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ABSTRACT. Satellite radar interferometry provides glaciologists with an
important new tool for determining the motion and topography of large ice sheets.
We examine the sources ol error in interferometrically derived ice-motion
measurements, including those errors due to inaccurate estimates of the interfero-
metric baseline. Several simulations are used to assess baseline accuracy in terms of tie-
point error and the number and distribution of tie points. These results give insight
into how best to select tie points, and also demonstrate the level of accuracy that can
be achieved. Examination of two representative cases likely to occur in mapping ice-
sheet motion leads to the conclusion that with adequate tie-point information ice
velocity can be measured accurately to within a few meters per year. A method to
correct horizontal velocity estimates for the effect of vertical displacement using surface
slopes is also developed. Finally, we estimate the single-component velocity field for an
area on Humboldt Glacier, northern Greenland, using interferograms formed from
ERS-1 SAR images. We estimate that these velocity measurements are accurate Lo

within 2.3 m year

INTRODUCTION

Knowledge of ice-flow velocity and strain rate is
important in assessing an ice sheet’s mass balance and
in understanding its flow dynamics. Ground-based
measurements of ice-sheet velocities are scarce because
of logistical and technical diflicultics. Tce-llow velocities
have been measured from the displacement of features
observed in pairs of visible (Scambos and others, 1992;
Ferrigno and others, 1993) or svnthetic aperture radar
(SAR) images (Fahnestock and others, 1993), but these
methods do not work well for the large, featureless arcas
that comprise much of the ice sheets.

Several recent papers have indicated that satellite
radar interferometry (SRI) provides a potential means to
measure ice-flow velocity. Using SRI, Goldstein and
others (1993) estimated ice velocity for an area on the
Rutford lece Stream, Antarctica. Interferograms of the
Hemmen Ice Rise on the Filchner-Ronne Ice Shell have
been studied by Hartl and others (1994). Joughin and
others (1993) have examined interferograms from a
100 km long area on the Greenland ice sheet that exhibit
complex phase patterns due to ice motion. Agreement
between interferometric and in situ measurements of
velocity was obtained by Rignot and others (1995). Kwok

and Fahnestock (1996) have measured relative velocity
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on an ice stream in Greenland.

While these papers have demonstrated the great
potential of SRI for measuring ice-sheet motion, the
results of these studies are subject to error due to difficulty
in estimating the interferometric baseline (i.e., the
separation of points from which (wo images are
acquired). Estimates of the baseline determined from
satellite ephemeris data, derived from satellite tracking
and orbital modelling, are typically accurate to within a
few meters (Solaas, 1994). While adequate for many
purposes, this level of accuracy can introduce substantial
error in motion estimates, For example, a I m error in the
baseline can introduce a phase ramp of about four fringes
across a 100 km wide interferogram, yielding a relative
velocity error of 39 m year ! for a 3 d separation of images.
Tie points (points of known elevation and velocity) can be
used to improve the accuracy of baseline estimates
Zebker and others, 1994). Because estimates ol baselines
from orbital data alone are unlikely to vield reasonable
accuracy, wide-scale mapping of ice-sheet velocities
requires a combination of interferometric data and tie
points determined from global positioning system (GPS)
or other field-based survevs. The cost of measuring such
tie points is high. Thus, it is important to understand how
to select tie points to achieve maximum accuracy at
minimum cost.
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We begin with a brief introduction to interferometric
principles and techniques. The next section describes an
error model for SRI velocity estimation. The results of
simulations are then examined to determine how baseline
accuracy is affected by various factors. Velocity errors are
examined for two typical situations that are likely to
occur in measuring ice-sheet motion. Next a method is
developed to improve estimation of horizontal velocity by
compensating for the effect of vertical motion using
interferometrically derived estimates of the surface
topography. We then apply this technique to estimate
the single-component velocity field for an area on
Humboldt Glacier, Greenland. Our results confirm that
SRIT provides an important new means for measuring ice
velocity, as indicated by earlier studies, and that a small
number of field-determined motion and elevation tie
points will allow production of calibrated maps of ice-flow
speed covering thousands of square kilometers.

INTERFEROMETRY BACKGROUND

The geometry of an interferometric SAR is shown in
Figure |. The interferometer acquires two images of the
same scene with SARs located at S; and Ss. The first
SAR is at altitude H. From S;, the range, ry, and look
angle, @, to a point on the surface are determined by the
ground range, y, and elevation, z, above some reference
ellipsoid. The range to the same point from the SAR at
So differs from 7y by A. For a single-pass system, such as
TOPSAR (Zebker and others, 1992), two images are
acquired simultaneously using separate antennas. A
repeat-pass interferometer, on the other hand, acquires a
single image of the same area twice from two nearly
repeating orbits or flight lines. Only repeat-pass
interferometry is examined in this paper since so far
this is the only method that has been applied to orbiting
SARs. The baseline separating the SARs can be
expressed in terms of its components normal to, 3,

and parallel to, B, a relerence-look direction. A

Fig. 1. Geometry of an interferometric SAR.
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convenient choice is to let the nominal center-look
angle, ., define the reference-look direction.
For a distributed target a pixel in a complex image

can be reprcscntt'd das

Vi = exp (—j2kro) W, = exp (—j2kro) A1e’® , (1)

where k is the wave number and W) is a complex, circular
Gaussian random variable (RV) with amplitude A; and
phase ¢ (Rodriguez and Martin, 1992). This random
variation of SAR amplitude and phase is referred to as
speckle. The modulo-27 phase from a single complex
image cannot be used to determine range since it has a
uniform probability distribution over (0, 27). A complex
interferogram is formed as the product of one complex
SAR image with the complex conjugate of a second. The
phase of this product is given by

=""/I Vli == [2AA = (wl e ("!l)‘i)]lnml(?frl N (2)

Although ¢ and ¢ are hoth uniformly distributed, if W,
and W5 are correlated, their difference, (¢ — ¢9), is not
uniformly distributed. In fact, the distribution of the
phase difference can be quite sharply peaked (i.e., there is
little noise) if the complex images are well correlated.

Even with a narrow distribution, the phase difference is
still only known modulo 27 A phase-unwrapping
algorithm (Goldstein and others, 1988) is used to remove
the modulo-2r ambiguity. With repeat-pass interferome-
try, the range difference between passes is determined using

A= (p|+\;':'lll = %@mu\'rnp 5 (3)
where @y denotes the unwrapped interferometric-
phase difference and A is the radar wavelength. Error in
this estimate is introduced by (¢ — ¢2). Note that phasc-
unwrapping algorithms usually yield the relative phase,
as there is an unknown constant of integration associated
with the unwrapped solution. Tt is assumed here that
Ounwrap has been processed to remove this ambiguity (with
the aid of te points). The ERS-1 SAR operates at a
wavelength of A =5.656 cm so that A typically can be
measured with sub-centimeter accuracy.

With a repeat-pass interferometer, A is aflected by
hoth topography and any movement of the surface that is
directed toward or away from the look direction of the
radar between orbits. The interferometric phase therefore
can be expressed as the sum of displacement- and
topography-dependent terms,

'f’nn\\‘ralp = qf)tupugmph_\' + rdérlispl;uwnvul . (“l)

Motion
The contribution to the overall phase from surface
displacement is given by

¢(li.~‘-])|;|c'('n|mn = 2;‘:(‘311.;1 sin¥ — Ad.: COs ![/) ' (5)

where Ag, denotes the component of the range difference
tangential to the surface of a reference ellipsoid that is
directed across track, and A,. denotes the component

e
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normal to the ellipsoid. The incidence angle, ¥, is defined
with respect to the local normal to the ellipsoid (sce Fig.
). When the surface velocity does not change over the
period, 8T, between acquisition of images, the phase due
to motion is

Cﬁrliaplmvnu-nl = 2A:6T(Uy sin¥ — U, COS [P’) ¥ (G)

Topography

Referring to Figure 1, the baseline is related to the range
difference due to topography and ground-range variation,
AI‘()lmgra;Jh_\'- h}"
2 2
Atupugmph_\' B

B, sinfy + Boosta = —Asgagrpiy — ety 5
2Ty 2Ty

; 9 5i  wwa ; .
Ignoring the Aigpography” term in Equation (7), we can
approximate the range difference by

3

3 B
dt(_s]_mgr;l])h_\' = _Bn 51 9(1 B B]) Cos 3(1 -f

27,

(8)

The deviation of the look angle from the center-look
angle, 0y, is related to range and surface elevation
referenced to a spherical Earth by

ro® + 2R(H — 2) + H?> — 22

i =10 6. = acos - 1, .
4 & Q(Re = H)Tn -
(9)

where R, denotes the radius of the Earth. Once Ayopogaphy
is determined [rom the phase, Equations (7) and (9) are
solved to determine the height and ground range of each
point in the image (Li and Goldstein, 1990).

There is a nearly linear phase variation, which is
much greater in magnitude than the phase variation due
to topography, from the uniform change in ground range,
y, across an image. It is often useful to remove the
ground-range variation by subtracting the phase ramp,
Ofar, corresponding to a zero-height surface. This
operation is often called flattening the interferogram.
The effect of elevation on the interferometric phase can
then be approximated as (Joughin, 1995)

’ “Qan
@: = Dropography — Oflar & —
sin 8.1

2 (10)

This approximation, which is not valid for computing
clevations, indicates that the sensitivity of an interferom-
eter to topography is proportional to By. Thus, when we
refer to the baseline length below, we mean the length of
B,. rather than the actual baseline length, B.

Baseline estimation

ERS-1 orbits are not known well enough to estimate
baselines with the level of accuracy needed to generate
digital elevation models (DEMs) and estimate motion. As
a result, the baseline must be determined using tie points
(Zebker and others, 1994). The baseline varies along the
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satellite track. Over the length of an ERS-1 interfero-
gram, we model baseline variation as a linear function of
the along-track coordinate, x. The normal component of
baseline is then represented as

B, = B+ 6B, (‘r = I) . (11)

L,

where B is the normal component of baseline at the
frame center, z., and 8B, is the change in B, over the
length of the frame, L,. Similarly, the parallel component
of baseline can be modeled as

B, = B+ 6B, (.-_-1,- = ’) : (12)

With a linear model for baseline variation, there are
four unknown parameters: B, B?, 0By; 0B85, There is
also an unknown constant associated with the phase after
it has been unwrapped. An approximation can be made
to implicitly incorporate this constant into the baseline
solution so that only the four baseline parameters need to
be determined (Joughin, 1995). The expression given by
Equation (7) is non-linear with respect to these
parameters. The problem is easily linearized by repla-
cing the non-linear terms, which are small, with estimates
of their values obtained from satellite ephemeris data.
The baseline parameters then are determined using a
standard linear least-squares algorithm (Press and others,
1992) with at least four tie points.

Even if the baseline were determined perfectly (so that
the baseline estimate contributes no error to the velocity
estimate),
from the actual baseline. This is because approximations
in the baseline model and errors in some of the
independent parameters (i.e., satellite altitude) are

the estimated baseline would differ slightly

compensated for by using an effective rather than exact
baseline. The difference between the true and effective
baseline length is small.

MOTION-ESTIMATION EPROR
Error model

The effect of topography must be removed from an
interferogram hefore velocity estimates can be made.
With a nearly zero baseline, the effect of topography is
negligible and can be ignored (Goldstein and others,
1993). For longer baselines an independent DEM can be
used to estimate and remove Quopography (Massonnet and
others, 1993). An alternative method is to cancel
Dropograply  WSINE  an appropriately scaled topography-
only interferogram (Gabriel and others, 1989). In this
paper we use interferometrically derived DEMs to
remove topographic phase variation.

Interferograms are subject to random phase error due
to speckle, gy, If the effect of vertical velocity is ignored,
then applving Equation (6), the velocity error due to
phase noise is

1

o = ST (18)

D
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Estimates of @gisplacement are affected by inaccuracy
in the DEM used to estimate ODtopography- Using
Equation (10), the standard deviation of this error is
expressed as

2kB,
Op =——0-

— 14
© sinferg (1)

where @. denotes the standard deviation of the DEM
error. Since this error is proportional to baseline length,
its effect is negligible for sufficiently small baselines
(Goldstein and others, 1993). If we ignore the v. term
in Equation (6), then the error in the velocity estimate is
given by

BII

Tz = 0
2 &T'ry sin B, sin 1

For typical ERS-1 parameters this error is equal to
0.00106B,0. m year
baseline and a DEM error of 50m then would yield a
velocity error of 2.65 m year '

In cancelling the topography the baseline-dependent
phase ramp due to ground range (¢gae) is also removed.

for a 3d interferogram. A 50m

Thus, inaccurate baselines lead to error through the
imperfect cancellation of this elevation-independent
phase variation. If the estimated baseline components
are denoted as B’n and Bp- then applying Equation (8)
and neglecting small non-linear terms, the resulting phase
error is

Py = ‘Qk[(Bn = Bn) sin B nat + (Bp = BIJ) cos H«I.ﬂm} 3

(16)

where 8 is evaluated via Equation (9) with 2 =0. The
variance of the error is

2

9
2 2 . =
Tep~ = 4k° (U[‘,‘“ 5111 Hxl.l'la!) =+ (JB;. cos Bll.ﬂﬂt)

+ 2sin Hcl,ﬂnl cos Hl].ﬁ.ilt Cr}}”]}‘. : (1 7)

where Cp, ;, denotes the covariance of B3, and By. If we
. ILEa . - . . < . -~

ignore the vertical component of velocity in Equation (6),
the variance of the error in v, due to baseline inaccuracy

15
" 1 2 2
Tenty = \ STem@ (J B, Sl 9-1.[1;-11) 53 (Ju,, cos Hci.l'lm)
+ 2sin H:J.ﬁar COs Htl.ﬂ:llC{}" ,'A;IJ . (18)

This is often the largest source of error in interferometric
estimates of ice velocity.
Applying Equation (11), the variance of the linearly
varying baseline estimate can be expressed as
2

=Y
+2Cp, 4,

x T =T,
L,

0"2
T L‘,.

— ‘71},_2 =1z O'M‘?”z
(19)

T . v 5 S 9 -~
We may also write a similar expression for o2 . The
. - . . P

covariance between baseline components is given by
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. r — .
C."f“Bg, = C"B“B;, i (CM‘?H!}I, e CB;;&B,.) T

Py
T — T,

+Coten, () - (20)

These expressions are used in Equation (18) to determine
velocity error due to baseline inaccuracy.,

The absolute error at any given point in the estimated
velocity field is a random variable since it is a function of
the random baseline error. Since the error is determined
by only four parameters, however. it does not vary
independently over the interferogram. At each point
along track, error in the baseline estimate consists of a
constant bias and nearly linear across-track tilt, which
vary along track. As a result, the relative error from one
side of the track to the other is roughly equal to the sum of
the absolute errors at cach side of the track. This should
be kept in mind when interpreting results computed using
Equation (18).

Accuracy of baseline estimates

In this subsection we examine the accuracy of baseline
estimates using synthetic interferograms. Because it is
often difficult 10 obtain te points, it is important to
understand how their number, accuracy and distribution
affect baseline accuracy and, thus, the accuracy of
velocity estimates. With this knowledge, optimal tie-
pointing strategies can be devised to minimize field effort.

For the simulations we used a 303.2km long by
100 km wide DEM of typical ice-sheet and bedrock (ice-
free) topography. From the DEM we generated synthetic
interferograms for several baseline lengths. All of the de
points are assumed to be stationary (i.c., located on
bedrock). Non-stationary tie points (i.e., points on the ice
sheet) are examined in the next subsection. Noise was
added to the tie points and to the interferogram. Baselines
were estimated using a least=squares algorithm (Press and
others, 1992; Joughin, 1995). For each simulation,
statistics were evaluated for the baseline estimates from
250 realizations. Because several parameters contribute to
baseline accuracy, there is no way here of illustrating
baseline accuracy for all possible sets of parameters. In
each of the simulations a single parameter is varied while
the others are held fixed. The results will change when the
other parameters are no longer fixed, although the trends
should be similar,

The first simulation was performed to determine the
eflect of baseline length on estimation accuracy. For
several baseline lengths we computed estimates for
Gaussian phase noise of o, =0rad and o, = n/3rad
and Gaussian tie-point error of 7. =20 m. One hundred
tie points (N = 100), evenly spaced over an area
D, =86.9km wide by D, =85.8km long. were used.
Standard  deviations of the estimated parameters are
shown in Figure 2.

With no phase noise, baseline error increases linearly
with B,, because an interferometer with a shorter
baseline is less sensitive to topography so that the effect
of tie-point error is smaller. When there is phase noise,
estimation accuracy improves with decreasing baseline
length until a point where there is little further

67
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Fig. 2. Standar d deviations of (n) 6Bn. (b) . and
éBl,_ for 250 estimales as a_function rgf B E.\lu.rmte.s were
made for Nies =100, o, =20m, 6B, =0, B; — .
6B, =0, D, =869km, D,=85.8km and L,=
303.2 km.

improvement. This point occurs where the effect of phase

noise on baseline accuracy, which is independent of

baseline length, becomes larger than that of tie-point
error. Thus, the amount of improvement that can be
gained by using a shorter baseline is limited by the
amount of phase noise relative to the amount of elevation
tie-point error,

Baseline estimates can be improved by using more
than the minimum of four tie points in the least-squares
solution (Zebker and others, 1994). Figure 3 illustrates
the standard deviation of the estimates of B;l and 6B, as a
function of the number of tie points, Nies. The tie points
are arranged on a regular grid D, =86.9km by
D, =85.8km. Each time N is increased, the spacing
between poinm is decreased so that area covered by the tie
points remains unchanged. Tlu squared error for the fits

(not shown) falls off as Nt,eg, . In general, the standard
deviations of the parameter estimates, mdudmU those not
shown in Figure 3, decrease as +/ T\Tm . An exception is
seen in Figure 3, where crm INCreases when Nijes Increases
from 4 to 9. The squared error for the overall fit, however,
still decreases as expected.

For a fixed number of tie points, the area bounded by
the points affects the accuracy of baseline estimates. T'o
examine this dependence, we used four tie points
arranged to form a rectangle (D, by D,) with sides
parallel to those of the swath. Figure 4 shows the results
plotted as a function of the product, D, x D,. Each time
D, and D, were increased, they were scaled by the same
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Fig. 4. Standard deviations from 250 estimales of the
baseline parameters as a_function of area covered by four tie
points. Results are for BS = 10m, 6By, =0m, B;, =
2m, 6B, =0m, L, =303.2km, o5= w/3rad and
a. =20m.

factor, except for the last two points where only D, was
scaled because D, could not be scaled further without
exceeding the swath width. The primary effect of B on
the interferometric phase is to determine a constant bias
so that the estimate of this parameter is insensitive to tie-
point spacing, as can be seen from the results in Figure 4.
Error in the estimate of a derivative is inversely
proportional to the distance between points. Conse-
quently, the error in the estimate 613’,, decreases as
i ! asillustrated in Figure 4. Likewise, O’B‘ is inversely
proportional to D, since B, determines the slope of the
phase ramp across an interferogram. Finally, 6B,
determines variation of the baseline with respect to x
and also affects the slope of the phase ramp so that error
in its estimate is inversely proportonal to Dy x D,.
Because increasing tie-point spacing affects the errors for
each of the estimates differently, it is difficult to say
exactly how the quality of the overall fit improves. It is
clear, however, that increasing the distance between tie
points significantly reduces error. A
given in the next subsection.

specific example is
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Error in the baseline estimates is caused by phase and
tie-point noise. Figure 5 shows baseline error as a function
of tie-point error for a fixed level of phase error. Baseline
error improves almost linearly with decreasing tie-point
error until a point where phase error begins to dominate
and there is little significant improvement. At this point,
phase noise must be reduced to realize further improve-
ment.

0.8 J

& (m)

o, (m

< and 6B, for 230
estimaltes as a function of lie-poinl noise, o, for B =
10m, 6By, =0m, B]ﬂ =23m, 6B, =0m, D, =
86.9km, D,=85.8km, os=n/3rad and L,=
303.2 km.

Fig. 5. Slandard deviations of B

Velocity error

In this subsection we examine the velocity error due to
baseline inaccuracy for two typical situations that are
likely to arise in the interferometric estimation of ice
velocity. First we consider baselines estimated using
stationary tie points on areas of bedrock near the ice-
sheet margin, In this case it is important to understand
how far onto the ice sheet the bascline estimate can be
extended while maintaining reasonable accuracy for the
velocity estimate. Secondly, baselines are determined
using non-stationary tie points from areas on the ice sheet
where there is little or no exposed hedrock to provide
stationary points. In this sitvation it is important to
understand how to select tie points to achieve sufliciently
accurate velocity esimates with minimum field effort.
We begin using simulated bedrock tie points for a
typical set ol constraints. The parameters for the
simulation are listed in Table 1. DEMs available for

Table 1. Parameters for simulalions with ice-sheel and
bedrock tie points

Tie-point  Number B, iy D= & T

lype of lie
points
m km km m rad
Bedrock 100 10 50 50 100 w/20
Ice sheet 4 10 50 50 1 /4
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areas near ice-sheet margins typically have low horizontal
and vertical resolution, Error in locating tie points in
areas of an image where there are steep slopes increases
the effective tie-point error. For these reasons we assume a
relatively large tie-point error of o, = 100 m. Since it is
easy to obtain a large number of tie points from a DEM,
we use 100 tie points distributed uniformly over a 50 km
by 50 km area. With sufficient averaging, phase noise can
be kept low (Li and Goldstein, 1990). For the simulation
we use g3 = m/20.

The sample variance and covariance of 250 baseline
estimates determined from bedrock tie points are given in
Table 2. A contour plot of Ty, 15 given in Figure 6a.
Since we are interested in using bedrock areas at the ice
margin, the tie points are centered at & — x. =—1235 km,
with the edge of the ice sheet at z—x. =100km.
Although the baselines were estimated for L, = 303.2 km,
there is no reason velocity error cannot be computed for
|z — x| > L,. In this figure the error is plotted out to a
distance of 500 km inland from the ice-sheet margin
(x — 3. =400 km).

Table 2. Moments of baseline estimates from simulations
with ice-sheel and bedrock tie points

Tie-point type Bedrock tie points  lee-sheet tie poinis

2

m

;3‘ 0.0252 0.005660
;o 6.15¢-6 3.25¢-6
am 0.143 0.791
‘}FB.. 3.55e-5 4.73¢c-4
Cp i, 1.23e-4 3.87¢-5
Coiai, -6.80¢-4 -0.00593
C’f}”m,. 2.85e-4 —1.64e-4
B, ~2.90e-4 -9.91e-5

From Figure 6a we see that velocity error is smallest in
the area near the tie points, and becomes steadily worse
with increasing distance inland. Looking at the variation
across the image, we see that accuracy is best at the center
and worst toward the edges. At 200km (z — 2. = 100 km)
inland the absolute error is <5myear ' with a relative
error across the image of approximately 8 myear . The
absolute error at 500 km from the ice-sheet margin is just
over 12myear ! about
18 myear ', which for many applications is unacceptably
large.

Bedrock area is limited and in many cases smaller than

and the relative error is

in this example. Thus, increasing the bedrock area from
which tie points are chosen is often not an option. Because
there is little phase noise to begin with. its reduction will
achieve only minor improvement. The baseline is short, so
there is little to be gained by using an even smaller
baseline. Furthermore, there are often only a limited
such

number of baselines to choose from. In cases,
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Fig. 6. Velocity error, Oy, for simulated (a) bedrock
and (b) ice-sheet tie poinis for a 3d nterferogram.
Stmulation parameters are given in Table 1, and the
statistics of the estimated baselines used lo compute Gey v,
are included in Table 2.

decreasing the baseline length may not be an option.
Minor improvement may be achieved by increasing the
number of tie points. but only so long as the tie-point
errors remain uncorrelated. Because tie-point errors are
large. the most significant improvement can be realized
by decreasing tie-point error. For example, il tie-point
error is reduced to 25 m, then velocity error decreases by a
factor of about 3. Lesser gains are realized by a further
decrease in tie-point error because phase noise begins to
dominate.

Next we examine the case where velocity tie points
measured on the ice sheet are used. The parameters for a
typical set of ice-sheet tie points are given in Table 1.
Because it is difficult to make such measurements, the
minimum of four tie points is assumed. If tie-point
velocity is measured over the period of a few weeks using
GPS receivers, the error should be small. A high estimate
of the velocity tie-point error is 0.8 m year '. This error is
included in the simulation by modeling it as an equivalent

phase error of o, = w/5 rad. An additional phase error of

oy = 37/20rad due to decorrelation yields a total phase
error of a4 = /4 rad. Allowing for errors in locating the
tie points within the SAR imagery, we assume elevation
error of ¢. =1 m. The tie points are arranged to form a
square with 50 km sides centered about x.. The moments
ol the baseline estimates determined from this simulation
are included in Table 2, and the corresponding velocity
error is shown in Figure 6b.

Baseline estimates for ice-sheet tie points are not as
accurate as those for bedrock tie points, making the
velocity error larger. Even though the elevation error is
much smaller, baseline accuracy is reduced because fewer
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tic points are used. Since the elevation error is small, no
real improvement can be gained by improving the
elevation estimates. Increasing the number of tie points
would help, but the additional field effort may outweigh
the gain. Tie-point velocity error also contributes to the
larger velocity errors. Since a large estimate ol tie-point
velocity error was used, significant improvement is
possible if tie-point velocities are measured more
accurately. Il logistical constraints permit,
the separation of tie points will achieve much-improved

increasing

results. For example, if the distances between tie points
are increased to Dy, =100km and D, =300km, the
velocity error decreases by a factor of about 8 to yield a
maximum absolute error of just over 2m for the entire
100 km by 500km area.
sheet, maximizing the spacing between points appears to
be the best method for improving velocity estimates.
The results presented thus far have assumed a 3d
separation (6T =3d) for interferograms. Tie-point
elevation error leads to error in the estimated velocity

Thus, for tie points on the ice

field, which is inversely proportional to 67" For bedrock
tie points in particular, it is often possible to improve
velocity estimates by using a longer temporal baseline.
This situation is more complicated for non-stationary tie
points. Error that is the result of error in the tie-point
velocity measurements is independent of 87, so it does not
decrease when 07 is increased. Thus, little is gained by
using a longer temporal baseline if tie-point velocity error
is the dominant source of baseline error.

Strain, surface changes cause
temporal decorrelation to increase with time, placing an
upper limit on 67" In the winter when there is no melting,

melting and other

temporal decorrelation is generally highest in regions with
large strain rates. Therefore, longer temporal baselines
are better suited for use in areas of slow-moving ice.

It is important to note that the preceding analysis is
based on the assumption that the baseline varies linearly
along track. Although we have obtained good results
applying this assumption over distances of a few hundred
kilometers, non-linear variation may have an effect over
greater distances. If such variations occur, then more than
to fit the baseline
variation to a higher-order polynomial or to use a picce-
wise linear approximation.

four tie points are required cither

ESTIMATION OF THE ACROSS-TRACK
VELOCITY FIELD

The displacement measured by an interferometric SAR is
directed toward or away from the radar, but an estimate
of the horizontal velocity is desired. Applying Equation
(6), the horizontal velocity is related to the phase due to
displacement by

-t . )
A simple approach to estimating horizontal velocity is to
ignore the vertical-velocity term in the equation. Joughin
and others (1995) have shown that while vertical velocity
is small in comparison with horizontal velocity, v. is
responsible for much of the phase variability over length
scales of less than a few ice thicknesses. These fluctuations
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present little problem in determining the velocity field
averaged over a few ice thicknesses. The error induced by
neglecting vertical motion is far more significant,
however, when examining horizontal-velocity variation
over length scales comparable to the ice thickness. In
particular, estimates of the local strain rate are severely
affected by velocity error due to uncompensated vertical
motion. As a result, it is olten necessary to correct for the
effect of vertical velocity when estimating horizontal
velocity.

If we assume surface parallel low, then the vertical
velocity is related to the horizontal velocity by

ad d
Uz = U:ra?z('lz’ y)+ U'b'a_yz(‘n'y) : (22)

Substituting this expression into Equation (21) yields,

. ¢displm'e|rwul‘

) +cot ¥ |v iz(;r'i)
U Sk Tanw | | gy Y

9 ‘
+ vj—j(w] 29

which is solved to yield

(bdisplm-cmr‘nt
2k6T sin ¥

e — ;
! [1 = cot & & z(z, y)]

Ay

+ v, cot 'I’%_z(:y, y)]

(24)

With this expression we now need the other horizontal
velocity component, v,, to determine v, If we had
another interferogram from a second look direction (i.c..
an ascending pass), we could derive a similar expression
relating v, to v,. With these two equations and Equation
(22), the three components of the velocity field could be
determined. Below we discuss a case where there are no

interferograms from a second look direction.

Joughin and others: Ice-motion estimation using SRI
VELOCITY FIELD FOR HUMBOLDT GLACIER

Humboldt Glacier is an outlet glacier in northwestern
Greenland that discharges into the Kane Basin. Figure 7
shows an ERS-1 SAR amplitude image of the lower part
of the Humboldt. The location of the image is shown on
the map in Figure 8. The darker areas on the ice sheet
along the bright calving face are bare ice in the ablation
arca. The transition from this region to the adjacent
brighter region marks the border of the wet-snow zone
(Fahnestock and others, 1993). The brighter areas in the
lower corners of the image are within the percolation
zone. Several lakes are visible, which show up as small
bright circular regions in this winter imagery.

We obtained SAR data from orbits 2904, 2947 and
2990, which spanned the interval 4-10 February 1992.

Fig. 8. Map of Greenland showing the location of SAR
image containing the terminus of Humboldi Glacier.

026" N

J8F23T N
6524 W

F9STN

Copyright ESA 1995
S9°30'W

Fig. 7. SAR amplitude image of Humboldt Glacier, acquired 7 February 1992. The dimensions of the image are
approximately 97 km across by 210 km long. The while squares indicate the locations of tie points used to estimate the

bhaseline.
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Jowrnal of Glaciolagy

The UK-PAF (United Kingdom Processing and Archiv-
ing Facility) SAR processor produces single-look, com-
plex images with phase discontinuities. To circumvent
this problem, we ordered raw SAR data and processed it
ourselves to obtain single-look, complex images. Proces-
sing the data ourselves also allowed us to process
successive 100km by 100km frames with the same
Doppler parameters to eliminate phase discontinuities at
frame boundaries.

Using the three images, we formed two 3 d interfer-
ograms with the image from Orbit 2947 common to both.
The baseline for the 2904/2947 interferogram is approxi-
mately 236 m, and for the 2947/2990 interferogram
approximately —10m. These interferograms have streak
errors similar to those observed by Rignot and others
(1994) and Joughin (1995), although they are much less
severe and not a significant source of error. The
interferograms also have long spatial-wavelength (50
100 km) phase errors in the along-track direction that are
similar to those observed in interferograms of an area
north of Jakobshavns Isbre (Joughin, 1995). The long-
wavelength errors in the Humboldt interferograms,
however, are much smaller than those observed pre-
viously and have peak amplitudes of about 1rad. The
causes of the streak and long-wavelength errors arve still
unknown.

To cancel the effect of moton, we differenced the
interferograms to yield a topography-only interferogram
with an effective baseline of =246 m (Joughin and others,
1996). This interferogram was used to create a DEM for
the area on the ice sheet. Figure 9 shows this DEM as a
shaded surface overlaid with 100m contours. In the
bedrock arcas phase gradients caused hy steep slopes
made it difficult to unwrap the phase. This problem could
be eased by using a shorter baseline. We are primarily
interested in the ice sheet, however, so we chose a longer
baseline to achieve better accuracy and did not attempt
to determine the bedrock topography. The bedrock
clevations in Figure 9 are extracted from the same
DEM that we used for tie-point information, which was
provided by S. Ekholm (personal communication, 1994)
of KMS (National Survey and Cadastre). There was too

100
(km)

much decorrelation to unwrap the phase for a narrow
band along the calving face. This part of the DEM has
been filled in with elevation data from the KMS DEM.
The lower resolution of the KMS data causes this area to
appear smoother than adjacent regions in the shaded
surface representation.

Ice-sheet clevations north of Jakobshavns Isbrae have
been measured with 4m absolute and 2.5m relative
accuracy (Joughin and others, 1996). DEM accuracy is
largely determined by the quality of the tie points used to
estimate the baseline. We are unlikely to have achieved
accuracy this high since the Humboldt scene is near the
coast, where altimetry-derived tie points on the ice sheet
are most in error. These te-point errors may cause our
DEM to have a systematic error in the form of along- and
across-track tilts that could vield errors of up to several
tens of meters. We hope to determine the accuracy of this
DEM using laser altimeter data from the NASA Arctic
ice-mapping lidar when it becomes available. We will also
be able to improve the accuracy of the DEM using laser-
altimeter tie points for the bascline estimate. Our current
need for the DEM is to compute surface slopes to estimate
velocity using Equation (24). Our DEM is well suited for
this purpose since slope estimates are relatively unaffected
by tie-point errors.

We used the 2947/2990 interferogram to estimate the
across-track velocity field for Humboldt Glacier. Tie
points from areas of bedrock (indicated by white dots in
Figure 7) were used to estimate the baseline parameters:
B:] = -11.20m, B{, = 94,17m, 6B, = —17.17m and 6Bp =

7.40m. The baseline for this interferogram is much
shorter than that of the topography-only interferogram,
so regions consisting of bedrock were casily unwrapped.
The effect of topography was removed using a synthetic
interferogram created using the DEM. The result,
Odisplacerent» 18 shown in Figure 10. The phase is displayed
rewrapped (i.e., modulo-27) with irrelevant areas (sea
ice) and areas that could not be unwrapped masked out.

We need to know the component ol velocity in the
along-track direction, v, to estimate v, using Equation
(24). We do not have an interferogram [rom a second look
direction, so we have no direct knowledge of v,.. If we

Fig. 9. Interferometrically derived DEM of the lower part of Humboldl Glacier. Bedrock elevations were delermined
photogrammetrically ( personal communication from S. Ekholm, 1994 ). The contour interval is 100 m. Illumination is

directed from overhead along the vertical axis.
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knew the low direction, then we could determine v, [rom
v,. Flow direction can be estimated {rom the direction of
maximum averaged downhill slope (Paterson, 1994). This
vields an averaged flow direction that misses perturba-
tions in the direction of flow on scales less than a few ice
thicknesses. Nevertheless, in the absence of other direc-
tional information this method may provide reasonable
results.

In the Humboldt interferogram the across-track
direction is nearly aligned with the direction of flow in
most arcas so that v, is small with respect o v,
Therefore, we neglect v, in our estimate of v,. This is
simpler, and works almost as well as estimating fow
direction [rom surface slopes. Since we are not estimating
strain rates, the slightly larger error with this approach is
insignificant.

Figure 11 shows estimates of v, along a profile from
the Humboldt data made with and without correction for
v.. Comparison of the profiles indicates that ignoring v.
leads to erroneous short-scale variability in the estimate,
&y, of up to 10 myear . This error is removed when the
velocity is determined using Equation (24). The correc-
tion is imperteet for this example because v, is not known.
Therefore, it is difficult to tell how much of the variability
in the corrected profile is due to gradients in the
horizontal velocity. This problem could be resolved with
an interferogram from a second look direction.

Figure 12 shows the contours of the across-track
velocity field for Humboldt Glacier. At slightly more than
100 km, Humboldt Glacier has the widest calving face of
any outlet glacier in the Northern Hemisphere (Weidick
and others, 1995). Weidick and others (1995) suspect that
the calving face is grounded. In the SAR imagery (Fig. 7)
it appears that most of the calving face is grounded,
making this perhaps the longest continuous extent of
grounded calving ice anywhere. Although its width makes

s’ N
6913 W
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0
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Fig. 11. Examples of horizontal velocity estimates made
with and without correction for vertical velvctly. Surface
elevation is also shown.

it the broadest outlet glacier in Greenland, the velocity
field for Humboldt Glacier (Fig. 7) reveals that the ice-
flow speeds are moderate, and also that the enhanced
speeds do not reach great distances inland. With ice-flow
speeds of less than 100myear ' only 15km from the
calving front over the southwestern half of the glacier, it is
clear that most of the discharge (lux is carried in the
northeastern half. Flow in this area exceeds speeds of
140 myear ' 25 km from the calving face, and produces a
region of enhanced shear on the northeastern margin.
This enhanced flow may be due to the presence of a
channel in the bedrock.

We do not have independent estimates of ice velocity
to directly evaluate the accuracy of our results. On the
areas ol bedrock, the velocity is zero, so we can estimate
error for bedrock regions. After removal of topography,
the mean of the phase in the bedrock area is —0.05 rad,
and the standard deviation is 1.5 rad. This is equivalent to
a velocity error with a mean of 0.07 myear "and a
standard deviation of 2.1 myear '

B0°26'N
63°39° W

2nNo Data
Fig. 10. Interferomelric phase. daisplacement s due lo surface displacement in the vadar look direction that occurred between 7
and 10 February 1992. Areas with no data correspond to regions where the phase could not be unwrapped or was masked ( o

avotd regions with sea ice ).
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Fig. 12. Contours of across-track velocity, v, (myear '), overlaid on SAR amplitude image.

In the previous section we estimated error due to
baseline inaccuracy by means of simulation. In order to
apply this procedure to the Humboldt area, we need to
know the phase error and tie-point error. We do not have
an accurate estimate of the error in the tie points
extracted from the KMS DEM. Once the topographic
effects are removed, the phase variation in the bedrock
area is the result ol normal phase error and phase error
due to uncompensated topography (DEM error). The
standard deviation of the phase in this region is an
estimate of the combined effects ol phase and DEM error.
Thus, when the standard deviation of the residual phase

of the ice-free area is used in the simulation, the effect of

tie-point elevation error does not have to be included
explicitly as in the previous section.

The results of the simulation indicate that for the
Humboldt scene the maximum standard deviation of the
velocity error due to baseline error is g, - 0.99m year
Combining this error with the combined estimate of phase
and DEM error from the ice-free areas (2.1 myear '), the
maximum velocity error on the ice-covered area is
2.3myear . Actual errors may be slightly larger due to
uncompensated vertical motion since v, was ignored in
applying Equation (24).

In the prior simulations we assumed a low value (0, =
7/20rad) for the phase noise. After accounting for DEM
error, the proportion of the 1.5 rad phase error attributable
to phase noise due to speckle is larger than expected
(o, > 1rad). Some, but not all, of this variation is caused
by the long-wavelength phase errors described earlier
(Joughin, 1995). The bedrock area in the upper righthand
corner of Figure 10 has a mottled appearance, indicating
some other source of error. Unlike speckle phase noise,
which varies independently from pixel to pixel. this error
has spatial structure over length scales of several kilometers.
This cannot be uncompensated topography as the baseline
is too short. Baseline errors would yield more linear tilt
errors, Phase error with similar structure has been observed
by Goldstein (1995) for an area in the Mojave Desert,
California, U.S.A. He attributed it to additional time
(phase) delay due to turbulent water vapor in the lower
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atmosphere, Tt is possible that the features in our data are
the result of a similar phenomenon. It is interesting to note
that the greatest anomalous phase variations are associated
with area containing the most rugged topography. Further
research is needed to resolve the exact cause and effect of
these phase anomalies. Furthermore, because the error is
spatially correlated it cannot be reduced by simple filtering,
as with phase noise due to speckle.

UNMODELED ERRORS

The Humboldt interferograms and interferograms from
other areas in Greenland (Rignot and others, 1994;
Joughin, 1995) have streak errors, long-wavelength errors
and errors that are likely due to atmospheric effects. None
of these types of error was modelled in our simulations,
because we do not vet have a good characterization of
these errors. We do not even know the cause of streak and
long-wavelength errors. These phase errors are a direct
source of velocity error, and also contribute to it indirectly
by causing larger baseline-estimation errors.

The long-wavelength error in particular is a problem
when using tie points distributed over a small area.
Clonsider the situation where tie points are dispersed over
an area 25km square. Assume a long-wavelength error
that, over the tic-point area, varies linearly by 1 rad in the
along-track direction. This would yield a baseline error of
10rad or more when the baseline is extended 250 km
inland. If the tie points were located at both ends of the
250 km area, long-wavelength errors would have only a
minor effect on the baseline error. At present, spreading
out the tie points is the hest way to overcome long-
wavelength phase errors.

Further research is needed to understand the causes of
these errors. We need to know their amplitudes and the
frequency with which they occur. Once we understand
the errors better, it may be possible to design algorithms
to eliminate them. At the very least, we need to
understand the errors well enough to determine their
full impact on estimates of ice-flow velocity.
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CONCLUSIONS

The results of the simulations suggest some rules that
should be applied when choosing tie points. Four GPS-
measured velocity tie points can provide good accuracy
over large inland areas., The best way to improve
accuracy with only four points is to maximize the
spacing between points. Assuming elevation is known,
geolocation accuracy [or ERS-1/2 is of the order of 50 m
(Smith and others, 1994). Thus, tie points can he
automatically geolocated within SAR imagery and need
not he associated with any radar-visible features. There
are few areas on the ice sheet where the strain rate or
slope is so high that better determination of tie-point
location 1s required. Tie points can easily be selected to
avoid these areas. An interferogram with the shortest
bascline available should be used to make velocity
estimates.

For coastal areas, a reasonably detailed map
(horizontal resolution of 0.5 km or better) and a sufficient
area of exposed bedrock allow the baseline estimate to be
extended onto the ice sheet with acceptable accuracy.
The ability to use many tie points means that high
accuracy is possible even with tie-point elevation errors on
the order of 100m for arcas within 100-200 km of the
coast. If large areas of bedrock are available, it is possible
to extend the velocity estimates much further inland with
reasonable accuracy.

Our results have demonstrated that ice velocities
accurate to within a few meters per year can be
determined with SRI, although accuracy varies
greatly with the quality of tie points. When both
ascending and descending images are acquired
during the tandem phase of ERS-1/2, it should be
possible to map the full three-dimensional velocity
field assuming surface parallel flow. The detailed
velocity and topography information rendered by
SRI provides an important new source of data for
ice-sheet study.
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