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ON RADICALS OF FINITE NEAR-RINGS

by K. KAARLI

(Received 21st July 1983)

In this paper the study of radicals of finite near-rings is initiated. The main result
(Theorem 4.3) gives a description of hereditary radicals having hereditary semisimple
classes too. Also it is shown that there exist non-hereditary radicals having hereditary
semisimple classes.

1. Introduction

In what follows all radicals are Kurosh-Amitsur. It is well known that any radical
in the class of associative rings has a hereditary semisimple class ^0t, i.e. the class
is closed under taking ideals. On the other hand, Gardner [7] proved that in the variety
of not necessarily associative rings, hereditary semisimple classes are quite rare. Betsch
and Wiegandt [3] initiated the study of general radical theory of near-rings and they
paid special attention to the hereditariness of semisimple classes. In [3] they obtain
some conditions on a radical class which imply that the corresponding semisimple class
is not hereditary. Our work has been inspired by the latter paper. We consider finite
near-rings because we wish to apply the structure theory of near-rings with DCC on
right TV-subgroups. Note that the radical theory of finite rings and of some other classes
of rings with finiteness conditions was considered in [5,6,14]. Also note that the main
results of the present paper remain true for the larger class of semiprimary near-rings
(for the definition see [8]).

We shall use the notions and notations of the book [11] with one exception: our
near-rings satisfy the left distributive law x(y + z) = xy + xz, not the right one as in [11].
All near-rings will be zero-symmetric.

2. On the structure of finite near-rings

Our main tool will be the characterization of minimal ideals of near-rings with DCC
on right Af-subgroups obtained in [8]. For the reader's sake we recall here the necessary
notions and results from [8,9].

Definition. A set S with a fixed element 0 e S is called a G, 0-act if the group G acts
on 5 and g0 = 0 for all geG.

The concepts of G,O-congruence and G,0-homomorphism are defined as is usual in
universal algebra. A subset F s S is a set of free generators for a G,0-act S if for any
seS, s#0, there exist uniquely determined elements geG a n d / e F such that s=gf.
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248 K. KAARLI

Definition. Let $ be an additively written group and let a- group G act on Q> by
automorphisms. Then <I> turns into a G,0-act where 0 is the neutral element of the
group <D. Let p be a G, ^-congruence of $ and consider the set M of all transformations
m on <D satisfying the following conditions:

(i) 0m = 0;

(ii) (g<p)m=g((pm) for any geG, <pe<D;
(iii)

This set M is closed under pointwise addition and composition of mappings so it is a
near-ring. Any element meM can be identified in an obvious way with a uniquely
determined G,0-homomorphism from O/p into O. Therefore the near-ring M is in fact
HomG 0(O/p, $). This construction goes back to Polin [12]. Note that if p is the
equality relation then the near-ring M coincides with the so called centralizer near-ring
MG(O) [11].

Definition. A near-ring M is said to be a matrix near-ring on O if it is isomorphic to
the ring of all linear transformations of a finite-dimensional vector space <P over some
division ring or to the near-ring HomG 0(<b/p,<b) where O/p is a finitely generated free
G, 0-act (an empty set of free generators is not allowed). Obviously, if M is a matrix
near-ring on <1> then <J> can be considered as an M-group.

For any AT-group £, we denote

Recall that a non-zero N-group £ is said to be monogenic if 1,$, P0, and strongly
monogenic if an addition E = E# u EjJ.

Lemma 2.1. ([8], Lemma 4 and Theorem 2) For any near-ring N and any strongly
monogenic N-group £ we have

(i) if F is any proper N-ideal of £ then £$ is a union of full cosets by F;

(ii) Z has a largest proper N-ideal.

Lemma 2.2. ([8], Proposition 2) Let M be a matrix near-ring on <5. Then

(i) <I> is a strongly monogenic M-group;

(ii) the M-group M is a finite direct power o/O;

(iii) M has a left identity.

Lemma 2.3. ([8], Section 3) Suppose that the matrix near-ring M on <& is contained
as an ideal in some near-ring N. Then

(i) O can be considered as an N-group;
(ii) M is a direct summand of the N-group N;
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(iii) i /M = HomG 0(O/p,4)) then

2 - ( £ : O ) M (2.1)

induces an inclusion preserving one-to-one correspondence between all G-invariant
N-ideals ~Lof<$> and all ideals of N contained in M

Lemma 2.4. Let M be a matrix near-ring on <I>. M is J2-semisimple if and only i /O is
an M-group of type 2.

Proof. Sufficiency being trivial, let us prove necessity. Let A be a proper M-
subgroup of O and F an arbitrary M-group of type 2. By Lemma 2.2, AM = 0 and there
exists a right M-subgroup R £ M such that R ~ MA. Since F is of type 2, FR ^ 0 yields
yR = F for some y e F . But then TM = y(RM) = 0, a contradiction. Hence TR = 0,

Lemma 2.5. Let a matrix near-ring M on O be a minimal ideal of a near-ring N and
let N = M®T,T<iN. Then

r

(i) <Di,T=0,
(ii) $kr=0=>T<:JV.

Proof.

(i) Since M Is a minimal ideal, by Lemmas 2.2 and 2.3 O is an JV-group of type 0.
Hence for <peQ>l

M we have either cpT=0 or q>T=<$>. If <pT = ® then <t = $ M
= OTM = 0, a contradiction.

(ii) If O^ T=0 then, according to (i), <5T=0 and Ts(0:O)w. Now T#(0:0>)JV implies
(0:<D)M/0, a contradiction. Thus, T = (0:Q>)rf<tN. Conversely, if T<iiV then <DT
= <5MT = 0.

Theorem 2.6. ([8], Theorem 6) If N is a finite near-ring and I is a minimal ideal of N
such that / 2 ^ 0 , then I is a matrix near-ring.

Lemma 2.7. Every finite 2-primitive near-ring is a direct summand in any near-ring in
which it is contained as an ideal.

Proof. Let M be a finite 2-primitive near-ring. Then M is simple by [1] and, by
Theorem 2.6, it is a matrix near-ring on some group <1>. By Lemma 2.3, M<*N implies
JV = M ® 7 ; T<iN. If ToN does not hold then, by Lemma 2.5, there exists a <pe<I>M
such that cpT^O. But then (q>T)M = 0 and <5>M is not of type 2, contrary to Lemma 2.4.

Theorem 2.8. ([9], Theorem 2) / / / is an ideal of a finite near-ring N and Q> is an I-
group of type 0 then there exists an N-group O' of type 0 such that O is an I-homomorphic
image of $'.
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Theorem 2.9. ([9], Corollary 15) If N is any near-ring, J<iI<iN and I/J is a J2-
semisimple near-ring, then JoN.

3. Three constructions

Our results on radicals actually follow from the existence of certain near-ring
extensions. First we give the construction of the so called standard lift for the near-ring
HomG 0{<f>/p,<&). The other two constructions are based on this one.

Consider the near-ring HomG 0($/p, 3>) for a finitely generated free G, 0-act <&/p. Let
and define

So *P turns into a G, 0-act. Now extend the equivalence relation p to *¥:

Clearly p is a G,0-congruence of *P and so we can consider the near-ring
HomG oOF/p,*?). The following proposition gives some simple but useful properties of
the triple (G, ¥,/>) and of the corresponding near-ring.

Proposition 3.1. Let M = HomG 0(O//3,O) where Q>/p is a finitely generated free G,0-
act and let N = HomGi0(

y¥/p,yfl). Then

(i) W/p is a finitely generated free G, 0-act;

(ii) the subset F = {(0, (p) \ q> e O} is an ideal of the N -group *P;

(Hi) N/(r:V)N*M;

(iv) M is simple if and only if F is the largest proper N-ideal of *F.

Proof.

(i) If cp1,...,<pa is a set of free generators for O/p then ((p^O) (<pn,0) is a set of
free generators for *¥/p (<p denotes the p-class of <p).

(n) For any (0,q>)eF, (cp1,cp2)e*P and neJVwe have

((0, cp) + (<pi, 9i))n-(9u 9i)n = (9

N

(iii) Given an element neN, there exist mappings s, f:<l>->O such that

Put s = £(n). If g is an arbitrary element from G then
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((g<p) s, (g<p) t) = (g<p,0)n = (g((p,0))n = g(((p, 0)«)

=g((ps,(pt) = (g{cps),g((pt)),

hence (g<p)s=g(<ps). If q>ipq>2 then

hence <pls = q>2s. Therefore seM and t, is a mapping from AT into M. Moreover,
if m is an arbitrary element from M then the mapping n given by the rule

{(Pl,(p2)n=((p1m,0)

belongs to N and t;{n) = m. Thus the mapping ^ is onto. By straightforward
arguments one can prove that £ is a near-ring homomorphism with kernel

(iv) If F is the largest Af-ideal of *P then M is simple by Lemma 2.3(iii). Conversely,
let M be simple. Then (F:*F)N is a maximal ideal of N. Since F is G-invariant,
Lemma 2.3(iii) yields maximality of F as an JV-ideal of *P. Applying Lemma 2.2(i)
and Lemma 2.1(ii) we see that F is the largest JV-ideal of 4*.

Definition. We call the near-ring N constructed in Proposition 3.1 the standard lift of
the near-ring M.

It is a well-known fact in associative ring theory that any minimal ideal / with / 2 # 0
is a simple ring. It was noticed in [8] that this result is not true for near-rings and a
counter-example was published in [10], Example 5.4. If / is a minimal ideal of a near-
ring N, / 2 # 0 , and J is a maximal ideal of /, J # 0 , then I/J is a J2-radical near-ring by
Theorem 2.9. Next we show that any finite simple 72-ra(iical near-ring M with M 2 # 0
can occur in the place of I/J above.

Theorem 3.2. Let M be any finite simple J2-radical near-ring, M 2 # 0 . Then there
exists a finite near-ring N having a unique minimal ideal I which has a non-zero ideal J
such that J2 = 0, I/J^M and JV2<=/.

Proof. By Theorem 2.6 we have M = HomG 0(<D/p,O) where O/p is a finitely
generated free G,0-act (since M is J2-radical, it is not a ring). Also, J2-racucality yields
the existence of a non-zero subgroup A £ $ such that AM = 0 (see Lemma 2.4). In what
follows ¥ and F have the same meaning as in Proposition 3.1. Let a be a fixed element
of*!,.

To start our construction we consider the set U of all transformations ui^-*1?
satisfying the following conditions:

(i) giipu) = (gij/)u for any g e G and ip = 4*;
(ii) if (p1,<p3e<J>1

M,(p2e<& and (p^pcpj, then {q>l,<p2)u = ((p3,0)u;

(iii) (0,oc)u = (<5,0) for some <5e A;

(iv) (pxe<i>0
M and q>2$Ga. imply (q>l,cp2)u = 0.
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By straightforward computation one can check that the set U is closed under
addition and multiplication, so it is a near-ring. The group *P can be considered as a U-
group.

Represent *F as the union of two disjoint subsets A and B:

A = {((pl,(p2)\<ple®0
M},

Then every transformation t on T can be represented as a sum t — v + w where Av=0
and Bw = 0. By the definition of U, t e U implies v, w e U. Thus U is a direct sum of its
right ideals V=(0:A)v and W=(0:B)v. Moreover, since AU^A, V is an ideal of U.
Comparing the definitions of V and of the standard lift of M we see that they actually
consist of the same transformations on *F. So we can identify F = HomG>0(4

//p,*F).
Since M is simple, T is the largest proper F-ideal of *P (Proposition 3.1). Hence the

[/-group *F has a largest proper ideal, say IT, which must be contained in F. We are
going to show that IT =/= F. To do this it is enough to find an element ueU such that
(0,<x)u = ((5,0)=/=0. Define u-.V^V as follows

(0, go) u = (gd, 0) for any g e G,

i//u = 0 if

This definition is correct for ga = a implies g = l since *P/p is a free G,0-act. Obviously,
the element u defined above satisfies conditions (i)-(iv).

Now we are able to conclude our proof. Let X = (n :4% and y = (r:*I%. From the
definition of U it follows easily that X=(H:yi')y and similarly Y = (F:xi')y. Observe that
N = U/X, I = V/X and J = Y/X satisfy the conditions we need.

a) From the definition of U we conclude AU2 = 0. Thus U2^V and N/I^U/V
implies AT2S/.

b) By Proposition 3.1 we have I/J^V/Y~M.

c) Since r c f » , *py 2 £FF = 0, implying Y2 = 0, J2=0.

d) By Lemma 2.3(iii), X is the largest ideal of U properly contained in V.

e) Obviously XP = VP/TI is an JV-group of type 0 so N is a 0-primitive near-ring,
therefore N is prime and its minimal ideal / is unique. The theorem is proven.

Now we turn to our third construction. It will show that a finite near-ring N may
have a minimal ideal / which has a proper homomorphic image isomorphic to N/I.

Theorem 3.3. Let M = HomG0($/p,O) be a finite simple J2-radical near-ring such that
there exists a non-zero group homomorphism :̂<1)->O satisfying the following conditions:

(i) Z(g<p)=g£(<p) for any g'sG, <pe<D,
(ii)

Then there exists a finite near-ring N having a unique minimal ideal I which has a non-
zero ideal J such that J2=0, N/I~I/J~M.
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The proof of this theorem is similar to that of Theorem 3.2 so we omit the details.
Let *¥ be the G,0-act considered in Proposition 3.1 and let A = {(£(<p),(p)\<peQ>}. Then

A is isomorphic to <I> as a group and as a G,0-act, too. Consider the set U of all
transformations M:*P->¥ such that

(i) g(il/u) = {gil/)u for any

(ii) if <pu(p3e<S>1
M,(p2e^> and <Pip(f>3 then (<p1,<p2)u={(p3,0)u;

(iii) AusA;
(iv) there exists an meM such that (£((p),(p)u = (l;((pm),(pm) for any

(v) cpteQli and (<pu<p2)<tA=>(<pu<p2)u = 0.

Then U is a near-ring and *P is a [/-group. Let A, B, Fand W denote the same as in
Theorem 3.2. Then F < U, W*p U, and V can be identified with a standard lift of M.
Thus for Y = {T:y¥)v we have V/Y~M. Now consider the right ideal W. From (iii), (iv)
and (v) we conclude easily that any element of W is uniquely determined by some
element meM. Also, it is easy to see that this correspondence is a near-ring
isomorphism.

Next we show that the largest [/-ideal n of *F is properly contained in F. Since M is
simple, by Proposition 3.1 we need only to show that F is not a [/-ideal. Take (pe<&M
and meM such that £(<pm)#0. Then there exists a weW such that (£(<p),cp)w =

) , (pm) and we have

, <pm) - (£(<p), 0) w = (Z(<pm), cpm) $ F .

Therefore (0, - <p) e F \ n .
Now put X=(Yl\xV)u and observe that X = (T\:y¥)v. From the definition of U we can

easily conclude that v + weX where v e V, weW if and only if v,we X. Suppose that
there exists a non-zero element weWnX. Then WnX is a non-zero ideal of W and
since W is isomorphic to the simple near-ring M, we have W^X, *FWsII. By condition
(iv) this gives <!;(<J>M) = £(<!>) = 0, a contradiction.

To conclude, define N = U/X, I = V/X, and J = Y/X. It is easy to check (similarly to
Theorem 3.2) that all the conditions we need are satisfied.

4. On hereditary radicals of finite near-rings

Obviously, any radical ^ in the class of finite near-rings determines the partition
(2P, 3) of the class of finite simple near-rings:

@> = {N\0l(N) = N and N is a finite simple near-ring},

1 = {N\@(N) = O and N is a finite simple near-ring}.

As in the case of rings, different radicals may determine the same partition. This follows,
for example, from our Theorem 4.3. But this cannot happen in the case of hereditary
radicals.
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Theorem 4.1. For any partition (^,3.) of the class of finite simple near-rings there
exists exactly one hereditary radical class determining this partition. This is the lower
radical class Sig, determined by SP. In fact it coincides with the class <€& of all near-rings
having composition series with all factors from 3P.

Proof. Using the isomorphism theorems it is routine to check that <€9 is a hereditary
radical class for the class of finite near-rings. Since ^ s ^ s ^ , we have the equality
io <p — WCp.

If & is an arbitrary hereditary radical class and dP is the class of all finite simple 01-
radical near-rings then <€9 £ 2̂ because ffl is closed under extensions. On the other hand,
since ffl is hereditary, all of its composition factors belong to 2P, so ^ £ ^ . To
conclude, note that any simple near-ring N belongs to 5P if and only if ^(iV) = N.

In what follows we make use of

Theorem 4.2. ([2], Theorem 3.3) / / a non-trivial radical class tffl of near-rings has a
hereditary semisimple class then & is supernilpotent, i.e. it contains all nilpotent near-rings.

In [2] this result was proved for the class of all near-rings but the proof works for the
class of finite O-symmetric near-rings as well.

Now we are able to state and prove our main result. It gives a description of
hereditary radical classes of finite near-rings having hereditary semisimple classes.

Theorem 4.3. The following conditions are equivalent for a partition {8P, 3) of the class
of finite simple near-rings:

(i) 8%9 has a hereditary semisimple class;

(ii) M9 — ̂ ls, the upper radical class determined by 1;

(iii) <WS is hereditary;

(iv) SP contains all J2-radical finite simple near-rings or SP = 0.

Proof. (i)=>(iv) Suppose that ^ # 0 , 9t9 has a hereditary semisimple class, and there
exists a finite simple J2"ra(iical near-ring MB SI. By Theorem 4.2 M 2 # 0 and so M =
HomG 0(<D/p, <X>) where O/p is a finitely generated free G,0-act. Now take the near-ring N
constructed in Theorem 3.2 for the near-ring M. If N e SfSfrp then by the hereditariness
of SfSt9 we have Je£PM9, which contradicts Theorem 4.2. If N$y0l9 then 1<^019{N)
and by hereditariness of &9 we conclude that lsM9. Then M~I/Jefflp, a contra-
diction. Hence M e # .

(iv)=>(i) Let the condition (iv) hold and let N be a finite ^^-semisimple near-ring.
Since all J2-radical finite simple near-rings are in SP, J2{N) = 0. So N is a direct sum of
finite simple near-rings (see Betsch [1] and Blackett [4]) which are obviously in H.
Hence every ideal / of N is also a direct sum of near-rings from 1, which gives / e Sf&p.

(iv)=>(ii) Let the condition (iv) hold, ^ " # 0 , and suppose that there exists a near-ring
J V e t s \ f # . Then for L = N/Mp{N) we have O ^ L e ^ n ^ ^ . Let / be a minimal ideal
of L. From (iv) it follows that ^ # is supernilpotent, hence L e y ^ implies I2^0. By
Theorem 2.6, / is a matrix near-ring. If / is a ring then it is simple and L e 9>8fc9 implies
/ e l Let now / = HomGi0(O/p,O) and let J be a maximal ideal of /. By Lemma 2.3(iii),

https://doi.org/10.1017/S0013091500022380 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022380


ON RADICALS OF FINITE NEAR-RINGS 255

J = (?,:<b)I where Z is a proper /-ideal of O and Ec$,° by Lemma 2.2. Since O J 2 £ E / = 0 ,
we have J2 = 0, which yields JeM&. Now I$0Zp implies I/J^&g,, hence I/Je2.
Furthermore, by (iv) I/J is J2-semisimple and by Theorem 2.9 JoN. Now the
minimality of / yields J = 0 and, as above, / e 2. Using Lemma 2.7 we obtain that / is a
direct summand of the near-ring L. So L can be mapped homomorphically onto the
near-ring Ie 2, which contradicts L e ^ . Therefore condition (ii) holds.

(ii)=>(iii) This follows from Theorem 4.1.
(iii)=>(iv) Suppose that condition (iii) holds, ^ # 0 , and 2 contains some /2-radical

near-ring. We have to consider two cases separately.
a) 2 does not contain near-rings with zero multiplication. In this case 2 contains a

J2-radical matrix near-ring M = HomG 0(O/p,<I»). Consider again the near-ring N
constructed in Theorem 3.2. Since N is not simple and every proper homomorphic
image of N has zero multiplication, N e %3. Now, by condition (iii), / e °U&, which gives
M^ljJB°Ua. This contradicts Mel.

b) 2 contains a simple near-ring K with K2 = 0. We are going to prove that in this
case, contrary to our assumption, 9 = 0. We need four steps to do this.

Claim 1. 2 contains a simple near-ring L with L2 = 0 and L+ (the additive group of
L) non-abelian.

If K+ is not abelian then we are done. If K cannot be chosen to be so then we can
take a n L e ^ such that L+ is not abelian, L2 = 0, and consider the group W = K+ wrL+,
the wreath product of K+ by L+. Since W is non-solvable, there exists an integer n such
that W{"\ the nth commutator subgroup of W, equals W{n + 1) and W(n) #0. Let V be the
near-ring with zero multiplication on W{n). Obviously, the only simple homomorphic
image of V is L, hence Ve^M. On the other hand, V contains an ideal isomorphic to a
direct power of K. Since <%$ is hereditary, this yields KeSf, a contradiction.

Claim 2. 2 contains all finite simple near-rings S with S2 = 0.
By Claim 1 2 contains a simple near-ring L with L2=0 and L+ non-abelian. Suppose

that S$2 and consider the near-ring V with zero multiplication of the additive group
L+ wrS+. Then the only simple homomorphic image of V is S, implying Ve^ls. But, as
above, V has an ideal isomorphic to a direct power of L, which contradicts LeQ.

Claim 3. 2 contains all finite simple matrix near-rings M = HomG>0($//?, <£).
Suppose that Ms3? and let N be the standard lift of M. By Proposition 3.1, / =

(r-.*¥)N is the largest proper ideal of JV and N/I^M. Therefore Ne<%s. Since /2 = 0
and <%$ is hereditary, we conclude that <%s contains a simple near-ring with zero
multiplication. This contradicts Claim 2.

Claim 4. 2 contains all finite simple rings M = Mn(D) where D is a division ring.
The idea of the proof is the same as that of Claim 3. Instead of the standard lift we

take the subring iV"£Mn + 1(D) consisting of all matrices with zeros in the last column. It
is easy to see that the only simple homomorphic image of N is M. Furthermore, N has
a non-zero ideal with zero multiplication.
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5. On non-hereditary radicals with hereditary semisimple classes

Now we ask the following question. Do there exist non-hereditary radicals having
hereditary semisimple classes? Or equivalently, can a finite simple J2-radical near-ring
be contained in some non-trivial semisimple class? We give an affirmative answer to this
question. But, on the other hand, we show that there exist finite simple near-rings M
with M 2 ^ 0 which cannot be contained in any hereditary semisimple class.

Theorem 5.1. Let 2 be a class of finite simple matrix near-rings satisfying the following
condition:

If K and L are matrix near-rings on <I> and x¥, respectively, K,Le2. and £:<!>-> 4* is a
non-zero group homomorphism, then £(<!>) L # 0 . Then

(i) "11% has a hereditary semisimple class;

(ii) for any finite near-ring N,

(iii) any <%3-semisimple near-ring is a direct sum of near-rings from 2..

Proof. By Lemma 2.2 any matrix near-ring M has a strongly monogenic M-group.
Therefore any simple matrix near-ring is 1-primitive. Since every finite Jj-semisimple
near-ring is a direct sum of 1-primitive near-rings ([13], Theorem 2.3), we conclude that
N/(N)2. is a direct sum of some near-rings Mu ...,Mn from St. Let M; be a matrix near-
ring on <D,-, i=l,...,n.

All we have to prove now .is the equality %(N) = (N)£. Obviously, %(N)^(N)1.
Hence to prove the equality it suffices to show that (N)£le<%2, i.e. (N)3, has no
homomorphic image in 2.. Put {N)2. = I and suppose that there exists a J < / such that
1/J € St. Let 11'J be a matrix near-ring on O.

First consider the case of O being an TV-group. Then JoiV and without loss of
generality we may assume J = 0. Hence by Lemma 2.3, N = I@L where L<aN. Since
LczN/I, L is the direct sum of Mu...,Mn. Then, by Lemma 2.2, for the TV-group L
we have L—Ll®...@Lm where each of the JV-groups L,- is isomorphic to some %,
i=l,...,n.

Now we have to consider two subcases.

a) <J>° N = 0. Then by Lemma 2.5 L<iN and from the definition of / we conclude
/ S L, a contradiction.

b) $ / N=£0. Then there exist (pe<S>° a n d je{l,...,m} such that cpLj^O. N o w cpLj is a
non-zero homomorphic image of some group tf>; in <I> and (<pLj)I^<pI = 0. This
contradicts our assumption.

Next consider the case where $ is not an N-group. Then there exists an N-group £ of
type 0 which has an /-ideal A such that <I>~Z/A (see Theorem 2.8). Obviously, £ / / 0
and we can choose an ideal K<IV, K s / which is minimal with respect to the property
ZV#0. Without loss of generality we may assume (0:£)K=0 and so V is a minimal
ideal of N. Since V does not annihilate the TV-group £ of type 0, V2^0. Hence V is
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a matrix near-ring on some group *P and N = V © X, Xo N (see Theorem 2.6 and
Lemma 2.3).

We now prove the Af-isomorphism £ =;**?. By Lemma 2.2, V =VX © . . .© Vk where all
K are Af-isomorphic to ¥. Take n e l j , then CTK^O for otherwise Z F = CTATK=0. Since £
is of type 0 and CTF#0, there exists an ie{l,...,k} such that <r̂  = £. So we have an N-
homomorphism V-KTV from V( onto £. Since V] is also of type 0, the kernel of this N-
homomorphism is zero. Hence £ ~ N V{ = ̂ T.

Next we show that A< £. Since £ is an N-group of type 0, this will be a contradiction
which will prove the theorem. We have to show that for any a e £, 6 e A and n e N,

n — oneA. (5.1)

First consider the case (telly. Since K c / and A<E, we have A<E. Now £ being
a strongly monogenic K-group, it follows from Lemma 2.1 that a + 5el,v. Therefore
writing n = v + x where veV, xeX, and using Lemma 2.5(i) we get

(a + 3) n - an = (<r + S)(v + x) - a(v + x)

Since K s / and A<a£, (CT + d)v — av e A.

Now to prove (5.1) it suffices to exhibit

£?AfcA. (5.2)

To do this we first observe that £°7V£££ and £° /£A. For any <re£° we have
(<7JV)Kc<xK=0 so eriV£££. Thus by Lemma 2.1 oN + Ac££. Particularly, ff/H-AslJ
which yields o7 £ A, because £/A is a strongly monogenic /-group.

Since N/I is a direct sum of near-rings Mu...,Mn, by Lemma 2.2 we have N/I =
NJI(B ...®Nm/I where each Nj/I is AMsomorphic to some of the Of, i=\,...,n.
Now suppose that (5.2) does not hold. Then there exist <re£° and j6{l,...,m} such
that aNj §t A. Hence oNj/al is a non-zero AT-homomorphic image of Nj/1. Since Nj/1 is
of type 0, we have the isomorphism oNj/al ^NNj/I. Furthermore, by the isomorphism
theorem

aNj + A/A ̂  ,<rNj/aNj n A.

Here on the left we have a non-zero subgroup of £/A ,̂<I> and on the right a
homomorphic image of aNj/al (because al^aNjnA). The aNj+A is a proper /-
subgroup of £ (it is contained in £°). Since <b is a strongly monogenic /-group, this
yields (aNj + A)IsA. Hence the group <t> contains a non-zero homomorphic image A of
some group O,, such that A/ = 0. So our assumption is contradicted and the theorem is
proved.

Remark. First note that in view of Lemma 2.4 the assumption on the class 2. is
fulfilled if 2. contains only J2-semisimple near-rings. It is natural to ask: do there exist
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classes 2, satisfying the condition of Theorem 5.1 and containing some J2-*&dicd\ matrix
near-ring? The simplest way to construct such a class is the following. Let O be a finite
non-abelian simple group and let A be one of its proper non-zero subgroup. Let p be
the least equivalence relation on G> for which all elements of the subgroup A are in the
same class, and let G = {1}. Then M = Homc 0(<I>/p,O) is a simple J2-ra(iical near-ring
and the class 2. = {M) satisfies the condition of Theorem 5.1.

Proposition 5.2. A matrix near-ring M satisfying the assumptions of Theorem 3.3
cannot be contained in any non-trivial hereditary semisimple class of near-rings.

Proof. Take the near-ring N constructed in Theorem 3.3 and let / and J be same as
there. Suppose that there exists a non-trivial radical class 01 with hereditary semisimple
class if® such that MzSfSl. If Ne&*@ then JeifS/t, contrary to Theorem 4.2. If
N$y0l then l^M{N), for / is the unique minimal ideal of N. On the other hand,
N/I~M yields 8t{N)^l, so @(N) = I. Hence Ie3$ and M~I/Je@, a contradiction.

Remark. Near-rings satisfying the conditions of Theorem 3.3 really exist. Take any
finite group <J> which can be mapped homomorphically onto one of its proper non-zero
subgroup A. Let p be the least equivalence relation on <J> for which all elements of A lie
in the same class and let G = {1}. Then HomG 0(4>/p, O) is the near-ring we need.

This work was carried out during the author's stay in Budapest. The hospitality of
Hungarian colleagues is gratefully acknowledged. The author expresses his thanks to P.
Hermann and R. Wiegandt for valuable discussions and to L. Marki for his kind help in
the preparation of this paper.
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