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1. Introduction. Over the last few years, various extensions of the topological
degree of a mapping have been made so as to include non-compact perturbations of the iden-
tity. One such extension, which employs compactness conditions, has been to the class of
limit compact maps which were extensively studied by Sadovsky [7]. The class is a large one
as it contains all compact mappings, contraction mappings and, more generally, condensing
mappings. Sadovsky [7] gives a theory of degree for maps of the form /-/, where / is limit
compact, and this was extended independently and with different methods by Petryshyn
and Fitzpatrick [4] and the author [9] to allow / to be a multi-valued mapping. A
refinement of the methods of [9] was given by Vanderbauwhede [8].

A drawback in studying this class is that some of the standard properties of degree
fail to hold; for example, that of boundary value dependence. An example where this fails
is given by De Pascale and Guzzardi [2]. This means that some of the results of [8] and [9]
are in error. This arises because the result that establishes the equality of the degrees of
two homotopic limit compact maps on an open set ft requires that the whole homotopy be
limit compact on the product space ft x [0,1]. Even in the simplest case when F and G are
limit compact, the homotopy H= tF+(l-t)G can fail to be limit compact (as pointed out
by Sadovsky [7])-

In the present note we intend to prove a homotopy result which is less stringent. The
proof given here is based on the method of [9] but the methods of [4] seem equally
applicable. We also prove some other results including an analogue of the classical Rothe
fixed point theorem. These results seem to be new.

2. Preliminaries. Throughout X, Y will denote Frechet spaces; that is, complete,
locally convex, topological linear spaces over the reals with topology induced by a
translation invariant metric d. Let ft be a subset of X, let ft denote its closure, dft its
boundary and co(d) its convex hull. The r-neighbourhood of ft is the set

B(ft, r) = {yeX: there exists x € ft such that d(y, x) < r}.

When ft = {x} we write B(x, r) for the open ball with centre x and radius r. We can, and
for simplicity do, assume that d is chosen so that open balls are convex [6; pp. 18-20].

Let 2X denote the nonempty subsets of X. A multi-valued mapping F from ft to X is
a function F:ft-»2X and is identified with its graph. We write F(x) = {y eX:[x, y]eF},

F(ft) = U F(X). Was say F is upper semicontinuous at x (abbreviated u.s.c.) if F(x) is a

closed, convex set and, for each e >0, there exists 8 = 8(x, e)>0 such that F(B(x, 8))c
B(F(x), e). F is u.s.c. on ft if this holds for each x in ft.
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We adopt the convention of denoting single-valued mappings by lower case letters
and multi-valued ones by capitals.

The limit compact operators are defined in terms of a transfinite sequence of sets
{K^ia an ordinal}. Let D be a closed subset of X and let F:D—»2X be u.s.c. Let
Ko = coF(D). Let a be an ordinal and suppose K& has been defined for all (i<a.li a is of
the first kind let Ka = coF(D n K^-i), and if a is of the second kind let Ka= C\ Ke. It is

0<ct

readily shown that {Ka} is a decreasing family of sets and so by a theorem of Baire [e.g.,
[5, p. 132] there exists an ordinal y such that Ka = Ky for every a>y. In particular,
Ky = cdF(DC[Ky). We say F is limit compact on D if K, is compact or empty. We shall
write KF for this limit set.

Sadovsky [7] established a theory of topological degree for maps of the form I-f,
where / is limit compact, while Petryshyn and Fitzpatrick [4] and the author [9]
independently obtained a similar theory for the multi-valued case by different methods.
However, these methods yield the same end product by the author's uniqueness result
[10].

We briefly review the definition made in [9] (see also [8]). The degree of I-F with
respect to an open set ft in X and the point 0, deg(I-F, ft, 0) is defined provided

If KF = 0 it is defined to be zero. If KF± 0 , then as KF = coF(ftnKF), ilC\KF is
a nonempty, compact subset of ft and we shall employ the following result of [9]. A similar
result, but which seems not to prove enough, is proved in [8], and in [3] it is shown
how one can remove the restriction we make on the metric d.

APPROXIMATION LEMMA. Let A be an open subset of Y and let K be a compact subset
of A. Suppose H: A—>2X is u.s.c. Then, for every e > 0 , there exist a neighbourhood Ve ofK
and a continuous single-valued map fe: Ve—>coF(K) with the property that, for each xeVB

there exists yeK and z eF(y) with d(x, y)<e and d(fe(x), z)<e. Moreover, if K^ and K2

are disjoint compact subsets of K, for e sufficiently small, there exist neighbourhoods U, of K,
such that fe(Uj) c coF(Kj) nB(F(K,) , e), j = 1, 2.

This result is proved in [9] in the case when X, Y are Banach spaces. However it
readily extends to the present case as all that is needed is the convexity of r-
neighbourhoods, which follows from that of balls (which could be avoided as in [3]), and
the existence of a partition of unity subordinate to a finite collection of open sets.

The definition of degree in the case K F # 0 is now

lim dLs(I-/e, Ve nil, 0),

where d^ denotes the classical Leray-Schauder degree for^ompact perturbations of the
identity and fe, Ve are as above with K taken to be KF n ft. That this definition makes
sense and is independent of the approximating mappings and neighbourhoods is shown in
[9] and [8]. The idea behind this approach is due to Cellina and Lasota [1], who used a
similar method for compact multi-valued mappings.
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3. Results. Our new homotopy theorem reads as follows.

THEOREM 1. Let ft be an open subset of X and let H : ft x [0,1]—*2X be u.s.c. Suppose
that F = H( •, 0) and G = H( •, 1) are u.s.c. and limit compact on ft and that there exists a
compact convex set K containing KFL)KGand such that H((Xnfl)x[0, l ] ) c K Then, if
x£H(x, t) for all x in 3ft and all t in [0,1], then

deg(J-F, ft, 0) = deg(/-G, ft, 0).

Proof. If KDft = 0 , then both degrees are zero. If iCnft# 0 , then by the approxi-
mation theorem, there are neighbourhoods WB of (KTlft)x[0,1], W'e of (Knft)x{/},
(/ = 0,1), and a continuous map he which approximates H on these sets. Then there exists
a neighbourhood UB of KHft such that UE x {j}<= We, 0 = 0,1), and Ue x_[0, l ] c We;
moreover, fB = he{ •, 0) approximates F and ge = hE(•, 1) approximates G on Ue. We show
that, for all e sufficiently small, XT̂  he(x, t) for all x in d(ftn L7e) and f in [0,1]. Indeed,
x = he(x, t) implies that x is in K as hB(WB) <= K Therefore x^ he(x, t) for all x edUe. Also,
if there were sequences e,-->0, {(,}<= [0, 1], {x,}caft such that xy = he.(x,, (,), by compact-
ness of K we can suppose x,—>xedft, t,—>f and so he(x,, f,)^x. By the u.s.c. of H this
implies x e H{x, t), a contradiction (see e.g. Lemma 1 of [9]). By the homotopy property
of Leray-Schauder degree this proves

dzsd-fE, ue n ft, 0) = d^ (i-ge, ue n ft, 0).

Using the facts that / approximates F and x s F(x) implies that x e KF, the excision
property of d^s now shows that we can replace UB by any neighbourhood of KF in the
term on the left so this term equals deg(I-F, ft, 0). Likewise the term on the right is the
degree of I-G.

REMARKS. (1) K = KH(ftx[0,1]) always satisfies the invariance property needed in
the theorem. When KH is compact we obtain the known homotopy result. The point of
our result is that K may be smaller than KH so more possible homotopies are admitted.
See the following corollaries and example.

(2) The methods of [4] seem to work equally well and using results from [4] one can
give an equally simple proof.

COROLLARY 1. Suppose F, G are limit compact and u.s.c. and that there exists a
compact convex set K which contains Ka for which F(K Pi ft) cz K and G(K n ft) c K Then
ifx£tF(x) + (l-t)G(x) for all xedft, all fe[0, 1], and deg(/-G,ft, 0) is nonzero, there
exists a fixed point of F; that is, x e ft such that x e F(x).

Proof. Let H(x, t)= tF(x) + (l-t)G(x); H is u.s.c. and H(Xnftx[0, 1])<=K By the
proof of Theorem 1, there are neighbourhoods Ue_ of Knf t and mappings fE = hE(-, 0)
and ge = he(-, 1) which approximate F and G on UB. Moreover,

d^sd-L ue no, 0) = d^d-g., uE nft, 0)
= deg(I-G,ft,0)#0
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for e sufficiently small. Therefore there exist xe e Ue such that x £ = / E ( x J c K It follows
that xe —»x and xeF(x).

REMARK. Corollary 1 extends a similar result of De Pascale-Guzzardi [2] obtained for
condensing maps. We cannot assert deg(I-F, il, 0) ̂  0 as we made no assumption on KF.
It follows from this proof that KF ̂  0 . We could apply such a result if G were odd on il,
that is G(-x) = -G(x), for then deg(7-G, il, 0) is odd if it is denned [4].

COROLLARY 2. If F, G are u.s.c. and limit compact on Cl and if KF <= KG, F(Ka nO)c
KG, and x£tF(x) + (l-t)G(x) for all xedil and te[0,1], then

deg(J-F, il, 0) = deg(I- G, il, 0).

Proof. Let K = Ka and H(x, t) = tF(x) + (1 - t)G(x) and apply the theorem.

COROLLARY 3. Suppose F, G are as in Corollary 2 but with the requirement xedil
and {x - F(x)) n A(x - G(x))# 0 imply \ > 0. Then deg(7- F, il, 0) = deg(7- G, il, 0), i/botft
degrees are defined.

Proof. It is readily verified that x£ lF(x) + ( l - t)G(x) for xedil and 0 < ( < l .
REMARK. Corollary 2 applies in the special case F(x) <= G(x) for all x in Cl. This gives

a result of Vanderbauwhede [8]. It also applies in the special case KF = KG.

The following example shows how our theorem applies but the homotopy H is not
limit compact.

EXAMPLE. Let X = (c0) the space of all sequences of real numbers that converge to
zero with the norm ||x|| = sup |xn| for x = (x,,). Let U be the open unit ball of X and for

n

x = (xu x2, • • •), f(x) = (||x||, xu x2,...) and g(x) = (0, xl7 x2, • •.). Then an easy calculation
shows that Kf = Kg = {0}, and, if we set h(x, t) = tf(x) + (1 - t)g(x), x^h(x, t) for all xedil
and all (e [0,1]. Moreover,

Kh = {(sj, s 2 , . . . , ) , where 0< s, < 1 and s, ^»0 as j - * 0 0 } ,

a noncompact set. Indeed, we have

K0 = coh (ilx [0,1])

= cd[(t\\x\\, xu x2,...), 0 < t < 1, - 1 < xi^ < 1}

= {(s,x1,x2, . . . ) , 0 < s < l , - l < x , < l } .

To see this certainly (0, xu x2,...) is in Ko. As (1, x2, x3,. . .) and ( -1 , x2, x3,...) lie in il,
we have (1,1, x2, x 3 , . . . ) and (1, —1, x2, x 3 , . . . ) are in Ko. By convexity,
(1, Xj, x2, x 3 , . . . ) e Ko and this proves the assertion about Ko. That Kh is the set asserted
follows in an obvious manner from this.

REMARKS. (1) In this example one can obtain the same result by proving that / and g
are both homotopic to the zero map. These homotopies are limit compact. Even so, it is
considerably easier to apply our theorem. In fact, Theorem 3 that follows gives the result
immediately.
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(2) Our result is really for those limit compact maps which are not in some better
behaved subclass such as 3>-condensing (see. e.g. [4]), or compact, for in these cases more
can usually be said. If one has to calculate the limit set, then our theorem usually requires
no further work whereas it could be rather difficult to calculate KH.

We now obtain an analogue of Rothe's theorem which extends some results of
Petryshyn and Fitzpatrick [4].

THEOREM 2. Let ft be an open convex set and let G be u.s.c. and limit compact on ft.
Suppose Ka=£$ and that G(dftnKG)c:ft (no restriction if KG <=ft). Then G has a fixed
point in ft.

Proof. If there exists a point x o e K G n f t we let H(x, t)= (G(x) + ( 1 - t)x0. We can
suppose x£ G(x) for all x e dft. Then x e H(x, t) implies that x e KG (proof by transfinite
induction) so xeH(x,t), xedft would imply x = tu + (1 - t)x0, ueG(ddnKG)<^Cl. As
xoeft and ft is convex this is impossible for ( < 1 and ( = 1 is excluded above. By
Corollary 2, deg(Z-G, ft, 0) = deg(/-xo, ft, 0). By uniqueness of topological degree the
right hand side coincides with the Leray-Schauder degree and equals 1. This proves that
there exists xe G(x), x eft in this case. If no such x0 exists then KG C\ aft = KG n ft is a
nonempty compact convex set and is invariant under G. By the analogue of the Schauder
fixed point theorem for compact maps [1], G has a fixed point.

REMARK. The restriction that KG be nonempty is a necessary one. For example,
consider X= (c0) and g(x) = (1, xl7 x2, • • • )• Then g maps the unit ball into itself but has
no fixed point. Also, the example f{x) = (3-3x1? 0, x2, x 3 , . . . ) in (c0) with Kf =
{((,0,0,...), 0< (<3} shows that the hypothesis / (af tnK^cf t is less stringent than
/(3ft) eft .

Employing a similar idea to that of Theorem 2 gives the following result.

THEOREM 3. Let ft be open and let F, G be u.s.c. and limit compact on ft. Suppose KF

and KG are nonempty subsets of ft, Then

deg(/-F, ft, 0) = deg(/- G, ft, 0) = 1.

Proof. Let x0 e KF and let H(x, t) = tF(x) + (1 - ()x0. As x e H(x, () implies x e KF c ft
we have x£H(x, t) for all xedft. By Corollary 2, deg(J-F, ft, O) = deg(I-xo,ft, 0)= 1.
Similarly we prove the result for G.

REMARK. Theorem 3 does not need Theorem 1 for its proof; H is a limit compact
homotopy in this case.
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