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SURFACES EMBEDDED IN 172 X St

WILLIAM JACO

1. Introduction. In this paper we study incompressible and injective
(see § 2 for definitions) surfaces embedded in M2 X S, where M? is a surface
and S? is the 1-sphere. We are able to characterize embeddings which are
incompressible in M? X S' when M? is closed and orientable. Namely, a
necessary and sufficient condition for the closed surface F to be incompressible in
M2 X S, where M? is closed and orientable, is that there exists an ambient
isotopy by 0 = ¢t S 1, of M2 X S? onto utself so that either

(1) there is a non-trivial simple closed curve J C M2 and hi(F) = J X S, or

(i) p|h1(F) s a covering projeciion of hi(F) onto M?, where p is the natural
projection of M?* X St onto M>.

This theorem is used to give an alternate proof for the classification of
non-orientable, closed surfaces which can be embedded in M? X S!, where
M? is closed and orientable. See Corollaries 5.4 and 5.5. These latter results
were first obtained by Bredon and Wood [1, Theorem 4.8].

We show in § 6 that 3-manifolds fibred over S* with fibre a surface F do not
determine the fibre F uniquely. In fact, for M? a surface and x(M?) =< 0, we
see that for any integer B > 0, M? X S! can be fibred over S* with fibre a surface F
and x(F) = kx(M?).

In § 4, and assuming no more about M? than that it is a surface, we give
sufficient conditions for a proper embedding of a surface F in M? X S to be
injective in M2 X S

2. Definitions and notation. The term surface is used to mean a compact
2-manifold with or without boundary. If we wish to emphasize that a surface
M? does not have boundary, we say that M2 is a closed surface.

D™ and S are used to denote the n-cell and the n-sphere, respectively. We
also use P? to denote real projective 2-space.

A manifold N¥ is said to be properly embedded in the manifold M*, n > k, if
N* M Bd M* = Bd N*. If the surface F is properly embedded in the 3-mani-
fold M3, we say F is injective in M3 if exactly one of the following cases holds:

(i) If F = S?, then F does not bound a 3-cell in M?3;

(ii) If F = D2, then either Bd D? does not bound a disk in Bd M? or
whenever Bd D? does bound a disk D;? in Bd M3, then the 2-sphere
D? U D,? is injective in M?3;
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(iii) If F = S? or D?, then
ker (z,: m1(F) — w1 (M?))
is trivial, where 1, is induced by inclusion.

If the surface F is properly embedded in the 3-manifold M3, then we say
that Fis incompressible in M? if exactly one of the following cases holds:

(i) If F = S? or D?, then F is injective in M3;
(ii) If F £ S? or D?, then there is no disk D in M? where D "\ F = Bd D
and Bd D is not contractible in F.

If Fisinjective in M?, then Fis incompressible in M?3; however, the converse
is not true in general. See [13] and the remark in this paper following Propo-
sition 4.4. If F is two-sided in M?, then F is injective in M? if and only if F is
incompressible in A3,

We say that a simple closed curve J in the space X is trivial in X if J can be
contracted to a point in X. Otherwise, we say that J is non-trivial in X. A
3-manifold M is called srreducible if it contains no injective polyhedral
2-spheres.

The combinatorial terminology is consistent with that used in [17]. How-
ever, we use the term regular enlargement of a polyhedron P in a manifold M*
along with that of a regular neighbourhood of a polyhedron P in a manifold M™.
The submanifold N” is called a regular enlargement of the polyhedron P in M"
if N* is a polyhedron in M" and for some subdivision of N* and some sub-
division of P, N™ collapses to P (see [17]).

Let F denote a surface which is properly embedded in the 3-manifold 3.
Suppose that D is a disk in M?® so that D M F = Bd D. Then Bd D is a two-
sided simple closed curve in F. Furthermore, there is a 3-cell B (not unique)
which is a regular enlargement of D in M3 where

BNF=BdBNF=A4,

an annulus, which is a regular neighbourhood of Bd D in F. Let D; and D,
denote the closures of the components of Bd B — A. The resultant (either
one or two surfaces) of replacing 4 by D; \U D, is called an elementary surgery
on F along D.

We use the term map to mean continuous function. A map f of X into ¥ is
said to be essential if and only if f is not homotopic to a constant map. Other-
wise, f is inessential. A map f of X onto Y is called a covering projection if for
each y € Y there is an open set U of ¥ with y € U and f~!(U) can be written
as a mutually exclusive collection of open sets { U,}, where f/ U, is a homeo-
morphism of U, onto U for each a. If f: X — Y is a covering projection, we
say that X covers V.

Using the terminology of [2; 14], we say that the 3-manifold M?® is fibred
over S* with fibre a surface F if M3 is the identification space obtained from
F X I by identifying F X 0 and F X 1 with a homeomorphism 5 of F onto
itself. Generally, if M3 is fibred over S! with fibre a surface F, then M3 is
written F X I/q.
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We use the notation x (K) to stand for the Euler characteristic of a complex
K. If M?is a closed and orientable surface, we use g(32) to denote the genus
of M2

The following lemmas are well known.

LeMMA 2.1. If M? # 5% and M? can be fibred over S* with fibre M2, then M?
s wrreducible.

LEMMA 2.2. If M3 can be fibred over S* with fibre S?, then a polyhedral 2-sphere S
in M3 is injective if and only if S does not separate M3.

3. Surfaces separating products. Let M3 = M2 X I, where M? is a
surface. Let p: M3 — M? denote the natural projection of M?® onto the
factor M2

ProPoOSITION 3.1. Suppose that F is an incompressible surface in M3 with
Bd F C M? X {0}. Then there is an ambient isotopy h, 0 <t < 1, of M3 so
that for each t the map h, is fixed on Bd M3 and p|hi(F) is a homeomorphism
into M2

Proof. Since Bd F is contained in M? X {0}, each component of Bd F is a
two-sided curve in M? X {0}. The proof now follows directly from the
techniques of Waldhausen in proving [16, Proposition 3.1].

PRroPOSITION 3.2. Let M? denote a closed surface. If F is a closed surface in
M? X I separating M? X 0 from M? X 1, then x(F) = x(M?).

Proof. The conclusion follows vacuously if M? = .S2. Hence, assume that
M? # S2. Since M? X I is irreducible and F separates M? X 0 from M? X 1,
the surface F = S2. It will be shown that there is an injective (hence, incom-
pressible) closed surface G C M? X I with x(F) = x(G).

Suppose that G’ is a closed surface in M? X I separating M? X 0 from
M2 X 1and x(F) = x(G'). If

ker(‘/rl(G') —>’ll'1(]l[2 X I)) = {1}1

thenlet G = G'. Otherwise, thereisadisk D C M? X Isothat D \G' = Bd D
and Bd D is not trivial in G’ (see [13, § 6]).

Perform an elementary surgery on G’ along the disk D. If Bd D separates G’,
we obtain two surfaces Gi’ and G/, where x(G') < x(G{), ¢ = 1, 2. Further-
more, either Gi’ or Gy separates M? X 0 from M? X 1. If Bd D does not
separate G’, we obtain a surface G"” which separates M2 X 0 from M? X 1 and
x(G) < x(G").

In either case, there is a closed surface G’/ in M? X I separating M? X 0
from M2 X 1 and x(G’') < x(G""). Since there is an upper bound on the
Euler characteristic of a closed surface and G £ S? (G separates M? X 0
from M2 X 1), the desired injective surface G may be obtained.

https://doi.org/10.4153/CJM-1970-063-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-063-x

556 WILLIAM JACO

To complete the proof apply Proposition 3.1 with G the Fof that proposition.
Since G is closed, G is homeomorphic to M? and therefore

x(F) = x(G) = x(M?).

The next lemma is a technical lemma which is used later. Its proof is
straightforward.

LemMmA 3.3. Suppose that Ji,...,Jy 15 a mutually exclusive collection of
simple closed curves in Bd D2 X I C D? X I. Then there is a mutually exclusive
collection of 2-cells D12, . . ., Dy*in D? X I so that for each i = 1, ...k,

D2NBAD?* X I)=BdD2N BAdD* X I)=1J,

COROLLARY 3.4. If M2 is a surface and F is a surface in M? X I separating
M2 X 0 from M? X 1, then x(F) = x(M?).

Proof. If Bd M? = 0, then this is just Proposition 3.2. Hence, assume that
Bd M2 # ). Let £ = 1 denote the number of components of Bd M?2. Let M2
denote the closed surface obtained from M? by attaching a copy of D? to each
component of Bd M2 Then M2 X I C M,? X I.

Let &’ denote the number of boundary components of F. Since F separates
M? X 0 from M2 X 1in M? X I, we have kB’ = k. Each component of Bd F
is contained in (Bd M?* X I). Applying Lemma 3.3, the surface F may be
expanded to a closed surface Fy which separates M2 X 0 from M,? X 1 and
x(Fy) = x(F) + F.

From Proposition 3.2 it follows that x(F;) = x(M.2). Hence,

x(F) = x(F) + (¥ — k) = x(M?).

ProrosITION 3.5. Let M2 denote a surface. If F is injective in M?* X S! and
x(F) # 0, then F does not separate M? X S*.

Proof. Case 1. x(F) = 2. Then F = S? and M? = S2. If F separates S? X S1,
then F is not injective.

Case 2. x(F) = 1. Then either F = D%?or F = P2 If F = D?, then M?  S?
and therefore, M2 X S? is irreducible. If F separates M? X S!, then by
van Kampen’s Theorem [9], 71 (M? X S') can be expressed as a non-trivial
free product [8]. This is a contradiction to 7;(M? X S') having non-trivial
centre.

If F = P? then M? = P2 Hence, F does not separate since P? does not
bound a 3-manifold.

Case 3. x(F) < 0. If F does separate M2 X S!, then it follows from
van Kampen’s theorem that

(M X S =G, * G,

T1(F)

is a non-trivial free product with amalgamation along m;(F). But x(F) < 0
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implies that 71(F) does not have centre [3; 6]. Thus 7;(M? X S!) could not
have centre [8, Vol. 11, p. 32]. This is a contradiction to =1 (M? X S?) having
an infinite cyclic group in its centre.

Remarks. (1) If M?is a closed surface and x(M?) < 0, then there is an injec-
tive surface F C M? X S, where x(F) = 0 and F separates M? X S!. (See
Proposition 4.4.)

(2) It would seem natural to expect that a surface Fin M? X S! which does
not separate M? X S! to have the property x(F) =0 or x(F) = x(M?).
However, this is not the case. In fact, if x(#) =< 0, there is a non-separating
surface Fin M? X S! with x(F) = —2k forany & = 0.

4. Existence of injective surfaces in products.

LeEmMMA 4.1. Let F denote a surface different from the Klein bottle or the torus.
If G is a group and m(F) embeds in G X Z, then w1(F) embeds in G or in Z.

Proof. If F is a surface different from the Klein bottle or the torus, x and y
are elements of m1(F) and xy = yx, then there is an element z € 7, (F) and
integers m and 7 so that x = 2™,y = 2" (see [3; 6] for the closed case; otherwise
71 (F) is a free group).

Consider the diagram

m(F) —=> G X Z

Py
Z

where 1, is injective and py, ps are the natural projections. If ker(ps7,) = {1},
then our proof is complete. Hence, assume that ker(pst,) # {1}.

Suppose that x € ker(pi7,). Let ¥ € ker(psz,) be chosen so that y # 1. It
follows that 4, (x) € ker(p1) and 7,(v) € ker(ps). Let (1,x") and (»',1) € G X Z
represent ,(x) and <4,(y), respectively. Thus <,(xy) = 72,(yx). Since the
homomorphism 4, is injective, xy = yx. Let integers m, # be chosen so that
x=2"y =2\

We shall show that x = 1; hence, ker(piZ,) = {1}. Let (21, 22) = 7,(2).
Then 2™ = 1 and 2" = 1. It follows that 2, = 1 since y ¥ 1 and <, injective
imply that #» # 0. Thus

'L*(x) = i*(zm) = (zlm’ ]-) = (17 1)
and 7, injective:'yields x =1,

ProposiTION 4.2. Let M? denote a surface. If F is injective in M? X S, then
there is a k = 0 such that x(F) = kx(M?).
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Proof. Case 1. x(F) = 2. Whenever M? = S? M? X S!'isirreducible; hence,
both M? = S?and F = S% Let k = 1.

Case 2. x(F) = 1. Then F = D?or F = P2

Suppose that F = D2. Since M? X Stisirreducible (M? # S?by Bd M? = 0)
and each component of Bd(M? X S!) is a torus, M? = D% Let k = 1.

Suppose that F = P2 If M? # P2, then no element of = (M?) X Z is of
finite order. Hence, M? = P2 Letk = 1.

Case 3. x(F) = 0. Letk = 0.

Case 4. x(F) < 0. Then by Lemma 4.1, 71 (F) embeds in 7;(4£?). It follows
that F covers M2 and x(F) = kx(M?) for some & = 1.

Remark. In Theorem 5.2 we will prove that if 3? is closed and orientable
and Fisincompressible in M2 X S, then Fis orientable and there is an integer
k = 0 such that

g(F) = k(g(M?) — 1) + L.

ProrosITION 4.3. Let M? denote a closed surface (orientable or not) different
from the Klein bottle. Then there is no injective embedding of the Klein bottle in
M2 X St

Proof. Suppose that F C M? X S'is injective, where F is the Klein bottle.
There are elements x # 1, ¥y £ 1 in w1 (F) such that x>y? = 1 in =1(F) and
x # vy~ Let (x1,x2) and (y1,¥:) denote the representations of x and vy,
respectively, in w (M2 X S') = mi(M?) X Z, where x1,y1 € m:(M?2) and
X2, 2 € Z. It follows that

(x1®y1?, (x2y2)?) = (1, 1).

Thus x,2y:2 = 1 and %2y, = 1. This states that x; = y,~ L

We wish to obtain a contradiction to the choice of y # x~! by showing that
x1 = 91~ L. There are two subcases to consider.

The first subcase is when x(M?) < 0. Consider the group G generated by
%1, ¥1 in w1(M?). Then G is a free subgroup of w1(M?2) [6, Corollary 2]. If
G = 1, then x; = y,7!, and the desired contradiction is obtained. Otherwise,
G is free on x1 and y; or G is infinite cyclic. The former does not occur since
%12y:2 = 1. Hence, there is a 2 € 71(M?) and integers m and # such that
z"™ = x; and 2" = y,. That is, 22"*+?" = 1. Hence, if m # 0, then m = —»n and
g =xi0ory; = (")t =ux. f m =0 thennw =0and x; =1 = y,7L

The second subcase is when x(M?) = 0. In this case 71(M?2) X Z is Abelian
and does not admit an embedding of =;(F).

ProrosITION 4.4. Let M? denote a surface distinct from P2, If J is a non-
trivial simple closed curve in M?, then J X S is injective tn M? X S

Proof. This follows from the fact that a non-trivial element of r;(3/2) has
infinite order.
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Remark. In the case M? = P? and J is a non-trivial simple closed curve
in M?, we see that J X S! is not injective in M? X S!; however J X S! is
incompressible in M? X S'. This case offers another counterexample to a
conjectured extension of the Loop Theorem (see [13, p. 18]).

PROPOSITION 4.5. Let M? denote a surface distinct from D?* and let p denote the
natural projection of M? X S* onto M2. If F is a surface in M? X S and p|F is
a covering projection of F onto M?, then F is injective in M? X Sl

Proof. Case 1. M?* % S% or P2. Then F # S% or D? since neither can cover
any manifold distinct from D?, S$?% and P2. Hence it is sufficient to show that

ker (w1 (F) — w1 (M? X SY))
is trivial.
Suppose that
x € ker(m(F) — m (M2 X SY)).

Then p|x is a trivial loop in w1(M?). Since p|F is a covering projection of
F onto M?, this contraction can be lifted to F;i.e. x is trivial in 7;(F).

Case 2. M?* = S2, Then F = 52 The 2-sphere F is not injective in 52 X St
if and only if F separates S? X S In this case there is an ambient isotopy
hy 0 <t £ 1, 0f S? X S*such that p|hy(F) is not onto S% Hence, the map p|F
is inessential from F to S2. This contradicts p|F is a covering projection.

Case 3. M* = P2 Then F 5 S2 For p|F is an essential map of F onto P2
and since P? X S! is irreducible there would be a natural extension of p|F
to a 3-cell if F = S2 The proof that F is injective in P? X S* now follows as
in Case 2.

The following theorem shows that in a sense Proposition 4.2 was a best
possible result.

PROPOSITION 4.6. Let M? denote a surface where x(M?*) = 0. Then for each
integer k = 0, there is a two-sided surface F in M?* X S such that F is injective
in M2 X Stand x(F) = kx(M?).

Proof. Consider M? X S! as the identification space [4] obtained from
M? X I by setting (x, 0) in M? X 0 equal to (x, 1) in M? X 1.

Case 1. k = 0. Since x(M?) = 0, there is a non-trivial simple closed curve
J C M:*. By Proposition 4.4, F = J X Stisinjectivein M? X S Furthermore,
x(F) = 0.

Case 2. k > 0. There are two situations to consider. The first is when M?
does not contain a two-sided, non-separating simple closed curve. In this
situation there is an arc a in M? such thata M Bd M/ = Bda and M2 — a is
connected. Let 4 denote a regular neighbourhood of « in M2 Then 4 is a disk;
and if M2 is the closure of M2 — A, then M2 N A = A-1\U A! where ‘4 si
anarcforj = —lorland A=1 N A! = @. It follows that x(M2) = x(M2?)+ 1.
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For1 £ n £ k, define F, = M2 X n/(k + 1). Let
raX[—1,1]>4

be a parametrization of 4 such that 6la X 0 is the identity and for j = —1
or 1, 8la X jis a homeomorphism onto 47,
Forl £ n <k, let

be the linear function

t+2n+1

0= Se D

Define
4, = {(a(x) t)’ on(t)): (x’ t) €aX [_]-r 1]}'

Notice that 4, is a disk in
MEX [n/(k+1),(n+1)/(k+1)]C M2XI
and 4, meets F, in A~! X n/(k + 1) while 4, meets F,,; in
A X (n -+ 1)/(k + 1).

s 1 . ne mni+1
0,—.[ 1,1 i]—)[k_{_l,k_'_l]
4t

Forz = 0,1, let

be the linear function
ni

E+1"

0:(t) =
and define
Ay = {(o(xv t)’ oi(t)): (x’ t) €aX [_7/1 1- 1’]}°

Notice that 4 ; is a disk in

2 n m—l—l] 2
M Xll:k+1’k+1 CM Xl
and 4 ; meets Fy, in
. m+1
0(aX(l—1))Xk+l.

Let F be the image in M? X S! of the natural projection [4] of the surface

k k
(&) (i)
n=1 n=0
Then by Proposition 4.5, F is an injective surface in M2 X S! (see Figure 1).
It follows that
x(F) = k(x(M®) + 1)+ (k+1) — 2k + 1) + 1 = kx(M2).

Now consider those surfaces M? which contain a two-sided, non-separating
simple closed curve J. Let A denote a regular neighbourhood of J in M?2.
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o
[

o

AT X0 aX0 A'X0 M?*XO0

FIGURE 1

Then A is an annulus and if M2 is the closure of M2 — 4, then M2 N A =
J1U J! where J7 is a simple closed curve forj = —lorland J-! M J! = 0.
Also, x (M?) = x(M?).

The construction of F in this situation is analogous to the construction of F
above; only, here 4 is an annulus rather than a disk. The equation for x(F)
in this situation turns out to be

x(F) = kx(M?) = kx(M?).

COROLLARY 4.7. If M? is a closed and orientable surface distinct from S?, then
for each integer k = O there is anm 1imjective surface F in M?* X S* with
g(F) = k(g(M*) — 1) + L.

5. Necessary and sufficient conditions for incompressible surfaces.
In this section the conclusions of § 4 are improved for the case that M? is a
closed and orientable surface.

LeMMA 5.1. Let G denote an orientable surface. Suppose that {Gy, . . ., G,} is
a mutually exclusive collection of imcompressible surfaces in G X I such that
(@) foreachi=1,...,n,BdG,CGX0UG X1, and
(b) if K; is a component of Bd G;, K; is a component of Bd G, and
p(K,) Np(K;) # 0, then p(K;) = p(K;), where p 1s the natural
projection of G X I onto G.
Then there is an isotopy h, 0 <t < 1, of G X I onto itself, h, is fixed on
Bd(G X I) for each t and for ¢ = 1, ..., n either
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(i) There is a non-trivial simple closed curve J; C G and hy(G;) = J; X T
or
(ii) p|h1(G,) s a local homeomorphism of hi(G;) into G.

Proof. The proof of this lemma parallels the proof in [16, p. 65, proof of
Proposition 3.1]. There are, however, three noteworthy observations.

The first observation is that the theorem is true for G = S? and in fact
p|h1(G;) is a homeomorphism of %1(G;) onto G. The second observation is
that the point set {U;p(Bd G;) is either void or a mutually exclusive collection
of simple closed curves in G. This enables the considerations of Waldhausen
in the case that G is a disk, annulus, or 2-sphere with three holes. Furthermore,
in the general case, it enables a curve to be found in G so that the induction
hypothesis of Waldhausen goes through.

The third observation is that in the situation of Lemma 5.1 the best possible
result is that either 7,G; is vertical, i.e. k1 (G:) = p7p(h1(Gy)), or p|hi(G;) is
a local homeomorphism. This is due to %:(G;) possibly having boundary on
both G X 0 and G X 1.

THEOREM 5.2. Let M? denote a closed, orientable surface. The surface F is
incompressible in M? X S if and only if there is an isotopy h,, 0 < ¢t < 1, of
M? X St onto itself such that either

() there is a non-trivial simple closed curve J C M? and hi(F) = J X St
or
(ii) p|hi(F) is a covering projection of hi(F) onto M?, where p is the natural
projection of M? X S* onto M?2.

Proof. That conditions (i) and (ii) are sufficient for F to be incompressible
(in fact, injective) in M? X S? follows from Propositions 4.4 and 4.5. Hence,
we shall show that conditions (i) and (ii) are also necessary.

Suppose that F is incompressible in M2 X S Consider M? X S! as the
identification space M? X I/n obtained from M? X I by the homeomorphism
n: M? — M? so that 5(x) = x and 75 reverses orientation on M2 Let
p: M? X I — M? X S? be the identification projection.

With an isotopy g, 0 = ¢ = 1, of M2 X S, make g{(F) in general position
with p(M? X 0) and g1(F) M p(M? X 0) minimal. Let Gy, ..., G, denote
the components of p~1(gi(F)) in M2 X I. If M? = S? then F = .S? and
o~ 1(g1(F)) is a 2-sphere separating M? X 0 from M2 X 1. If M?  S?, then
F 5% and no component of p~1(g1(F)) is the 2-sphere. Hence, in any case
each component of p~1(gi(F)) is incompressible in M2 X I.

By Lemma 5.1, there is an isotopy %,/, 0 < ¢t < 1, of M2 X I onto itself with
h fixed on M2 X 0U M? X 1 and either

(i) there is a non-trivial simple closed curve J; C M2?and 4/ (G;) = J, X I
or

(i) if p’ is the projection of M? X I onto M?, then §'|h/(G;) is a local

homeomorphism of %,'(G;) into M?2.
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Since %, is fixed on M2 X 0\U M? X 1, it induces an isotopy 2,/,0 < ¢t £ 1,
on M? X S so that the diagram

’

h
MEXIT ——> M2X ]

pi . lp

2 1 h", 2
M* XSt —— > M* X S
commutes for each ¢. Define

- {;;_2,, 0=<t=1/2,
‘T Wb, 1/2Sts 1

It needs to be shown that %, 0 < ¢ =< 1, satisfies the conclusions of
Theorem 5.2.

Suppose that there is a non-trivial simple closed curve J; C M? and
hll(Gi) = Ji X I. Then phll(Gi) = J1 X St and thus p(Gi) = h]_(F) It
follows that hi(F) = J; X S. Having made this observation, it may be
assumed that for no 4 is &,/ (G;) vertical; i.e.

k' (G:) = ()71 (B (GY)).
Case 1. g(M?) =0. Then F =52 and p'(g:i(F)) = S%. Furthermore,

0~ 1(G1(F)) separates M2 X 0 from M? X 1in M? X I. It follows that p|h;(F)
is actually a homeomorphism of %;(F) onto M?2.

Case 2. g(M?) = 1. Then either p~1(g:(F)) is a torus and thus p|k(F) is
a homeomorphism onto M? [16, Corollary 3.2] or each component G, of
p~Y(g1(F)) is an annulus having one component of Bd G; in M? X 0 and the
other in M? X 1. (In general, an incompressible surface in M2 X I need not
be orientable; however in this case G; is an annulus. Again by [16, Corol-
lary 3.2], if Bd G, is contained in M? X 0, then g:(F) M p(M? X 0) is not
minimal. Similarly if Bd G; is contained in M2 X 1.)

If p|hi(F) is not a covering projection, then there is a simple closed curve
J C M? such that J X 0 is a component of Bd G; for some 7 and J X 1 is
a component of Bd G, for some j (j may be equal to 7) and p fails to be a local
homeomorphism at each point of p(J X 0).

Let U(J) denote a regular neighbourhood of J in M? such that for each
component of &/ (G;) N (U({J) X I) and each component of

1w (G,)) N (UWJ) X I)

the projection onto M? is a homeomorphism. The simple closed curve J
separates U(J) into two components. Denote the closures of these as Ut (J)
and U~(J). It follows that both the component of %, (G;) N\ (U(J) X I)
containing J X 0 and the component of %,/ (G;) N (U(J) X I) containing
J X 1 are contained in (say) Ut(J) X I.
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Suppose that ¢ = j. Each component common to %,'(G;) and the closure of
M2 X I — (Ut(J) X I) is an annulus with a boundary component on each
component of Bd(U+(J) X I). An analysis of the way that the boundary of
these components would have to be spanned in U+ (J) X I shows that this
situation cannot happen.

Suppose that ¢z # j. Then an analysis like that above for ¢ = j shows that
the projection of neither %y (G;) nor %,'(G;) is onto M?2. By the way that
k' (G;) and ki (G,) meet Ut(J) X I, it {ollows that either the projection of
hi'(G;) is contained in the projection of %, (G;) or vice versa. Suppose that
the projection of hy'(G;) is contained in the projection of %,'(G,). Then an
analysis shows that either %,"(G;) cannot have boundary on M2 X 0 or the
projection of %,(G;) into M? is not a local homeomorphism. Both of these
conclusions give rise to a contradiction.

Case 3. g(M?) > 1. In this case either p~1(g:(F)) is a closed surface with
genus equal to g(M?) and p|hi(F) is a homeomorphism onto M? or each
component G; of p~1(g1(F)) has boundary and Bd G, meets both M2 X 0
and M? X 1.

If p|hi(F) is not a covering projection, then there is a simple closed curve
J C M? and components G; and G, as in Case 2. The component C of
' (h'(G:)) M p' (k' (G;)) containing J is a surface in M2 To see this there
are three considerations to make. If x € Cand x isin

p'(Int by (G4)) M p'(Int i (Gy)),
then x € Int C. If x € C and « is in either
p'(Int k' (Gi)) N p'(Bd 7' (G)))
or
p'(Bd k' (Go)) M p'(Int by’ (G))
but does not satisfy the first consideration, thenx € Bd C. If x € Cand xisin
p'(Bd b/ (Gy)) M p"(Bd k' (G5))

and x does not satisfy either the first or second consideration, then x € Bd C.
Notice in the last situation that x € J’, a simple closed curve in M? and
J' X 0 along with J’ X 1 are boundary components of 4,/ (Gy) and k' (G,),
respectively, where p|p(J’ X 0) is not a local homeomorphism when considered
as a map of k. (F) into M2

Let ¢’ denote the component of C containing J X 0 and complementary to

p'(Bd h'(Gy) — J X 0) U p'(Bd hi/(Gy) — J X 1).

Since g(M?) > 1, there is a J C M? and G4, G, as before such that C’ is
not an annulus. Hence there is a non-trivial simple closed curve ! in C’ based
on J and / is not homotopic to J in C’.
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Since p’ is a local homeomorphism on each component of %y'p~1(g:(F))
and misses

p'(Bd k' (G)) Y p'(Bd ' (G)),

except for J, the simple closed curve [ lifts to a loop I, in %,/ (G;) based at
J X 0 and a loop /; in %, (G;) based at J X 1.

Consider the loop p(leli~!) in Ay (F). The loop p(leli~?) is trivial in M2 X St
since p(lo) ~p(l) ~ p(l1) in M? X S Thereisa simple closed curve homotopic to
p(lol™1) in k1 (F) which bounds a disk D in M? X S, where D M ki (F) = Bd D.
Since k1 (F) is incompressible in M? X .S, the loop p(lo/171) is trivial in ki (F).
By choosing / neither trivial in ¢’ nor homotopic to J in C’, this leads to a
contradiction. The projection p of the contraction p(lo/i™!) in k1 (F) gives rise
to either a contraction of / in C’ or a homotopy of / and J in C’.

The proof of Theorem 5.2 will be complete if whenever Ai(F) = J X St
for some J, then p|hi(F) is onto M2 However, it has been shown that in this
case p|hi(F) is indeed a local homeomorphism. Thus by invariance of domain
for manifolds [5], the image of the projection p|ki1(F) is both open and closed
in M?2. It follows that p|h:(F) is onto M?2.

COROLLARY 5.3. Let M? denote a closed and orientable surface. The closed
surface F is injective in M? X S if and only if F is incompressible in M?* X S

The next two corollaries have also been obtained by Bredon and Wood [1]
using different techniques.

COROLLARY 5.4. Let M2 denote a closed and orientable surface different from S2.
The closed, non-orientable surface F can be embedded in M? X S* if and only if
x (F) is even and F is not the Klein bottle.

Proof. It is easy to see how to embed non-orientable surfaces with even,
non-zero, Euler characteristic in M2 X S'. Namely, the surface M? = S? has
a non-separating simple closed curve J. Any simple closed curve meeting
J X 81 in a single ‘“‘piercing point” will guide a non-orientable handle for
attachment on J X S%. Such an operation lowers the Euler characteristic by
two.

For F a non-orientable surface, let g(F) denote the maximal number of
two-sided simple closed curves in F the union of which does not separate F.
If g(F) = n, then x(F) =2 —2nor 1 — 2n.

If F is non-orientable and F can be embedded in M? X S!, then F is not
incompressible in M? X S!. We shall show that if F is non-orientable and
F C M2 X S, then g(F) £ 0 or 1.

If g(F) = 0, then F = P2. But each embedding of P? in a 3-manifold must
be incompressible. If g(F) = 1, then F is either the Klein bottle or a non-
orientable surface with x(F) = —1. If F were the Klein bottle, then F admits
an elementary surgery along some disk D in M? X S'. Since M? X S! is
irreducible (442 = S?), the result of such a surgery would lead to an embedding
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of the solid Klein bottle in M? X S'. This would contradict M? X S? being
orientable. If x(F) = —1, then F admits an elementary surgery along a disk D
in M2 X S The result of such a surgery would lead to an embedding of P?in
M? X St Hence, again we arrive at a contradiction.

The proof will proceed by an induction on g(F); namely, if g(F) =k, k = 2,
and F can be embedded in M? X S, then x(F) = 2 — 2k.

If g(F) = 2, then x(F) # —3. If this were true, then by an elementary
surgery on F along a disk D in M? X S, there would result a closed surface
F’, where x(F') = 1 or —1. We have seen that this cannot happen.

If g(F) =k + 1, then by an elementary surgery on F along a disk D in
M2 X S, there would result either one closed surface F’ with g(#') = k or
two closed surfaces F; and F, with g(F;) < k, 47 = 1, 2. In the former, x(F’) is
even and hence, x(F) is even. In the latter, x(F;) is even; hence, x(F) is even.

CoROLLARY 5.5. The closed mon-orientable surface F can be embedded in
S? X St if and only if x(F) is even.

Proof. This proof is analogous to the proof of Corollary 5.4. However, since
S2 X St is not irreducible, it admits an embedding of the Klein bottle. Such
an embedding can be obtained from a non-separating 2-sphere S in S? X S!
by adding a non-orientable handle guided by a simple closed curve “‘piercing” S
at precisely one point.

6. Non-unique fiberings over St.

THEOREM 6.1. Let F denote an incompressible, two-sided surface in M?* X St
where x(F) < 0. Then there is o retraction r of M? X S! onto a simple closed
curve J in M? X S and

ker(r,: w1 (M2 X St) — Z)
is 1!'1(F).

Proof. It follows from Proposition 3.5 that F does not separate M? X S'.
Hence, there is a simple closed curve J C M? X S! and J meets F in a single
point ¢ € F. Furthermore, locally about ¢ the simple closed curve J is in
different sides of F. Let U(F) denote a regular neighbourhood of Fin M2 X S?
meeting J in a subarc 4 of J, where g € 4.

The Tietze Extension Theorem now yields a retraction of U(F) onto 4.
This retraction may be extended to a retraction » of M? X S! onto J by again
applying the Tietze Extension Theorem to retract the closure of
M2 X S* — U(F) onto the closure of J — A in J (see [7] for similar techniques
of building retractions).

The infinite cyclic covering space corresponding to the non-separating
surface F and constructed in the fashion of Neuwirth [10] has as its funda-
mental group ker(r,). Since x(F) < 0, the group 71(F) does not have centre
[3; 6]. Since w1(M? X S') has an infinite cyclic subgroup in its centre, an
argument like that in [15, the proof of Lemma 4.4] shows that =;(F) = ker(r,).
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THEOREM 6.2. Let M? denote a surface where x(M?) = 0. Then for any
integer k> 0, M? X S can be fibred over S' with fibre a surface F and
x(F) = kx(3?).

Proof. Case 1. x(M?*) = 0. Then F = M? satisfies the theorem.

Case 2. x(M?) < 0. By Proposition 4.6, there is a two-sided surface F which
is injective in M2 X S! and x(F) = kx(M?). By Theorem 6.1, there is a
retraction » of M2 X S* onto a simple closed curve J so that the sequence

Lo mF) % r (X SHD r()) — 1

is exact, where 7, is induced by inclusion. It now follows by [14] and the fact
that M? X S!is irreducible that M? X S? can be fibred over S! with fibre the
surface F. This completes the proof of the theorem.

CoROLLARY 6.3. If M? is a closed, orientable surface distinct from S2, then
M2 X St admits a fibration over S* with fibre F a closed, orientable surface and
g(F) = k(g(M?) — 1) 4 1, where &k > 0.

It is now clear that a result similar to Proposition 4.2 for M2 X S! is not
true for 3-manifolds which are non-trivial fibrations over S! with fibre a
surface F; that is, we have the following.

COROLLARY 6.4. If M is fibred over S' with fibre a surface F, then for F’
injective in M it is not necessarily true that x(F') = x(F).

Proof. Let F’ be a closed orientable surface with g(#’) = 2. Then F/ X St
can be fibred over S! with fibre a surface F where g(F) =k 2 2. If £ > 2,
then x(F') £ x(F); yet, F' is injective in F/ X S

Let f and g denote embeddings of the space X into the space Y. If there is a
homeomorphism % of ¥ onto itself such that 4f = g, then f and g are said to be
equivalent.

COROLLARY 6.5. There is a 3-manifold M fibred over S* with fibre a surface F,
where x(F) < 0 and a non-separating embedding f: F — M such that f(F) is
not equivalent to any injective embedding of F into M.

Proof. Let M = F' X S, where g(F’') = 2. Let F denote a surface in
F’" X Stso that g(F) = 3 and M can be fibred over S! with fibre the surface F.

If f(F) is the embedding of F in M obtained by adding a small handle to
F’in M, then f(F) is not equivalent to an injective surface in M; in particular,
f(F) is not equivalent to F.
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