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ON A SYSTEM OF ELLIPTIC MODULAR FORMS ATTACHED
TO THE LARGE MATHIEU GROUP

GEOFFREY MASON

§ 1. Introduction and statement of results

This paper is a continuation of two previous papers of the author.
In the first [4] we discussed a Thompson series associated with the group
M,, in which each of the modular forms 7.(zr) attached to elements ge M,,
are primitive cusp-forms. In the second [5] we showed how, given a
rational G-module V for an arbitrary finite group G, it is possible to
attach to each pair of commuting elements (g, h) in G a certain g-expan-
sion f(g, ;1) = D s a,(8, R)g™? (for ¢ = exp (2riz), = in the upper half-
plane ), and D an integer depending only on (g, 4)) such that the follow
ing hold:

(1.1 f(g h;o) =f(g* h*;7), xeG
(1.2) For each rel = SLy(Z) we have
f(g, h; o)|.7 = (constant)f((g, A); 7)

where k = 4 dim C,({g, h)). Here the left-side is the usual slash operator
on modular forms of weight & and on the right we have

(& hr = (ghe, g for 7= (@)
C

(1.3) For each ge G and ne N the map
h—a,(g h)

is a virtual character of Cy(g).
We call an assignment (g, A) — f(g, h; 7) satisfying (1.1)-(1.3) an elliptic
system for G, and the purpose of this paper is to study in detail the
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elliptic system for M,, corresponding to its usual permutation representa-
tion on 24 letters. We will see that this system has remarkable multi-
plicative properties.

The definition of f(g, h;7) in [6] is quite complicated and will not
be repeated here, but in certain cases it can be written as a “Frame
shape.” For this purpose we make the following definition:

(1.4) The commuting pair (g, h) is called rational if h acts rationally on
each of the g-eigenspaces of V®,C.

If (g, h) is a rational pair and g has order r then on the exp 2z ji/r)-
eigenspace of g on V®,C, h has a Frame shape, say

. )
(] msens

mls

where s = order of A. Then we have

(1.5) flg hyz) = T1 T1 11 n(mz/dycomdecian

Jlr dij mgls

where p is the Mobius function.

If g =1 then (1.5) reduces to f(1, h; t) = IIy(m;z)*™” and is precisely
the form 7,(c) discussed in [4]. Thus (1.5) represents the generalization
of “Frame shape” to rational pairs.

We use the term “primitive” cusp-form as in [3]. The main result
of that paper is that the primitive cusp-forms of the type

(1.6) p@) = k), 1<k<hk<- - e>0

are precisely those for which the corresponding partition (&%, - - -, k%) is
a “balanced” partition of 24. In other words, we have

1.7 (i) ke =24
(i1) Ak, i>1
(ii1)) If N = kk, then N=kk,,,_;, i >1,
(iv) e, =e,.-y 1>1.

We call the integer N in (iii) the balancing number of the partition.
Now each h e M,, has a balanced Frame shape, so that each 75,(z) is
a primitive cusp-form of the preceding type. Moreover, of the 28 cusp-
forms in [3] which satisfy (1.6) and (1.7), 22 appear as 7,(z) for h € M,,.
One of the main results of the present paper is to extend these observa-

https://doi.org/10.1017/50027763000003068 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003068

ELLIPTIC MODULAR FORMS ATTACHED TO LARGE MATHIEU GROUP 179

tions to the contex of our elliptic system, and to explain how every form
satisfying (1.6) and (1.7) appears. To state these results we need some
notation.

N, = balancing number of ge M,,.

For a pair (g, h) of commuting elements we set
Nigwy = NNy,
and for an abelian subgroup A < M,, with at most 2 generators we set
N, = min {N,.,, {8 h) = A}.

Finally, let m(g, h; t) = f(g, h; N,z), We will establish the following:

I. To each A < M,, is attached a primitive cusp-form p,(z) = p(z)
satisfying (1.6) and (1.7) and the following:

(a) If (g, h) = A then m(g, h, ) = p(z), if and only if, N, = N,.

(b) p(r) is a primitive cusp-form of level NN, and integral weight
k, = + dim C,(A) for some Dirichlet character ¢, (mod N,) which is trivial
if, and only if, k2, is even.

(¢) If {g, h) = A then m(g, h;r) can be derived from p(r) by applying
a succession of operators of the form |, T,-. and [ W, where T,., =

1 Q! W. — 0 -1 d . .
(O 1 ), v = ( 0 ) and @, N are suitably chosen integers.

(d) If p(z) = >y a,q" then there is a root of unity 2 such that
m(g, h;7) = > v b,q" where either b, = 0 or b, = A" 'a,.

(e) The majority of the forms m(g, h;t) have multiplicative coeffici-
ents, in particular this is true of each rational pair (g, h).

II. Because of (1.3) the forms m(g, h; ) for fixed g form a Thompson
series for Cy,(g) which we may write either as > ,.,X$q" for X e RC(g),
%8 being the coefficient of ¢ in m(g, h; r), or as a formal Dirichlet series
L(C(g), s) = 3, 2%

1n

n= $

(a) If we take g = 1 the series L(M,,, s) has an Euler product which
is exactly that discussed in [4].

(b) Similarly, several other of the L-series L(C(g),s) also have
Euler products (e.g., if g is an involution, because of I(e)). They exhibit
a “ramified” behavior at the primes dividing the order of g. For example,
if g is of type 2A (Frame shape 1°2°) then C = C(g) = 2'*°. L,(2) and we
have
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- S\ S—-T

) (1+ 2*) <1+ 2¢ )

Here, T'= —X¢ is the character of C of degree 8 realized on the (—1)-
eigenspace of g on V and S is the permutation character of C on the 8
order orbits of g of length 2. Moreover, on the (4 1)-eigenspace of g on
V the action of C/{g) = C induces an embedding C < SO(15, R) and then
Vr, is determined via py§ = By where g9 is the oriented Bott cannibalistic
class of SO(16, R) of degree p® restricted to C and lifted to C. (See [5]
for a (general) discussion of this particular virtual character in the

LG = I (1-2+

podd

V5
p2s

present context.)

(¢) In general, g acts on the virtual module affording ¥ as a scalar.
Thus we may think of X¢ as affording a projective character of C=C/{g),
which we write as 74. Then in every case the projectivized Dirichlet
series has an Euler product, i.e.,

LCo=x" =1(1- 2+ )
mont p p¥
where again V¢ is of Bott type arising from the induced embedding C <
SO(Cy(g)).
(d) After (¢) we may combine the Euler products together to obtain
a bundle version. For the 7% and V% for fixed n, p and g ranging over
G = M,, define a virtual projective G-bundle over G, where by a projective
G-bundle over G we mean that for each g e G we have a projective space
P, and conjugation by x induces a linear isometry I(x): P, —» P,
satisfying I(x) = id. on P, and I(xy) = l(x)o y). If we write C,, B, for
the virtual projective bundles corresponding to {#8}, {{$} respectively then
we have
C.

n

w

C, Bp)"
p2s sz ’
an Euler product with coefficients in the Grothendieck ring KP,(G) of
such bundles. As in [4], this latter equality may be formulated in terms
of the existence of a certain formal group with coefficients in KP,(G).
III. All but 2 of the 28 forms satisfying (1.6) and (1.7) appear as
pu(r) for some A. Moreover the remaining 2 appear in the elliptic system
attached to O, or even to its maximal 2-local 2%.M,,.

Se=n(-

The paper is arranged as follows: in section 2 we describe all 2-
generator abelian subgroups of M,, and study their action on the 24 letters.
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In section 3 we list the forms m(g, h;7r) and study their g-expansions,
and in particular give the proofs of the preceding assertions.

Thanks are due to A.O.L. Atkin for providing some numerical data
and thereby influencing my ideas about the forms m(g, h;t), to S.P.
Norton for correspondence which convinced me of the usefulness of
introducing projective characters (though its utility is admittedly not quite
evident in the foregoing), and to P. Landweber for supplying a list of
errata in an earlier version.

§2. Hypothesis “Even”

Let G be a finite group with p an even-dimensional representation of
G by real unimodular matrices

@2.1) p: G—> SL(2d, R).

In the following we shall frequently abuse notation by omitting p and
thereby identifying p(g) with g. We let V be the RG-module affording
the representation p, and for a subgroup H< G we set V, ={ve V|hv
= v for all he H}.

Lemma 2.1. If H is either cyclic or abelian of odd order then V has
even dimension.

Proof. As V affords a real representation of G, the non-real irre-
ducible constituents of the action of H on V = V®,C occur in conjugate
pairs. Thus if U is the sum of such constituents and W the sum of the
real constituents then V = U@ W and each of U, W is of even dimension.

If |[H| is odd then W is a trivial H-module, so W = V, and we are
done in this case. If H is cyclic then a generator 2 of H has only the
eigenvalues +1 on W and W = V@® V_, where V_, is the —1 eigenspace
of h on V. Since det A =1 we have dim V_, even, so also dim V, is
even as required.

LemMA 2.2. Suppose that codim V., = 0 (mod 4) for each involution
xeG. Then dim V, is even for each H = Z, X Z,.

Proof. If x, and the involutions of H, 1 < i < 3, we have the fixed-
point formula

dim V = dim Vi + 3 dim (Vi Vi) -
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The result follows from this.
The following situation is relevant.

HypoTHESIS EVEN. p is as in (2.1) and we have
(2.2) dim V, is even for each 2-generator abelian subgroup H < G.

LemMa 2.3. Hypothesis Even is equivalent to the following condition:
(2.3) Cg(h) © SL(V,y,) for each 2-element h. This means that Cy(h) acts
on Vs as a group of unimodular matrices.

Proof. Suppose that (2.3) holds. If H = (h, k) is abelian with & a
2-element then dim V,,, is even by Lemma 2.1 and H & SL(V,,) by
hypothesis. Now apply Lemma 2.1 to the action £ on Vi, to see that
(Ve)ay = Vu has even dimension.

This shows that (2.2) holds at least for abelian 2-groups with at most
2 generators. For an arbitrary such abelian group H we may write H =
T x K where T is a 2-Sylow of H. Then V, is even-dimensional and
affords a real representation of K, whence V, = (V,), is even dimensional
by the argument of Lemma 2.1.

The proof that (2.2) implies (2.3) is left to the reader.

We turn now to the application of these ideas to M,. Specifically
we take

2.4) o: My, —> SL(24, R)
to be the usual permutation representation of M,, on 24 letters.
ProrositioN 2.4. If p is as in (2.4) then Hypothesis Even is satisfied.

Proof. We will need a few properties of M,, which can be found in
[1] or [2], for example. First, the involutions are of shape 1°2° or 2%.
They therefore satisfy the hypothesis of Lemma 2.2, so that result tells
us that dim V, is even for H = Z, X Z,.

Now these involutions have centralizers of shape 2!%%.L,(2) and 2°. 3,
respectively, so in each case if x is an involution with centralizer C then
C is generated by its involutions. Also, by the first paragraph we see
that involutions of C lie in SL(V,), so in fact C S SO(V,).

Let now A be any 2-element with centralizer C. If xe¢ C is an invo-
lution then A e C(x), so {x, h) < SL(V,,,) by the last paragraph, so V, ,,
has even dimension by Lemma 2.1, so xe SL(V,,). Now as in the last
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paragraph we get C, & SL(V,,) where C, is generated by (h) together
with the involutions of C.

If 2 has order 8 then C(h) = Z, X Z, so that C, = C < SI(V,). If A
has order 4 then A is conjugate to one of 44 ~ 2'4* 4B ~ 1*-2*.4* or
4C ~ 4°. The first and third of these satisfy C(h) = (Z,* D, D,)-, resp.
Z, X 2, and hence C, = C in these cases.

From these reductions together with Lemma 2.3 we see that if the
proposition is false, with dim V, odd for a suitable H, then in fact H =~
Z, X Z, and H contains only elements of order 4 which are of type 4B.
But here we compute directly that

dim V, = 1/16(24 + 3.8 + 12.4) = 6 .

(Here we used dim V,; = (X|H, 145 where X is the character afforded by p
and satisfying X(g) = # of letter s fixed by g.) The proposition is proved.

We wish now to give all 2-generator abelain subgroups of M, —not
up to conjugacy necessarily, but by listing the number of elements of
each cycle shape that they contain. Table 1 names the elements (cycle
shapes) following [2]; table 2 names the non-cyclic 2-generator abelian
subgroups together with the elements they contain.

Table 1
Elt. Shape Elt. Shape
1A 1% 7A 1.7
2A 18.2° 8A 1.2.4.8*
2B 21 10A 2%.10°
3A 16.3° 11A 1%.11°
3B 38 12A 2:4.-6-12
4A 2t 4* 12B 12¢
4B 14284 14A 1.2.7-14
4C 4° 15A 1-3-5-15
5A 1.5 21A 3.21
6A 12.2%.3%.6° 23A 1-23
6B 6
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Table 2 1. Z, X Z,
Name t Elts
2A 2B
A 3 0
B 0 3
C 2 1
D 1 2
II. Z, x Z,
2A 2B 4A 4B 4C
A 3 0 4 0 0
B 2 1 2 2 0
C 1 2 4 0 0
D 1 2 0 0 4
E 3 0 0 4 0
F 1 2 0 4 0
1. Z, x Z,
2A 2B 4A 4B 4C
A 1 2 4 0 8
B 3 0 8 4 0
C 3 0 0 12 0
IV. Z,x Z,
2A 2B 4A 4B 4C 8A
A 1 2 0 4 0 8
V. Z,X Z,
2A 2B 3A 3B 6A 6B
A 3 2 0 6 0
B 0 3 0 2 0 6
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VI Z, X Z,
2A 2B 5A | 10A
A 0 3 4 \ 12
VII. Z, X Z,
B 3A 3B
A 8 0
2 6

As to the correctness of the tables, IV-VIII are readily deduced
from the relevant information in [2], so that only I-III need be considered
further. Let us therefore take H< M,, with H= Z,, X Z,;,, 1<a <b <2,
and first show that H is necessarily one of the types in I-III. The con-
dition imposed by Proposition 2.4 is sufficient to show that only one
possibility not listed might occur, namely a = b = 2 with H containing
2 2A, 1 2B, 2 4A, 6 4B and 4 4C. '

To eliminate this, take xe M, of type 4C with F = C(x). Then
F = Z, x 2, so that certainly there is only one type of Z, X Z, contain-
ing x. We assert that F is transitive on the 24 letters. If not then F
has two orbits, each of length 12, and if X is one of them then a point-
stabilizer in F is D= D,. Let D, = DN Oy(F) = Z, X Z,. Clearly each
involution of D, is of type 2A, and if they are the only such involutions
in Oy(F) then D, < F and D, fixes each letter in X. This being impossible,
O(F) must contain 6 involutions of type 2A and 1 of type 2B. As all
elements of order 4 in O,(F) have square equal to x* they are of type 4°.
Now we see that O,(F) has 1/16(24 + 6.8) = 44 orbits, an absurdity. So
indeed F is transitive.

Let F, be a point stabilizer in F, a group of order 4. We must show
that F, = Z, X Z,. Indeed if Z, = R < F then N = N(R) = X, X Ly7) and
x€ O=(N). Then an involution te O.(N) lies in F\Oy(F) and is of type
2A as it centralizes an element of order 7 in N. Thus we may take
te F)\F, whence F, = Z, X Z, as required.

As explained above, it is now sufficient to show that each of the
types listed in I-III above actually occur in M, First, type Z, X Z,A
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exists by the foregoing argument. Also, the stabilizer of 3 points in M,,
is M, = L(4) and contains a Z, X Z, necessarily of type C.

Consider next the centralizer B = C(f) of an element of type 4A.
We have B = (Z,* Dyx D,)-2,, and the 8 fixed letters of f* and their
complement are the 2 orbits of B. So a point-stabilizer of the longer
orbit (in B) is isomorphic to 2, and hence contains an element g of type
4B. So {f, g must be of type Z, X Z,B.

As for Z, X Z, subgroups, type C and D can be found in a Z, X Z,A,
type Ein Z, X Z,C, and type A in Z, X Z,B. A Z, X Z,F lies in Z, X Z;,A,
so only Z, X Z,B remains to be accounted for. But from the structure of
B = C(f) in the last paragraph we see that if y is an involution in
B\ O,(B) then Z, X Z, = {f, y> and is not contained in a Z, X Z, or Z, X Z,
subgroup. Thus from the preceding (f,y) must be of type Z, X Z,B as
required. We leave verification of table 2I to the reader.

Finally we remark that because of Proposition 2.4, each of the
forms f(g, h;7) (or m(g, h;z)) attached to M, has integral weight 1/2

dim C,({g, h)).

§ 3. The associated forms

We begin by listing the forms m(g, h;c) = f(g, h; N,7) as discussed
in section 1. To make the computations one uses tables 1 and 2 of sec-
tion 2 in order to compute the characteristic polynomial of A on each
g-eigenspace. If (g, h) is a rational pair then (1.5) yields f(g, h; ), and
in any case one can use the original definition [6, equation (3.7)]. One
can also make use of Lemmas 3.1 and 3.2 below. We remark that in [6,
equation (3.7)] the form f(g, h; ) is seen to have the shape ¢° > .., a.q"
for a certain rational number d [6, equation (3.3)], but one readily verifies
that d = 1/N, in the present situation, so that m(g, h;z) =q + ---.

One caveat to the foregoing is that only for those pairs (g, ) which
are rational do we explicitly record m(g, h;z), as a Frame shape. More-
over we do not repeat m(1, h; z), which is given in Table 1 of section 2;
and of the pairs (g, 1), (h, g) we often list only one (cf. Lemma 3.1).
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Table 3
(g, h) (g, h) m(g, h; 1) N = N_N, | multiplicative

Z, X Z,A (24, 24) 212 4 yes
Z, X Z,B (2B, 2B) 48 16 yes
Zy X Z,C (24, 24) 1*.22.4¢ 4 yes
(24, 2B) A 8 yes

(2B, 24) 4/8t 8 yes

7Z,X ZD | (2B 24) | 214t 8 ves
! (2B, 2B) 418/2:8* 16 | yes

Zy X Z,A (44, 24) | 4 16 yes
(44,44 ‘ 819/4°.16° 64 yes

Z, X Z,B (2A, 4B) 12.2.4.8? 8 yes
(24, 4A) 28Y1% 4 16 yves

(2B, 2B) 2'87/4.16° 16 yes

(2B, 44) 438°/2%.16* 32 yes

(4B, 4B) irrational 32 no

Z, X Z,C (4A, 2B) 4%.8? 32 yes
(44, 4A) 8%/4%.16° 64 yes

Z, X Z,D (4C, 24A) 42.8° 32 yes
(4C, 2B) 844’16 64 yes

(4C, 40) irrational 256 yes

Z, X ZE | (4B,24) P 8 yves
(4B, 4B) 418/2+. 8¢ 16 yes

Z, X Z,F (4B, 2B) 4° 16 yes
(4B, 4B) 4° 16 yes

Z,. X Z,A (4C, 44) 8.16 128 yes
(4C, 4C) 164/8-32 256 yes
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{g, h> (g, h) m(g, h; ) N = N_N, | multiplicative
Z, X Z,B (44, 4B) 4%. 8 32 yes
(44, 4A) 8°%/4%.16° 64 yes
Z, X Z,C (4B, 4B) 48 16 yes
Zy, X ZA (84, 2B) 4.8 32 yes
(84, 4B) 4.8 32 yes
(84, 84) 8%/4%.16° 64 yes
Zy, X Z;A (64, 24) 28.6° 12 yes
(6A,6A) irrational 36 no
Z, X Z,B (6B, 2B) 12 144 yes
(6B, 6B) irrational 1269 yes
Z, X Z,,A (104, 2B) 4.20 80 yes
(104, 204) irrational 400 no
Zy X Z,A (34, 34) 3¢ 9 yes
Z, X Z,B (3B, 34) 3%.9 27 yes
(8B, 3B) irrational 81 yes
Z,A (24, 24) 2%/18.48 4 yes
Z,B (2B, 2B) 4%/212. 81 16 yes
ZA (84, 34) irrational 9 no
Z,B (3B, 3B) irrational 81 yes
ZA (44, 24) 410t 8¢ 16 yes
(4A, 4A) irrational 64 no
Z.B (24,4B) 41/8 8 yes
(4B, 24A) 214/1* 8 yes
(4B, 4B) irrational 16 no
zZC (4C, 2B) 818/4%.16° 64 yes
(4C, 40) irrational 256 yes
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(g, h) (g, h) m(g, h; 1) N = N,N, | multiplicative
ZA (5A,54) irrational 25 no
ZA (34, 24A) 1%.22.3%.6° 12 yes

(6A, 24) 2°.68/1%.3%.47.12° 12 yes

(64, 34) irrational 18 no

(64,64) irrational 36 no

Z,B (3B, 2B) 6 34 yes
(6B, 2B) 12%/6*.24* 144 yes

(6B, 3B) irrational 324 yes

(6B, 6B) irrational 1296 yes

Z.A (TA,7A) irrational 49 no
Z,A (84, 2A) 2!8%/1%.4 16 yes
(24, 84) 2'8%/4.16° 16 yes

(84, 4A4) irrational 64 no

(84, 84) irrational 64 no

Z,A (54, 2B) 28.10° 20 ves
(104, 2B) | 4°.20%/2%.8%.10?-40° 40 yes

(104, 54) irrational 100 no

(104, 104) irrational 400 no

Z A (104, 10A) irrational 121 no
Z,A (4A, 3A) 2-4.6.12 24 yes
(44, 64) 4*.12'/2-6-8-24 48 yes

(124, 24) 4'124/2.6-8-24 48 yes

(124, 44) irrational 96 no

(124, 34) irrational 72 no

(124, 6A) irrational 144 no

(124, 124) irrational 576 no
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(g h) (g, h) m(g, h; 1) N = N,N, | multiplicative
Z,B (4C, 3B) 127 144 yes
(4C, 6B) 248/12% . 48 576 yes
(12B, 2B) 24°/12% . 487 576 yes
(12B, 4C) irrational 2304 yes
(12B, 3B) irrational 1296 yes
(12B, 6B) irrational 5184 yes
(12B, 12B) irrational 20736 yes
Z,A (74, 24) 1.2.7-1-4 14 yes
(144, 24) 2+.14'/1-4.7-28 28 yes
(14A, 74A) irrational 98 no
(14A, 14A) irrational 196 no
Z,:A (5A, 3A) 1-3-5-15 15 yes
(154, 34) irrational 45 no
(15A,5A) irrational 75 no
(154, 154) irrational 225 no
Z,A (74, 3B) 3-21 63 yes
(214, 3B) irrational 567 yes
(214,74) irrational 441 no
(214, 214) irrational 3969 no
Zy A (234, 234) irrational 529 no

We interpolate some easy lemmas.

LEmMA 3.1.

(Z(\]f "_01). Then

m(g, h; )Wy ~ m(h™, g; 7).

Let (g, h) be a commuting pair with N = NN, and W,=

Proof. We remark that the notation ~ means that the ratio of the

two functions in question is constant. As for the proof, if S = (0 Wy 1)

then
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m(g, h; )y Wy ~ v7*m(g, h; — 1/N7)
~ (Nw2)=*f(&, h; — 1/Ny7)
= f(g, h; NhT)lkS
~ (g WS~*; Nyr)  (by eqn. (1.2))
=m(h!, g;7) as required .

A similar argument yields

LemMmA 3.2. Let @ be a divisor of N,. Then

-1

1
m(g, h; r)lk(o ) ~ m(g, g"F-h: 7).

1

Concerning the level of these forms, one easily proves using Lemma
3.2 the following:

LemMmA 3.3. Let @ be a divisor of D, set D’ = l.c.m.(Q% D), and as-
sume that m(g, h;7) is on ['(D). Then

(1) m(g, g"¢?-h; ) is on I'\(D).

(i) If Q|24 then m(g, g"¢/?-h, 7) is on (D).

One can use Lemmas 3.1 and 3.2 to establish assertion I(c) of sec-

tion 1. We illustrate this with a diagram corresponding to the group
Zy X Z,B (cf. Tables 2 and 3):

(A, 4B) <" (4B, 24)

Tl/ﬂl
A, 4A) <2, (4A, 2A)

ITI /4
(2B, 4A) <7, (4A, 2B)

As for I(d), (e¢) we use the following:

LEMMA 3.4. Suppose that m(g, h; t) = qXa,q""", that there is an integer
D such that a, = 0 unless n =1 (mod D) and that Q|N,. Then the fol-
lowing hold:
(1) m(g, g¥¢’?-h;7) = q2b,q"! where b, = exp2ri(n — 1)/Q).
(1) If {a,} is multiplicative then {b,} is also multiplicative if D|@Q,
say @ = mD, and either
(a) m|D, or
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(b) m =2, D odd.

Part (i) follows from Lemma 3.2, and (ii) is left to the reader.

One starts with the primitive form p,(r) = p(z), which has multiplica-
tive coefficients, and then applies Lemma 3.4 with D being the minimal
integer which occurs with non-zero exponent in the Frame shape corre-
sponding to p(r). Again, successive applications of this principle together
with the action of W, yields what we need, including the third column
of Table 3.

One can also easily write down the Euler p-factors of ¢Xb,q""' from
those of ¢gZa,q"!. Specifically, if the p-factor of the latter is

(1 — % 4 c_)

ps pﬂa

then that of the former in case (ii) (a) of Lemma 3.4 is
-1

2
<1 . 0(12p + g%) (o = exp2ri(p — 1)/Q) ;
D b

in case (ii) (b) the odd p-factors remain the same while the 2-factor

(12 2

(in this case we always have ¢, = 0). Again we illustrate with the group

Zz Det Z4BZ
(@A, 4B): ] (1 ~ %y c§>"
» b D
(2A,4A): ] (1 % G )"(1 _ %)
? p*  p" 2
@B, 4B): ] (1 ~ Gy ﬁzp_)‘
podd p p
@B,48): [ (1-% 4 ) (1+ %+ )7
p=1(4) p* p¥/ p=sw J = p*
4B, 4A): exp (2ri(n — 1/4)
4B, 44): % n

All of the assertions in of section 1 can be deduced in a like man-
ner from these assertions. Concerning III, the two “missing” primitive
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forms not listed in Table 3 but satisfying (1.16) and (1.7) correspond to
the Frame shapes 2-22 and 6-18. Now in the maximal 2-local 2?.M,, of
O there is an element with Frame shape 2-22 in its action on the Leech
lattice. Also we find commuting elements with Frame shape 2°-6° and
3%, and a quick calculation yields that the corresponding form m(g, &; 1)
= 7(62)7(182).
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