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4-HERMITE POLYNOMIALS 
AND CLASSICAL ORTHOGONAL POLYNOMIALS 

CHRISTIAN BERG AND MOURAD E. H. ISMAIL 

ABSTRACT. We use generating functions to express orthogonality relations in the 
form of q-beta. integrals. The integrand of such a q-beta. integral is then used as a weight 
function for a new set of orthogonal or biorthogonal functions. This method is applied 
to the continuous ^-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the 
polynomials of Szego and leads naturally to the Al-Salam-Chihara polynomials then 
to the Askey-Wilson polynomials, the big </-Jacobi polynomials and the biorthogonal 
rational functions of Al-Salam and Verma, and some recent biorthogonal functions of 
Al-Salam and Ismail. 

1. Introduction and preliminaries. The #-Hermite polynomials seem to be at the 
bottom of a hierarchy of the classical ^-orthogonal polynomials, [6]. They contain no 
parameters, other than q, and one can get them as special or limiting cases of other or­
thogonal polynomials. 

The purpose of this work is to show how one can systematically build the classical 
^-orthogonal polynomials from the gr-Hermite polynomials using a simple procedure of 
attaching generating functions to measures. 

Let {pn(x)} be orthogonal polynomials with respect to a positive measure \i with mo­
ments of any order and infinite support such that 

( 1 . 1 ) / Pn (x)Pm (X) dn(x) = Ci<W 
J—oo 

Assume that we know a generating function for {pn(x)}, that is we have 

oo 

(1.2) Y,Pn(x)tn/cn = G(x9t), 

for a suitable numerical sequence of nonzero elements {cn}. This implies that the or­
thogonality relation (1.1) is equivalent to 

(1.3) j°° G(xyh)G(x,t2)diL{x) = E C ^ T ^ , 

provided that we can justify the interchange of integration and sums. 
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Our idea is to use G(x,t\)G(x9t2)dp(x) as a new measure, the total mass of which 
is given by (1.3), and then look for a system of functions (preferably polynomials) or­
thogonal or biorthogonal with respect to it. If such a system is found one can then repeat 
the process. The generating function in (1.2) is assumed to be an elementary function, 
that is a quotient of products of powers and infinite products. It is clear that we cannot 
indefinitely continue this process. The form of the generating function will become too 
complicated at a certain level, and the process will then terminate. The referee wondered 
whether there is a principal reason which forbids that nice explicit (bi)orthogonal sys­
tems can be found with respect to measures which are not elementary. We do not know 
the answer to this question especially since in the case of associated orthogonal poly­
nomials [11], [19], [28] the weight function involves the reciprocal of the square of the 
absolute value of a transcendental function. Part of the difficulty is that we do not have 
direct proofs of the orthogonality of the associated polynomials. 

If p has compact support it will often be the case that (1.2) converges uniformly for x 
in the support of/x and \t\ sufficiently small. In this case the justification is obvious. 

We mention the following general result with no assumptions about the support of p. 
For 0 < p < oo we denote by Z)(0, p) the set of z £ C with \z\ < p. 

PROPOSITION 1.1. Assume that (1.1) holds and that the power series 

(1-4) g — *" 
»=0 cn 

has a radius of convergence p with 0 < p < oo. 
(i) Then there is a p-null set N C R such that (1.2) converges absolutely for \t\ < 

p,x G R \ N. Furthermore (1.2) converges in L2(p)for \t\ < p, and (1.3) holds for 
\hl\t2\<p. 

(ii) If p is indeterminate then (1.2) converges absolutely and uniformly on compact 
subsets ofQ. = C x D(0, p), and G is holomorphic in Q. 

PROOF. For 0 < r0 < r < p there exists C > 0 such that (\/&/|cw |K < C for 
n > 0, and we find 

11,1=0 \cn\ U2(n) »=0 lC"l V V J "=0 v r ' 

which by the monotone convergence theorem implies that 

oo ~n 

Eb«WlT-ieiV), 
n=0 \cn\ 

and in particular the sum is finite for /x-almost all x. This implies that there is a /x-null 
set N C R such that Y<Pn{x)(f /cn) is absolutely convergent for \t\ < p and x eR\N. 

The series (1.2) can be considered as a power series with values in L2(p), and by 
assumption its radius of convergence is p. It follows that the series in (1.2) converges in 
L2(p) to some G(x, i) for \t\ < p, and (1.3) is a consequence of Parseval's formula. 
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If/x is indeterminate it is well known that £ |/?«(x)|2 /(# converges uniformly on com­
pact subsets of C, cf.[l]9 [26], and the assertion follows. • 

In order to describe details of our work we will need to introduce some notations. 
There are three systems of g-Hermite polynomials. Two of them are orthogonal on com­
pact subsets of the real line and the third is orthogonal on the unit circle. The two q-
Hermite polynomials on the real line are the discrete ^-Hermite polynomials {Hn(x : q)} 
[13] and the continuous g-Hermite polynomials {Hn(x\q)} of L. J. Rogers [8]. They are 
generated by 

(1.5) 2xHn(x\q) = Hn+l(x\q) + (1 - (f)Hn-X{x\<l\ 

(1.6) xHn{x : q) = Hn+l(x : q) + qn~\\ - (f)Hn.x{x : q\ 

and the initial conditions 

(1.7) H0(x\q) = H0(x:q)=h Hx(x\q) = 2x, Hx{x:q)=x. 

We will describe the gr-Hermite polynomials on the unit circle later in the Introduction. 
The discrete and continuous ^-Hermite polynomials have generating functions 

( 1 8 ) ™Hn(x:q)f^ (/,-;; q)^ 

o (?;?)* (*';?)oo 

and 

(1.9) £ ^ , = _ I _ X = C 0 B „ , 

respectively, where we used the notation in [16] for the ^-shifted factorials 

(1.10) (a;q)0 := 1, (a;q)n := f [ ( l - V " 1 ) , n = 1,2,. . . ,or oo, 
k=\ 

and the multiple ^-shifted factorials 

k 

(1.11) (ai,a29...9ak;q)n := II(fly^)»-

A basic hypergeometric series is 

(1.12) r<M j 1 ' ' " ' ^ Wz) = r<t>s(a\,...,ar;bu...,bs'9q,z) 

= ™ {au...,ar\q)n , ]yi n(n-i)/2y+^ 

In (1.9) e±w is JC± Vx2 — 1 and the square root is chosen so that \Jx2 — 1 & x as x —•» oo. 
This makes \e~w\ < \e>°\. It is clear that the right hand sides of (1.8) and (1.9) are analytic 
functions of the complex variable / for \t\ < 1/|JC|, \t\ < \e~l0\. 
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In Section 2 we apply the procedure outlined at the beginning of the Introduction to 
the continuous ^-Hermite polynomials for \q\ < 1 and we reach the Al-Salam-Chihara 
polynomials in the first step and the second step takes us to the Askey-Wilson polynomi­
als. It is worth mentioning that the Askey-Wilson polynomials are the general classical 
orthogonal polynomials, [6]. As a byproduct we get a simple evaluation of the Askey-
Wilson q-beta integral, [10]. This seems to be the end of the line in this direction. The case 
q > 1 will be studied in Section 5, see comments below. In Section 3 we apply the same 
procedure to the polynomials {U^\x;q)} and {Vj?\x;q)} of Al-Salam and Carlitz [2]. 
They are generated by the recurrences 

(1.13) lf$x{x\q) = [x- (1 +a)f]l%\x\q) + a<rl(\ ~cf)^\^q\ n > 0, 

(1.14) vMfcq) = [x-(l+a)q-"]lf\x',q) - aql-2n(l -.<f)V*\(x\q\ n > 0, 

and the initial conditions 

(1.15) l%Xx\q) = lia\x;q) = 1, lf?\x\q) = V\a\x;q) = x - I - a, 

[2], [14]. It is clear that U^\x; \jq) = V%*\x;q), so there is no loss of generality in 
assuming 0 < q < 1 with appropriate restrictions on a. The Un's provide a one param­
eter extension of the discrete ^-Hermite polynomials when 0 < q < 1 corresponding to 
a = — 1. In Section 3 we show that our attachment procedure generates the big ^-Jacobi 
polynomials from the Un's. The big #-Jacobi polynomials were studied by Andrews and 
Askey in 1976. The application of our procedure to the F„'s does not lead to orthog­
onal polynomials but to a system of biorthogonal rational functions of Al-Salam and 
Verma [5], 

The ^-analogue of Hermite polynomials on the unit circle are the polynomials 

(1-16) ^ = ±t9*V*f-
k=o (q>q)k(q;q)n-k 

Szego introduced these polynomials in [27] to illustrate his theory of polynomials or­
thogonal on the unit circle. Szego used the Jacobi triple product identity to prove the 
orthogonality relation 

(1.17) i - t ^ ( ^ ; « ) J ^ ^ ^ ^ ^ / V * ; ^ ^ = ^ ^ W 
2TTJO (qiq)oo 

In Section 4 we show how generating functions transform (1.16) to a #-beta integral of 
Ramanujan. This explains the origin of the biorthogonal polynomials of Pastro [24] and 
the 4<fo biorthogonal rational functions of Al-Salam and Ismail [4]. 

In Section 5 we consider the continuous ^-Hermite polynomials for q > 1. They are 
orthogonal on the imaginary axis. For 0 < q < 1 we put h„(x\q) — (—i)nHn(ix\ 1 fq\ and 
{h„(x\q)} are called the q~l-Hermitepolynomials. They correspond to an indeterminate 
moment problem considered in detail in [18]. Using a ^-analogue of the Mehler formula 
for these polynomials we derive an analogue of the Askey-Wilson integral valid for all 
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the solutions to the indeterminate moment problem. Our derivation, which is different 
from the one in [18[, is based on ParsevaFs formula. 

The attachment procedure for the g_1-Hermite polynomials leads to a special case 
of the Al-Salam-Chihara polynomials corresponding to q > 1, more precisely to the 
polynomials 

(1.18) un(x;tut2) = vn(-2x;q,-(h + t2)/q9tit2q~2,-l), 

cf. [9]. We prove that for any positive orthogonality measure /i for the q~l -Hermite poly­
nomials 

(1.19) ^ ( s i n h ^ f c ) := TTT1 ^ <//i(smhO, 
(-t\t2/q;q)oo 

is an orthogonality measure for {u„}. 
The attachment procedure applied to {u„} leads to the biorthogonal rational functions 

,,.20) , . ( - ^ , ( , « , « : = ^ ( ' " " - ; ; % ; ; : ^ ; ' ^ / , I M ) -
of Ismail and Masson [18] in the special case h = U = 0. 

The referee raised the question of what determines the starting point in our process. In 
each case we used the polynomials with fewest possible parameters. In the cases of the 
polynomials in Sections 2,4 and 5 we started with polynomials with no parameters, other 
than q. In Section 3 we used the 1 -parameter family of Al-Salam-Carlitz polynomials. We 
cannot set a = 0 in the Al-Salam-Carlitz polynomials and maintain their orthogonality, 
so it seems that the full Al-Salam-Carlitz polynomials are the correct starting point. We 
do not have a canonical answer. The referee also remarked that the Askey scheme in [22] 
contains many ^-polynomials at the lowest level of the classification and wondered if 
these ^-polynomials are Hermite like and when we apply our procedure to such Hermite 
like polynomials we may obtain other results. We plan to investigate this point in a future 
work. 

(2.1) f Hm(cos 0\q)Hn(cos 0\q)(e2W, e'w; q)^ dO = 2 J * g \ g ) X 

2. The continuous ^-Hermite ladder. Here we assume — 1 < q < 1. The orthog­
onality relation for the continuous ^-Hermite polynomials is 

i<q\q\s 

(q\q)o 

and follows easily from the Jacobi triple product identity [16]. The series in (1.9) con­
verges for \t\ < 1 uniformly in 8 G [0, ir]. The reason is that 

Hn(cosO\q) = ±(
 {*f\ «*-*» 

k=o(i>q)k(q\q)n-k 

implies |#w(x|tf)| < Hn(l\q) for x G [-1,1] and (1.9) converges at x = 1. Thus (1.2), 
(1.3) and the generating function (1.9) imply 

(2-2) r ( t ^ l - ^ j ^ ^ d e = ( ^ f k ? |f,|'k2|<i' 
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where we used the ^-binomial theorem [16, (II.3)] 

o (?;#)« (z;q)oo' 

with a — 0. 
The next step is to find polynomials \pn(x)} orthogonal with respect to the weight 

function 

( no e-2i0.a\ i 

which is positive for t\9t2 £ (—1,1). Here we follow a clever technique of attachment 
which was used by Askey and Andrews and by Askey and Wilson in [10]. Write {/?«(*)} 
in the form 

(2.5) pn(x) = }2 a„fk, 

then determine an^ such that/?„(x) is orthogonal to {tie10, t2e~l0\ q)jj — 0, 1,...,«— 1. 
Note that (ae10, ae~l0\ q)k is a polynomial in x of degree k, since 

(2.6) (aei0, ae~w; q)k = H (1 - laxcj + a2q2J) 
j=0 

= (-2a)kqKk~l)/ V + lower order terms. 

The reason for choosing the bases {(t\e?e
it\e~iB\q)k} and {{t2ei0,t2e~i0\q)j} is 

that they attach nicely to the weight function and (2.2) enables us to integrate 
(he10, t\e~lB\ q)k(t2el°, t2e~l0\ q)j against the weight function w\(x; t\, 2̂). Indeed 

(txe
iB,he i0\q)k(t2e

w,t2e
 w;q)jWX(x,h,h) = wi(x;hq\t2q i). 

Therefore 

J_i(t2e
w,t2e

 i9;q)jpn(x)wl(x;tut2)dx 

feo (q\q)k an'kJo (hqkew,hqke-ie,t2qfei0,t2qfe-w;q)o 

2TT " (̂  n',q)kan,k 

{q\q)oo ^ o {q\q)k(t\t2q
k+J\q)oo 

2TT ^{q-\ht2qi\q)k 
2^ — T I T T ; a«>*-(qj\t2(f\q)oo k=o (q\q)k 

At this stage we look for aw?* as a quotient of products of ^-shifted factorials in order to 
make the above sum vanish for 0 <j <n. The ^-Chu-Vandermonde sum [16, (II.6)] 

(2.7) 2Mq-*,a;c;qtq)=<El2!!k(f 
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suggests 
an,k = qk/(txt2;q)k-

Therefore 

I\{t2ei\t2e-ie-q)jpn{x)wx(x-tut2)dx = f ^^f" , ( W ) " -J~l \q,hh<f\q)oo\t\h\q)n 

It follows from (2.5) and (2.6) that the coefficient of x" mpn(x) is 

(2.8) (-2txrq<n^l\q-n^q\l{q,txt^q\ = (2tx)
n/(txt2;q)n-

This leads to the orthogonality relation 

(2.9) J' pm{x)pn{x)wx{xMut2)dx = ^{q'ySf\. , W 

Furthermore the polynomials are given by 

(2. 10) />„(*) = 3«A2 [q~n,h
t^

e'B | ?>*) • 

The polynomials we have just found are the Al-Salam-Chihara polynomials and were 
first identified by W. Al-Salam and T. Chihara [3]. Their weight function was given in 
[9] and [10]. 

One might hope that it is possible to make other choices for the coefficients an^ and 
possibly use summation theorems other than (2.7). We went through the summation the­
orems in [ 16] and found that (2.7) is the only summation theorem that works in the case at 
hand. It is also worth mentioning that the generating function (1.9) is the only elementary 
generating function for the ^r-Hermite polynomials known to us, [8]. 

Observe that the orthogonality relation (2.9) and the uniqueness of the polynomials 
orthogonal with respect to a positive measure show that t^npn{x) is symmetric in tx and 
fe. This gives the known transformation 

n i n . (q-n,txe>\txe-ie I A , , „ . fflr", fee*, fee"* I "\ 

as a byproduct of our analysis. 
Our next task is to repeat the process with the Al-Salam-Chihara polynomials as our 

starting point. The representation (2.10) needs to be transformed to a form more amenable 
to generating functions. This can be done using an idea of Ismail and Wilson [21]. First 
write the 3</>2 as a sum over k then replace k by n — k. Applying 

(2.12) (a; q)n.k = ^fn (-q/afq-^^2 

(ql n/a;q)k 
we obtain 
(2.13) 

(tie,e,t1e-9;q)„ (n_u/2 " (-feAijW-Ai&gk MMMI 
P A ) (ht2;g)„ q K l) h{q,q'-neiBlh,q^e-»ltl;q)k

q 
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Applying the ^-analogue of the Pfaff-Kummer transformation [16, (III.4)] 

g (A,C/B;q) )/2 = J^k ^ c ^ 
„=o w> c> ̂ z ; <7)» ( ^ ; 9)00 

with 
^ = g"", B=t2e

w, C = ql-"ei0/tu z^qe^/h 

to (2.13), we obtain the representation 

Using (2.12) we express a multiple of/?„ as a Cauchy product of two sequences. The 
result is 

(tit2;q)n^o (q;q)k (q\q)n-k 

This and the ^-binomial theorem (2.3) establish the generating function 

(2.i5) gc^^x^r- ittutt2]qU 

The orthogonality relation (2.9), the ^-binomial theorem and the generating function 
(2.15) imply the Askey-Wilson #-beta integral, [10], [16]. 

J° n^itje^Jje-^q)^ (q;q)ooUi<j<k<4(tjtk;q)oo' 

The polynomials orthogonal with respect to the weight function whose total mass is 
given by (2.16) are the Askey-Wilson polynomials. Their explicit representation and 
orthogonality follow from (2.16) and the ^-analogue of the PfafF-Saalschutz theorem, 
[16, (11.12)]. The details of this calculation are in [10]. The polynomials are 
(2.17) 

Pn(x;tut2,t3,t4\q) = ti\tlt2,tlt39tlt4;q)n4<t>Jq " ^ ^ l*^f^e * L ^ . 
V t\t2,t\ h,t\U I J 

The orthogonality relation of the Askey-Wilson polynomials is [10, (2.3)-{2.5)] 

(2.18) jT/>«(cos0;fi,/2,f3,^k^^^ 

= 2Tr(h t2t3t4q
2n;q)oo (ft hhUqn-x\ q)n 

(qn+l; q)oo U\<j<k<4(tjtkq
n; q)^ m,n' 

for max{|/i |, \t2, \ti |, \t4\} < 1, and the weight function is given by 

(e2ie -ne. \ 

(2. ,9) •*»«'••«•»•'•>-Igl.ftX A " 
Observe that the weight function in (2.19) and the right-hand side of (2.18) are 
symmetric functions of t\,t2,t^,t4. The weight function in (2.18) is positive when 
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max{|/i |, Ife, |*31,1*41} < 1, and the uniqueness of the polynomials orthogonal with re­
spect to a positive measure shows that the Askey-Wilson polynomials are symmetric in 
the four parameters t\, h, %, U. This symmetry is the Sears transformation [16, (III. 15)], 
a fundamental transformation in the theory of basic hypergeometric functions. The Sears 
transformation may be stated in the form 

z o o m A (q~n,a,b9c\ \ (bcy(fc,fc\q)n . f q~n,a,d/b9d/c \ \ (2.20) ^ def ][q^ = [-)1-M.A^ ^^ |,,,j, 

where abc = defqn~x. 
Ismail and Wilson [21 ] used the Sears transformation to establish the generating func­

tion 

(2.21) 

™p„(cos6;tut2,t3,t4\q)j, 
„=o (q,t\h,hU;q)n 

24>i ( t^\t2^hh q,te " j 2<t>\ { he-i$,t4e-i0t3t4 q,teie\. 

Thus (2.18) leads to the evaluation of the following integral 

6 
£ 11201 \txJ

B,hJBhh q.tje-*) 2hihe-ie,tAe-%U q,tjeA 

•dd 

(2.22) 
oo 

($\ #)OO III</<A;<4((/**; #)oo 

\Jt\hhUJq, —yhhhk/q, t\t^9 t\t4, hh.hU x 6<b5 , -, , 
V \/ht2hhq,-sJt\t2hUq9t\t29tzU,t\hhUlq 

l,hh\, 

valid for max{|/, |, |/2|, \h\, \U\, |fc|, |fc|} < 1. 
In [20] the Askey-Wilson integral (2.16) was evaluated using Rogers's linearization 

formula of products of continuous gr-Hermite polynomials, [8], without going through 
the Al-Salam-Chihara polynomials. The approach in this work is different and does not 
use Rogers's formula. In fact Rogers's linearization formula is the special case U = 0 of 
(2.16). 

3. The discrete ^-Hermite ladder. Here we assume 0 < q < 1. Instead of us­
ing the discrete g-Hermite polynomials directly we will use the Al-Salam-Carlitz q-
polynomials which are a one parameter generalization of the discrete gr-Hermite poly­
nomials. The Al-Salam-Carlitz polynomials {U^\x;q)} have the generating function 
[2], [14]. 

(3.1) G(x;t):=j:i%\x;q)—— 
n=o (q\q)n 

(/,af;g)oo 

{tx\q)oo ' 
a < 0 , 0<q< 1, 
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52 C. BERG AND M. E. H. ISMAIL 

and satisfy the orthogonality relation 

(3.2) f ° U%\x; q)l/:\x; q) d^a\x) = (-a)V ("-1)/2(<7; q\dm^, 
J—OO 

with /x(a) a discrete probability measure on [a, 1] given by 

oo 

(3.3) M(a) = E 
«=0 

q" q" 
(q,q/a'9q)n(a\q)oo q" (q,aq;q)n(l/a;q)oo aq" 

In (3.3) £y denotes a unit mass supported at y. The form of the orthogonality relation 
(3.2)-(3.3) given in [2] and [14] contained a complicated form of a normalization con­
stant. The value of the constant was simplified in [17]. Since the radius of convergence 
of (1.4) is p = oo we can apply Proposition 1.1 and get 
(3.4) 

j°° G(x;/!)G(x;/2)d^a\x) = £ ^ahtf ^n-i)/2 = (at^iq)^ tut2 G C, 

where the last expression follows by Euler's theorem [16, (II.2)] 

(3.5) 

This establishes the integral 

(3.6) r 
J—oc 

Yl?^l2l(a;q\=(.-r,q%a. 
n=0 

d^a\x) (atit2;q)0 

oo (xt\, xt2; q)oo (h, t2, ati, at2; q)^ 

When we substitute for /x(a) from (3.3) in (3.4) or (3.6) we discover the nonterminating 
Chu-Vandermonde sum, [16, (11.23)], 
(3.7) 

(Aq/C,Bq/C;q)0 

(q/C;q)a 

-2<j>i [ C | H 
(A^qU , (Aq/C,Bq/C\ } , . _ ._ . 

We now restrict the attention to t\,t2 G (a~l, 1) in the case of which l/(xt\,xt2;q)oo 
is a positive weight function on [a, 1]. The next step is to find polynomials orthogonal 
with respect to d^a\x)/(xt\,xt2;q)OQ. Define Pn(x) by 

(3.8) ^nW — 2^ 7 x # anjc 

where a„^ will be chosen later. Using (3.6) it is easy to see that 

J—oo 

(xt2;q)m 

(xtuxt^q)^ d^a\x)=YJ 
^iq~n\q)kk 

k=o (q>q)k 
q ank 

(aht2q
k+m\q\ 

(atit2q
m;q)oo 

(hqk,ahqk,t2q
m,at2q

m;q)00 

" (q-n,tuatuq)k k 
Z, ,„ ^ . „ m . ^ an*q • (tuatut^^t^iq)^ £0 (q,atxt2q

m\q\ 
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The choice an^ = {Kq)k/{h,cih\q)k allows us to apply the -̂Chu-Vandermonde sum 
(2.7). The choice A = at\t2qn~x leads to 

(3 9) r P (x) (Xh''q)m duP(x) = ^at^^^^n+X~n^n{aht2cr-X)n 

The right-hand side of (3.9) vanishes for 0 < m < n. The coefficient of AT" in P„(x) is 

(q \atxt2q
n l;q)n, ^y, w(„+n/2 = {<*t\h(f l;q)nf 

(q,tuati;q)n
 l {h,atx\q)n

 l' 

Therefore 

(3.10) Pn(x) = <pn(x;a,tut2) = 3<h ^ "'*[% l'Xh I * * ) > 

satisfies the orthogonality relation 
(3.11) 

roo duSa)(x) 
/ (pm(x;a,tut2)<Pn(x',a,tut2)-r-—-—r-
J-oo (xtuxt2;q)o 

= (q>h.ati,at\t2q
n ;q)n(ahhq n;q)oo ^ n n(n-\)/2s 

(h,ah,t2,at2iq)oo(h,ah;q)n
 l) q 

The polynomials {(fn(x;a,t\9t2)} are the big #-Jacobi polynomials of Andrews and 
Askey [6] in a different normalization. The Andrews-Askey normalization is 

(3.12) />„(*;a,/3,7 : q) = 3<fe {^"'^^ | ?.?) • 

Note that we may rewrite the orthogonality relation (3.11) in the form 

r°° duSaHx) 
/ qm(tx, ah; q)m ipm(x\ a, h, t2)tx

n(h, ah; q)n M*l <*, h, t2) / * v \ 
(3 13) (xtu*h\q)oQ 

_ (q,h»a'i>fe,flfe,ahhtf-1;g)„(afifrg2";g)oo, ^ ^ c , - n / 2 g 

— 73 ^ ~ ~ r V u) q Vmji> 
(tuat\9t29at2;q)oo 

Since d^a\x)/(xt\, **2; #)oo and the right-hand side of (3.13) are symmetric in t\ and fe, 
then 

tin(h,ah;q)n<Pn(x;a,tut2) 

must be symmetric in fi and fe. This gives the known 3̂ 2 transformation 
(3-14) 

(f-'.atxi^1.*! I } = W^at^qU (q-»,ahhq»-\xh I ^ 

We now consider the polynomials {^fl)(x;<7)} and restrict the parameters to 0 < a, 
0 < q < 1, in which case the polynomials are orthogonal with respect to a positive 
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measure, cf. [14, VI. 10]. The corresponding moment problem is determinate if and only 
if 0 < a < q or 1 jq < a. In the first case the unique solution is 

oo nnanl 

(3. 15) m^ = (aqiqU £ q
 £q-; 

n==0(q,aq;q)n 

and in the second case it is 

oo n~nnnl 
CI O 

c/ [12]. The total mass of these measures was evaluated to 1 in [17]. 
If q < a < 1 jq the problem is indeterminate and both measures are solutions. In [12] 

the following one-parameter family of solutions with an analytic density was found 

(3-17) Kr,«,g,7)= 7 ' r / 1 | ( T ! ' ^ ; t r ^>°-
In the above a = 1 has to be excluded. For a similar formula when a = 1 see [12]. 

If fi is one of the solutions of the moment problem we have the orthogonality relation 

(3.18) I" V%\x-q)V%Xx-,q)dii{x) = dlq-"l{q-,q)n8m,n. 
J—OO 

The polynomials have the generating function [2], [14] 

(3.19) V(x;t) := £ V^\x^q)q^^{-tf = j ^ ^ L , M < min(l, 1/a), 

andCi = ^"w2«"(^;^)w. 
The power series (1.4) has the radius of convergence y/q/a, and therefore (1.3) be­

comes 
f°° (xtuxt2'9q)oodfi(x) coo 

./-oo {tuat\,t2,at2\q)oo J-°° 

= ^ (ahti/gf 

n=o (q\q\ 

' i,|/2|<v^7«-
oo 

This identity with /i = m(a) or // = </fl) is nothing but the ^-analogue of the Gauss 
theorem, 

(3.20) 2<fii(a,b;c;q,c/ab) = ^ J ^ l ^ | c | < |<rf(| 

[16,(11.8)]. 
Specializing to the density (3.17) we get 

(3 21) f ° (xtuxt2;q)o0dx _ ^a(fuatut29at2\q)oo 
J-oo ( X / A ; ^ + 7 2 ( X ; ^ | a - l\l(q9aq,q/a9atit2/q;q)<x>9 
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valid for q < a < l/q,a^ 1,7 > 0. Formula (3.21) seems to be new. 
We now seek polynomials or rational functions that are orthogonal with respect to the 

measure 

(3.22) dv{x) = {xt\, xt2; q)oo dfi(x% 

where \i satisfies (3.18). It is clear that we can integrate 1 / \(xt\; q)k(xt2; q)j\ with respect 
to the measure v. Set 

(3.23) i/jn(x;a,tut2):=2^ 

The rest of the analysis is similar to our treatment of the U„9s. We get 

/ — r - — r dv(x) = £ -7 r-<T<*njt / (xf 1 ?\xf2tf
w; q)oo dfi(x)9 

J-00 (xt2;q)m £^0 (q;q)k
 J~™ 

and if we choose an^ = (t\, at\; q)k I ip>hh I q\ q)k the above expression is equal to 

(tuatut2q
m,at2q

m;q)OQ 

(atit2q
m-l;q)oo 

(q-\atxt2q
m-x I A 

(ahhqn-^q^iahhlq^n X iq }* 

which is 0 for m < n. We have used the Chu-Vandermonde sum (2.7). Since v is sym­
metric in t\, t2, this leads to the biorthogonality relation 
(3.24) 

/ ipm(x',a,t2,ti)ipn(x;a9tut2)di/(x) = -{atxt2 q)n8m,n. 
J-00 (atit2/q;q)oo(atit2/q'9q)„ 

The ^/i 's are given by 

(3.25) ^ f l ^ ) = 3 ^ ( ^ ^ | ^ ) -

They are essentially the rational functions studied by Al-Salam and Verma in [5]. Al-
Salam and Verma used the notation 

(3.26) J U r , « , A 7 , * ; , ) = ih {%^'q% \ * * ) ' 

The translation between the two notations is 

(3.27) i>n(x;a9tl9t2) = RnQ3xq-1 /a;a,/3,l9S;q% 

with 

(3.28) tx = f39 t2 = [38/qcc, a = on/06. 

Note that R„ has only three free variables since one of the parameters a9 f3, 7,8 can be 
absorbed by scaling the independent variable. 
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4. The Szego ladder. Here we assume 0 < q < 1. As already mentioned in the in­
troduction Szego [27] used the Jacobi triple product identity to prove (1.17). The explicit 
form (1.16) and the ^-binomial theorem (2.3) give 

(4.1) H{z9t) := £ Hrfrq)—— = l/(f,fc?-1/2;?)oo, 

for |;| < 1, \tz\ < qxl2. From (1.16) it follows that \Ht(z;q)\ < Hi(\z\;q). Furthermore 
Darboux's method [23] and (4.1) give 

Hl(Uq)*q-n/2/(q-l/2',q)oo. 

Thus (1.17) and (4.1) imply the Ramanujan #-beta integral [16] 

(42) _ L f (gl/2z,q^2/z;q)00 dz = (*i,*2;g)oo 

2TT/4 |=I (tlq-l/2z,t2q-l/2/z;q)oo z fo'ife/tttfW 

for |/i | < qxl2, \t2\ < qll2, since (1.4) has radius of convergence qxl2 and the series in 
(4.1) converges uniformly in z for z on the unit circle. This can be proved by estimating 
H,(z\ q) directly from (1.16). 

Putting 

(A i\ ™ >> (q,t\t2q,ql/2z,ql/2/z;q)00 
( 4 - 3 ) Q ( z ) = z—:—, 1/2 , 1/2/—r~ 

(hq, t2q, hql/zz9 t2q
l/z/z; q)^ 

and applying the attachment technique to (4.2) we find that the polynomials 

(4.4) Afe^« : =^(^'o ,C'^ | M ) -
satisfy the biorthogonality relation 

(4.5) - L I pm(z,tut2)pn(z^7^n(z)- = (q;q)\ (hhqfS^. 
2iriJ\z\=\ z (tit2q;q)n 

Using the transformation [16, (III.7)] we see that 

(4.6) Pn(z,ti,t2) = r}
q/q)\ (hqfpn&tuh), 

where 
(4.7) 

/ L\ (b',q)n _n l - / i / T 1/2 lU\ V^ (a4'> 4)k(b'> <l)n-k , -1 /2 vik 
pn(z,ayb)=——2(j)i(q ",aq;ql H/b;q,ql'*z/b)=Y, / „ . „ W „ . , A ^q z ) ' 

yq\q)n k=o (q\q)k(q\q)n-k 
are the polynomials considered by Pastro [24] and for which the biorthogonality relation 
reads 

2TTI J\z\=\ z (q,q)n 
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The special case when a and b are real was considered by Askey in his comments on 
[27] in Szego's Collected Papers. Al-Salam and Ismail [4] used (4.8) and the generating 
function 

(4.9, tr#*.W ^^""1M")" 

to establish a #-beta integral and found the rational functions biorthogonal to its inte­
grand. The interested reader is referred to [4] for details. 

5. The #-1-Hermite ladder. When q > 1 in (1.5) the polynomials {Hn(x\q)} be­
come orthogonal on the imaginary axis. The result of replacing x by ix and q by \/q 
put the orthogonality on the real line and the new q is now in (0,1), [7]. Denote 
(—i)nH„(ix\l/q) by hn(x\q). In this new notation the recurrence relation (1.5) and the 
initial conditions (1.7) become 

(5.1) hn+l(x\q) = 2xhn(x\q) - q-"(l - <f}hn-i(x\q)9n > 0, 

(5.2) h(x\q) = 1, h\(x\q) = 2x. 

The polynomials {h„(x\q)} are called the q~l-Hermite polynomials, [18]. The corre­
sponding moment problem is indeterminate. Let Vq be the set of probability measures 
which solve the problem. For any \i G Vq we have 

(5.3) f ° hm(x\q)hn(x\q)d^x) = q-n(n+l)/2(q;q)n8m,n. 
J—oo 

The hn
9s have the generating function, [18], 

oo ft 

(5.4) £ hn(x\q)——q*n-xV2 = (-te*, te^iq)^, x = sinh £, /,£ G C. 

By Proposition 1.1 it is clear that (5.3) and (5.4) imply 
(5.5) 

J^(-tie^tie~i,-t2e^t2e~^;q)oodfi(x) = (-ht2/q;q)oo, h,t2 G C, /i G Vq 

since the power series (1.4) has radius of convergence p = oo. Incidentally the function 

(5.6) Xt(x) = (-tot, te'^qU = (-t(Vx2 + 1 + x), t(Vx2 + 1 - x); q)^ 

belongs to L2(fi) for any // G Vq and any t G C. Therefore the complex measure v^{t\, tj) 
defined by 
(5.7) 

dvfatuh) := X^***** dKx), I* e %, tuh G C, hh ± -qx~\ k>0 
(-t\t2iq\q)oo 

has total mass 1, and it is non-negative if t\ — li. 
Note that (—te^,te~^\q)k is a polynomial of degree k in x = sinh£ for each fixed 

/ ^ 0. Since 
(~te^/q\te^lqk\q)kxt{x) = *,/,*(*), 
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we see that the non-negative polynomial \(—te£ /qk
9 te~^ jqk\ q\ |2 of degree 2k is v^t, t)-

integrable. This implies that r/^t, t) has moments of any order, and by the Cauchy-
Schwarz inequality every polynomial is v^tx, f2)-integrable for all ^ ^ C , / i E l { . 

Introducing the orthonormal polynomials 

(5.8) h„(xlq)=J^q^)M 

the ^-Mehler formula, cf. [18], reads 

(5.9, t M s i n h ^ M s i n h , ^ - H ^ . - t r ' W W ' ' ; * . 

and is valid for £, r\ £ C, \z\ < l/y/q. 
Applying the Darboux method [23] to (5.9) Ismail and Masson [18] found the asymp­

totic behavior of hn(sirihri\q), and from their result it follows that (A„(sinh7]|^)z") £ P 
for \z\ < q~l/4,r] £ C. In this case the right-hand side of (5.9) belongs to L2(/i) as a 
function of x — sinh£ and the formula is its orthogonal expansion. Putting t — qze0, 
s = —qze~'n, we have z2 = —stq~2, so if \st\ < q3/2 we have \z\ < q~1/4 and the right-
hand side of (5.9) becomes Xt(^^OXs(^^0/(~st/al^l)oo, which belongs to I2(/x). 
Using this observation we can give a simple proof of the following formula from [18]. 

PROPOSITION5.1. Let\i£ Vqandletti e C , / = l,...,4satisfy\t\t3\,\t2tA\ <q3/2. 
(This holds in particular if\tt\ < q3l4, i = 1, . . . ,4). Then Y?i=x \ti £ Lx{p) and 

(5-10) J n x / , ^ = ( f f f i n - i . n \ — • 
J i=\ \t\t2hUq J,^)oo 

PROOF. We write 

qziem = t\9 qz2e
T}2 = t2, -qzxe~m = h, -qz2e~m = t4, 

noting that z2 — —titiq'2,^ = ~hUq~2, so the equations have solutions zu r?/, / = 1,2 
if 4f/ 0 for i = 1, . . . , 4. We next apply Parseval's formula to the two L2(/x)-functions 
Xr,X/3»X/2Xr4andget 

/ 

4 oo 

I I x ^ M = (-hhlq,~hUlq\q)oo J]^(sinh77i|^)^(sinhrj2^)(ziz2)w, 
i=l «=0 

which by the #-Mehler formula gives the right-hand side of (5.10). 
If t\ = 0 and t2t^U ^ O w e apply Parseval's formula to \ h and Xt2Xt4, and if two of 

the parameters are zero the formula reduces to (5.5). • 
We shall now look at orthogonal polynomials for the measures v^{t\, t2). When q > 1 

the Al-Salam-Chihara polynomials are orthogonal on (—oo, oo) and their moment prob­
lem may be indeterminate [9], [3], [15]. If one replaces q by 1 jq in the Al-Salam-Chihara 
polynomials, they can be renormalized to polynomials {V„(JC; q, a, b, c)} satisfying 
(5.11) 

(1 - qn+l )vn+\ (x; q, a, b, c) = (a - xqn)vn(x; q, a, b, c) - (b - cqn x )v„_} (x; q, a, b, c\ 
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where 0 < q < 1, and a, b, c are complex parameters. We n o w consider the special case 

(5.12) un(x;tut2) = vn(-2x;q,-(t{ + t2)/q,tlt2q-2,-l), 

where t\, t2 are complex parameters. The corresponding monic polynomials un{x) satisfy 
the recurrence relation determined from (5.11) 

(5 .13) xun{x) = un+i(x) + \(h + t2)q-n-xun{x) + \(ht2q~2n~l + q~n)(l - qn)un-xix\ 

so by Favard 's theorem, cf. [14], {u„(x; t\, t2)} are orthogonal with respect to a complex 
measure a(t\, t2) if and only if t\ t2 =̂  — qn+l, n > 1, and with respect to a probability 
measure a(t\,t2) if and only if t2 — T\ G C \ R or t\,t2 G R and t\t2 > 0. In the latter 
case 

^(«-3)/2 
(5 .14) / um(x;tut2)un(x;tut2)da(x;tut2) = ^ — — ( - f i ^ " " 1 ; ^ ) w ^ . 

It follows from (3.77) in [9] that the moment problem is indeterminate if t\ = li. If t\, t2 

are real, different and t\t2 > 0, we can assume \t\\ < \t2\ without loss of generality, and 
in this case the moment problem is indeterminate if and only if |/i /t2\ > q. 

The generating function (3.70) in [9] takes the form (x = s inh£) 

(5.15) £W„(*; ' i ,>2y = , ' . '** , forM <min{ ? / | / 1 | , g / | fe |} . 

By the method used in [9] we can derive formulas for un in the following way: Use 
the g-binomial theorem to write the right-hand side of (5.15) as a product of two power 
series in t and equate coefficients of f to get 

(5.16) un(x; t\, fe) = L - 7 3 3 ("ft N) 7-T-, (~h qf *. 

Application of the identity (1.11) in [16] gives the explicit representation 

(5.17) un{x;tuh) = (-^)A'qe^q)n2h {*:$/* | 9,-nS) , 

which by (IIL8) in [16] can be transformed to 
(5 .18) 

Writing the 3</>i as a finite sum and applying the formula 

<fi;qk = (q
l-k/a;qM-aWk-lV2, 

we see that (5.18) can be transformed to 
(5.19) 

«>:<..*>=(-i/,l)-
(-"'^i^v-"»2t(,"\""et,y;rrv/;9)v. 

(qm>q)n k=o (q>-t\t2/q
k+l;q)k 

By symmetry of t\, t2 a similar formula holds for f i and t2 interchanged. 
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THEOREM 5.2. For /i G % and tut2 G C swc/z f/za/ t\t2 ^ -qn+\ n > 1 the Al-
Salam-Chihara polynomials {un(x; t\, t2)} fl^e orthogonal with respect to the complex 
measure v^,(t\, t2) given by (5.7). 

PROOF. It follows by (5.13) that un(x; 0,0) = 2~nhn{x\q) so the assertion is clear for 
tx = t2 = 0. 

Assume now that t\ ^ 0. By the three term recurrence relation it suffices to prove that 

(5.20) J un(x; tx, t2) dv^x; tut2) = 0 for n > 1. 

By (5.19) and (5.7) we get 

Jun(x'9t\9t2)di/IA(x;ti9t2) 

1 (q\qX H to (q;q)k
 J (-ht2/q

k+l;q)oo ^ ' 

By (5.5) the integral is 1, and the sum is equal to \<j)o{q~n\ —; q, qn), which is equal to 
0forw>lby(II .4) in[16] . • 

In particular, if t2 = 1\ then l/^ti, Tj") is a positive measure and the Al-Salam-Chihara 
moment problem corresponding to {un(x; t\ ,77)} *s indeterminate. The set 

is a compact convex subset of the full set C(t\) of solutions to the {un(x; t\, 7T)}-moment 
problem. 

If/i =t2 GRthen 

since the measures on the left can have no mass at the zeros of \tx (*)• 
If t\ = t G (q, 1) and t2 — 0 then the Al-Salam-Chihara moment problem is deter­

minate and the set {z/^,0) | \x G Vq} contains exactly one positive measure namely 
the one coming from / i G ^ being the Af-extremal solution corresponding to the choice 
a = qjt in (6.27) and (6.30) of [18], i.e., \i is the discrete measure with mass mn at xn 

for n G Z, where 

x =l(-L_£L) 
" 2\<f" t J 

and 
_(q/t)4nq«2"-i\l+q2n+2/i2) 

The function \t(x) vanishes for x = xn when n < 0 and we get 

oo 

where 
^(W+l)/2(1 ^q2n^l^_q2^.q)n 

Cn t2n(q;qU-q2/t2;q)0 
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We now go back to (5.5) and integrate \j{—t\e^,t\e~^\q)k against the integrand in 
(5.5). Here again the attachment method works and we see that 

(5.21) ^(sinhfcfLfe) := 3^2 ( * ~ J , 7 £ 2 , £ v ° 11>l) 

satisfies the biorthogonality relation 

/ Vm(x; tUt2) Vn(x; t2, ti)xtl(x)Xt2(x)dfi(x) 
J—00 

( 5 - 2 2 ) 1+/ , /„/7«-2 

\+t\t2q
2 m,n-

The biorthogonal rational functions (5.21) are the special case fy = U — 0 of the 
biorthogonal rational functions 

(5.23, v.,sinh5;.„,,,,,) := A [^'^fifeS*^1* | « ) • 

of Ismail and Masson [18]. We have not been able to apply a generating function tech­
nique to (5.21) because we have not been able to find a suitable generating function for 
the rational functions (5.21). 

We now return to the Al-Salam-Chihara polynomials {un(x,t\,t2)} in the positive 
definite case and reconsider the generating function (5.15). The radius of convergence 
of (1.4) is p = q3/2/y/ht2, and we get by Proposition 1.1, (5.14) and the ^r-binomial 
theorem 
(5.24) 

f°° , \ <\J<.+ *\ ( " W ? > -hUJq, -hhjg, -fefr/g, -hhjq\ q)^ 
J-oo (t\t2hUq \q)oo 

valid for \t31, \t4| < p. 

Applying this to the measures a(t\, t2) = v^itx, t2\ we get a new proof of (5.10), now 
under slightly different assumptions on t\,..., t4. 

The attachment procedure works in this case, and we prove the biorthogonality rela­
tion of [18] under the same assumptions as in Proposition 5.1: 
(5.25) 

/°° <pm(x;tuh,h9k)<pn(x;t2Suh,t4) f[Xt£x)dfi(x) 
J-oo i=l 

= 1 + txt2q
n~2 {txt2hUq-3)\q,-q2lhtA\q)n{-txt2q

n-x\q)00 

\+txt2q
2n-2 (ht2t3t4q-3;q)n 

U\<j<k<A(—tjtk/q; q)o 

(tit2t3t4q-3;q)i 

J c 
~Gm,ri' 
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