�zÿ y� is
even of the same form with the numerator of degree at most Nÿ 1. Substituting this
information into (1.4), we see that the di�erence

u�z; y� ÿ P
zÿ y

���� ����2U�z; y� � ÿ�1ÿ jzj2��1ÿ jyj2� Pzÿ y

���� ����2ÿ�PH� PH� � �h� h�
�1:30�
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must be a rational function of z; z of the form

P2�z; z�Q

2D�1ÿ 
z���
�

��� ���2
for some polynomial P2�z; z� of z and z of degree at most N in each of these two
variables. This expression must in addition be symmetric in y and z, since the Green
functions u and U are, and hence so is the di�erence on the left-hand side of (1.30).
Thus the right-hand side of (1.30) must actually be a rational function of z; z; y and
y of the form

P3�z; z; y; y�Q

2D�1ÿ 
z���
�

Q

2D�1ÿ 
y���
�

��� ���2
for a polynomial P3�z; z; y; y� of degree at most N in each of the indicated variables.
Finally, as both u and U vanish on the boundary (o� the diagonal z � y) together
with their gradients, the same must hold for the di�erence (1.30) and, consequently,
also for the polynomial in the numerator of the last formula. Thus P3 can be
factorised as

�1ÿ jzj2�2�1ÿ jyj2�2R�z; z; y; y�

for a certain polynomial R of degree not exceeding Nÿ 2 in each variable. The proof
is complete. &

Proposition 1.5. Let P be a non-constant rational function holomorphic on D.
Assume that P has only simple poles in G and p � P0 has only simple zeros in D. Let
�1; . . . ; �N be the points in D for which either p�z� � 0 or P�1=z� � 1. Then the Green
function for the weighted biharmonic operator �jP0jÿ2� is given by

u�x; y� � P�x� ÿ P�y�
xÿ y

���� ����2U�x; y� � �1ÿ jxj2�2�1ÿ jyj2�2c�x; y� �1:31�

with

c�x; y� �
XN
J;K�1

eJK�y; y�
�1ÿ �Jx��1ÿ �Kx� �1:32�

�
XN

J;K;L;M�1

AJKLM

�1ÿ �Jx��1ÿ �kx��1ÿ �Ly��1ÿ �My� ; �1:33�

where eJK are rational functions of y; y and AJKLM are constants. Let further
aj;Rj� j � 1; . . . ;N� be the numbers de®ned by (1.18) and (1.21), respectively, and �sj� a
solution of the system (1.22), (1.24). Then

eJK�y; y� � �J�K

�1ÿ jyj2�2�1ÿ �J�K�2
�1ÿ jyj2��1ÿ �J�K�aJaK
�1ÿ �Jy��1ÿ �Ky� ÿ �aKsJ � aJsK�

� �
�1:34�
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and AJKLM can be obtained by taking the limit

AJKLM � lim
y!1=�L
y!1=�M

�1ÿ �Ly��1ÿ �My�eJK�y; y�: �1:35�

(If L 6�M; y and y should be treated formally as two independent variables.) In
particular,

eJK � 0 if �J�K � 0; AJKLM � 0 if �J�K�L�M � 0: �1:36�
Proof. In view of the preceding proposition the Green function is of the form

(1.31) with

c�x; y� � R�x; x; y; y�QN
j�1�1ÿ �jx��1ÿ �jy�

��� ���2 ; �1:37�

R�x; x; y; y� being a polynomial of degree at most Nÿ 2 in each variable. For an
arbitrary polynomial f of degree less than Nÿ 1, we have the standard partial frac-
tions decomposition

f�x�QN
j�1�1ÿ �jx�

�
XN
j�1

Aj

1ÿ �jx

for appropriate constants Aj, and Aj � 0 if �j � 0. Applying this procedure repeat-
edly to each variable, we infer that these are the partial fractions decompositions
(1.32) and (1.33), and that (1.36) holds. The coe�cients eJK, AJKLM can be recap-
tured by taking the limits

eJK�y; �� � lim
x!1=�J
�!1=�K

R�x; �; y; �� � �1ÿ �Jx��1ÿ �K��QN
j�1�1ÿ �jx��1ÿ �j���1ÿ �jy��1ÿ �j��

; �1:38�

AJKLM � lim
y!1=�L
�!1=�M

�1ÿ �Ly��1ÿ �M�� � eJK�y; ��: �1:39�

By virtue of the well-known uniqueness theorem (cf. Bochner and Martin [1, Pro-
position II.4.7]), a holomorphic function f�x; y� in Cn � Cn is uniquely determined
by its restriction to the ``anti-diagonal'' x � y. In our case, this means that we can
obtain R�x; �; y; ��; eJK�y; ��, etc., from R�x; x; y; y�; eJK�y; y�, etc., by treating x; x
and y; y formally as independent variables, and then replacing each occurrence of x
by � and of y by �. In particular, (1.39) is just (1.35), and (1.38) can be rewritten as
(in view of (1.30), (1.31) and (1.37))

eJK�y; y� � lim
x!1=�J;�!1=�K

�1ÿ �Jx��1ÿ �K��W�x; ��
�1ÿ x��2�1ÿ jyj2�2 ;

where

W�x; �� :� ÿ�1ÿ jyj2��1ÿ x�� P�x�P����xÿ y��� ÿ y� ÿ P�x�H��� ÿ P���H�x� � h�x� � h���:
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Let us evaluate this limit. Owing to (1.36), we can assume that �J�K 6� 0. From
(1.18) we see that

lim
x!1=�J

�1ÿ �Jx� P�x�
xÿ y

� aJ
1ÿ �Jy ;

lim
�!1=�K

�1ÿ �K�� P���
� ÿ y

� lim
�!1=�K

�1ÿ �K��
XN
j�1

aj
�1ÿ �j���1ÿ �jy� �

aK
1ÿ �Ky ;

and similarly from (1.19)

lim
x!1=�J

�1ÿ �Jx�H�x� � sJ
�J
;

and similarly for H���, and also clearly

lim
x!1=�J;�!1=�K

�1ÿ �Jx��1ÿ �K��h�x� � 0;

since h�x� does not depend on �; similarly for h���. Putting these pieces together,
(1.34) follows.

2. The case of Blaschke products. We now investigate the Green function of
�jP0jÿ2� for P a Blaschke product. Observe that, as we have already remarked in
the Introduction, if � is a conformal map of D onto a Jordan domain 
, then the
ordinary biharmonic operator �2 on 
 is transformed by � into the weighted
biharmonic operator �j�0jÿ2� on D (cf. Proposition 2.6 below). For � an arbitrary
holomorphic function on D, the Green function for �j�0jÿ2� on D can thus be
interpreted as the pullback of the ordinary (unweighted) biharmonic Green function
on the Reimann surface 
 � ��D�. For � a Blaschke product, in particular, we are
thus dealing with the Green function for �2 on a certain Riemann surface 
 sheeted
over the unit disc D (with branch points at the zeros of �0).

Let B be a ®nite Blaschke product. The following lemma is very probably not
new but its brief proof is included here for convenience.

Lemma 2.1. If B is a Blaschke product of degree n, then B0 has precisely nÿ 1
zeros in D, counted according to multiplicities.

Proof. Let �1; . . . ; �m be the distinct zeros of B and k1; . . . ; km their respective
multiplicities. Since for Blaschke products B�1=x� � B�x� for any x, the function
��x� :� xB0�x�=B�x� enjoys the symmetry property

��x� � ��1=x� 8x 2 G: �2:1�
If B�0� 6� 0, and

��x� �
Xm
j�1

kj
�1ÿ j�jj2�x

�xÿ �j��1ÿ �jx� �2:2�
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then � is a rational function of order 2m, with simple poles at �j and
1=�j; � j � 1; . . . ;m�. Thus � has 2m zeros in G; as ��x� �Pm

j�1 kj�1ÿ j�jj2�=
j1ÿ �jxj2 > 0 on the unit circle, it follows from (2.1) that there must be m zeros in

 :� Dn �1; . . . ; �mf g and the other m in GnD. Since on 
 the zeros of zB0 and of �
obviously coincide, we see that zB0 has m zeros in 
 and so B0 has mÿ 1 zeros there.
Together with the zeros of multiplicity kj ÿ 1 at each �j, this gives
�mÿ 1� � �nÿm� � nÿ 1 zeros of B0 in D.

If B�0� � 0, then say, �1 � 0, and (2.2) shows that � is of order 2mÿ 2, with
simple poles at �j and 1=�j for j 6� 1. Thus it has 2mÿ 2 zeros in G of which, by (2.2)
again, mÿ 1 lie in 
 :� Dn 0; �2; . . . ; �mf g and the other mÿ 1 in GnD. As before
this implies that zB0 has mÿ 1 zeros in 
, so that B0 has mÿ 1 zeros in 
 as well and
together with the zeros at 0; �2; . . . ; �m, this again yields a total of
�nÿm� � �mÿ 1� � nÿ 1 zeros of B0 in D. &

The same argument also shows that B0 has mÿ 1 zeros in G\D (with at least a
double zero at in®nity) if B�0� 6� 0, and m zeros there (with no zero at the in®nity) if
B�0� � 0.

Corollary 2.2 Let P be a Blaschke product of length n, with distinct zeros
�1; . . . ; �m of multiplicities k1; . . . ; km �

Pm
j�1 kj � n�, respectively and �1; . . . ; �q the

distinct zeros of P0 in Dn �1; . . . ; �mf g with multiplicities l1; . . . ; lq �
Pq

j�1 lj � mÿ 1�.
Then the Green function of the operator �jP0jÿ2� on D is given by

u�z; y� � P�z� ÿ P�y�
zÿ y

���� ����2U�z; y� � �1ÿ jzj2�2�1ÿ jyj2�2R�z; z; y; y�Qm
j�1�1ÿ �jz�kj�1ÿ �jy�kj �

Qq
j�1�1ÿ �jz�lj �1ÿ �jy�lj

��� ���2
with R�z; z; y; y� a real-valued polynomial, symmetric in z and y, of degree not
exceeding n�mÿ 3 in each variable �R � 0 if n�m < 3�.

Proof. In the notation of the preceding section ���j� � kj� j � 1; . . . ;m�,
���j� � lj� j � 1; . . . ; q�, and ��
� � 0 for all other 
 in D. Thus N � n�mÿ 1, and
an application of Proposition 1.4 completes the proof. &

Corollary 2.3. For P�z� � zÿ�
1ÿ�z, �� 2 D�, the Green function of �jP0jÿ2� is

equal to

u�z; y� � P�z� ÿ P�y�
zÿ y

���� ����2U�z; y�:
In particular u�z; y� � 0, 8y; z 2 D.

Proof. Indeed, in this case n � m � 1, so that R�z; z; y; y� � 0. &

The positivity of u in the last case has been established by a di�erent method in
[4]; in fact it is a simple consequence of the positivity of U�z; y� and the transfor-
mation formula for the weighted biharmonic operators under a conformal mapping
mentioned at the beginning of this section. Similarly, for P a Blaschke product with
a single zero of multiplicity n at � 2 D the corresponding polynomial R has degree at

WEIGHTED BIHARMONIC GREEN FUNCTIONS 253

https://doi.org/10.1017/S0017089599970957 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970957


most nÿ 2; for � � 0, a formula for u in this case has been derived in [9], while the
positivity (for any �) was also proved in [4]. The ®rst nontrivial case is thus that of a
Blaschke product P with two di�erent single zeros in D.

Let us ®rst consider two zeros symmetric with respect to the origin.

Theorem 2.4. Let P � �z2 ÿ A2�=�1ÿ A
2
z2� be a Blaschke product with zeros

�A;A 2 Dn 0f g. Then the Green function of �jP0jÿ2� is given by

u�z; y� � P�z� ÿ P�y�
zÿ y

���� ����2U�z; y�
� �1ÿ jzj

2�2�1ÿ jyj2�2
j�1ÿ A

2
z2��1ÿ A

2
y2�j2
� �1ÿ jAj

4�2
2�4ÿ jAj4�Re�4ÿ jAj4 � 8A

2
yz� 4jAj4yz�:

Proof. In this situation we have

p � P0 � 2z
1ÿ jAj4
�1ÿ A

2
z2�2

;P � P�z� ÿ P�y� � �z
2 ÿ y2��1ÿ jAj4�

�1ÿ A
2
z2��1ÿ A

2
y2�

;

and so we are in a position to apply Proposition 1.5, with N � 3, �1 � 0, �2 � A,
�3 � ÿA, to obtain

a1 � 0; a2 � �1ÿ jAj4�=�2A� � 1=p��2�; a3 � 1=p��3� � ÿa2: �2:4�

The Grammian (1.23) satis®es G22 � G33 � �1ÿ jAj2�ÿ2, G23 � G32 � �1� jAj2�ÿ2,
Gj1 � G1j � 1, so that the system (1.22), (1.24) takes the simple form

s1 � s2 � s3 � R1;

s2=a2 � a2�s1 � G22s2 � G23s3� � R2;

s3=a3 � a3�s1 � G32s2 � G33s3� � R3;

with R1, R2, R3 given by (1.21). Subtracting appropriate multiples of the ®rst equa-
tion from the other two yields

s1 � s2 � s3 � k;

s2
a2
� 1

4
�2ÿ jAj2��1� jAj2�2 s2

a2
� �2� jAj2��1ÿ jAj2�2 s3

a3

� �
� k1;

s3
a3
� 1

4
�2� jAj2��1ÿ jAj2�2 s2

a2
� �2ÿ jAj2��1� jAj2�2 s3

a3

� �
� k2;

where

k :� R1 � y�1ÿ jyj2��1ÿ jAj4�
1ÿ A

2
y2

;

k1 :� R2 ÿ a2R1 � �1ÿ jyj
2��1ÿ jAj4��1� jyj2 � jAj2Ayÿ jAj4jyj2�

2�1ÿ A
2
y2��1ÿ yA�

;
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k2 :� R3 ÿ a3R1 � �1ÿ jyj
2��1ÿ jAj4��1� jyj2 ÿ jAj2Ayÿ jAj4jyj2�

2�1ÿ A
2
y2��1� yA�

:

Denoting S :� s2
a2
� s3

a3
and R :� s2

a2
ÿ s3

a3
, it follows that

S � �k1 � k2� ÿ S; �2:5�

R � �k1 ÿ k2� ÿ 1

2
jAj2�3ÿ jAj4�R: �2:6�

By Proposition 1.5, the Green function for the operator �jP0jÿ2� is of the form
(1.31), where

c�z; y� � e22

j1ÿ Azj2 �
e33

j1� Azj2 �
e23

�1ÿ Az��1� Az� �
e32

�1� Az��1ÿ Az� ; �2:7�

with ejk given by (1.34). Let us evaluate e22, for instance. We have

a2s2 � a2s2 � ja2j2 s2
a2
� s2
a2

� �
� ja2j2 R� R� S� S

2
:

Adding up the equation (2.6) and its conjugate shows that

�2ÿ jAj2��1� jAj2�2
2

�R� R�

� �1ÿ jyj
2��1ÿ jAj4�

j1ÿ A
2
y2j2

�1� jAj2 � jyj2 ÿ jAj4jyj2��yA� Ay�;

and using (2.5) it transpires that

R� R� S� S � �1ÿ jyj
4��1ÿ jAj4�

j1ÿ A
2
y2j2

2�1� jAj2 � jyj2 ÿ jAj4jyj2��yA� Ay�
�2ÿ jAj2��1� jAj2�2�1� jyj2� � 1

� �
:

Inserting this expression into (1.34) and (1.35), and using (2.4), we arrive after some
simpli®cations at the formula

e22 � �1ÿ jAj
4�2

8�2ÿ jAj2� �
2� 2Ay� 2yAÿ jAj2

j1ÿ A2y2j2 :

In a completely similar manner it can be shown that

e33 � �1ÿ jAj
4�2

8�2ÿ jAj2� �
2ÿ 2Ayÿ 2yAÿ jAj2

j1ÿ A2y2j2

and

e23 � e32 � �1ÿ jAj
4�2

8�2� jAj2� �
2� 2Ayÿ 2yA� jAj2

j1ÿ A
2
y2j2

:
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(We omit the details.) Substituting these three formulae back into (2.7), we ®nally
obtain after a short calculation

c�z; y� � j1ÿ A2z2j2 � j1ÿ A2y2j2 � 8�4ÿ jAj
4�

�1ÿ jAj4�2 � 4Re �4ÿ jAj4 � 8A2yz� 4jAj4yz�;

and the assertion of the theorem follows. &

Corollary 2.5 In the situation of Theorem 2.4, the Green function u is positive on
D�D if and only if jAj2 � 2=5.

Proof. For jAj � ��������
2=5
p

and any z; y 2 D, we have

Re�4ÿ jAj4� 8A2yz� 4jAj4yz� > 4ÿ jAj4ÿ 8jAj2ÿ 4jAj4� �jAj2� 2��2ÿ 5jAj2� � 0

and the positivity of u follows from the well known fact that U�z; y� > 0 on D�D.
For the converse, let us take y � ÿz 2 D. Since P is an even function, the ®rst

term on the RHS of (2.3) then disappears, and we get

u�z;ÿz� � �1ÿ jzj
2�4

j1ÿ A2z2j4
�1ÿ jAj4�2
2�4ÿ jAj4�Re �4ÿ jAj4 ÿ 8A2z2 ÿ 4jAj4jzj2�:

As z! A=jAj 2 @D, the expression in the square brackets tends to

4ÿ 5jAj4 ÿ 8jAj2 � �jAj2 � 2��2ÿ 5jAj2�

which is negative if jAj2 > 2=5. Thus for jAj > ��������
2=5
p

, u�z; y� assumes negative values
in the vicinity of the point �A=jAj;ÿA=jAj� in D�D. &

A similar argument as in the proof of Theorem 2.4 can be applied also in the
case of A � 0 (i.e. a double zero at the origin, P�z� � z2� which we have excluded so
far. The result is

u�z; y� � jz� yj2U�z; y� � 1

2
�1ÿ jzj2�2�1ÿ jyj2�2;

which, of course, agrees with the formula in [9] and also with the formula (2.3) if we
set A � 0; thus Theorem 2.4 and Corollary 2.5 remain valid for A � 0 too.

A simple conformal invariance argument frees us from the assumption that the
zeros be symmetric with respect to the origin and leads to the main result of this
section.

Proposition 2.6. Let � be a univalent holomorphic function on D and P a holo-
morphic function on ��D�. Then the Green functions of the operators �jP0jÿ2� on ��D�
and �j�P � ��0jÿ2� on D are related by

uP���x; y� � uP���x�; ��y��:
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In particular, if � is a linear fractional mapping of D onto itself, P a Blaschke product
with zeros �1; �2; . . . ; and P� a Blaschke product with zeros �ÿ1��1�, �ÿ1��2�; . . .
(counting multiplicities), then the Green functions uP and uP� are related by
uP� �x; y� � UP���x�; ��y��.

Proof. Denote, temporarily, X :� ��x� and Y :� ��y�. Since �P � ��0 �
�0 � �P0 � �� and ��F � �� � j�0j2 � ��F� � � for any function F, we see that

j�P � ��0jÿ2�xuP���x�; ��y�� � jP0�X�jÿ2j�0�x�jÿ2 � j�0�x�j2�XuP�X;Y�

� log
Xÿ Y

1ÿ YX

���� ����2�2Re h0;P�X�
 !

;

whence

�xj�P � ��0jÿ2�xuP���x�; ��y�� � �x log
Xÿ Y

1ÿ YX

���� ����2
� j�0�x�j2 ��X log

Xÿ Y

1ÿ YX

���� ����2
� j�0�x�j2�Y�X� � �y�x�;

where � stands for the delta function. Since uP���x�; ��y�� together with its ®rst par-
tial derivatives vanish on the boundary, it follows that uP���x�; ��y�� is indeed the
Green function for �j�P � ��0jÿ2�.

For the second assertion, just observe that P � � is a Blaschke product whose
zeros coincide with those of P� (including multiplicities); hence, P � � � "P�, for
some unimodular constant ", and the claim follows. &

Theorem 2.7. Let P be a Blaschke product of length two with zeros �1; �2 2 D.

Then the Green function of the operator �jP0jÿ2� is positive if and only if �1ÿ�2
1ÿ�1�2

��� ��� �
2
7

�����
10
p � 0:9035 . . ..

Proof. Choose a MoÈ bius map � (a linear fractional mapping of D onto itself)
that carries �1; �2 into a pair of points symmetric with respect to the origin, A and
ÿA, say. By the preceding proposition and Corollary 2.5, the Green function of
�jP0jÿ2� is positive if and only if jAj2 � 2=5. Since MoÈ bius maps preserve the
hyperbolic distance, we have

�1 ÿ �2
1ÿ �1�2

���� ���� � Aÿ �ÿA�
1ÿ A�ÿA�

���� ���� � 2jAj
1� jAj2 :

Note that the last expression is an increasing function of jAj on [0,1]. Thus
jAj � ��������

2=5
p

if and only if

�1 ÿ �2
1ÿ �1�2

���� ���� � 2
��������
2=5
p

1� 2
5

� 2

7

�����
10
p

;

and the proof is complete. &
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3. The case of canonical divisors. Let �1; �2; . . . ; �n be mutually distinct points in
D, A2�D� the Bergman space of square-integrable analytic functions on D,
N � f 2 A2�D� : f��j� � 0; 8j� 	

the subspace of functions that vanish at �1; . . . ; �n,
� a point in Dn �1; . . . ; �nf g, p a nonzero multiple (say a0) of the orthogonal projec-
tion in A2�D� of the function �1ÿ �z�ÿ2 into N , and P the primitive of p normalized
so that P�0� � 0.

Recall that the function gx�z� :� �1ÿ xz�ÿ2 is the reproducing kernel of A2�D�;
i.e. h f; gxi � f�x�, 8f 2 A2�D�. By elementary Hilbert space geometry it therefore
follows that if a0 is chosen so that kpk � 1 and p��� > 0, p will be precisely the
function G�;� which maximises the value Re f��� amongst all functions f 2 N of
norm not exceeding one:

G�;� 2 N ; kG�;�k � 1;G�;� ��� � max Ref��� : f 2 N ; k f k � 1
� 	

:

In particular, for � � 0, G�;0 is Hedenmalm's canonical zero divisor G� for the zero
set � � �1; . . . ; �nf g as discussed in the Introduction.

Since

N? � span �1ÿ �jz�ÿ2; j � 1; 2; . . . ; n
� 	

;

we have

p�z� �
Xn
j�0

aj

�1ÿ �jz�2
; �3:1�

P�z� �
Xn
j�0

ajz

1ÿ �jz ; �3:2�

for some a1; . . . ; an, where a0 6� 0, by hypothesis, and where we have set �0 :� �. The
coe�cients aj satisfyXn

j�0
aj�1ÿ �j�k�ÿ2 � p��k� � 0 �k � 1; 2; . . . ; n�;

Xn
j�0

aj�1ÿ �j��ÿ2 � p���:
�3:3�

Also

p��� � hp; g�i � hp; g� �
Xn
k�1

akg�k=a0i � hp;
1

a0
pi � kpk2=a0: �3:4�

In other words if we denote by G the �n� 1� � �n� 1� matrix

G � Gij

� 	n
i;j�0; Gij � �1ÿ �j�i�ÿ2; �3:5�

and let Aij

� 	n
i;j�0 be its inverse, then

aj � kpk
2

a0
Aj0: �3:6�
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In particular, ja0j2 � kpk2A00, so that we have

kpk2 � ja0j
2

A00
; p��� � a0

A00
; aj � a0

A00
Aj0:

It is part of Hedenmalm's theory [8] that p has only simple zeros at �1; . . . ; �n and no
other zeros in D. Incidentally, this also implies that all aj are nonzero; if, for
instance, an � 0, then G�1;...;�nÿ1;� � G�1;...;�n;� would have an extra zero at �n. We are
thus in a position to apply Proposition 1.5. The equations (1.22) and (1.24) take the
form

Xn
j�0

sjGkj � Rk �k � 1; 2; . . . ; n�; �3:7�

aÿ10 p���s0 �
Xn
j�0

sjG0j � R0; �3:8�

with Rk given by (1.21). This can be solved explicitly. Adjusting � in (1.27) if neces-
sary we may assume that s0=a0 2 R. Since by (3.3) we have

Xn
j�0

ajGkj � 0 �k � 1; . . . ; n�;
Xn
j�0

ajG0j � p���;

we can write (3.7)±(3.8) as

Xn
j�0
�ajs0 � a0sj�Gkj � a0Rk; k � 0; 1; . . . ; n:

Consequently

ams0 � a0sm �
Xn
k�0

a0AmkRk �k � 0; 1; . . . ; n�;

and we thus arrive at the solution

s0 � 1

2

Xn
k�0

A0kRk � a0

2kpk2
Xn
k�0

akRk;

sm �
Xn
k�0

AmkRk ÿ am

2kpk2
Xn
k�0

akRk:

�3:9�

By Proposition 1.5 the sought Green function u is of the form (1.31) with c�x; y�
given by

c�x; y� �
Xn

J;K;L;M�0

AJKLM

�1ÿ �Jx��1ÿ �Kx��1ÿ �Ly��1ÿ �My� ; �3:10�
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where the coe�cients AJKLM can be obtained from (1.35), with eJK given by (1.34).
Let us evaluate the limit (1.35). Owing to (1.36) we can assume that �L�M 6� 0. From
(1.21) it then follows that

lim
y!1=�L;�!1=�M

�1ÿ �Ly��1ÿ �M��Rk � ÿ�kM aL
1ÿ �L�M :

Substituting this into (3.9) yields

lim
y!1=�L;�!1=�M

�1ÿ �Ly��1ÿ �M��sJ � ÿ aLAJM

�L�M
� aJaMaL

2kpk2�L�M
;

and similarly, upon writing K in the place of J, interchanging L and M, and taking
complex conjugates,

lim
y!1=�L;�!1=�M

�1ÿ �Ly��1ÿ �M��sK � ÿ aMALK

�L�M
� aKaLaM

2kpk2�L�M
:

Also clearly

lim
y!1=�L;�!1=�M

�1ÿ �Ly��1ÿ �M��
�1ÿ �Jy��1ÿ �K�� � �JL�KM:

Feeding this into (1.34) we conclude that the desired limit (1.35) satis®es

�1ÿ �J�K�2�1ÿ �L�M�2
��J�K�L�M�2

AJKLM � ÿ �1ÿ �J�K��1ÿ �L�M�
�J�K�L�M

aJaK�JL�KM

� aMaJALK � aKaLAJM

�J�K�L�M
ÿ aJaKaLaM

kpk2�J�K�L�M
:

Substituting for aj from (3.6) and using (3.4) we ®nally obtain

AJKLM � �J�K�L�MGKJGML � jp���j
4

kpk2 �

� ÿA00AJ0A0K�JL�KM
GKJ

� A00AJ0A0MALK � A00AL0A0KAJM ÿ AJ0A0KAL0A0M

� �
:

�3:11�
Even though this formula has been derived for �L�M 6� 0, it gives the correct answer
even if �L or �M vanish, since AJKLM � 0 in that case by (1.36). Thus (3.11) is valid
for all J;K;L;M.

We have arrived at the following theorem.

Theorem 3.1. Let �1; �2; . . . ; �n and �0 � � be distinct points in D and p a func-
tion satisfying

p�z� �
Xn
j�0

aj�1ÿ �jz�ÿ2; p��k� � 0 �k � 1; 2; . . . ; n�; p��� 6� 0: �3:12�
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Then the Green function for the operator �jpjÿ2� is equal to

u�x; y� � P�x� ÿ P�y�
xÿ y

���� ����2U�x; y�
� �1ÿ jxj2�2�1ÿ jyj2�2 jp���j

4

kpk2
Xn

J;K;L;M�0
aJKLMXJXKYLYM;

�3:13�

where

aJKLM � GKJGML

�
ÿ A00AJ0A0K�JL�KM

GKJ
� A00AJ0A0MALK

� A00AL0A0KAJM ÿ AJ0A0KAL0A0M

�
:

�3:14�

Here P is a primitive to p;U�x; y� is the Green function for the ordinary bilaplacian
�2;Xj :� �j=�1ÿ �jx�, Yj :� �j=�1ÿ �jy�, and Ajk

� 	n
j;k�0 is the inverse of the Gram-

mian matrix G � Gjk

� 	n
j;k�0, Gij :� �1ÿ �j�i�ÿ2.

The following special case has been independently obtained by a di�erent
method by Hedenmalm (unpublished).

Corollary 3.2. Let p be the canonical zero-divisor of a ®nite zero-set
�1; . . . ; �nf g consisting of distinct points in Dn 0f g. Then the Green function for the
operator �jpj2� is equal to

u�x; y� � P�x� ÿ P�y�
xÿ y

���� ����2U�x; y� � �1ÿ jxj2�2�1ÿ jyj2�2p�0�ÿ2�
�

Xn
J;K;L;M�1

XJXKYLYMGKLGML � �J�K�L�M ÿ
�JL�KM
GKJ�J�K

� �LK

�L�K

� �JM

�J�M

� 1

p�0�2
� �

:

�3:15�

Here P is a primitive to p;U�x; y� is the Green function for the ordinary bilaplacian
�2;Xj :� �j=�1ÿ �jx�, Yj :� �j=�1ÿ �jy�, �jk

� 	n
j;k�1 is the inverse of the n� n matrix

Gjk

� 	n
j;k�1, Gjk � �1ÿ �k�j�ÿ2, and �i �

Pn
j�1 �ij.

Proof. As we have already observed at the beginning of this section, the cano-
nical divisor p is a function of the form (3.12) which in addition satis®es

kpk � 1; p�0� � kpk2=a0 > 0; � � 0:

Thus we can apply the last theorem. Since by (3.3) and (3.6) we have

Xn
k�1

Amk ÿ amak

kpk2
� �

Gkj � ��mj ÿ Am0G0j� ÿ am

kpk2
Xn
k�0

Gjkak ÿ Gj0a0

 !

� �mj ÿ a0am

kpk2 G0j

� �
ÿ am

kpk2 p��j� ÿ Gj0a0
ÿ �

� �mj;
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for any j;m � 1; . . . ; n, the coe�cients �mk are connected with Amk by the relation

Amk � �mk � amak: �3:16�

Further, by (3.3)
Pn
j�1

Gkjaj � ÿGk0a0 � ÿa0 for k � 1; . . . ; n, whence

am � ÿ
Xn
k�1

�mka0 � ÿa0�m � ÿ 1

p�0��m: �3:17�

Finally, as � � 0, we have X0 � Y0 � 0 and so the summation in (3.13) is e�ectively
carried out only over J;K;L;M from 1 to n. Inserting (3.16) and (3.17) into (3.13),
we therefore obtain (3.15). &

Let us record also the following invariance property of the sum in (3.13).

Proposition 3.3. For x � �xj�nj�0 and y � �yj�nj�0, two vectors in Cn�1, denote

��1;...;�n;��x; y� � 1

A2
00

Xn
j;k;l;m�0

ajklmxjxkylym; �3:18�

with ajklm given by (3.14). Then for any holomorphic self-map � of the unit disc D

����1�;...;���n�;�����x; y� � ��1;...;�n;��x; y�:

Proof. Let ��z� � ��zÿ ��=�1ÿ �z�, � 2 D, j�j � 1. A simple calculation reveals
that

�1ÿ ���k����j��2 � �1ÿ �k�j��1ÿ j�j
2�

�1ÿ �k���1ÿ ��j�
� �2

� �1ÿ �k�j�2 � �0��k��0��j�:

Thus upon replacing �j
� 	

by ���j�
� 	

, the matrix �Gjk� changes into
�Gjk=��0��j��0��k���, so that its inverse �Ajk� changes into ��0��j��0��k�Ajk�, and the
assertion follows. &

In terms of �, the formula (3.13) for the Green function becomes

u�x; y� � P�x� ÿ P�y�
xÿ y

���� ����2U�x; y�
� �1ÿ jxj2�2�1ÿ jyj2�2kpk2��1;...;�n;�

�j
1ÿ �jx
� �

;
�j

1ÿ �jy
� �� �

:

�3:19�

For n � 1, the sum (3.18) is easily evaluated explicitly:

��;��x; y� � �1ÿ j�j2�2A00

j1ÿ ��j4 ÿ �1ÿ j�j2�2�1ÿ j�j2�2 � jx0 ÿ x1j2jy0 ÿ y1j2:

Thus we obtain the following result.

Proposition 3.4. Consider the situation as in Theorem 3.1, with n � 1, �1 � �,
�0 � �. Then the Green function is given by the formula
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u�z; y� � P�z� ÿ P�y�
zÿ y

���� ����2U�z; y�
� �1ÿ j�j

2�2�1ÿ j�j2�2
�2ÿ j �ÿ�1ÿ�� j2�2

� kpk2�1ÿ jzj2�2�1ÿ jyj2�2
�1ÿ �z��1ÿ �y��1ÿ �z��1ÿ �y��� ��2 :

In particular, u�z; y� is positive on D�D.

For n > 1 the biquadratic form (3.18) becomes fairly complex and the author
was unable to obtain a closed expression for it even in the simplest case n � 2.
Computer-based calculations, however, seem to give evidence in support of the fol-
lowing conjecture.

Conjecture 3.5. Denote

%�1;...;�n;���; �� � 1

A2
00

Xn
j;k;l;m�0

ajklm�jl�km ��; � 2 C�n�1�
2 �: �3:20�

The quadratic form %�1;...�n;���; �� in the �n� 1�2 complex variables ��ij�nj�0 is positive
semide®nite.

In particular, taking �jl � xjyl, ��1;...;�n;��x; y� � 0 for all x; y 2 Cn�1 and mutually
distinct points �1; �2; . . . ; �n; � 2 D.

Remark. The analogous quadratic form obtained from (3.18) upon introducing
instead the variables �jm � xjym is not positive semide®nite in general. A counter-
example is n � 2 and �0 � 0, �1 � 1=3, �2 � 2=3; the quadratic form has then three
positive, ®ve zero and one negative eigenvalues. We also remark that the points
�1; . . . ; �n; � enter into (3.18) and (3.20) (i.e., into ajklm) only through the coe�cients
of the matrices �Gjk� and �Ajk�, and thus it makes sense to de®ne ��x; y� and %��; ��,
more generally, for any positive de®nite (or even nonsingular) matrix G and its
inverse A, and question their positivity in this more general setting. Then it is
possible to obtain ``counterexamples'' to Conjecture 3.5 as well, but neither the

corresponding matrices G (one of them is e.g. G �
1 1=

���
3
p

1=
���
3
p

1=
���
3
p

1 1=3
1=

���
3
p

1=3 1

0@ 1A for

n � 2) nor even any of their conjugates D�GD by diagonal matrices D are of the
form (3.5) for �0; �1; �2 2 D. The author does not know which positive de®nite
matrices arise as D�GD with D diagonal and G as in (3.5)Ðthat is, in other words,
what arrangements of angles can there occur between multiples of the reproducing
kernels g�1 ; . . . ; g�m 2 A2�D� of m distinct points in D. For m � 2, these are precisely
all positive de®nite matrices whose o�-diagonal terms are non-zero.

Owing to the following invariance property, it would be enough to verify Con-
jecture 3.5 for � � 0.

Proposition 3.6. For any holomorphic self-map � of the unit disc D, we have

%���1�;...;���n�;������; �� � %�1;...;�n;���; ��:

Proof. This is the same as Proposition 3.3. &
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We close by mentioning a curious operator-theoretic interpretation of the
biquadratic form (3.18). Consider quite generally a Hilbert space H of dimension
n� 1 spanned by linearly independent vectors g0; g1; . . . ; gn (not necessarily unit or
orthogonal) and let 
0; . . . ; 
n be the dual basis:

hgj; 
ki � 1 j � k;
0 j 6� k:

�
�3:21�

The corresponding Grammians

Gjk :� hgk; gji; Ajk :� h
k; 
ji �3:22�

are then related by G � Aÿ1. For any �n� 1�-tuple of complex numbers
x � �x0; . . . ; xn�, de®ne the operator X on H by

X :
X
j

cj
j 7!ÿ
X
j

xjcj
j �3:23�

(that is, 
j
� 	

is a complete system of eigenvectors for X with xj the corresponding
eigenvalues), and let Y be de®ned similarly for y � �y0; . . . ; yn�. One easily computes
that the adjoint operators are given by

X� :
X
j

cj
j 7!ÿ
X
j;k;m

xmcjAmjGkm
k

and similarly for Y. In particular,

hXX�
0;YY�
0i �
�X

k;m

xkxmAm0Gkm
k;
X
K;M

yKyMAM0GKM
K

�
�

X
k;m;K;M

xmxkyKyMGkmGMKAm0A0MAKk

�
X
j;k;l;m

xjxkylymGkjGmlAj0A0mAlk:

In the special case yj � 1, 8j this gives

hXX�
0; 
0i � kX�
0k2 �
X
jk

xjxkGklAj0A0k;

and similarly for Y. Also the n-tuple �x0y0; . . . ; xnyn� corresponds to the operator
XY�� YX�, so that

kX�Y�
0k2 �
X
jk

xjxkyjykGkjAj0A0k:

Finally note that k
0k2 � A00 by de®nition. Putting everything together we thus see
that
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hXX�
0;YY�
0i
k
0k2

� hYY
�
0;XX�
0i
k
0k2

ÿ kX
�
0k2kY�
0k2
k
0k4

ÿ kX
�Y�
0k2
k
0k2

�

� 1

A2
00

Xn
j;k;l;m�0

xjxkylymGkjGml

h
A00Aj0A0mAlk � A00Al0A0kAjm

ÿ Aj0A0kAl0A0m ÿ A00�jl�km
Aj0A0k

Gkj

i
:

�3:24�

Let us now apply this to the situation in which gj � �1ÿ �jz�ÿ2 2 A2�D� are the
reproducing kernels for some distinct points �0; . . . ; �n 2 D. The corresponding
Grammian (3.22) then coincides with (3.5), H � A2�D� 	M, whereM� N �[ �f g is
the subspace of functions that vanish at �0; . . . ; �n, and the vector 
0 of the dual
basis (3.21) is, in view of (3.3) and (3.4), given by


0 � a0

kpk2 p:

Comparing (3.24) with (3.18) we get

2Re
hXX�p;YY�pi
kpk2 ÿ kX

�Y�pk2
kpk2 ÿ kX

�pk2kY�pk2
kpk4 � ��1;...;�n;��x; y�; �3:25�

where X and Y are operators on H given by (3.23). These operators can be expressed
in terms of the operator S of multiplication by z on A2�D� (the Bergman shift):

S : A2�D� ! A2�D�; �Sf��z� :� zf�z�: �3:26�

Indeed, in terms of the dual basis (3.21), (3.23) becomes

X� :
X
j

cjgj 7!ÿ
X
j

xjcjgj:

On the other hand, it is well known that S�gj � �jgj. (In particular, H is an invariant
subspace for S�.) Thus if �x is a function holomorphic in a neighbourhood of D �
Spectrum�S�� such that

�x��j� � xj � j � 0; 1; . . . ; n�;

then �x�S�� � X� on H. Similarly for Y.
In particular, for xj � �j=�1ÿ �jx� with some x 2 D, one can take

�x�z� � z=�1ÿ xz�; using (3.19), we thus obtain the following proposition.

Proposition 3.7. Let �1; . . . ; �n and �0 � � be mutually distinct points in D, S
the Bergman shift (3.26) and H the orthogonal complement in A2�D� of the subspace
of functions that vanish at �0; �1; . . . ; �n. For any x 2 D, let S�x : H! H be the
restriction of the operator S��1ÿ xS��ÿ1 to its invariant subspace H, and let
Sx : H! H be its adjoint. Let S�y and Sy be de®ned similarly for y 2 D. Then the
Green function (3.13) from Theorem 3.1 is equal to
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u�x; y� � P�x� ÿ P�y�
xÿ y

���� ����2U�x; y� � �1ÿ jxj2�2�1ÿ jyj2�2kpk2c�x; y�; �3:27�

where

c�x; y� � ÿkS
�
xS
�
ypk2

kpk2 ÿ kS
�
xpk2kS�ypk2
kpk4 � 2Re

hSxS
�
xp;SyS

�
ypi

kpk2 : �3:28�

Remark. Explicitly, the operator Sx is given by Sx � PHS�1ÿ xS�ÿ1jH, where
PH is the orthogonal projection from A2�D� onto H. In fact, the operators �x�S��
above are just the Toeplitz operators on A2�D� with coanalytic symbols, while the Sx

are a Bergman-space analogue of the ``model operators'' of dilation theory on H2

(cf. [11, Chapter VIII]). &

Corollary 3.8. Let � � �1; . . . ; �nf g be a sequence of points in D (not necessa-
rily distinct), � any point in D, and G�;� the (unique) solution of the extremal problem

max Re f �m����; k f k � 1; f vanishes on � �including multiplicities�� 	
; �3:29�

where m is the multiplicity of � in the sequence �. Then the corresponding Green
function u�;��x; y� of the operator �jG�;�jÿ2� on D (exists and) depends continuously
on �1; . . . ; �n; � 2 D.

Proof. Set as before �0 :� � and consider the operators

T�;� : f�z� 7!ÿ f�z� �
Yn
j�0
�zÿ �j�:

This is a family of bounded operators on A2�D� which depends norm-continuously
on ��;�� 2 Dn�1; moreover, they are bounded below; kT�;�fk � c�;�k f k for some
c�;� > 0, and uniformly so when ��; �� ranges in a compact subset of Dn�1. Both
properties remain in force also for the positive operators P�;� � T��;� T�;� � C 2

�;� I;
using the holomorphic functional calculus, we infer that the Pÿ1=2�;� depend, likewise,
continuously on ��;��. Hence, so do the partial-isometry components
W�;� � T�;�P

ÿ1=2
�;� in the polar decomposition of T�;� (W�;� is in fact an isometry of

A2�D� onto the subspaceM�;� :� N �[ �f g of functions which vanish at �1; . . . ; �n; �
counting multiplicities) and the product W�;�W

�
�;�, which is the orthogonal projec-

tion onto Range�T�;�� � M�;�, as well as the projection IÿW�;�W
�
�;� onto the

orthogonal complement H�;� � A2�D� 	M�;�. A similar argument applies, of
course, to the operators

T� : f�z� 7!ÿ f�z� �
Yn
j�1
�zÿ �j�

obtained upon omitting the point �, and shows that the orthogonal projection of
A2�D� onto N � depends continuously on � 2 Dn. As N � �M�;� and
N � 	M�;� � CG�;� is precisely the one-dimensional subspace spanned by the
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solution G�;� of the extremal problem (3.29), we see that this one-dimensional sub-
space, call it G�;�, also depends continuously on ��; ��. Thus both the operators
�IÿW�;�W

�
�;��. S�1ÿ xS�ÿ1. �IÿW�;�W

�
�;�� � Sx and Sy in (3.28) depend con-

tinuously on ��; ��, and so does the one-dimensional subspace spanned by the p
there; as (3.28) is evidently homogenous of degree 0 in p, it follows that the expres-
sion c�x; y� given by (3.28) with p � G�;� extends by continuity (for each ®xed x and
y) to a continuous function on all ��;�� 2 Dn�1 (i.e. even to the �0; �1; . . . ; �n which
are not mutually distinct). Similarly, the number

P�x� ÿ P�y�
xÿ y

���� ����2� ���� �
�x;y�

p�z�dz
����2 �3:30�

is unchanged if we replace p by �p with a unimodular �, so that it yields the same
value regardless of the choice of the unit vector p in the one-dimensional space G�;�,
and this value thus varies continuously with ��; ��; the same is of course true for
kpk2�� 1�, and so we ®nally see that the expression u�x; y� given by (3.27) with
p � G�;� de®nes, for each ®xed x and y, a continuous function on all Dn�1. How-
ever, both (3.30) and c�x; y� are rational functions in �0; �1; . . . ; �n (since Gjk,
det�Gjk� and, hence, Ajk are); thus the identity

�x�jG�;��x�jÿ2�xu�;��x; y� ÿ ÿ�x; y�� � 0 8x; y 2 D;

which we know to hold true when �0; �1; . . . ; �n are mutually distinct by the last
proposition, must in fact be valid universally. &

Remark. One more virtue of the formula (3.25) is that it shows immediately
that ��x; y� � 0 if x or y is a scalar multiple of (1,1,1,. . .,1). In terms of the quadratic
form (3.20) this means that

%��; �� � 0; 8� if � � rI or � � cJ;

where �rI�ij :� �iI and �cJ�ij :� �jJ. Thus the subspace N 0 � C�n�1�
2

spanned by rI and
cI, I � 0; 1; . . . ; n (its dimension is 2n� 1, since

P
I rI �

P
J cJ) is contained in the

kernel of the quadratic form %��; ��. Moreover, the two subspaces

N� :� � 2 N?0 : �ij � �ji
n o

; Nÿ :� � 2 N?0 : �ij � ÿ�ji
n o

are easily seen to be orthogonal under %, a re¯ection of the fact that ��x; y� is sym-
metric in x and y. Thus if � � �0 � �� � �ÿ is the splitting of a vector � 2 C�n�1�

2

into
its N 0, N� and Nÿ components and %�, %ÿ stand for the restrictions of % to N� and
Nÿ, respectively, then

%��; �� � %ÿ��ÿ; �ÿ� � %����; ���:

The subspaces N� and Nÿ have dimensions n�n� 1�=2 and n�nÿ 1�=2 and are
spanned by the vectors sIJ and dIJ, respectively, where

�sIJ�II � �sIJ�JJ � 1; �sIJ�IJ � �sIJ�JI � ÿ1; �sIJ�ij � 0 otherwise �0 � I < J � n�;
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and

�dIJ�IJ � �dIJ�0I � �dIJ�J0 � 1; �dIJ�JI � �dIJ�I0 � �dIJ�0J � ÿ1;
�dIJ�ij � 0 otherwise �1 � I < J � n�:

For n � 2, Nÿ consists just of scalar multiples of d12, and for �0 � 0 a rather
laborious computation reveals that

%�d12; d12� � 36
�1ÿ j�1j2�2�1ÿ j�2j2�2j1ÿ �1�2j4

j�1j2j�2j2j�1 ÿ �2j2
�

� �2�2ÿ j�1j2 ÿ j�2j2�j1ÿ �1�2j2 � 2�1ÿ j�1j2��1ÿ j�2j2� � j�1�2��1 ÿ �2�j2�ÿ2 � 0;

so by Proposition 3.6 at least the quadratic form %ÿ is positive de®nite for any
�0; �1; �2 2 D.

Example. n � 2, �0 � 0, �2 � ÿ�1. Denote X � j�1j2 � j�2j2 and let M be the
(3�3) matrix of %� with respect to the basis sIJf g above. Then M has eigenvalues ar,
a�s� ��

t
p �, where

a � 9�1ÿ X2�2
16X4�3ÿ X2�2�1� X2�2 > 0;

r � 2X�1� X2�2�7� 2X2 ÿ X4� > 0;

s � 9� 34X2 � 48X4 � 6X6 ÿ X8 > 0;

t � 81� 580X2 � 1860X4 � 3340X6 � 3046X8

� 668X10 ÿ 284X12 ÿ 108X14 � 33X16 > 0;

and

s2 ÿ t � 32X2�1ÿ X2�2�1� X2�3�1� 4X2 ÿ X4� > 0:

In particular, %� is also positive de®nite. Thus the Green function for the operator
�jGjÿ2�, with G the canonical divisor for a 2-point zero-set �;ÿ�f g � D, is positive.
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