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Schauder decompositions in
non=-separable Banach spaces

J.J.M. Chadwick

It is shown that Schauder decompositions exist in non-separable
weakly compactly generated spaces and in certain non-separable
conjugate spaces. Some results are obtained concerning
shrinking and boundedly complete Schauder decompositions in

non-separable spaces.

Introduction
A sequence (Pn) of (continuous) projections in a Banach space X is
called a Schauder decomposition of X if

(i) no P% is the identity I in X ,

Pn (n<m),

(ii) Pnfh = E}f}
(iii) Han-mH >0 Vx € X.

In this note we shall be concerned mainly with the existence of Schauder
decompositions in non-separable spaces. Section 1 deals with
weakly~compactly generated spaces, while in Section 2 we demonstrate the

existence of Schauder decompositions for certain conjugate spaces.

In Section 3, we are concerned with specific types of decompositions
(the "shrinking"” and "boundedly complete" decompositions of Sanders [§] and

Ruckle [7]), and some examples are given.

Received 28 September 1971. Communicated by R.W. Cross.
133

https://doi.org/10.1017/5S0004972700044336 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044336

134 J.J.M. Chadwick

1. Weakly compactly generated spaces

A Banach space X is called weakly compactly generated if there
exists a weakly compact set K in X such that X 1is the closed subspace
generated by X . Our main result of this section is the following:

THEOREM 1.1. Let X be a non-separable weakly compactly generated
space. Then X has a Schauder decomposition.

The proof of Theorem 1.1 is based on the following result of Amir and

Lindenstrauss [1].

LEMMA 1.2. Let X be a linear space with two norme ||*ll, || , such
that the unit ball in (X, |} <s& |*||-weakly compact. Let u be the
first ordinal of cardinality the density character of (X, ||*|]) and let w
be the first countable ordinal. If {xa : o <y} <& a dense subset of X

then there exists a family {Pa : w0 <u} of projections in X such
that

1Bl == 1,

2. =z €P X,

3. the density character of (PaX, II'II) 18 less than or equal to
card(a) ,

k. PaPB=PBPa=PB Ww=Bg=a<y.

Proof of Theorem 1.1. Let X be a weakly compact set which generates
X . Then, (4, p. 4341, the closed convex hull U of K U(-XK) is also
weakly compact. If Y is the linear span of U , we can define a new norm

on Y by
izl = Inf{X >0 : = € AU} .

It is easily seen that [||*]]] satisfies the conditions of Lemma 1.2 in Y,

so that the family {Pa : W< a<y}l of projections with Properties 1-k

exists in Y . Since u PaX is dense in X , Property 3 implies that we
a<y

can select an increasing sequence (a_L.) of ordinals, w = o, < ¥ , such

that the Pa are distinct. Let Ta denote the restriction of Pa to
i 7 1
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U
U . Since U 1is |*||-weakly compact, Tychonoff's Theorem shows that U

is compact in the product topology and so there exists a mapping T : U > U

and a subnet (TA : A) of [Ta ] such that Txx + Tx weakly for every <z
7

in U . Ve may extend T to obtain an operator P on Y defined by
Pz = |l=fl 7(z =l -
It is easily verified that P 1is a linear projection and that PAx + Px

weakly. Since the norm |j*]] is weakly lower semicontinuous we have

IPIl =1 . Since Y is dense in X we may extend P, and P uniquely
n

to obtain projections ?a and P on X . Let fe€Xx*=Y* and €>0 .
n

If z €X and y € Y 1is such that flx-y|| < € , then
|f(ﬁxx-ﬁx)| = |f(§xx'gxy)l + If(ny‘Py)l + |f(§x—Py)|
< |ifll.38 for sufficiently large X .

Thus ?kx + Pxr weakly for all x in X . Since UﬁAX = Uﬁa X and
7

norm-closed subspaces are weakly closed, we see that ﬁX c U?a X .
1

Conversely, if x € Uﬁa X , we may select y € Uﬁa X such that
7 A

lz-yll < € . Then if yeﬁax,and i>j

g
Ipa .x—x“ < Pa.x-Pa'y“ + “Pa .y—y” + |ly-zl|
1 A 1 1
< 2 .

Hence ﬁm =x , Px = U?a X and ﬁa x-ﬁx“ + 0 for every x in X . If

1

we now take

an = Pthx + (I-P)x ,

then (Qn) is & Schauder decomposition of X .

COROLLARY 1.3. If X <& a non-separable reflexive Banach space,
then X has a Schauder decomposition.
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We observe that if (Q n) is the Schauder decomposition constructed in
Theorem 1.1, then QnX is also weakly compactly generated. In fact QnK
is a weakly compact subset of QnX which generates QnX . We have the
following partial converse of Theorem l.1.

THEOREM 1.4. If X has a Schauder decomposition (Pn) such that
P X 18 weakly compactly generated for each n , them X is weakly
compactly generated.

Proof. Let Kn be a weakly compact subset of PnX which generates
PnX . Then Kn is weakly compact in X and is norm bounded. If
lizll = Mﬂ. Ve € K, let B =K /oM ,and K =UB u {0} . It is clear
that X generates X . To show that X is weakly compact, let (:cn) be
a sequence in X . If z, = 0 for infinitely many »n or if for some m ,
z, € Bm for infinitely many n , then (:x:n} has a weakly convergent
subsequence and we are finished. Otherwise there exists a subsequence

[:cn ] of (a:n) and a sequence (mk) of integers such that m, +> ® and
k

:z:n € Bm . Then ”xn “ = l/mk + 0 so that (xn ) is weakly convergent.
k k k k
This completes the proof.
COROLLARY 1.5. If X hae a Schauder decomposition (Pn) such that

each P X i8 reflexive, then X 18 weakly compactly generated.

2. The conjugate of a smooth space

A Banach space X 1is called smooth if for every x € X , there exists
a unique functional f, in X* such that llfxll = |lz|| ana

fx(:c) = Ilfxllllxll . It is known [3, p. 300] that if z *+ z in the norm

topology and X is smooth, then f:z: -+ f:c in the weak star topology.
n
Following Tacon [9, p. 416], we say that a smooth space X has property 4

if, whenever z, + x in the norm topology, we have f:c -+ fx , Wweakly. As
n
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in [9], if Y is a subspace of X , we denote by D,,(¥) the set of all

X&

functionals in X* which attain their norms on the unit sphere of Y .
Tacon has established the following result [9, p. L421]:

LEMMA 2.1. Let X be a smooth space witn property A . Let VY be
the first ordinal of cardinality the density character of X and let W
be the first countable ordinal. For every o , w=a < U, there is a
subspace X, of X of density character less than or equal to the

cardinality of o , together with a linear operator Ty ¢ XX, such
that Pa (defined by Paf = Tfu where Ty 18 the restriction of f to
X, } is a bounded limear projection on X* satisfying:

LoBdi= 1,

X} , and is isometric to X& s

o X* Vo
3. PaPB=PBPa=PS’ w<B=a<yu,
y, U PaX* ig dense in X* ,
a<y

5. Plz=z, (vexp}.

We observe that if X is non-separable then for every a < u , the

density character of Xa is less than that of X so that by 2 and [9,

Lema 6, p. 420], no Pa is the identity.

Lemma 2.1 will be used to establish the following:

THEOREM 2.2. Let X be a non-separable smooth space with property
A . Then X* has a Schauder decomposition.

Proof. By Lemma 2.1 and the above observation, we can select an

increasing sequence [an) of ordinals such that the projections Pa of
n

Lemma 2.1 are distinet. Let Y = UXOl and for each »n , define
n
' . yA *
Tan YA > X* by
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' =
T, 9,=T,9, (g€1*),
n n n

where g, is the restriction of g to A, - The unit ball of X* is
n n

w*-compact so that, following the method of Theorem 1.1, we may select a

linear operator T' : Y* + X* and a subnet (T;‘ : A} of [T&] such that
n

for every g € Y* , T;\g + T'g (w*) . For every f € X* , define Pf € X*

by Pf = T'fy , where fy is the restriction of f to Y . It is not

difficult to show that P 1is a projection of norm 1 and that
P, f > Bf (w*) for every f € X* .
n

If x € XOL , then we have, for any f € X* ,
n

Pf(x)

1imP, f(x) = limf(Pi.;) = f[P&na?] = flx) .

Consequently, Pz = 7 for every x € Y . Let f ¢ DX*('Y) and let x € Y

be such that Jjz|l =1 and fF(x) = [iffl . Then [Bfll = lIfll and we have
Pf(x) = P*z(f) = f(x) . Since X is smooth, this implies that Pf = f .
Conversely, let Pf = f . We know [2] that the set of functionals which
attain their norms on the unit sphere of Y is dense in Y* . Thus we may

f£ind sequences (gn) in Y* and (xn] in Y such that IIxnII =1,
gn(xn] = Ilgnll and “gn'fy” + 0, where f, is the restriction of f to
Y . Since X is smooth, 9, has a unique extension fn to X such that

g, Il = Iif,|

. Then

If, =1l = IBf2FIl = IT'g, 7' Fyll + 0 -

Hence f € DX*(Y) and consequently PX* = DX*(Y) .

Clearly UDX*[X“nJ c Dx*(Y) . If f €Dy, (YY) and =z € Y is such

that [Ifll = llxff and f(x) = [Ifllizll , then there is a sequence (xn) in

UX, such that IIxn-xll + 0 . Then f:c + f weakly. Thus f Dbelongs to
n n
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the weak closure and hence to the norm closure of UDX*lXa } . It follows
n

that UD *[X ) X*(Y) » that is we have PX* = UP_ X* . It is left to
n

the reader to show that the sequence (Qn) is & Schauder decomposition of

X* , where

Q,f =Py Pf + (I-P)f .

A Schauder decomposition (Pn) is called shrinking if for every

f € X* , we have Ilf”n + 0 where “f“n = sup{|f(z)|; Pz =0, llx]l =

THEOREM 2.3. Let X be a smooth space with property A . If (Pn)
i8 a Schauder decomposition of X such that IIPnII =1 for every n , then
(8,) is shrinking and (P!} <s a Schauder decomposition of X* .

Proof. Let f € X* be such that f attains its norm on the unit
sphere of X , and select x such that |zl = lIfll and fF(xz) = |flillzll .

Let fn be the unique linear functional in X* such that
“fn“ = ||an|i and fn(Pn:z:) = IIntHIPn:x:II . Since X has property 4 , we
see that f'n + f weakly. Now “P:zfn“ < I]fnll and also
Pnfn(P x fn(Pna:) = ilfn““Pn:z:Il . Since X is smooth, P;;fn = fn so that
f, € PAX* . It follows that f ¢ UP-;IY*- , and so by the Bishop-Phelps
Theorem [2] UP;‘LT =X* ., If f € X*, then for some n , we may select

g € P;IX* such that |f-gll <€ . Then, for m=2n ,

IBAfrl

1A

IBAf-PAgll + IIPAg-gil + lIf-gll
IBF-BAgll + lIf-gll < 2e .

Hence IIP;rf-fII + 0 and Pr’;,) is a Schauder decomposition of X* .

* = =
If f € X* , select z, such that ||:x:n|| 1, Px =0 and

() > Ifl, - 1/n . Then
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Irl, < £le,) + 1/n = (F-Pif)a, + 1/n

If-BAfll + 1/n >0,

A

so that (Pn) is shrinking.

3. Some further results
A Schauder decomposition {Pn of X is called boundedly complete
if, for every bounded sequence @%) in X satisfying thn = xm.(m <= n),
there exists « € X such that Hxn—x“ + 0 . Ruckle [7, p. 553] and
Sanders [§, p. 205] have shown that if (Pn) is a Schauder decomposition
of X , then X is reflexive if and only if (Fh) is both shrinking and
boundedly complete and each PnX is reflexive. In view of Corollary 1.3,
we can improve on this result for non-separable spaces as follows:
THEOREM 3.1. Let X be non-separable. Then X <is reflexive if and
only if X has a Schauder decomposition [Pn) satisfying:
(i) () <s shrinking;
(ii) (Pn) is boundedly complete;

(i1i) each P X i8 reflexive.

Bach of the conditions (Z)-(277) is essential in Theorem 3.1 as will
be shown by examples following Lemme 3.2. In fact there are separsble

non-reflexive spaces with Schauder decompositions satisfying (Z) and (i7).

LEMMA 3.2. Let X be any Banach space, Y a complemented subspace
of X and P a projection of X onto Y . Let (Qn) be a Schauder

decomposition of Y and for x € X , define

an = Qan + (I-P)x .
Then (Pn) i8 a Schauder decomposition of X and

(<) (pn) is shrinking if and only if (Qn) is,
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(it) (Pn i boundedly complete if and only if (Qn} is.

Proof. It is easily seen that (Pn) is a Schauder decomposition of
X . Suppose that (Pn} is shrinking and let f € Y* , By the Hahn-Banach

Theorem there exists g € X* such that [|fil = ligll ana
fly) = gly) (y € ¥) . We note that Pn.'c =0 if and only x € ¥ and

Qn:c=0. Thus

sup{|f ()| : Wyl = 1, 9y =0} = supllg(@)|; el =2, Px =0} »0 (n+ =),

since (Pn) is shrinking. Conversely, if (Qn) is shrinking let f ¢ X*
and let g be the restriction of f to Y . Then as before,

sup{|f(z)] : ljz|| = 1, P x =0} = sup{|g(y)| : Iyl = 1, Qy =0}~>0,
since (Qn) is shrinking. It follows that (Pn) is shrinking.

Next, suppose that (Pn) is boundedly complete. Let (yn) be a

bounded sequence in Y such that Qy = Y (m=n) . Then for m=<n ,

Py = @by * (I-P)yn =9y, =Y,
Since (Pn is boundedly complete, there exists y € X such that
IIyn—yII >0 . Since y € Y , this means that [Qn) is boundedly complete.
Finally, assume that (Qn) is boundedly complete. Let (xn) be a

bounded sequence in X such that men =z (m <n) . Then

2] Pxn

» men - (I-P )xn

1]

Pz + (I-P) (:z:m—xn) .

Thus @ Pz, = Pz and (I—P)(xm—:cn) =0 . (Qm) is boundedly complete, so
that for some y € Y we have IIPxn-yH + 0 . Also for all =n ,

(I-P):x:n = (I-P):x:l . Thus
z, = (I-P):zn + Pz > (I—P):x:l +ty,

and so (Pn) is boundedly complete.
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EXAMPLE 3.3. Let Y be a non-separable reflexive Banach space and
let X be the direct sum 7, ®Y . Let P be the projection satisfying
PX=1; , (I-P)X =Y . Define a Schauder decomposition (Qn) of 1y by

an= (xl Ty wee z, 00 ) vhere x = (acn) € Zl .

(Qn) is easily seen to be boundedly complete so that (Pn} defined as in

Lemma 3.2 is a Schauder decomposition of the non-reflexive non-separable

space X satisfying conditions (7ZZ) and (Z21) of Theorem 3.1.

EXAMPLE 3.4. ILet Y be as in Example 3.3 and let XY =c; ® Y . The

'natural' Schauder decomposition (Qn) of ¢p defined by

= . e . = €
an (xl z5 x, 00 ) x (a:n) q
is shrinking so that (Pn) defined by Pn = QnP + (I-P) is a Schauder

decomposition of the non-reflexive space X satisfying conditions (7) and

(227) of Theorem 3.1.

EXAMPLE 3.5. Let X =1, ®m and let P satisfy PX =1, ,
(I-P)X =m ., For =z = [:cn) €1, let gz = [xl -~ % 000 ). (Qn]

is a Schauder decomposition of I, and so is both shrinking and boundedly

complete. Consequently (Pn) , Where Pn = QnP + 1 - P, is a shrinking
and boundedly complete Schauder decomposition of X such that no PnX is
reflexive.

In fact X has no Schauder decomposition Pn such that each PnX

is reflexive. Otherwise by Theorem 1.4, 1, ®m would be weakly compactly
generated and hence [3, p. 38] isomorphic to a smooth space. But we know

[4, p. 114] that m is not isomorphic to a smooth space.

THEOREM 3.6. Let X be a Banach space. Then the following are

equivalent:
(i) X has a complemented non-separable reflexive subspace;
(i1) X has a Schauder decomposition (Pn) such that (Pn) 18
shrinking and boundedly complete and for some n , (I—Pn)x is

reflexive and non-separable.
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Proof. The proof follows easily from Lemma 3.2.

Ruckle [7, p. 552] has shown that if X has a boundedly complete

Schauder decomposition [Pn) such that each PnX is reflexive, then X

is isomorphic to a conjugate space. We conclude with the following

example:

EXAMPLE 3.7. Let X =1r[(0, 1) . Then [6, p. 215] X is not
isomorphic to a conjugate space. However X has a boundedly complete

Schauder decomposition. Define an by

x(t) 0<t=1-1/n,
an(t) =
0 1>t>1-1/n.

We leave it to the reader to check that (Pn} is a boundedly complete

Schauder decomposition of L{(0, 1)

References

[1] D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in
Banach spaces", Ann. of Math. (2) 88 (1968), 35-L46.

[2] Errett Bishop and R.R. Phelps, "A proof that every Banach space is
subreflexive", Bull. Amer. Math. Soc. 67 (1961), 97-98.

[3] Dennis F, Cudia, "The geometry of Banach spaces. Smoothness", Trans.
Amer. Math. Soec. 110 (1964), 284-314,

(4] M.M. Day, Normed linear spaces (Springer-Verlag, Berlin, Gottingen,
Heidelberg, 1958).

[5] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I
(Interscience [John Wiley & Sons], New York, London, 1958).

[6] Haskell P. Rosenthal, "On injective Banach spaces and the spaces
L°(u) for finite measures u ", Acta Math. 124 (1970), 205-2L8.

[7] William H. Ruckle, "The infinite sum of closed subspaces of an
FP-space", Duke Math. J. 31 (196L), 543-55k.

https://doi.org/10.1017/5S0004972700044336 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044336

144 J.J.M. Chadwick

[8] B.L. Sanders, "Decompositions and reflexivity in Banach spaces", Proc.

Amer. Math. Soe. 16 (1965), 20k—208.

[9] D.G. Tacon, "The conjugate of a smooth Banach space", Bull. Austral.
Math. Soc. 2 (1970), L15-L25.

Department of Mathematics,
Institute of Advanced Studies,
Australian National University,

Canberra, ACT.

https://doi.org/10.1017/5S0004972700044336 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044336

