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This study explores precession-driven flows in a non-axisymmetric ellipsoid spinning
around its medium axis. Using an experimental approach, we focus on two aspects of
the flow: the base flow of uniform vorticity and the development of fluid instabilities.
In contrast to a preceding paper (J. Fluid. Mech., vol. 932, 2022, A24), where the
ellipsoid rotated around its shortest axis, we do not observe bi-stability or hysteresis
of the base flow, but a continuous transition from small to large differential rotation
and tilt of the fluid rotation axis. We then use the model developed by Noir & Cébron
(J. Fluid. Mech., vol. 737, 2013, pp. 412–439) to numerically determine regions in the
parameter space of axial and equatorial deformations for which bi-stability may exist.
Concerning fluid instabilities, we use three independent observations to track the onset
of both boundary layer and parametric instabilities. Our results clearly show the presence
of a parametric instability, yet the exact nature of the underlying mechanism (conical shear
layer instability, shear instability and elliptical instability) is not unambiguously identified.
A coexisting boundary layer instability, although unlikely, cannot be ruled out based on our
experimental data. To make further progress on this topic, a new generation of experiments
at significantly lower Ekman numbers (ratio of rotation and viscous time scales) is clearly
needed.

Key words: rotating flows, topographic effects, transition to turbulence

1. Introduction

Precession describes the gradual, gyroscopic motion exhibited by a spinning object.
Understanding the dynamics of fluid layers inside a precessing cavity is of interest in
geophysical and astrophysical contexts, as well as for many industrial applications. In
the former, precession-driven flows have been shown to be a viable steering mechanism
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to sustain planetary dynamos (Malkus 1968; Tilgner 2005; Cébron et al. 2019) and to
contribute significantly to power dissipation in planetary cores and subsurface oceans
(Yoder & Hutchison 1981; Williams et al. 2001; Lin et al. 2016; Cébron et al. 2019).
Industrial applications include, for example, low shear rate mixers for bio-engineering
(Meunier 2020) and the stability of spacecrafts with liquid payloads (Vanyo & Likins
1971).

The investigation of flows within precessing containers began in the late 19th century,
with the foundational works of Hough (1895) and Sloudsky (1895), followed later
by Poincaré (1910), all considering spheroidal geometries. Under the assumption that
the primary response of the fluid is in the form of a tilted solid body rotation, they
independently derived a steady, inviscid solution also known as a Poincaré flow. Later,
Busse (1968) reintroduced viscosity and derived a model for the uniform vorticity
component of the flow, which was confirmed experimentally and numerically for various
spheroidal cavities (Vanyo et al. 1995; Noir et al. 2001a; Noir, Jault & Cardin 2001b;
Tilgner & Busse 2001). It was further shown that the oscillatory Ekman boundary layer
drives a secondary flow in the bulk, in the form of localised, oblique shear layers and
zonal geostrophic flows (Hollerbach & Kerswell 1995; Noir et al. 2001a,b). In spheroids,
the uniform vorticity can exhibit multiple branches of stable solutions over a finite range
of precession rates, potentially resulting in hysteresis cycles (Noir et al. 2003; Cébron
2015; Komoda & Goto 2019; Nobili et al. 2020). The case of non-axisymmetric ellipsoids,
possibly relevant for tidally locked celestial objects such as our Moon, has recently been
investigated theoretically (Noir & Cébron 2013) and experimentally (Burmann & Noir
2022). Similar to spheroids, the primary response of the fluid is well captured by a
flow of uniform vorticity. However, in contrast to axisymmetric spheroids, the uniform
vorticity flow in a tri-axial ellipsoid is no longer stationary in any frame of reference
(Cébron, Le Bars & Meunier 2010; Noir & Cébron 2013; Cébron 2015; Burmann & Noir
2022).

At large enough precession rates, the laminar flow will destabilise. This leads to
more complex dynamics, associated with enhanced angular momentum transfer, energy
dissipation and, ultimately, space-filling turbulence. So far, three kinds of instabilities
have been suggested in the context of precession-driven flows: boundary layer instabilities
(Lorenzani & Tilgner 2001; Buffett 2021), bulk parametric instabilities (Kerswell 1993;
Lin, Marti & Noir 2015; Nobili et al. 2020; Burmann & Noir 2022) and centrifugal
instabilities (Giesecke et al. 2018, 2019). Theoretical estimates for the onset of these
instabilities have been established in spheroidal and spherical geometries (Kerswell 1993;
Kida 2013; Lin et al. 2015; Buffett 2021). However, so far no analytical expression for the
onset in tri-axial ellipsoids exists.

The present study has two objectives. Our main interest is the investigation of the
instabilities arising in the precessing ellipsoid and to tentatively disentangle the underlying
mechanisms. In our previous paper, we have seen that this is hardly possible when the
base flow shows bi-stability and associated sudden transitions to a second branch, which
was characterised by unstable flows for all values of the Poincaré number Po (Burmann
& Noir 2022). Hence we first need to delineate the region of the parameter space with
single solutions of the Poincaré flow, which is the other goal of our study. This paper
is organised as follows. In § 2, we introduce the uniform vorticity model and recall the
scaling laws for the onset of the different instabilities. We then introduce the experimental
set-up in § 3. The results for the uniform vorticity flow and onset of instabilities
are presented in §§ 4.1 and 4.2, respectively. Finally, we draw some conclusions
in § 5.
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Figure 1. (a) Sketch of the problem: an ellipsoid with the three principal axes b > c > a is spinning at Ω
around c, which itself is precessing at Ωp around k̂p. A Cartesian coordinate system is placed in such a way
that the z axis of the coordinate system is aligned with the mid-axis c. We also depict two of the ultrasonic
Doppler velocimetry probes: probe 1 is placed off the principal axis and is used to measure the base flow of
uniform vorticity; probe 2 is placed along one of the principal axes and is used to measure the flow associated
with instabilities. (b) Photograph of the experimental device.

2. Theoretical background

2.1. Governing equations
Let us consider a non-axisymmetric, ellipsoidal fluid cavity characterised by its principal
axes a, b and c (with a < c < b) and its mean radius R = (abc)1/3. We denote the three
unit vectors along each axis k̂a, k̂b and k̂c. They form the base of a Cartesian coordinate
system (x, y, z), with êx = k̂a, êy = k̂b and êz = k̂c. The ellipsoid is spinning at a rotation
rate Ω around k̂ = k̂c, and precesses at Ωp around k̂p, as depicted in figure 1. In this
study, the angle between the precession and rotation axis is fixed at 90◦, i.e. k̂c · k̂p = 0.
The cavity is filled with an incompressible fluid of constant kinematic viscosity ν. Using
R as a length scale and Ω−1 as a time scale, the dimensionless equations governing the
fluid velocity u and pressure p in the frame of reference co-rotating with the ellipsoid are

∂u
∂t

+ u · ∇u + 2
(

k̂ + Po k̂p

)
× u = −∇p + E ∇2u − Po

(
k̂p × k̂

)
× r, (2.1)

∇ · u = 0, (2.2)

subject to the no-slip boundary condition

u = 0. (2.3)

997 A52-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.774


F. Burmann, L. Kira and J. Noir

In (2.2), we have introduced the two control parameters of the system, the Ekman number
and the Poincaré number:

E = ν

ΩR2 and Po = Ωp

Ω
. (2.4a,b)

The Ekman number measures the relative importance of viscous force and Coriolis
acceleration, and the Poincaré number represents the ratio of the precession to rotation
frequencies.

2.2. The base flow of uniform vorticity
In the same vein as previous theoretical studies considering precessing spheroids, Noir &
Cébron (2013) investigated non-axisymmetric ellipsoids, assuming a leading-order flow
of uniform vorticity, without imposing steadiness in any frame of reference. In the frame
co-rotating with the ellipsoid, the base flow velocity U = (Ux,Uy,Uz) is written as

U = ωf × r + ∇ψ, (2.5)

where ωf = (ωx, ωy, ωz) denotes the fluid rotation vector, and ψ is a potential field
required to satisfy the no-penetration boundary condition at the ellipsoid walls. Noir &
Cébron (2013) give the following expression for ψ :

ψ = ωx
c2 − b2

c2 + b2 yz + ωy
a2 − c2

a2 + c2 xz + ωz
b2 − a2

b2 + a2 xy. (2.6)

Substituting (2.6) into (2.5), the expression of the uniform vorticity velocity can be
recast as

Ux = ωy
2a2

a2 + c2 z − ωz
2a2

a2 + b2 y, (2.7)

Uy = ωz
2b2

a2 + b2 x − ωx
2b2

c2 + b2 z, (2.8)

Uz = ωx
2c2

b2 + c2 y − ωy
2c2

a2 + c2 x. (2.9)

Anticipating the rest of the paper, we further define the total fluid rotation as

Ω f = ωf + k. (2.10)

As shown by Noir & Cébron (2013), taking the curl of the Navier–Stokes equation, and
substituting expressions (2.7)–(2.9) for the velocity, yields the following set of ordinary
differential equations (ODEs) for the evolution of ωx, ωy and ωz:

∂ωx

∂t
=

[
2a2

a2 + c2 − 2a2

a2 + b2

]
ωzωy + Po sin(t)

2a2

a2 + b2 ωz

+ 2a2

a2 + c2 ωy + Po sin(t)+ LΓ x, (2.11)
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∂ωy

∂t
=

[
2b2

a2 + b2 − 2b2

b2 + c2

]
ωxωz + Po cos(t)

2b2

a2 + b2 ωz

− 2b2

b2 + c2 ωx + Po cos(t)+ LΓ y, (2.12)

∂ωz

∂t
=

[
2c2

b2 + c2 − 2c2

a2 + c2

]
ωxωy − Po cos(t)

2c2

a2 + c2 ωy

− Po sin(t)
2c2

b2 + c2 ωx + LΓ z. (2.13)

These equations are complemented by an expression for the viscous term LΓ as outlined
in the Appendix of Noir & Cébron (2013):

LΓ =
√

EΩ

⎛
⎝λr

⎡
⎣ Ωx

Ωy
Ωz − 1

⎤
⎦ + λi

Ω

⎡
⎣ Ωy

−Ωx
0

⎤
⎦ + Ω2 −Ωz

Ω2

(
λsup − λr

)⎡
⎣Ωx
Ωy
Ωz

⎤
⎦

⎞
⎠ , (2.14)

where λr and λi denote the real and imaginary parts of the damping of the spin-over mode,
and λsup the decay factor of the spin-up. In our preceding paper (Burmann & Noir 2022),
we have validated this model experimentally in the case where multiple solutions and
hysteresis cycles exist. Here, we will follow the same procedure to integrate the system
of ODEs to calculate the fluid rotation component and compare it to our experimental
measurements. We refer the reader to Burmann & Noir (2022) for further details on the
integration procedure.

2.3. Scaling laws of the onset of the instabilities in spheres and spheroids
So far, there exists no analytical derivation of an instability criterion in non-axisymmetric
ellipsoids. Nevertheless, one may gain insight from the scaling laws for the onset of the
different parametric and boundary layer instabilities, established in spheres and spheroids.

2.3.1. Ekman boundary layer instability
The onset of instabilities in the Ekman boundary layer is usually characterised by means
of a critical local Reynolds number for the Ekman boundary layer:

Rebl = Ũδ
ν
, (2.15)

where Ũ denotes the shear velocity at the top of the Ekman layer, and δ = RE1/2
f is its

respective thickness. Note that we have introduced the fluid Ekman number Ef = E/Ωf
based on the total rotation of the fluid Ωf = |Ω f | rather than the rotation of the container.
As shown by Noir et al. (2003), Ef better represents the ratio of viscous to Coriolis forces
in a precessing cavity where, at large forcing amplitudes, the fluid and container rotation
rates can be significantly different. The shear velocity is estimated from the amplitude of
the differential rotation ωf = |ωf |, as Ũ = ωf R, and the local Reynolds number for the
boundary layer becomes

Rebl = ωf

Ωf
E−1/2

f . (2.16)

Apart from some particular asymptotic cases, ωf and Ωf are not known a priori, hence
Rebl is a diagnostic quantity.
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The first instability in a steady Ekman boundary arises for Rebl ∼ 55, in the form
of longitudinal rolls tilted with respect to the direction of the base flow (Lilly 1966).
Subsequently, the boundary layer becomes turbulent for Rebl ∼ 150 (Caldwell & Van Atta
1970; Sous, Sommeria & Boyer 2013). In the case of precession, the oscillating nature
of the Ekman layer yields a shift of the critical value of the Reynolds number. Lacking a
theoretical derivation of the critical value of Re for an oscillatory boundary layer, we have
to obtain estimates from previous experimental and numerical studies. Typically values
reported are Rebl ∼ 70 for the initial instability in spheroids (Lorenzani & Tilgner 2001),
and a first thickening of the Ekman layer at the end caps of a precessing cylinder has
been observed at Rebl ∼ 100 in a recent numerical study by Pizzi, Giesecke & Stefani
(2021), but a state of boundary layer turbulence has not been reached. Indeed, the onset of
boundary layer turbulence in a oscillatory Ekman layer is shifted towards Rebl ∼ 500 in
numerical simulations using a box model by Buffett (2021).

2.3.2. Parametric instabilities
Parametric instabilities are excited by a resonant coupling between the base flow and two
free inertial modes of the fluid cavity. They have been suggested as the main source of
bulk instabilities in spherical and spheroidal fluid cavities subject to precession, libration
or tides (see the review by Le Bars, Cébron & Le Gal 2015). Parametric instabilities are
characterised by a necessary condition on the resonant frequencies of the free inertial
modes given by

�1 ±�2 = �0, (2.17)

where �1 and �2 denote the frequencies of the two free inertial modes, and �0 denotes
the frequency of a forced inertial mode. Depending on the geometry, there are further
conditions on the spatial structure of the involved modes.

As outlined in the Introduction, three mechanisms contribute to the base flow in the
precessing cavity: the rotation, the stretching potential fieldψ , and the oblique shear layers.
Each of those can lead to individual parametric instabilities with a different growth rate.
In precessing spheres, only the oblique shear layers associated with the Ekman pumping
can contribute to the bulk parametric resonances, through the so-called conical shear
instability (CSI) of Lin et al. (2015). The onset of this instability is defined by a critical
differential rotation between the fluid and the container wall, scaling as

ωf ∝ E3/10. (2.18)

This instability is not restricted to spherical shells, and can also occur in spheroids (Nobili
et al. 2020) or ellipsoids, but there exists no formal derivation for the growth rate of the
CSI in tri-axial ellipsoids. Nevertheless, one may still expect the scaling in Ekman number
to hold for a tri-axial ellipsoid as well, as we expect that neither the dissipative mechanism
nor the inertial waves spawn from the critical latitudes to be affected at leading order by
the additional deformation. In contrast, the shape of the container will certainly yield an
additional scaling as a function of a, b and c, a question not addressed in this study with
a fixed geometry. It is thus reasonable to assume that the onset of the CSI in our ellipsoid
will remain in the form of (2.18).

In his seminal work, Kerswell (1993) showed that two additional mechanisms associated
with the potential flow ∇ψ can drive parametric resonances. The first mechanism results
from the periodic elliptical distortion of the streamlines, and the second one stems from
the shear of the planes containing these streamlines due to the tilt of the fluid rotation axis
with respect to the figure axis. For the sake of clarity, we will refer to the former as the
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Ω (rad s−1) E 	Po

1.57 6.3 × 10−5 0.0114
3.14 3.15 × 10−5 0.0057
4.71 2.1 × 10−5 0.0038

Table 1. Rotation rates of the cavity in conducted experiments, together with the respective Ekman number E
and and the minimal increment of the Poincaré number 	Po.

Kerswell elliptical instability (KEI), and the latter as the Kerswell shear instability (KSI).
The onsets of these two instabilities in a spheroid of polar ellipticity η are given by

ωf ∝ η−1/2E1/4 (KEI), (2.19)

ωf ∝ η−1E1/2 (KSI). (2.20)

To detect those instabilities in our experiments, we will use the combination of three
criteria: the necessary resonant frequency condition (2.17), the sufficient condition
of non-vanishing anti-symmetric energy (as defined below in (4.9)), and the direct
observations of disorder in the fluid interior.

3. The experimental apparatus and diagnostics

3.1. The experimental set-up
The experimental set-up consists of an acrylic container of ellipsoidal shape with the
three semi-major axes a = 0.078 m, b = 0.125 m and c = 0.104 m, and mean radius
R = (abc)1/3 = 0.1 m. The container is filled with de-ionised water at room temperature
and kinematic viscosity ν ∼ 1 × 10−6 m2 s−1. The container is set into rotation at Ω
around its mid-axis c, which itself is slowly precessing atΩp (see figure 1). The precession
angle of our experiment is set to 90◦, i.e. k̂p · k̂ = 0 (for a detailed description of the
device see Burmann & Noir 2022). In this study, we perform experiments at three distinct
rotation rates, which are listed in table 1 together with the corresponding Ekman number
E and minimal increment of the Poincaré number 	Po.

3.2. Diagnostics
To infer the flow inside our experiment, we make use of both quantitative ultrasonic
Doppler velocimetry (UDV) and qualitative visualisation using rheoscopic fluid. For the
UDV measurements, we use a DOP4010 system (Signal Processing SA,1073 Savigny,
Switzerland), which allows us to measure time-resolved velocity profiles along selected
chords in the fluid at spatial resolution 0.5 mm, with typical temporal resolution of the
order of 10 Hz. For UDV measurements, the fluid is seeded with 2AP1 Griltex particles
of density 1.02 g cm−3, and mixed sizes 50 µm (60 % by weight) and 80 µm (40 % by
weight). The positions and orientations of all UDV probes are summarised in table 2.

For the direct visualisations, we use a home made rheoscopic fluid following the recipe
of Borrero-Echeverry, Crowley & Riddick (2018). We attach a 1 Watt continuous green
laser with a line generator to the rotating ellipsoid. Images are taken with a camera attached
to the turntable, i.e. the precession frame.
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ui x y z ωi

uy −0.25 −1.25 0 ωz —
uy 0 −1.25 −0.47 ωx —
uz −0.47 0 0.78 ωy Probe 1

uy 0 1.25 0 — Probe 2
uz 0 0 1.0 — —

Table 2. Position of the UDV probes (centre of the front lens), measured velocity components (ui) and
associated component of the fluid rotation vector (ωi). The upper part of the table lists probes that are used
to measure the uniform vorticity flow; the lower part of the table lists probes that are used to measure the
non-uniform vorticity flow. Probes 1 and 2 are the two probes that are drawn in figure 1. All coordinates are
non-dimensional.

4. Results

4.1. Base flow of uniform vorticity
Substituting the positions and orientations of the first three probes listed in table 2 into
the expressions for the velocity components (2.7)–(2.9), an estimate of ωx, ωy and ωz is
readily obtained by averaging the velocity of the off-axis probes along the profile. For
example, probe 1 is located at x = −0.47 and y = 0, and measures Uz along z (see also
figure 1). The z-component of the uniform vorticity flow is given by (2.9): at the location of
probe 1, the first summand vanishes, and Uz takes a constant value along the measurement
chord, determined only by ωy, a, c and the x-coordinate of the probe. Hence for each of
the probes located off the figure axis, we compute the mean velocity along the profile
and then reconstruct time series of the three components of the fluid rotation vector from
(2.7)–(2.9). We then compute the time-averaged differential rotation between the fluid and
the container: 〈

ωf
〉
t =

〈√
ω2

x + ω2
y + ω2

z

〉
t
, (4.1)

where 〈·〉t denotes the time averaging over a typical window of 100 rotations. Additionally,
we define the total rotation rate of the fluid viewed from the precessing frame of the
turntable as 〈

Ωf
〉
t =

〈√
ω2

x + ω2
y + (ωz + 1)2

〉
t
. (4.2)

Finally, the time-averaged angle of the fluid rotation with respect to the container rotation
axis is defined as

〈θ〉t =
〈
arccos

(
ωz + 1
Ωf

)〉
t
. (4.3)

Figure 2 presents those observables as functions of Po for a fixed Ekman number E =
6.3 × 10−5. We performed two sets of measurements, the first starting from Po = 0.01
and then increasing Po between subsequent experiments (red, upward triangles), and the
second starting from Po = 0.3 and then decreasing Po (olive, downward triangles). In
addition, we present the theoretical prediction obtained by integrating the set of ODEs
(2.11)–(2.13). For comparison, we also show in figures 2(d–f ) the results of Burmann &
Noir (2022) when the same container is rotating along its short axis, showing bi-stability
of the Poincaré flow. In all plots, the error bars represent the standard deviation of the
respective quantity over the entire time series.
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1.0

(a) (b) (c)

(d ) (e) ( f )

1.0 100

80

60

40

20

150

100

50

0

0.8

0.6

0.4

0.8

0.6〈ω
f〉 t

〈Ω
f〉 t

1.0

0.8

0.6

0.2

0.4〈Ω
f〉 t
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0.50〈ω
f〉 t

0.25

0

0 0.1 0.2 0.3

Increase Po
Decrease Po
Numerical model

0 0.1 0.2 0.3 0 0.1 0.2 0.3

0 0.1 0.2

Po Po Po
0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Figure 2. Characterisation of the uniform vorticity base flow inside the precessing ellipsoid: (a) differential
rotation between fluid and container following (4.1); (b) total fluid rotation viewed from the frame of precession
following (4.2); (c) angle between fluid and container rotation axis following (4.3). For comparison, we also
show in (d–f ) the same quantities when the ellipsoid spins around its shortest axis (Burmann & Noir 2022). In
all plots, we display data from increasing Po as upward red triangles, and for decreasing Po as downward olive
triangles. The error bars are representative of the standard deviation over the entire time series. In all plots, the
theoretical predictions from the model of Noir & Cébron (2013) are represented as solid black lines.

The new results exhibit a very good agreement between the experimental and theoretical
estimates for all three quantities at small Po. For Po > 0.1, some discrepancy is observed,
in particular on the total fluid rotation. Yet the model and experiments both show a gradual
increase of the differential rotation and a gradual decrease of the total fluid rotation as the
tilt of the fluid rotation axis increases with respect to the rotation axis of the container.
In contrast with the previous results of Burmann & Noir (2022), we do not observe two
separate branches of solutions for the uniform vorticity, and consequently no hysteresis
cycles between the increasing and decreasing Po experiments. The absence of multiple
branches allows for better control of the onset of the instability by continuously increasing
the differential rotation, which will be discussed later in this paper.

Our experimental results further validate the theoretical model proposed by Noir &
Cébron (2013) in a regime not explored in previous experimental studies. We seek to
use this model to delineate the regions in the parameter space where multiple or single
branches and hysteresis may exist. To characterise the ellipsoids of different axial and
equatorial deformations, we follow Vantieghem (2014) and introduce two quantities to
characterise the shape of the container:

c̄ = c
R̄

and β = a2 − b2

a2 + b2 , (4.4a,b)

where R̄ denotes the mean equatorial radius

R̄ =
√

a2 + b2

2
. (4.5)
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Following the same procedure as outlined in § 2.2 of Burmann & Noir (2022), we
integrate the set of ODEs (2.11)–(2.13) for various combinations of β and c̄, keeping
the volume of the ellipsoid fixed, and determine the existence of bi-stability in regions
of the (β, c̄) plane. We sample 360 different values of Po in a range from Po = 0.01 to
Po = 0.6 with resolution ∼0.0016, and integrate the system of ODEs for 15 spin-up times,
starting from 50 random initial conditions (ωx, ωy, ωz). To assess whether bi-stability is
present, we compute the mean and standard deviation (σ ) of the differential rotation ωf
over the 50 initial conditions at each value of Po. Naturally, single branch solutions are
characterised by small σ , while bi-stable solutions are characterised by large standard
deviation. To ascertain the bi-stability of each geometry (β, c̄), we take the maximum
standard deviation σmax over the whole range of Po, and if σmax > 0.04, then the geometry
is considered as bi-stable. This threshold value is rather empirical and dictated by the
well-documented cases investigated in Burmann & Noir (2022). In figure 3, we show maps
of σmax as functions of β and c̄, at three different Ekman numbers, E = 10−3, 6.3 × 10−5

and 10−7. The white dots represent those values of (β, c̄), for which calculations have
been performed. We chose the colour scale so that the darker blue level corresponds to
σmax < 0.04, for which all initial conditions lead to the same final unique solution.

As the Ekman number is increased, the region of single solutions grows, while the
region of multiple solutions shrinks, for both prolate (c̄ > 1) and oblate (c̄ < 1) ellipsoids.
Noticeably, prolate ellipsoids are less prone to bi-stability than oblate spheroids. The two
configurations accessible with our experimental device are denoted by red symbols in
figure 3. The configuration of the present study (red diamond) plots well within a region
of single solutions for all three investigated Ekman numbers. In contrast, the ellipsoid of
Burmann & Noir (2022) (red circle) is right on the edge of the multiple solution region at
the largest Ekman number. We confirm this observation in figure 4, where we display 〈ωf 〉t
as a function of Po for different Ekman numbers down to E = 10−10. Indeed, the ellipsoid
of Burmann & Noir (2022) loses bi-stability at E > 10−2, whereas the configuration
studied in the present paper retains a single solution for all Ekman numbers. Furthermore,
the curves for E < 10−6 overlap, indicating that an asymptotic state is reached.

While we can predict the regions of bi-stability numerically, we do not have any
analytical criterion for the existence of hysteresis in tri-axial ellipsoids. In the case of
spheroids, Komoda & Goto (2019) obtained a condition for the existence of a hysteresis
cycle given by

|η| = |c̄ − 1| > αE1/2, (4.6)

with α ∼ 10. For the three different Ekman numbers investigated here, we display their
criteria as black horizontal lines in figure 3. Even though the criteria do not account for the
equatorial ellipticity β, they capture qualitatively the transition to bi-stability for E = 10−7

and for E = 6.3 × 10−5 in the limit of small β and up to finite values for c̄ < 1.

4.2. Onset of instabilities
In this subsection, we aim to characterise the onset of instabilities in a precessing
ellipsoid and to identify the dominant underlying mechanism. To do so, we combine three
different criteria to define the onset of instability: direct visualisation with rheoscopic fluid,
anti-symmetric energy, and the frequency spectrum.
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Figure 3. Bi-stability as a function of deformation: maximum observed standard deviation σmax as a function
of β and c̄ at three different Ekman numbers: (a) E = 1 × 10−3, (b) E = 6.3 × 10−5 (the same value as in
our experiments), and (c) E = 1 × 10−7. The colour scale is chosen such that the darkest blue represents
cases with no bi-stability, i.e. σmax < 0.04. The present experiment is represented by a red diamond at
(β, c̄) = (0.44, 0.99), and the experiment of Burmann & Noir (2022) by a red circle at (β, c̄) = (0.18, 0.68).
The black horizontal lines denote the critical value of c̄ from the bi-stability criterion of Komoda & Goto
(2019). The directory containing the notebook and data can be accessed at https://www.cambridge.org/
S0022112024007742/JFM-Notebooks/files/Figure3.

1.0
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Figure 4. Numerical results for 〈ωf 〉t as function of Po at different Ekman numbers, for (a) the ellipsoid of
the present study, and (b) the ellipsoid of Burmann & Noir (2022). The upward and downward arrows in (b)
indicate the branch transitions.
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E = 3.1 × 10−5, Po = 0.035 E = 6.3 × 10−5, Po = 0.047

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

E = 3.1 × 10−5, Po = 0.047 E = 6.3 × 10−5, Po = 0.058

E = 3.1 × 10−5, Po = 0.053 E = 6.3 × 10−5, Po = 0.070

E = 3.1 × 10−5, Po = 0.070 E = 6.3 × 10−5, Po = 0.105

Figure 5. Visualisation of the flow using rheoscopic fluid. All pictures are taken with a camera fixed on the
turntable, i.e. from the frame of precession. Here, (a,c,e,g) E = 3.1 × 10−5, and (b,d, f,h) E = 6.3 × 10−5.

4.2.1. Direct visualisations
Figure 5 illustrates shear structures in the bulk obtained with a low concentration
of rheoscopic fluid, while figure 6 shows shear in the vicinity of the wall using a
saturated solution. Bulk visualisations suggest instabilities for the cases Po � 0.058 at
E = 6.3 × 10−5 and Po � 0.047 at E = 3.1 × 10−5. We note in particular the S-shape at
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0.4

E = 6.3 × 10−5, Po = 0.047

E = 6.3 × 10−5, Po = 0.082 E = 6.3 × 10−5, Po = 0.18

Figure 6. State of the Ekman boundary layer in the experiments. (a) Local Reynolds number Rebl as a
function of Po for increasing and decreasing Po as upward and downward triangles, respectively. (b–d)
Visualisations of the boundary layer using high concentrations of rheoscopic fluid. The respective Rebl values
of the visualisations are marked in red in (a). The grey shaded area denotes values Rebl > 55 for which Ekman
layer instabilities have been reported previously.

Po = 0.058, typical of parametric instabilities at onset (e.g. Lacaze, Le Gal & Le Dizès
2004). From the boundary layer visualisations, it may be argued that near wall structures
are already identified at Po = 0.047 and E = 6.3 × 10−5, if those are interpreted as the
onset of the Ekman layer instabilities. Yet figure 5(b) suggests that they would not have
significant influence in the bulk. In figure 6(a) we report the estimated time-averaged
Rebl according to (2.16) as a function of Po. The points corresponding to the images in
figures 6(b–d) are represented with red symbols, and the range of onset values reported in
the literature is represented by the grey shaded background starting at Rebl > 55. However,
in precessing cavities, where the Ekman layer is oscillatory, we expect the onset to be
shifted towards Rebl ∼ 70–100, as reported in numerical studies using either spheroidal
(Lorenzani & Tilgner 2001) or cylindrical (Pizzi et al. 2021) geometries. Despite the values
for Rebl plotting within the grey range, the values never reach values for boundary layer
turbulence, and we suggest that the near-wall shear structures observed in figure 6 may
reflect the penetration of the bulk instability impinging in the boundary layer, rather than
the development of a boundary layer instability itself. However, given the similar scaling
laws for the boundary layer instability (2.16) and the parametric instabilities (2.18)–(2.20),
we should not exclude the possibility that both mechanisms could coexist near onset.

4.2.2. Anti-symmetric energy
The uniform vorticity response of the fluid, including the Ekman pumping, satisfies the
symmetry

U(−r) = −U(r). (4.7)
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10

8

6

4

2

0

20

15

10

5

0

6

4〈Ea〉t
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Figure 7. Time-averaged anti-symmetric kinetic energy 〈Ea〉t measured on the principal axes of the ellipsoid
as functions of Po for three investigated Ekman numbers. Stable points are displayed in blue, unstable points
in orange, and the error bars are representative of the standard deviation over the entire time series. The
grey shaded area represents a region of uncertainty for the onset of instabilities. Here, (a) E = 2.1 × 10−5,
(b) E = 3.1 × 10−5, and (c) E = 6.3 × 10−5.

We refer to such flows as symmetric, whereas a flow satisfying

U(−r) = U(r), (4.8)

will be called anti-symmetric. Several numerical and experimental studies of precession
reported a breaking of this symmetry associated with the onset of instabilities (e.g.
Lorenzani & Tilgner 2001; Lin et al. 2015). The growth of an anti-symmetric component
of the flow is thus a sufficient, but not necessary, condition to identify the growth of an
instability.

Following (2.7)–(2.9), the component of the base flow along the figure axis vanishes,
e.g. Ux = 0 at (x, 0, 0). Hence a UDV probe measuring velocity profiles along one of the
figure axes, such as the exemplary probe 2 in figure 1, will be insensitive to the inviscid
part of the base flow. We therefore use such probes to investigate the onset of the instability
and calculate the symmetric (us(r, t)) and anti-symmetric (ua(r, t)) components of the
velocity:

ua = u(r)+ u(−r)
2

, (4.9)

us = u(r)− u(−r)
2

. (4.10)

We then calculate the time-averaged anti-symmetric energy density as

〈Ea〉t =
〈

1
2

∫
L
|ua(r)|2 dl

〉
t
. (4.11)

The results are presented in figure 7 as functions of Po, for three different Ekman numbers.
In all experiments, we first observe low values of the anti-symmetric energy for small
Po, associated with the inherent measurement error at almost vanishing velocities. Past
a critical value Poc, the mean anti-symmetric energy increases significantly, which we
interpret as the signature of the instability. This is also reflected in a sudden increase of
the standard deviation of the anti-symmetric kinetic energy represented by the error bars
in figure 7. For the three Ekman numbers investigated, we label all points for which the
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E = 2.1 × 10−5 E = 3.15 × 10−5 E = 6.3 × 10−5

Poc 	Poc ωf 	ωf Poc 	Poc ωf 	ωf Poc 	Poc ωf 	ωf

Rheoscopic 0.031 0.004 0.38 0.03 0.044 0.003 0.51 0.03 0.052 0.005 0.64 0.04
Ea 0.033 0.002 0.40 0.04 0.053 0.006 0.58 0.04 0.064 0.006 0.58 0.03
Fourier spectra 0.029 0.002 0.36 0.04 0.038 0.003 0.46 0.03 0.053 0.006 0.64 0.02

Table 3. Critical values of Po determined from the three different criteria together with the corresponding
uncertainty range 	Poc and the differential rotation ωf obtained from the numerical model.

anti-symmetric energy departs significantly from the low Po values as unstable, and report
them as orange symbols in figure 7. Based on these observations, we define the critical
value Poc, as the mean value between the last stable point and the first unstable point.
The corresponding range in Po is indicated by the grey shaded area in figure 7, and also
reported as 	Poc in table 3.

4.2.3. Frequency spectrum
A classical criterion to detect parametric instability is based on the necessary frequency
condition for resonance of (2.17). Using the UDV profiles from the two probes measuring
the velocity along the figure axis, we compute the discrete Fourier transform in time, at
each location along the profile. We then stack the spectra from all points along the UDV
chords, and combine the data sets from the two profiles of ux and uz to increase the signal
over noise ratio. Note that the criterion based on the frequency does not require us to
separate the symmetric and anti-symmetric parts. In fact, it is even desirable to keep both
parts of the velocity to include possible resonances with symmetric modes, otherwise not
captured with the anti-symmetric velocity alone.

The results are presented in figure 8. At low Po, the spectra exhibit mainly two peaks,
at � = 1 and � = 2, representing the non-uniform vorticity component of the direct
forcing, e.g. the Ekman pumping driven by the base flow and its first harmonics. A typical
example of parametric resonances is observed at Po = 0.035 for E = 2.1 × 10−5, where
two additional peaks arise that satisfy the condition (2.17). At all Ekman numbers, the
spectra showing parametric resonances are coloured in orange in figure 8. Again, we define
the critical value of Poc for the onset of instability as the mean value between the last stable
and first unstable Po, and report the corresponding values in table 3.

4.3. Stability diagram
We now combine the criteria of direct visualisations, anti-symmetric energy and resonant
frequency conditions to delineate the onset of the instability and tentatively unveil the
nature of the underlying mechanism. Rather than presenting the results in terms of Poc
and E, we present them in terms of the differential rotation ωf and E, which allows us to
compare directly with the scaling laws presented in § 2.3. Notice that for the lowest values
of E, we obtain ωf by integrating the ODE system and not from measurements. Since the
ODE model shows excellent agreement at the small values of Po considered for the onset of
instability, this does not impact our conclusions. The stability diagram including all three
criteria is presented in figure 9, where the different symbols represent the different criteria,
and the blue and orange colours correspond to stable and unstable flows, respectively.
All three criteria are within reasonable agreement, making us confident that we capture
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Po: 0.043

Po: 0.039

Po: 0.035

Po: 0.031
E

Po: 0.027

Po: 0.023

Po: 0.019

Po: 0.016

0 1
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2 0 1 2 0 1 2

Po: 0.070

Po: 0.058 Po: 0.070

Po: 0.058

Po: 0.047

Po: 0.035

Po: 0.047

Po: 0.041

Po: 0.035

Po: 0.029

Po: 0.023

Po: 0.018

(a) (b) (c)

Figure 8. Fourier spectra of the non-uniform vorticity flow. All spectra represent a stack of all UDV gates
and are normalised by the respective Po of the measurement. Ekman numbers are (a) E = 2.1 × 10−5,
(b) E = 3.15 × 10−5 and (c) E = 6.3 × 10−5.

correctly the leading-order dynamics of the system. At each Ekman number, we define the
onset of the instability as the mean of the critical values of the three independent criteria,
and the uncertainties as the maximum of all three; the results are reported as black symbols
in figure 9.

To test which of the CSI, KSI and KEI mechanisms is underlying the onset of the
instability, we have reported in figure 9 the best fit for the three possible scalings in Ekman
number, ωf ,c ∝ E3/10, E1/2,E1/4. Despite our efforts to combine different diagnoses to
probe the onset of the instability, the limited range of Ekman numbers accessible in our
study does not allow us to conclude clearly which of the three mechanisms prevails. We
thus propose to read our results as follows: if one were to associate the reported onsets
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1.0

0.8

0.6

0.4

ωf

0.2

2.1 × 10–5 3.1 × 10–5

E
6.3 × 10–5

Rheoscopic images

Fourier spectra

KSI

KEI

CSI

Estimated critical δωf

Ea

Figure 9. Stability diagram in E and ωf for the onset of instabilities in our experimental data. Different
symbols represent data from the three criteria: rheoscopic fluid visualisation (squares), anti-symmetric kinetic
energy (circles), and Fourier spectra (diamonds). Stable points are in blue, and unstable point in orange. We
display the critical differential rotation ωf ,c estimated as the mean value from the three criteria, together with
its uncertainty as black symbol (see details in the text). The grey lines represent best fitting scaling laws of the
form ωf ,c ∝ aE1/2 for KSI (dashed), ωf ,c ∝ aE1/4 for KEI (dotted), and ωf ,c ∝ aE3/10 for CSI (solid), where
a denotes the fitting parameter.

to any of the three mechanisms in our geometry, then we may expect the CSI and KEI
to dominate at moderate Ekman numbers, while at lower Ekman numbers, the shear
instability (KSI) should be dominant.

5. Conclusion

We have investigated the flows inside a non-axisymmetric ellipsoid, rotating around its
medium axis and precessing at an angle of 90◦. Our experimental results for the uniform
vorticity base flow are in good agreement with the theoretical model of Noir & Cébron
(2013). In contrast to an earlier study investigating rotation around the shortest axis of
the ellipsoid (Burmann & Noir 2022), we find a continuous evolution from small to large
differential rotation between the fluid and the container. In our experiment, this results in
the absence of a hysteresis cycle of the base flow. We then use the good agreement between
experimental and theoretical models to systematically investigate bi-stability of the base
flow as a function of equatorial and axial deformation in various ellipsoids. At moderate
equatorial deformation β < 0.2, the existence of bi-stability is governed mainly by the
axial deformation c̄, and the hysteresis criterion of Komoda & Goto (2019), established
from the breakdown of the Busse solution in spheroids (Busse 1968; Noir et al. 2003),
predicts bi-stability surprisingly well. Meanwhile, decreasing the Ekman number leads to
a growing number of ellipsoids showing bi-stable solutions, which is in agreement with the
analytical work on bi-stability in precessing spheroids by Cébron (2015). Unfortunately,
our experimental set-up does not allow rotations around the longest axis of the ellipsoid,
which would have allowed us to further confirm (or disprove) the numerically established
areas of bi-stability: when spinning around its longest axis, our ellipsoid would plot at
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(β, c̄) = (0.28, 1.36) in figure 3, where bi-stability depends strongly on the value of the
Ekman number. Already a moderate, and experimentally realisable, increase of one decade
in E should result in a loss of the hysteresis cycle in this configuration. The second part
of our study is devoted to the fluid instabilities developing inside the ellipsoid, already at
relatively small values of the precession forcing. We establish a stability diagram in the
E–ωf space from three independent measures for the onset of the instability: (1) direct
visualisations of the flow in the ellipsoid using rheoscopic fluid; (2) the evolution of
the anti-symmetric kinetic energy as a function of Po; and (3) Fourier spectra of the
non-uniform vorticity flow. In the limited range of Ekman numbers accessible in this study,
it is difficult to draw a definitive conclusion, but our interpretation would be that the shear
instability (KSI) should prevail at sufficiently low values of E in this geometry, whereas
larger values of E remain inconclusive based on our data.

Taking a broader view on precession-driven flows, the emergence of triadic resonances
and bi-stability is not restricted to spheroids and ellipsoids, but has also been observed in
the case of precessing cylinders (for example, in the study of Herault et al. 2015). Despite
the very similar observations, we would like to emphasise that a hysteresis of turbulence as
observed in other geometries (Herault et al. 2015; Komoda & Goto 2019) is not necessarily
linked to the hysteresis of the uniform vorticity base flow observed in precessing ellipsoids
or spheroids (e.g. Cébron 2015). A possibility to investigate the relation between the
two phenomena could be experiments at precession angles smaller than 90◦, where the
amplitude of the base flow is expected to be weaker, hence less prone to instability.
Unfortunately, this is beyond the capabilities of our present experimental device. The
limitation in the range of accessible Ekman numbers is a general problem of present-day
precession experiments, and it seems clear to us that a significant step towards lower
Ekman numbers is necessary to make further progress on the topic of precession-driven
flows in non-spherical containers. Fortunately, ongoing experimental projects – e.g. the
DRESDYN liquid sodium precessing cylindrical dynamo (Stefani et al. 2015) and the
recently developed rapidly rotating device at the Key Laboratory of Planetary Sciences of
Professor Dali Kong – will provide promising opportunities to study rotating dynamics at
lower Ekman numbers.

To allow a fine tuning of the onset of instabilities in low Ekman experiments, one
should choose the geometry such that the differential rotation between the fluid and the
cavity evolves continuously as in this study, i.e. without hysteresis. In the case of tri-axial
ellipsoids, such parameters can be determined using the model of uniform vorticity as in
our figure 3. A typical range of deformation could be 1 < c̄ < 1.4 and 0.4 < β < 0.6,
allowing us to also investigate the scaling of the onset with the geometry.

Also, numerical simulations using no-slip boundary conditions in deformed spheroids
and ellipsoids will not be capable of reaching the desired range of Ekman numbers in the
near future. An alternative approach would be to study developing instabilities numerically
using free-slip boundary conditions, following the recent suggestion of Vidal & Cébron
(2023).

Supplementary material. Computational notebook files are available as supplementary material at https://
doi.org/10.1017/jfm.2024.774 and online at https://www.cambridge.org/S0022112024007742/JFM-Notebooks.
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Figure 10. Examples of the time evolutions of (a) the differential rotation between fluid and container, (b) the
total fluid rotation viewed from the frame of precession, and (c) the angle between fluid and container rotation
axis. The displayed time series is the same that is used to calculate the temporal averages displayed in figure 2
and covers 100 rotations of the ellipsoid. The Ekman number is E = 6.3 × 10−5.
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Appendix. Examples of full time series for the time-averaged quantities of figure 2

In figure 10, we display the time evolution of the same quantities that are displayed as
temporal averages in figure 2, i.e. the differential rotation between fluid and container
(figure 10a), the total fluid rotation viewed from the frame of precession (figure 10b),
and the angle between fluid and container rotation axis (figure 10c). For each observable,
we show an illustrative example at small forcing amplitude (Po = 0.04) and one at large
forcing (Po = 0.22), representative of a flow regime with developed instabilities. All time
series cover approximately 100 rotations of the ellipsoid, which is the same range used for
the temporal averaging in figure 2. For a detailed view on the time evolution of ωx, ωy and
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ωz we refer the reader to the similar figure 13 of our preceding paper (Burmann & Noir
2022).
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