
TLP 18 (5–6): 725–758, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000340 First published online 2 August 2018

725

A review of literature on parallel constraint
solving�†

IAN P. GENT, IAN MIGUEL and PETER NIGHTINGALE

School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK

(e-mail: ian.gent@st-andrews.ac.uk, ijm@st-andrews.ac.uk, pwn1@st-andrews.ac.uk)

C IARAN MCCREESH and PATRICK PROSSER

School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK

(e-mail: ciaran.mccreesh@glasgow.ac.uk, Patrick.Prosser@glasgow.ac.uk)

NE IL C. A. MOORE

Adobe Systems Incorporated, Edinburgh, UK

(e-mail: nemoore@adobe.com)

CHRIS UNSWORTH

School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK

(e-mail: chris.unsworth79@gmail.com)

submitted 22 May 2017; revised 30 April 2018; accepted 21 May 2018

Abstract

As multi-core computing is now standard, it seems irresponsible for constraints researchers

to ignore the implications of it. Researchers need to address a number of issues to exploit

parallelism, such as: investigating which constraint algorithms are amenable to parallelisation;

whether to use shared memory or distributed computation; whether to use static or dynamic

decomposition; and how to best exploit portfolios and cooperating search. We review the

literature, and see that we can sometimes do quite well, some of the time, on some instances,

but we are far from a general solution. Yet there seems to be little overall guidance that can

be given on how best to exploit multi-core computers to speed up constraint solving. We

hope at least that this survey will provide useful pointers to future researchers wishing to

correct this situation.

KEYWORDS: Constraint programming, parallel computing, propositional satisfiability,

parallel search

1 Introduction

How can constraint solvers best exploit parallel processing when all workstations,

laptops, tablets and even phones are multi-core computers? To address this question,

� We would like to thank EPSRC for funding this work through grants EP/E030394/1, EP/M003728/1,
EP/P015638/1 and EP/P026842/1.

† This paper is a substantially revised and extended version of a paper that appeared in the PMCS 2011
Workshop on Parallel Methods for Constraint Solving (Gent et al. 2011).

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

http://orcid.org/0000-0002-5052-8634
https://doi.org/10.1017/S1471068418000340


726 I. P. Gent et al.

we review the literature on exploiting parallel processing in constraint solving. We

start by looking at the justification for the multi-core architecture, the direction

it is most likely to take and limiting factors on performance. We then review

recent literature on parallel constraint programming and SAT (Boolean satisfiability)

solving. We have organised the survey into four categories as follows:

• Parallel consistency and propagation (Section 3), where constraint propagation

algorithms are parallelised.

• Multi-agent search (Section 4), where multiple agents attempt to solve the

problem in parallel while sharing useful information.

• Parallelising the search process (Section 5), in which the search process is split

among multiple workers in some way.

• Portfolios (Section 6), where a set of diverse solvers are selected to run in

parallel until one of them solves the problem.

Our survey is focused on approaches to parallelism developed in the constraint

programming and SAT communities. A number of surveys of related areas have

previously appeared, whose contributions we gratefully acknowledge and cite below

where they overlap with our concerns. These include surveys of parallel solving in

SAT (Singer 2006; Hölldobler et al. 2011; Martins et al. 2012), Distributed Constraint

Satisfaction (Yokoo and Hirayama 2000; Faltings 2006), algorithm selection and

portfolios (Kotthoff 2014), Concurrent Constraint Programming (Frühwirth et al.

2006), and a proposal of seven challenges for future research in parallel SAT (Hamadi

and Wintersteiger 2013).

Other surveys address closely related problems amenable to parallelisation, but

fall outside the scope of this paper’s focus on constraint solving. For example, mixed

integer linear programming is a powerful technique from the operations research

community for solving discrete optimisation problems: Ralphs et al. (2017) have

written an excellent survey of parallel mixed integer linear programming solving.

2 The hardware: multi-core, GPU (Graphics processing unit) and Amdahl’s law

Written in 2006, Intel’s White Paper (Held et al. 2006) starts by saying ‘... two

cores are here now, and quad cores are right around the corner’. Now, 16 and

32 core machines are commonly available. But why go multi-core? In the past

performance improvements could be taken for granted as clock speeds increased

(from 5 MHz in 1978 to more than 4 GHz in 2018), component size decreased and

chip density increased. Three reasons are given for the shift to multi-core. First,

although component size continues to fall, power-thermal issues limit performance,

so we can no longer simply increase clock speeds. Second, power consumption:

individual cores can be tuned for different usages (e.g. dedicating hardware resources

to specific functions), and when not in use cores can be powered down. And third,

rapid design cycles: hardware designs can be reused across generations.

What are the major challenges? Intel put top of their list ‘programmability’,

that the platform must address new and existing programming models. And then

‘adaptability’, such that the platform can be dynamically reconfigured to conserve

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 727

power. Of course ‘reliability’, ‘trust’ and ‘scalability’ are also important, as we increase

cores we cannot compromise the correctness of the hardware.

Intel considers development of multi-core software to be amongst the greatest

challenges for tera-scale computing, specifically with regard to ensuring that ‘there

are compelling applications and workloads that exploit the massive compute density’

and that ‘multi-processing adds a time dimension that is extremely difficult for

software developers to cope with’. They give a further justification for the multi-core

architecture: ‘... why tomorrow’s applications need so many threads. The answer

is that those advanced, intelligent applications require supercomputing capabilities,

and the accompanying parallelism that allows those applications to proceed in

real-time. ... it requires an equally massive shift in hardware and software’.

Intel’s tera-scale computing vision is to aim for hundreds of cores on a chip,

giving the capability of performing trillions of calculations per second on trillions

of bytes of data with a stated goal ‘... a 10× improvement in performance per watt

over the next 10 years’ (Held et al. 2006). How close are we to that goal? In 2006,

two core machines existed. At the time of writing in 2017, Intel are selling server

chips with 24 physical cores (48 threads with hyperthreading) running at 2.40 GHz.

Their Teraflops Research Chip (Polaris) contains 80 cores.

But there is a shadow cast over this optimism: Amdahl’s law predicts the maximum

speedup that can be expected from a system as we increase the number of processors.

The law assumes that a program is composed of a parallel part P and a sequential

part S , such that P + S = 1. The expected speed up is then 1/(S + P/N), where

N is the number of processors. As N tends to infinity Amdahl’s law predicts that

maximum speedup will be 1/S , as the original P/N term tends to zero. As an

example if we had P = 0.99, so 99% of our problem can parallelised, 64 processors

would run our program 39 times faster. For 128 processors the speedup is 56 times,

for 1,024 processors it is 91. As the number of processors continues to increase the

speedup tends to 100. If P = 0.9 the law predicts a maximum speed up of 10, and

if half only our program can be parallelised, P = 0.5 and maximum speed up is

2, regardless of the number of processors available. It was this argument, in the

late 1960’s, that encouraged hardware development away from multi-processor and

towards faster processors.

In the late 1980’s Gustafson (1988) argued that Amdahl’s law is overly pessimistic,

as it assumes that as we increase the available parallel processors we continue to

keep the workload fixed and hope for reduced runtime. That is, it is a ‘fixed-size

speedup’ model and assumes N and P are independent; multi-processing is only

used to improve response time. Gustafson assumes that problem size also scales with

the number of processors, i.e. as we get more processors we increase the problem

size and that run time, not problem size, is a constant. Gustafson observed that the

parallel or vector parts of a program scales with problem size and the serial part

does not (it diminishes proportionally). Consequently as we get more processors

the workload grows and P increases resulting in an increase in speedup. This is

the ‘fixed-time speedup’ model and an example is weather forecasting, where we

use multi-processors to increase the quality of our results (the weather prediction)

in a fixed amount of time (before the evening news). Perhaps this model is more

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


728 I. P. Gent et al.

appropriate for parallel constraint solving where we are always striving to solve

larger and harder instances.

The constraints community has a long history of engaging with the challenges

involved in concurrent and parallel programming. Concurrent Constraint Logic

Programming was developed in the 1980s (Maher 1987; Furukawa and Ueda 1988)

followed by, outside the context of logic programming, Concurrent Constraint

Programming (Saraswat and Rinard 1990; Henz et al. 1993; Frühwirth et al. 2006).

This led to incorporation of constraint reasoning into multi-paradigm languages such

as Mozart (Van Roy and Haridi 1999). However, ongoing developments in efficient

constraint solving have meant that constraint techniques now seem less suitable for

integration into the heart of languages like Mozart. As a result, constraints are no

longer available in the first release of Mozart 2: It is planned to retain constraint

solving in Mozart via linkage to the constraints library Gecode (Gecode Team 2006).

One current area of great interest is solving on GPUs. Almost all modern desktops

and laptops provide a powerful GPU, and there are several popular methods of

utilising GPUs, including CUDA1 and OpenCL2. Using GPUs has led to orders of

magnitude improvement on many important problems, including k nearest neighbour

(Garcia et al. 2008), MaxSAT (Munawar et al. 2009), SAT (Manolios and Zhang

2006; Dal Palù et al. 2015) and constraint-based local search (Arbelaez and Codognet

2014). One common thread in these papers is that applying a GPU provides the

greatest improvements on problems which can be solved by massively parallel simple

calculations. GPUs are not a silver bullet, and direct ports of existing algorithms to

a GPU architecture often perform poorly.

3 Parallel consistency and propagation

Kasif (1990) showed that the problem of establishing arc-consistency (AC) is P-

complete, i.e. the problem is not inherently parallelisable under the usual complexity

assumptions. This is done by giving log-space reductions of AC to Horn-clause

satisfaction and vice versa. A major open problem in complexity theory is whether

NC=P, where NC is ‘Nick’s Class’, the class of problems that can be solved in

polylog time using polynomially many processors. Kasif therefore showed that in

the worst case we cannot establish AC exponentially faster with a polynomial

number of processors, unless NC=P. This is no surprise, as we have to do a chain

of deductions in AC, where each depends on (some subset of) the preceding ones.

We can read this result as being fatal to the enterprise of parallel consistency, but

then, it is not fatal to solving constraint problems that they are NP-complete! So,

we have to take P-completeness into account rather than regard it as fatal.

While the general case of AC is P-complete, researchers have found special cases

of problems that are in NC. While solving CSPs whose constraint graph is acyclic

was known to be in P (Freuder 1982), Zhang and Mackworth showed that it was

1 http://www.nvidia.com/object/cuda home new.html
2 https://www.khronos.org/opencl/

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 729

also in NC for constraints of arbitrary arity (Zhang and Mackworth 1991). Kasif

and Delcher analysed a wider range of restrictions on the constraint graph (Kasif

and Delcher 1994), while for arbitrary constraint graphs Kirousis gave a restriction

on constraint relations being used which also leads to membership of NC (Kirousis

1993).

3.1 Parallel arc-consistency

There has been a steady stream of work on distributed consistency algorithms. One

of the justifications of this is that the problem itself may be distributed geographically

or due to organisational structures, as in Prosser et al. (1992) and discussed further

in Section 4.2. The other justification is speed, which we discuss here. Here, the

P-completeness of AC need not be fatal: it does not exclude the possibility of

obtaining useful speedup from parallel processing.

For binary constraints, Kasif and Delcher showed that if a problem has n variables

with domain size K , then AC can be solved in O(nK) time using O(nK) processors,

as long as the constraint graph contains O(n2) constraints (Kasif and Delcher 1994).

Nguyen and Deville presented a distributed AC-4 algorithm DisAC-4 (Nguyen and

Deville 1995; Nguyen and Deville 1998). The algorithm is based on message passing.

The variables are partitioned among the workers, and each worker essentially

maintains the AC4 data structures for its set of variables. When a worker deduces

a domain deletion, this is broadcast to all other workers. Each worker maintains

a list of domain deletions to process (some generated locally and others received

from another worker). The worker reaches a fixpoint itself before broadcasting any

domain deletions, and waiting for new messages from other workers. The whole

system reaches a fixpoint when every worker has processed every domain deletion.

It may be a difficult problem to partition the variables such that the work is evenly

distributed. The experimental results are mixed, with some experiments showing close

to linear speedup, while others show only 1.5 times speedup with 8 processors. A

similar approach led to algorithms DisAC-3 and DisAC-6 based on their sequential

counterparts AC-3 and AC-6 (Baudot and Deville 1997). Hamadi (2002) presented

an optimal distributed AC algorithm, DisAC-9, optimal with respect to message

passing whilst outperforming the fastest centralised algorithms.

3.2 Parallel propagation of non-binary constraints

Ruiz-Andino et al. (1998) presented a distributed propagation algorithm for n-

ary functional constraints. These constraints are represented as indexicals, where

each variable in the scope of the constraint has a functional expression defining

its domain. For example, given the constraint x1 = x2 + 4, the indexical for x1

is x1 ∈ {min(v2) + 4 . . .max(v2) + 4}. The CSP is split into n subsets such that

each constraint appears in exactly one subset. If a variable is associated with

constraints in more than one set then that variable is duplicated. Each subset is

propagated sequentially by its own processor and any domain reductions of variables

shared between processors is communicated between processors. The experiments

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


730 I. P. Gent et al.

presented show the relative performance gains by increasing the number of cores they

make available to their algorithm. First consistency is established, then a variable

assignment is made and consistency is re-established. This is repeated until a solution

is found or a variable domain is wiped-out. The performance of this technique is

highly dependent on the quality of the distribution of the CSP, which is a difficult

problem in itself. The conflicting optimisation criteria for quality of a constraint

distribution are minimising the network traffic whilst maximising the distribution of

the propagation frontier. It appears that this technique will not handle high arity

constraints well due to increased communication cost.

Parallel propagation has been proposed for numerical problems, where the variable

domains are infinite. Domains are represented as an interval using two floating-point

numbers, and the objective of propagation is to narrow the intervals. Although

numerical constraint satisfaction is not the focus of this survey, we would like to

mention one paper. Granvilliers and Hains (2000) proposed a parallel propagation

algorithm for non-linear constraints. This was evaluated on a Cray multi-processor.

The gain from using 64 processors (compared to 1 processor) varies from almost

nothing to about 6 times, depending on the problem instance.

Rolf and Kuchcinski (2010) parallelise both search and consistency (we discuss

parallelisation of search in Section 5). They take a different approach to parallelising

consistency, by splitting the set of constraints to be propagated among threads, rather

than parallelising the work of a single constraint. They begin with an example

demonstrating that a simple search parallelism scheme is at the mercy of the

location of the solution(s) in the search tree. If they are all going to be found by

the first thread anyway, the others are just adding overhead. They introduce some

terminology: parallel search, a type of OR parallelism, and therefore data parallelism;

and parallel consistency, a type of AND parallelism, and therefore task parallelism.

They claim that, for many models, solvers spend an order of magnitude more time

enforcing consistency than they do searching, in which case data parallelism is less

suitable. Another flaw is that data parallelism naturally puts more stress on the

memory bus (Sun and Chen 2010). In their approach to parallel consistency, they

require synchronisation of pruning, but do not share data during pruning to avoid

upsetting the internal data structures of global constraints. Rather than fixing which

threads deal with which constraints, at each node each consistency thread takes a

set of constraints to propagate from the queue. When all constraints in the queue

have been processed, updates are actually committed. The process can stop early if

one of the threads detects inconsistency. When combining both parallel search and

consistency, each search thread gets an associated set of consistency threads. An

alternative architecture is briefly discussed in which all threads take from a shared

work pool, but the authors claim that scheduling uptake from this pool could be

prohibitively complex. Experiments are on Sudoku and n-Queens using up to 64

threads on 8 cores. The gains are modest. They identify three problems: inefficiencies

in parallel consistency caused by not sharing data, the synchronisation of pruning

described and third the memory bus.

Campeotto et al. (2014a,b) investigated parallel propagation using a GPU archi-

tecture and the NVIDIA CUDA programming model. Each constraint is assigned

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 731

its own block of threads on the GPU, and some propagators are further parallelised

by filtering each variable in a separate thread. Also, the constraints may be divided

between the host CPU (Central processing unit) and the GPU to add another level

of parallelism. The work focuses on efficient propagation of the inverse constraint

and the positive table constraint. Modest speedups are reported when using the

GPU (compared to the host CPU alone), with the highest being 6.6 times.

3.3 Parallel unit propagation in SAT

Conflict-driven clause learning (CDCL) SAT solvers are the most successful class

of SAT solvers for structured instances, and efficient unit propagation is central to

their success. Dal Palù et al. (2015) proposed a parallel unit propagation algorithm

implemented on a GPU architecture, demonstrating approximately one order of

magnitude speed-up compared to the host CPU. However, they used an exotic unit

propagation algorithm without watched literals. They also implemented a version

with watched literals but noted that the speedup compared to the sequential version

was negligible. It is not clear whether their techniques could be applied to a modern

SAT solver with watched literal unit propagation.

Manthey (2011b) proposed a method to parallelise unit propagation using a multi-

core shared memory architecture. One thread drives the CDCL search and performs

all operations except unit propagation sequentially. Other threads are only active

when the solver is performing unit propagation. The set of clauses is partitioned

among the threads. Each thread propagates its own clauses and records any implied

literals in its own queue. Then, a thread checks all other threads for new implied

literals in a way that is lock- and wait-free, and copies them into its own queue

for processing. He reported a speedup of 1.57 times using two threads, and found

that the approach does not scale beyond two threads. The method has been slightly

refined in a later work by the same author (Manthey 2011a).

3.4 Parallel update in local search

Local search methods such as constraint-based local search (Van Hentenryck and

Michel 2009) start with a complete assignment that may violate some of the

constraints. At each step, a change is made to the assignment with the goal of

converging on a satisfying assignment (optionally optimising some criteria). For

parallel implementation of local search, Verhoeven and Aarts (1995) introduced the

notion of ‘multi-walk’ and ‘single-walk’. A multi-walk search uses parallelisation to

explore multiple parts of the search space at the same time, with parallel independent

or loosely interacting local search processes. A single-walk search is an inherently

sequential search, but the calculation of neighbourhoods and/or update of search

state may be performed in parallel. Most work on parallel local search has focused

on multi-walk parallelisation as described in Section 5.2.

An example of parallel state update in local search is GENET, a neural network

local search method for CSPs (Wang and Tsang 1991; Davenport et al. 1994). The

convergence cycle in GENET involves each node updating in parallel (Davenport

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


732 I. P. Gent et al.

et al. 1994). GENET was designed to be implemented on VLSI hardware (Wang and

Tsang 1992). Negative results on parallelising update within the Adaptive Search

method were reported in the Partitioned Global Address Space model (Munera et al.

2014).

Single-walk and multi-walk approaches can be combined, i.e. a multi-walk search

can be implemented, in which individual search is itself parallelised. The use of

GPUs is attractive in this case, given the cost effectiveness per thread, and also

the fact that the thread architecture of GPUs matches well with the architecture

of local search (Arbelaez and Codognet 2014). Constraint-based local search has

been implemented using a GPU for the number partitioning, magic squares and

Costas array problems, obtaining promising results (Arbelaez and Codognet 2014).

Speedups of up to 17 times were obtained for the first two problem classes, with a

much lesser speedup for the Costas array problem since the neighbourhoods were

so small that a pure multi-walk approach was used.

Large neighbourhood search (LNS) is a powerful local search technique for

constraint optimisation problems. Given a complete assignment that satisfies all

constraints, conventional LNS attempts to improve its objective value by relaxing

(unassigning) a subset of the variables (called a neighbourhood) and searching for an

improved assignment within that neighbourhood. Campeotto et al. (2014) parallelise

LNS on a GPU architecture, first by exploring multiple neighbourhoods in parallel

and second by parallelising the search within each neighbourhood. Promising results

are presented where the GPU LNS algorithm is compared to a CPU implementation

of the same, and compared to a conventional LNS implementation in a CP solver.

3.5 Parallel singleton arc-consistency

In (Gharbi 2015) a master/worker architecture is proposed where the master

performs a backtracking search and workers compute a high level of consistency, one

that is not normally considered economical. That is, the master performs a relatively

shallow inferencing search (i.e. maintaining generalised AC) while workers perform

deep inference (i.e. singleton AC), communicating with each other via a collection

of shared stacks. The architecture might be thought of as the workers being deep

thinkers capable of interrupting an unencumbered searcher. The empirical study

gives inconclusive results, but does point the way to exploiting this architecture with

various levels of consistency, not just SAC (Singleton Arc Consistency).

4 Multi-agent search

In multi-agent search, we have one problem and a collection of cooperating problem

solving agents that execute in parallel. The agents may be diverse, and in fact

diversity is a desirable property. When multi-agent search is applied to conventional

constraint satisfaction problems, each agent has a copy of the whole problem and is

capable of solving the problem independently. The agents work on their own copy

of the problem and they collaborate in some way.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 733

Multi-agent search is also applied to the Distributed Constraint Satisfaction

Problem (DCSP) where each agent sees only part of the problem, and therefore

no single agent can solve the entire problem alone. We give an overview of DCSP

solving techniques in Section 4.2.

Assuming we have n processors, a speedup of less than n is sub-linear, equal to n

linear, greater than n super-linear. Probably the first report of super-linear speedup

is due to Rao and Kumar (1988) in parallel depth-first search on the 15-puzzle.

They argue that if all solutions are uniformly distributed about the state space

then average speedup can be super-linear. The next body of work to report the

phenomenon of super-linear speedup was multi-agent search. One of the earliest

examples of this is due to Clearwater et al. (1991). To demonstrate the power

of cooperative problem solving they investigated the time to solve word puzzles,

posed as constraint satisfaction problems, using a collection of agents. Each agent

could solve the problem independently. Agents wrote hints to a shared blackboard,

and agents randomly read hints from the blackboard whilst solving the problem.

As the number of agents increases, and the diversity amongst agents increases, a

combinatorial implosion occurs with a subsequent super-linear speedup in problem

solving. They present as an explanation of this phenomena ‘... the appearance of a

lognormal distribution in the effectiveness of an individual agent’s problem solving.

The enhanced tail of this distribution guarantees the existence of some agents

with superior performance’. The idea of multi-agent search was further explored

in the portfolio-based search proposed by Gomes and Selman (2001). A portfolio

is a multi-agent search with no communication between the agents. Portfolios are

surveyed in Section 6.

4.1 Multi-agent search in SAT

The SAT community has been quick to exploit multi-agent search. An excellent

survey of parallel SAT solving by Martins et al. (2012) identifies multi-agent search

(named portfolios in their paper) as one of two main approaches to parallelism

in SAT, with search-space splitting being the other main approach (covered in

Section 5.5). Hölldobler et al. (2011) gave a short survey of complete parallel SAT

solvers, including multi-agent approaches. An earlier survey is also available (Singer

2006), but is largely superseded by Martins et al. (2012). In this section, we survey

a small number of the most notable multi-agent SAT solvers, and refer the reader

to the earlier surveys (Singer 2006; Hölldobler et al. 2011; Martins et al. 2012) for

more detail.

We focus on CDCL SAT solvers because they have been the most successful

on structured SAT instances in recent years. CDCL SAT solvers generate learned

clauses that are entailed by the original formula. Sharing these learned clauses is a

key opportunity for multi-agent SAT solving.

First, we consider a line of work where a small number of agents communicate

intensively through shared memory. ManySAT (Hamadi et al. 2009b) exploits one of

the main weaknesses of DPLL (Davis-Putnam-Logemann-Loveland) solvers, namely

their sensitivity to parameter tuning, to create a set of diverse SAT solvers. Each

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


734 I. P. Gent et al.

SAT solver operates on the entire formula, and with an unrestricted search (i.e.

the search space is not divided among the agents). In the original (1.0) version of

ManySAT, the SAT solvers share learned clauses of length 8 or less. The length limit

is intended to allow the most important learned clauses to be shared while avoiding

the overhead of sharing all learned clauses. ManySAT has four agents, each with a

hand-crafted set of parameter values.

In the improved ManySAT 1.1 (Hamadi et al. 2009a) each pair of agents has

a dynamically adjusted length limit. The limits are adjusted based on the rate

that shared clauses are received and also on quality (which is a measure of the

relevance of shared clauses to the search process of the solver receiving them).

ManySAT 1.5 (Guo et al. 2010) takes a somewhat different approach where two

of the agents are masters and the other two are slaves. Each master directs the

search of one slave in order to improve the quality of learned clauses transmitted

from the slave to the master. In essence ManySAT is an invocation of Clearwater,

Huberman and Hogg’s cooperative problem solving strategy, but rather than share

hints agents share nogoods, i.e. facts as to where solutions cannot exist. ManySAT

has been successful in SAT competitions, suggesting that intensive clause sharing is

an interesting strategy for shared memory systems. ManySAT 1.0 won the parallel

track of SAT-Race 2008, while version 1.1 won the parallel track of the SAT

2009 competition. Version 1.5 came second in the parallel track of SAT-Race

2010.

Interleaving search with inprocessing (Järvisalo et al. 2012) has been shown to

extend the reach of sequential CDCL solvers. Inprocessing simplifies the formula

by applying a set of rules. An example is identifying two literals that take the

same value in all solutions and replacing one literal with the other throughout.

Inprocessing typically has a large set of configurations, so it can serve as another

source of diversity.

Plingeling is a multi-agent solver that exploits inprocessing. It builds on the

highly efficient sequential solver Lingeling (Biere 2010; Järvisalo et al. 2012) by

running n versions of Lingeling in parallel with different random seeds, different

configurations of inprocessing, and a different initial variable and value ordering.

In the 2010 version of Plingeling (Biere 2010) only unit clauses (i.e. assignments of

SAT variables) are shared between agents. Despite this very simple clause sharing

scheme, Plingeling has been highly successful. Plingeling won the SAT-Race 2010

parallel track. Martins et al. (2012) compared Plingeling with all three versions of

ManySAT and a number of other (less successful) solvers. The solvers were allowed

four parallel threads. Plingeling performed best overall despite having the worst

speedup factor (compared to the sequential version of the same solver) of only 1.60.

It seems the strength of the underlying solver is more important than parallelism in

this case.

Plingeling has continued to improve alongside the sequential solver Lingeling.

In 2013, the authors introduced sharing of clauses up to length 40 (Biere 2013).

Plingeling continues to do well in competitions: it came second in the parallel track

of the SAT 2016 competition, after its sister solver Treengeling (Biere 2013) (which

is based on dividing the problem instance).

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 735

All the above approaches rely on shared memory for fast communication between

the agents. In contrast, Hyvärinen et al. (2009) investigated parallel SAT solving

in distributed computing environments without shared memory. They report ex-

periments with up to 96 parallel workers. They proposed Clause Learning Simple

Distributed SAT (CL-SDSAT), where the technique is to run multiple independent

randomised SAT solvers with no direct communication. Each worker is given a

time limit. When a solver times out, it shares some of its learned clauses with the

master. The shared clauses from workers are combined centrally, and whenever a

new worker is started it is given the current set of shared clauses. Filtering the shared

clauses is key to this approach. Hyvärinen et al. (2009) propose that the workers

should share their shortest clauses, and the central store should select clauses that

have been learned independently by the largest number of workers. CL-SDSAT can

be instantiated with any sequential SAT solver with minimal changes.

An analysis of the runtime distribution of the randomised workers shows that the

technique can perform well simply because some workers will have short runtimes.

Also, the clause sharing scheme is shown to reduce the expected runtime of workers.

CL-SDSAT is not shown to achieve a linear or super-linear speedup, so it is probably

most useful for very hard instances where an answer is required in a short time.

Recent work by Balyo et al. (2015) broadly follows the same approach of

diversification and clause sharing. The system is designed for a cluster of computers

each of which has multiple cores and shared memory; therefore, communication

takes advantage of shared memory when it is available. As in CL-SDSAT, short

clauses are preferred for sharing. They report results of experiments on up to 2 048

cores. Mean and median speedups are reported, and in some cases the mean speedup

is super-linear; however, the median is sub-linear.

Multi-agent search with sharing of learned clauses has been applied in a learning

constraint solver by Ehlers and Stuckey (2016). We discuss their work in Section 5.5.

On a less positive note, a recent study has shown that resolution refutations

(i.e. resolution proofs of unsatisfiability) produced by sequential SAT solvers are

typically very deep and contain many bottlenecks (depths where the proof contains a

small number of clauses) that must be processed sequentially (Katsirelos et al. 2013).

They conclude that it is impossible to produce such refutations with a high degree of

parallelism, limiting the speedup of multi-agent search in SAT. The major assumption

is that parallel solvers produce similar resolution refutations to sequential solvers.

It is not clear how the findings apply to satisfiable instances, or indeed to parallel

search (Section 5.5), where the solver produces resolution refutations in parallel for

each fragment of the search space.

Of the seven challenges posed by Hamadi and Wintersteiger (2013), the most

relevant here is the challenge to improve estimates of the local quality of incoming

(shared) clauses. Many solvers simply prefer short clauses or employ fixed limits on

clause length or the value of a heuristic (Biere 2013; Balyo et al. 2015). However,

there has been work on measuring the relevance of imported clauses (Audemard

et al. 2012), and on managing imported clauses separately to reduce overheads and

protect the importing thread from being swamped (Audemard et al. 2012; Audemard

and Simon 2014). In our view, the challenge has not been comprehensively addressed.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


736 I. P. Gent et al.

To conclude, multi-agent search with shared clauses is a popular and successful

approach to parallel SAT. How it compares to other approaches such as search

splitting is the topic of on-going research.

4.2 Distributed constraint satisfaction and optimisation problems

The DCSP and its Distributed Constraint Optimisation Problem (DCOP) equivalent

is an area of multi-agent systems that has been extensively researched over many

years. DCSPs and DCOPs have been solved using asynchronous backtracking

techniques (Yokoo et al. 1992), and also by distributed local search techniques

(Hirayama and Yokoo 2005; Zhang et al. 2005). Excellent surveys have been written

by Yokoo and Hirayama (2000) and by Faltings (2006).

There is a critical distinction between DCSPs and conventional CSPs - called

‘centralised’ CSPs by Yokoo and Hirayama. In a DCSP, no agent holds the entire

CSP: indeed each variable in the CSP is owned by a given agent, and inter-agent

constraints exist between variables held by different agents. Some of these constraints

may not yet be known by an agent, and become known by message-passing. An

example would be allocation of nurses to shifts in a hospital containing several

departments: to a large extent each department can allocate its nurses independently,

but there will be inter-departmental constraints which may invalidate a schedule

proposed by one department. Thus, although DCSP does address parallel constraint

solving, the research motivation is different. Yokoo and Hirayama state: ‘Of course,

even if the research motivations are different, the same algorithm might be useful

for both. However, as far as authors know, existing parallel/distributed processing

methods for solving CSPs are not suitable for distributed CSPs, since they usually

require some global knowledge/control among agents’. This conclusion has not

remained universally true, since Hamadi’s DisAC-9 algorithm has attracted interest

from both points of view (Hamadi 2002). Nevertheless, most research on DCSP and

DCOP has focussed on the case of a distributed problem rather than the distributed

solution of a centralised problem. The latter is our focus here.

DCSP techniques were used to parallelise the search to a centralised CSP (Salido

and Barber 2006). A graph partitioning algorithm was used to divide the original

CSP into an appropriate number of subproblems, in this case 10, aiming to minimise

the number of variables shared between subproblems. The subproblems were then

solved concurrently, with communication between agents to ensure consistency on

the shared variables.

We do not attempt to survey the large amount of ongoing research into non-

centralised DCSP and DCOPs. Research has continued intensively with a particular

focus on the optimisation variant DCOP, such as for example Grinshpoun et al.

(2013), Fioretto et al. (2014), Wahbi and Brown (2014), Fioretto et al. (2015), Zivan

et al. (2015), Netzer et al. (2016), Fioretto et al. (2016) and Sassi et al. (2017).

Significant systems have been built for reasoning on DCSPs and DCOPS, including

FRODO (Léauté et al. 2009) and DisChoco (Wahbi and Brown 2014).

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 737

5 Parallelising the search process

By ‘parallelising the search process’ we mean search parallelism at the granularity

of nodes or search states; hence, each worker is close to being a standard sequential

constraint process but they are collectively orchestrated to be part of the same

overall search process. We refer below to both local and complete search. For local

search, parallelism has been used to increase the number of starting points available

in the local search (Michel et al. 2006). For complete backtracking search, the issues

we will highlight include:

• how the search space is divided between workers;

• how workers communicate what portions of search they have completed and

what new solutions and improvements to their optimisation function they have

found;

• how state is shared (if appropriate);

• how learned constraints are shared between workers (if learning is imple-

mented); and

• specific implementation details and abstractions.

5.1 Parallel backtracking search

Parallel search in simple branch-and-bound settings has a long history. For example,

Karp and Zhang (1993) proposed a randomised work allocation strategy for

backtrack and branch-and-bound search. Bader et al. (2005) and Crainic et al.

(2006) review early works, and discuss implementation issues.

First, we define the key concept of a semantic path. A semantic path is a sequence

of search decisions (typically of the form x = a or x �= a for some decision variable

x and constant a). A search node of a DFS (Depth-first Search) tree is uniquely (and

very compactly) described by a semantic path containing all the search decisions

between the node and the root.

Perron was one of the first to report on parallel search in a commercial constraint

programming toolkit (Perron 1999), the 1999 update of ILOG Solver. The search

space is represented as a tree of search nodes partitioned into an explored part,

a frontier and an unexplored part. When a worker enters a new node, it does

so by recomputation: each decision in a semantic path is applied to reach the

starting point, propagation is performed then search begins. The recomputation

scheme is general enough to allow more exotic search algorithms than DFS, and

it also allows nodes to be allocated to different processors on a shared memory

machine. Each processor runs its own search process exploring different parts of

this common search tree, with a communications process ensuring work balancing

and termination detection. Empirical evaluation was on a 4 processor machine

using jobshop scheduling problems, i.e. optimisation problems rather than searching

for the first solution. When using complete search (in particular variants of LDS

(Limited Discrepancy Search)) parallelism showed a linear speed-up, but with depth

first search the improvements were less convincing. On the whole, the results are less

than conclusive.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


738 I. P. Gent et al.

A similar approach was taken by Schulte (2000), who implemented parallel

search in the multi-paradigm programming system Oz/Mozart (which supports both

concurrency and constraint programming). The goal was to make use of commodity

computers on a network; therefore, communication between machines is limited. As

in Perron (1999), a search node is given to a worker which then explores the search

tree beneath the node. Distributing search nodes is a natural choice because they

can be represented very compactly as semantic paths. The approach is work-sharing,

mediated by a single manager, and with a coarse granularity. Results show close

to linear speedup (between a 4% and 52% overhead associated with distributing

work), although a maximum of six workers were used. Nowadays a single machine

might have many more than six cores.

Zoeteweij and Arbab (2004) describe a component-based approach to parallel

search. They design a system which requires only that solvers may publish their

search frontiers, and use added constraints to direct each solver component to

different areas of the search tree. Results are presented on three benchmark instances,

showing speedups of between 10 and 15 on 16 cores.

The COMET constraint programming toolkit was enhanced to allow multi-core

parallel search using shared memory (Michel et al. 2007). This is done ‘under the

hood’ so that a constraint programmer need not know that it is taking place

or how it is implemented. Each processor core runs a worker. When a worker

expands its current search node, it produces new unexpanded search nodes, where

an unexpanded node is a self-contained subproblem specified as a semantic path.

Parallel COMET uses a technique called work stealing where workers who have run

out of work take unexpanded nodes from other workers, leaving them less work

to do and keeping all workers busy. It is implemented as follows: Search nodes

are represented as continuations (Reynolds 1993) and are added to a central pool.

When workers are idle they steal continuations from the central pool, and this

is synchronised; in the case of optimisation problems workers communicate new

bounds on the objective function, again synchronised. Experiments were performed

on N-Queens, Scene Allocation, Graph Colouring and the Golomb Ruler problem

using depth first search and limited discrepancy search (LDS) on 1 to 4 processors.

Speed ups were a bit less than linear, although superlinear speedups occurred with

LDS and this was attributed to the order that continuations were stolen, disrupting

the normal search order.

Dal Palù et al. (2015) parallelised the search process of a SAT solver using many

threads on a GPU. In the context of a DPLL search without clause learning, the

host CPU explores the upper part of the search tree and distributes subtrees to

the GPU cores. They report a speedup of 38 times compared to the equivalent

sequential process on the host CPU. Parallelising a SAT solver with conflict-directed

clause learning is left to future work.

5.2 Parallel local search

Michel et al. (2006; 2009) presented parallel local search in the COMET sys-

tem. The papers describe an architecture for distributing the work over multiple

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 739

(heterogeneous) machines. The distribution of tasks is intended to be nearly inde-

pendent of the COMET program that describes the search. The COMET programs

given as examples describe various local search strategies including evolutionary al-

gorithms and varieties of constraint-based local search (Van Hentenryck and Michel

2009). Parallelism is implemented by distributing different starting assignments to

the workers, i.e. the ‘multi-walk’ strategy of Verhoeven and Aarts (1995). The

experimental results demonstrate close to linear speedups with up to 12 workers.

An extensive body of work investigates parallelising the “Adaptive Search” (Diaz

2001) local search method for constraint solving. A multi-walk approach on the

magic squares, perfect squares, and all-interval series problems shows increasing

speedups with more cores can be obtained, e.g. more than 100 times speedup with

256 cores (Caniou et al. 2011). Speedups do flatten with the number of cores, and

it seems that the smaller the benchmark, the faster the flattening occurs (Caniou

et al. 2011). Even better results are obtained on the Costas Array Problem. In a

two-dimensional Costas Array, cells must be filled in a square grid, such that there

is exactly one filled cell in each row and column, and no two vectors between

two filled cells are the same (Drakakis 2006). A pure multi-walk approach gave

almost linear improvement in search up to as many as 8,192 cores (Caniou et al.

2015). This shows that foregoing the ability to share information between search

processes can lead to almost perfect speedups. Parallelising Adaptive Search has

been explored on different multi-core architectures. We mentioned in Section 3.4

work on using Adaptive Search using GPUs (Arbelaez and Codognet 2014). The Cell

Broadband Engine (used in the Sony Playstation 3) contains one controlling core

and a number of subsidiary ones called Synergistic Programming Elements (SPEs).

Adaptive Search was parallelised effectively in this context on some benchmark

problems, although scalability might be limited by the small local stores on the

SPEs. Using the Partitioned Global Address Space programming language X10, a

multi-walk approach led to good results with increasing numbers of cores, again

flattening off except in the case of Costas Arrays (Munera et al. 2014). Munera et al.

(2014) improved results further by introducing cooperation between the separate

processes, and this was successfully used to solve hard instances of stable marriage

problems with ties and incomplete lists (Munera et al. 2015).

In the context of parallel local search for SAT, Arbelaez and Hamadi (2011)

proposed an improvement to the standard restart strategy employed to diversify

search. Each thread uses a distinct local search algorithm and all threads employ

restarts. Threads share the best assignment they have found so far (with the cost, i.e.

the number of unsatisfied clauses). When restarting a thread, rather than restarting

at a random assignment, the best assignments of other threads are synthesised into

a single assigment. They show this cooperation technique improves performance in

experiments with four and eight threads. Arbelaez and Codognet (2012) studied

the same cooperation strategy with higher degrees of parallelism. They scaled their

approach up to 256 threads using independent groups of up to 16 cooperating

solvers. There is no communication between groups, and in this case each thread

ran the same local search algorithm. The approach is evaluated on random SAT

instances from a recent SAT competition, and the reported speedups are sub-linear.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


740 I. P. Gent et al.

For example, with 256 threads where groups of four threads cooperate, the paper

reports a speedup of 5.95 times compared to a single thread.

A later publication by Arbelaez and Codognet (2013) contains a much broader

experiment with both structured and random SAT instances drawn from a recent

SAT competition. In this case a pure multi-walk approach is used, i.e. there is

no cooperation between threads. In common with Arbelaez and Codognet (2012)

speedups on random instances are poor. However, for some structured instances they

report near-linear and even super-linear speedups with 512 threads when compared

to 16 threads.

A side-benefit of using the multi-walk approach for parallel local search is that

it can increase the robustness of timing of local search: with multiple independent

walks, the variability in the time to find a first solution is greatly reduced (Diaz

et al. 2012).

5.3 Search order and heuristics

The issue of parallelism disrupting the search order is well-known in conventional

branch and bound search, where non-linear speedups are called anomalies: Lai and

Sahni (1984) and Li and Wah (1986) explain the phenomenon, and also show how

to guarantee that absolute slowdowns will never occur in a synchronous setting.

This is extended to an asynchronous setting, which more closely resembles common

modern hardware, by de Bruin et al. (1995). Lai and Sahni suggest that ‘anomalous

behaviour will be rarely witnessed in practice’, however this claim relies on a set of

assumptions that are often broken by modern CP solvers.

Chu, Schulte and Stuckey (2009) refine the work stealing approach, introducing

confidence-based work stealing. The authors point out that work stealing not only

allows load balancing, but also influences the order in which the search tree is

explored. In earlier work stealing approaches (such as Michel et al. (2007)) the

strategy was usually to steal from as close to the root as possible. The paper

includes examples showing how it can sometimes be far better to steal ‘left and low’

(i.e. as deep as possible) but sometimes stealing high can be better. The message of

course is that it should be dynamic. They claim that the presence of a branching

heuristic complicates the process of finding a good stealing strategy. Consequently

the proposal is to steal based on confidence: the estimated distribution of solution

densities among the children of a node. When doing binary branching, this is

equivalent to confidence in the heuristic (since it chooses that left branch). Ideally

the user should provide a confidence function for the heuristic, but the authors

show how a simple substitute can still work when this is not available. Confidence

values are updated during search. However, in practice they found that stealing too

low tends to increase the communication cost. Hence, they set a bound above the

average fail depth below which search nodes cannot be stolen. Experimental results

demonstrate the effectiveness of the technique, ranging from speedups of seven times

to superlinear on the benchmarks in the paper.

The same observation is brought back to a conventional branch and bound setting

by McCreesh and Prosser (2015), where constraint programming terminology is

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 741

used to explain observed behaviour in several different parallel maximum clique

algorithms. Different work distribution strategies are compared, with the results

showing that the interaction between search order and work splitting often has

more of an effect on the results than work balance. Speedups are usually at least

close to linear on 64 cores, with super-linear speedups being common.

Xie and Davenport (2010) describe an attempt to exploit an IBM Blue Gene

supercomputer, which has large numbers of relatively slow processors. They use

a form of parallel limited discrepancy search, where a master worker allocates

work to other processes initially, and where workers generate additional parallelism

when they believe they are exploring a large subtree. The exact interaction with

the discrepancy ordering is not described. Results on resource-constraint project

scheduling benchmarks suggest roughly linear scalability up to 256 processors, and

sometimes up to 1,024 processors, but Xie and Davenport believe that multiple

masters would be required for larger processor counts.

Distributed parallel discrepancy search is investigated further by Moisan et al.

(2013; 2014), who investigate a problem involving integrated planning and scheduling

for the forest-products industry. Each worker is independent, recomputing only the

subset of the search tree containing the leaf nodes allocated to that worker. This

would usually be a substantial overhead, but in their setting, leaf nodes of the search

tree are much more expensive than internal nodes, since a full linear program is

solved at each leaf. Search is not run until completion, but the solutions obtained

using 4,096 workers by either form of discrepancy search are of much higher quality

than conventional parallel backtracking search, demonstrating the importance of

controlling the interaction between parallelism and value-ordering heuristics in this

setting.

5.4 Heuristic-ignorant decompositions

A prototype for distributed depth-first search based upon splitting and work-stealing

is described by Jaffar et al. (2004). To reduce contention, they use a heuristic to

attempt to steal the largest remaining job. Results are presented on a selection

of binary integer linear programming models, showing roughly linear scalability

up to 64 processors. The experiments consider only enumeration and optimisation

problems, to ‘avoid any effects such as superlinear speedup’; the importance of

bounds-sharing for optimisation problems is noted.

Kotthoff and Moore (2010) describe an approach to distributed search with

no direct communication between workers. The approach assumes a job queueing

system is available as a substrate. A standard solver is wrapped in a script that does

the following:

(1) Search until a time limit is reached or completion.

(a) If solution found then terminate all jobs and return solution.

(b) If search space completed then halt.

(c) Otherwise, split the domain of the current variable (i.e. the variable about to

be branched when the solver timed out) into n parts (where n is a constant).

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


742 I. P. Gent et al.

(i) To each slice add a set of restart nogoods that rules out the search space

explored so far in the current solver.

(ii) Submit each slice to the job server.

Hence, the technique is similar to work stealing but less dynamic—work cannot be

stolen until a time limit is reached. The novelty in this approach is twofold: using a

job server to avoid implementing distribution, fault tolerance, etc. and using restart

nogoods rather than recomputation to rule out previously explored search. The

former should be self-explanatory. The latter may not be: recomputation implicitly

assumes that the parent will continue to search and it is giving away only a part

of its search space. This technique works instead by the parent giving up all its

search space and splitting itself into n parts. Restart nogoods ensure that the child

processes are together given the remaining part of the parent search space, and made

to search different portions of it by the splitting constraints. It was not determined

if this approach is better than recomputation in practice. The proposed approach

is more flexible than recomputation, in the sense that the children are allowed to

search the remaining space in any order, instead of always having to stick to the

early part of the parent’s variable ordering. This allows each solver to use a different

search strategy, but no experiments were carried out doing this.

Machado et al. (2013) describe a distributed work-stealing approach built on top

of MPI and pthreads, using a mix of local and global work pools. Results on the

N-Queens enumeration problem with n = 17 show roughly linear speedups up to

512 processors, whilst results on a single quadratic assignment problem optimisation

instance are similar. Machado et al. note that their system has a non-deterministic

execution time, since the amount of search depends upon when an optimal solution

is found.

Constraint solvers often employ restarts (where search is started again with a

different heuristic ordering) to allow the solver to break out of large subtrees that

contain no solutions. Cire et al. (2014) noted that many constraint solvers do not

learn during search, so very little or no information is retained when search is

restarted, therefore the search following a restart may be performed in parallel with

the search before the restart. In this way they obtained near-linear speedups with

up to 32 threads.

Fischetti et al. (2014) present a somewhat different splitting technique. A search

tree is evaluated until sufficiently many open nodes are generated, and then workers

use a deterministic rule to partition open nodes between them. This approach

requires nearly no communication between workers. An implementation in Gecode

shows speedups approaching linear using 64 cores. The authors state that since

they are ‘interested in measuring the scalability of our method, we considered only

instances which are either infeasible or in which we are required to find all feasible

solutions (the parallel speedup for finding a first feasible solution can be completely

uncorrelated to the number of workers, making the results hard to analyze)’. The

possibility that scalability could be less important than search order is not considered.

Malapert et al. (2016) describe an approach they call Embarrassingly Parallel

Search. The idea is to decompose a problem semi-statically using a depth-bounded

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 743

depth-first search, creating more subproblems than workers, and then to distribute

the subproblems to the workers from a queue. The authors show that if sufficiently

many subproblems are created (30 times the number of workers is suggested), and

if it is ensured that these subproblems are not trivially detected as inconsistent,

then the balance problem is addressed. Results on optimisation and enumeration

problems are presented using up to 40 cores on a single machine, and up to 512 cores

across a data centre, approaching linear speedups. Results for decision problems are

not presented.

Palmieri et al. (2016) also use the Embarrassingly Parallel Search decomposition

for heuristic selection, as an alternative to portfolios. They perform the decom-

position, use parallelism to try many variations of variable and value-ordering

heuristics on a small subset of the decomposed subproblems, and then select the

most promising choice for the remainder of the search. Results are reported on a

wide range of enumeration and optimisation problems, showing that the technique

beats a multi-armed bandit portfolio.

Menouer et al. (2016) show that starting with a static decomposition, and then

switching to dynamic work-stealing, yield better results than either technique on its

own when parallelising the OR-Tools solver. Results using two twelve core machines

are mixed, with speedups ranging from seven to ten.

5.5 Learning in parallel search

In this section, we cover approaches that parallelise the search process while also

learning implied constraints that are shared among workers. The bulk of this

work comes from the SAT community where CDCL SAT solvers have been very

successful and dominate the field. Martins et al. (2012) have written a detailed survey

of approaches to parallelisation in SAT, and Hölldobler et al. (2011) wrote a short

survey of recent developments in complete parallel SAT solvers. An earlier survey

by Singer (2006) has been largely superseded by Martins et al. (2012).

Martins et al. (2012) identified multi-agent search and search-space splitting as

the two main approaches to parallel SAT solving. We covered multi-agent search in

Section 4.1, and we cover search-space splitting here. We select a small number of

the most interesting contributions, and refer the reader to the earlier surveys (Singer

2006; Hölldobler et al. 2011; Martins et al. 2012) for more details.

Guiding paths are a key concept in parallel search for SAT. Guiding paths are

almost identical to semantic paths (described above) in CP. The other important

concept is clause sharing, where the key is to avoid sharing all learned clauses by

heuristically selecting the most effective ones, as described in Section 4.1.

GridSAT (Chrabakh and Wolski 2006) is an early example of a parallel CDCL

SAT solver. It is based on the sequential solver Chaff, and is designed to run on

a heterogeneous network of computers so it makes no use of shared memory. The

search is distributed using guiding paths. Each thread is able to split its portion

of the search space into two pieces at any time, generating a new guiding path

from the topmost unexplored search node. The approach is similar to work stealing

as employed by some CP solvers. In addition, learned clauses are shared between

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


744 I. P. Gent et al.

threads when their length is less than a limit that can be fixed or dynamically

adjusted during search. Reported speedups are sub-linear for the most part, however

the authors report that a number of previously unsolved SAT instances are solved

by GridSAT.

Chu and Stuckey (2008) presented PMiniSat, a parallelisation of MiniSat 2.0

employing work stealing. The solver uses several techniques for sharing clauses

among threads. First, all clauses with length beneath a certain threshold are shared

among all threads; this technique has been used previously, for example by ManySat

(Hamadi et al. 2009b). Second, a novel measure called effective length is used: the

effective length of a learned clause is evaluated per worker, and it is the number

of literals in the clause that are not false under the current assignment. A small

effective length indicates that a small number of literals need to be set to false before

the clause unit propagates. Only clauses whose effective length is less than a given

threshold are accepted by other threads. Hence, clauses are preferentially shared

between pairs of workers that are searching similar areas. Third, a worker is able to

store clauses in a suspended state until it is working on another item of work where

the shared clause is unit. Unfortunately, the details of this are very sketchy and

no implementation is described. The similarities between PMiniSat and multi-agent

search for SAT are clear. Finally, Hamadi et al. (2011) showcase an interesting

variation on this theme: by careful use of barrier synchronisation, it is possible to

preserve some of the deterministic aspects of sequential search in a parallel setting,

even when sharing learned clauses.

Schubert et al. (2009) presented PaMiraXT, a hybrid multi-core and multi-

computer SAT solver. On each computer it uses all available cores. The system

solves a single SAT instance using guiding paths to differentiate the search on each

worker. The workers are guaranteed to search disjoint parts of the search space.

Work stealing is employed when a worker completes its search. Once again, a key

concern is how to share clauses efficiently and effectively. On each computer, the

solvers all share a single clause database and they all propagate all the clauses of the

other processes. The clauses are all stored in a shared read only memory segment

and the workers keep their watches in their own memory space to avoid contention.

To share work within one computer, there is a master process that steals work and

passes it to idle workers. Work stealing is performed as close to the root as possible.

Between computers, the workers share clauses of length 3 and under. The work

stealing between computers is elegant. The same mechanism is used as within a

computer, i.e. a process requests some work from the master, but instead of solving

it directly it sends the work to another computer. Experiments clearly demonstrate

that larger numbers of cores reduce the wallclock time, however the total time spent

by all cores is not provided and so it is unknown whether PaMiraXT can achieve a

linear or super-linear speed-up.

Cube and Conquer (Heule et al. 2011) is a complementary approach to search

space splitting. The search space is divided into thousands or possibly millions of

fragments (named cubes) using strong lookahead heuristics to guide the choice of

variables to assign. The cubes are divided among the workers and each solved

independently using a CDCL algorithm. Thus, Cube and Conquer is a hybrid of

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 745

strong lookahead and CDCL. The Cube and Conquer strategy is used by Treengeling

(Biere 2013), one of two parallel versions of the highly successful SAT solver

Lingeling. Treengeling came first in the parallel track of the SAT 2016 competition.

The Cube and Conquer approach has been successfully applied to a very challeng-

ing problem in mathematics named the Boolean Pythagorean Triples Problem (Heule

et al. 2016; Heule and Kullmann 2017). A Pythagorean triple is a set of three natural

numbers {a, b, c} such that a2 + b2 = c2. The problem is to partition a set of natural

numbers {1 . . . n} into two parts such that neither part contains a Pythagorean triple.

For a given value of n the problem encodes straightforwardly into SAT, and Cube

and Conquer was applied to prove that {1 . . . 7824} can be partitioned whereas

{1 . . . 7825} cannot. Solving both instances (n = 7824 and n = 7825) took 35,000

hours of CPU time on a cluster with 800 cores, enabling the instances to be solved

in about 2 days.

Ehlers and Stuckey (2016) parallelised a lazy clause generation constraint pro-

gramming solver. Lazy clause generation solvers employ SAT-style learning with

CP propagation algorithms. They demonstrate that a hybrid approach (combining

SAT-style multi-agent search with CP-style parallel search) provides the best results,

although it does not scale as smoothly as classical CP parallel search. When

finding an optimal solution, speedups are often super-linear, whereas when proving

optimality or unsatisfiability, speedups are usually sub-linear.

Dovier et al. (2016) implemented an entire ASP solver on a GPU, using nVidia’s

CUDA framework. The results are extremely mixed: the sequential CLASP solver

on a CPU vastly outperforms the GPU solver. However, CLASP with heuristics

disabled is occasionally comprehensively beaten by the GPU solver (which does

not implement heuristics). It is not clear whether these successes are due to search

ordering coincidences that heuristics would address, or whether the GPU solver

would be genuinely competitive if it implemented heuristics itself. Nonetheless, these

results demonstrate that it is at least possible to run complex search algorithms on

a GPU, even if it is not clear whether doing so will ever be beneficial.

Finally, we refer to Hamadi and Wintersteiger’s seven challenges in parallel SAT

(2013). The second challenge is the most relevant here: to develop improved dynamic

decompositions, either splitting the search space or the instance. Cube and Conquer

employs static decomposition, however its success on very difficult instances of the

Boolean Pythagorean Triples Problem (one satisfiable, one unsatisfiable), and its first

place in the SAT competition suggests that it addresses the challenge well.

5.6 Richer search trees

An early work on parallel search is due to Bill Clocksin’s DelPhi principle (Clocksin

1987). The context here is Prolog, which explores AND-OR trees, which are richer

than the OR-trees common in constraint solving. The motivation is to avoid the

overhead incurred by having a shared memory or copying computation state between

processors. The central idea is to associate a processor with each path through the

search tree, hence avoiding overhead due to transferring state between processors

mid-path. However, this seems like a false economy as it results in duplicated work

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


746 I. P. Gent et al.

(consider two branches that differ only at the very bottom). Usually we do not have

enough processors to allocate one to each of the possible paths. Suppose we have n

processors and we explore all log2n paths. If we find a solution, terminate otherwise

consider the log2k-bit extensions to these paths (where k is the number of processors

we have left—there is some art and strategy to this as k will continue to increase as

the original log2n bit paths are explored) and continue. In fact to continue DelPhi

search starts from scratch again in order to be in the right state (the paths are stored

very compactly as bit strings).

A quite different approach is taken by Montelius and Ali (1996) in their par-

allel implementation of the Agents Kernel Language (AKL), a constraint logic

programming language. The execution of AKL involves exploring AND-OR trees.

Montelius and Ali propose a parallel implementation for shared-memory multi-

processors, where AND and OR tasks are distributed in a uniform way. Unlike

DelPhi, intensive use is made of shared memory to move tasks from one worker to

another. The method of task distribution is similar to work stealing: a worker with

no remaining tasks interrupts another worker and takes a number of tasks, possibly

from multiple levels of the tree.

Much more recently, Bergman et al. (2014) worked on decision diagram search

trees. When decision diagrams become too wide, usually a number of subproblems

are created and evaluated sequentially. Instead, in this work they are evaluated in

parallel. Nearly linear speedups are obtained on maximum independent set instances

using up to 256 cores, but it is worth noting that not a single one of these results

with 256 cores beats a better sequential algorithm with one core (McCreesh and

Prosser 2015).

Finally et al. (2017) describe a parallelisation of AND-OR search trees for genetic

linkage applications across a grid computing system based around the CondorHT

framework. This system does not allow dynamic communication between nodes,

and so considerable effort is spent to obtain a good decomposition upfront. Otten

and Dechter demonstrate a machine learning approach, which is able to predict

a suitable partitioning depth. They also discuss redundancies caused by work

duplication, which are necessary due to the inability to share information during

search. Their experiments scale to a cluster of 27 machines, each with 12 cores

(for a total of 324 cores); speedups vary considerably, but are often comfortably

over 100.

6 Algorithm portfolios

Algorithm portfolios were originally conceived (Huberman et al. 1997) as a means

to exploit and guard against the variability in performance found in combinatorial

search algorithms with a stochastic component, for example in the heuristic selection

of variables and values to guide the search. Huberman et al. (1997) characterise the

‘reward’ of such an algorithm as its mean performance, while its ‘risk’ is the

variance in that performance. Taking inspiration from Economics, they present a

method for allocating computational resources across a portfolio of algorithms each

independently solving the same problem instance so as to balance risk and reward

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 747

on an ‘efficient frontier’. Gomes and Selman (2001) follow a similar approach to

consider how to assign algorithm instances (including multiple instances of the same

algorithm) across a number of processing units, demonstrating empirically that

the ideal portfolio composition varies according to the number of processing units

available.

The simplest method of parallel portfolio construction is the hand-selection of a set

of solvers, combined with a scheme for how these solvers should distributed among

the available computing resources. This approach is taken by ppfolio (Roussel 2011),

which employs five SAT solvers, originally on the basis of their performance of the

2009 SAT solving competition and then subsequently on more recent competitions,

and specifies the combination of these solvers to run for a given number of available

cores. A similar approach is taken by pfolioUZK (Wotzlaw et al. 2012), which

combines both complete and incomplete SAT solvers. ppfolio-like portfolios are

termed Plain Parallel Portfolios by Aigner et al. (2013), who perform an empirical

analysis of their performance and scalability. A theoretical analysis of the success

of the plain parallel approach is given by Hyvärinen and Manthey (2012). Inspired

by ppfolio, aspeed (Hoos et al. 2015) automates the construction of portfolios

from benchmark data for a particular class of problems. The task of allocating

time slices on processing units to solvers so as to minimise timeouts with respect

to the benchmark data is formulated and solved as an answer set programming

problem, enabling the automated production of portfolios with non-uniform resource

allocation.

An alternative method of portfolio construction is on a per-instance basis,

depending upon the nature of the instance to be solved. In this approach, problem

features thought to be useful performance predictors are selected and a performance

model is built based upon these features and a set of training problem instances.

The model is then used to make selection and resource allocation decisions based

on the features of an unseen instance. This method can be viewed as an example of

the Algorithm Selection Problem (Rice 1976).

In the sequential context, a prominent early example of this approach is SATzilla

(Xu et al. 2008), which learns an empirical hardness model that predicts the runtime

for an algorithm on an instance based on the instance’s features. p3S (Malitsky

et al. 2012), a parallel version of the earlier sequential 3s (Kadioglu et al. 2011),

employs the same set of features as SATzilla. Measured via Euclidean distance in

the normalised feature space, p3S uses the k nearest neighbours in the training set

to the instance to be solved to decide the composition of a parallel portfolio, which

may contain both sequential and parallel SAT solvers. Also following SATzilla, this

portfolio is supplemented by a statically decided parallel solver schedule designed to

consume the first 10% of available run-time in an attempt to avoid expensive per-

instance feature computation. Both decisions are formulated and solved via Integer

Programming. CSHC (Malitsky et al. 2013a) employs the same static schedule as

3S for the first 10% of available run time, followed by an instance-based selection

made by matching the incoming instance against statically formed clusters of training

instances. In this case, clustering is performed in a hierarchical manner, incorporating

cost information. A parallel version of CSHC ran in the 2013 SAT competition

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


748 I. P. Gent et al.

(Malitsky et al. 2013b) deploying three separate instances of CSHC, each trained on

a different category of the competition instances. Lindauer et al. (2015) demonstrate

how to extend existing sequential algorithm selectors to rank candidates so as to

construct a parallel portfolio from the top-ranked solvers. They also use aspeed to

compute parallel pre-solving schedules.

In Constraint Programming, CPHydra (O’Mahony et al. 2008) employs case-

based reasoning, storing feature-annotated instances and performance data in a case

base, then retrieving the most similar case to an unseen problem instance. Yun

and Epstein (2012) extend CPHydra to work in parallel, employing heuristics to

create parallel portfolios from single-processor portfolios. Similarly to 3s, sunny-cp

(Amadini et al. 2015b) employs a k nearest neighbour approach to select relevant

training instances, based upon which solvers are selected, allocated a certain runtime

and scheduled. sunny-cp2 (Amadini et al. 2015a) generates a parallel portfolio

on c cores from a sunny-cp schedule by allocating to the first c − 1 cores the

solvers scheduled with the greatest allocated time and allocating the remainder to

the final core so as to preserve their original schedule. sunny-cp2 can also solve

constrained optimisation problems by supporting bounds communication between

solvers.

Bordeaux et al. (2009) highlight the importance of sources of variability when

the number of processing units is large. They identify three desirable qualities:

scalable (different settings will result in different runtimes); favourable (varying

from the default does not systematically worsen performance); solver-independent

(exploiting the features of individual solvers prohibits re-usability). One such source

of variability is in the configuration space of modern constraint or SAT solvers. The

ACPP system (Lindauer et al. 2017) exploits this opportunity to construct parallel

portfolios automatically from configurations of individual sequential solvers, sets

of sequential solvers, or a combination of sequential and parallel solvers. Proteus

(Hurley et al. 2014) provides further variety in the constituents of a portfolio

by considering different encodings of a given problem (in this case into SAT)

and different potential solvers for each. Similarly, Akgün et al. (2010) discuss

the automated refinement via Conjure (Akgün et al. 2011; Akgün 2014; Wetter

et al. 2015), which captures patterns in constraint modelling such as symmetry

breaking (Frisch et al. 2007a; Akgün et al. 2013; Akgün et al. 2014) and matrix

modelling (Flener et al. 2001; Flener et al. 2002), of multiple constraint models from

an abstract specification in the Essence (Frisch et al. 2005; Frisch et al. 2007b;

Frisch et al. 2008) language in order to form constraint model portfolios. Savile

Row (Nightingale et al. 2017) prepares the generic constraint models produced

by Conjure for particular constraint solvers as well as output to SAT. In doing

so it applies a number of optional reformulations, such as common sub-expression

elimination (Gent et al. 2008; Nightingale et al. 2014; Nightingale et al. 2015) and the

addition of implied constraints (Colton and Miguel 2001; Frisch et al. 2004; Charnley

et al. 2006), which could serve as an additional source of diversity in portfolio

construction.

For further reading on algorithm selection and algorithm portfolios, see extensive

surveys by Kotthoff (2014) and Smith-Miles (2009).

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 749

7 Conclusion

We have presented a survey of the literature on parallel constraint solving. There is

a great variety of interesting work in this area, and we divided it into four broad

categories: parallel consistency and propagation, parallelising the search process,

multi-agent search, and portfolios. In each area, there are challenges, such as

Kasif’s (1990) proof of the P-completeness of establishing AC. Challenges remain

in parallel SAT solving also (Hamadi and Wintersteiger 2013). However, recent

results with work stealing, partitioning of the search space, portfolio approaches,

and embarrassingly parallel search give considerable cause for optimism.

Multi-core computing is now the norm. Whether we would prefer the comfort of

a faster single-processor world or not; therefore, we must embrace this paradigm.

There seems to be little overall guidance that can be given on how best to exploit

multi-core computers to speed up constraint solving. We hope at least that this

survey will provide useful pointers to future researchers wishing to correct this

situation.

Acknowledgements

We thank Christopher Jefferson for a number of useful discussions, and the reviewers

of this journal for their suggestions, which greatly improved this paper.

References

Aigner, M., Biere, A., Kirsch, C. M., Niemetz, A. and Preiner, M. 2013. Analysis of

portfolio-style parallel SAT solving on current multi-core architectures. In POS@ SAT.

28–40.

Akgün, Ö. 2014. Extensible Automated Constraint Modelling via Refinement of Abstract

Problem Specifications. University of St Andrews.

Akgün, Ö., Frisch, A. M., Gent, I. P., Hussain, B. S., Jefferson, C., Kotthoff, L.,

Miguel, I. and Nightingale, P. 2013. Automated symmetry breaking and model

selection in CONJURE. In International Conference on Principles and Practice of Constraint

Programming. Springer, 107–116.

Akgün, Ö., Gent, I. P., Jefferson, C., Miguel, I. and Nightingale, P. 2014. Breaking

conditional symmetry in automated constraint modelling with CONJURE. In Proc. of the

Twenty-first European Conference on Artificial Intelligence. IOS Press, 3–8.

Akgün, Ö., Miguel, I. and Jefferson, C. 2010. Refining portfolios of constraint models

with CONJURE. In Proc. of the 16th International Conference on Principles and Practice

of Constraint Programming, Doctoral Programme Proceedings. 1–6.

Akgün, Ö., Miguel, I., Jefferson, C., Frisch, A. M. and Hnich, B. 2011. Extensible

automated constraint modelling. In Proc. of the 25th AAAI Conference on Artificial

Intelligence. AAAI Press, 4–11.

Amadini, R., Gabbrielli, M. and Mauro, J. 2015a. A multicore tool for constraint solving.

In Proc. of the 24th International Joint Conference on Artificial Intelligence. 232–238.

Amadini, R., Gabbrielli, M. and Mauro, J. 2015b. SUNNY-CP: A sequential CP portfolio

solver. In Proc. of the 30th Annual ACM Symposium on Applied Computing. ACM, 1861–

1867.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


750 I. P. Gent et al.

Arbelaez, A. and Codognet, P. 2012. Massively parallel local search for SAT. In

Proc. of the 24th IEEE International Conference on Tools with Artificial Intelligence.

57–64.

Arbelaez, A. and Codognet, P. 2013. From sequential to parallel local search for SAT. In

Evolutionary Computation in Combinatorial Optimization. 157–168.

Arbelaez, A. and Codognet, P. 2014. A GPU implementation of parallel constraint-based

local search. In Proc. of 22nd Euromicro International Conference on Parallel, Distributed

and Network-Based Processing. IEEE, 648–655.

Arbelaez, A. and Hamadi, Y. 2011. Improving parallel local search for SAT. In Proc. of

International Conference on Learning and Intelligent Optimization. 46–60.

Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M. and Piette, C. 2012. Revisiting

clause exchange in parallel SAT solving. In Proc. of the 15th International Conference on

Theory and Applications of Satisfiability Testing. 200–213.

Audemard, G. and Simon, L. 2014. Lazy clause exchange policy for parallel SAT solvers.

In Proc. of the 17th International Conference on Theory and Applications of Satisfiability

Testing. 197–205.

Bader, D. A., Hart, W. E. and Phillips, C. A. 2005. Parallel algorithm design for branch

and bound. In Tutorials on Emerging Methodologies and Applications in Operations Research,

vol. 76, Chap. 5, Harvey J. Greenberg, Ed. International Series in Operations Research &

Management Science. Springer, New York, NY, USA, 1–44.

Balyo, T., Sanders, P. and Sinz, C. 2015. HordeSat: A massively parallel portfolio SAT

solver. In Proc. of International Conference on Theory and Applications of Satisfiability

Testing. 156–172.

Baudot, B. and Deville, Y. 1997. Analysis of distributed arc-consistency algorithms. Tech.

Rep. RR-97-07, Université catholique de Louvain.

Bergman, D., Cire, A. A., Sabharwal, A., Samulowitz, H., Saraswat, V. and van

Hoeve, W.-J. 2014. Parallel combinatorial optimization with decision diagrams. In Proc.

of International Conference on AI and OR Techniques in Constriant Programming for

Combinatorial Optimization Problems. Springer, 351–367.

Biere, A. 2010. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech. Rep.

10/1, FMV Reports Series. Institute for Formal Models and Verification, Johannes Kepler

University.

Biere, A. 2013. Lingeling, plingeling and treengeling entering the SAT competition 2013.

In Proc. of SAT Competition 2013, A. Balint, A. Belov, M. Heule and M. Järvisalo, Eds.

Vol. B-2013-1 of Department of Computer Science Series of Publications B. University of

Helsinki, 51–52.

Bordeaux, L., Hamadi, Y. and Samulowitz, H. 2009. Experiments with massively

parallel constraint solving. In Proc. of the 21st International Joint Conference on Artificial

Intelligence. 443–448.

Campeotto, F., Dal Palù, A., Dovier, A., Fioretto, F. and Pontelli, E. 2014a. Exploring

the use of GPUs in constraint solving. In Proc. of the 16th International Symposium on

Practical Aspects of Declarative Languages. 152–167.

Campeotto, F., Dovier, A., Fioretto, F. and Pontelli, E. 2014b. A GPU implementation

of large neighborhood search for solving constraint optimization problems. In Proc. of the

21st European Conference on Artificial Intelligence. 189–194.

Caniou, Y., Codognet, P., Diaz, D. and Abreu, S. 2011. Experiments in parallel constraint-

based local search. In Proc. of Evolutionary Computation in Combinatorial Optimization:

11th European Conference, Torino, Italy, April 27–29, 2011, 96–107.

Caniou, Y., Codognet, P., Richoux, F., Diaz, D.and Abreu, S. 2015. Large-scale parallelism

for constraint-based local search: the costas array case study. Constraints 20, 1, 30–56.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 751

Charnley, J., Colton, S. and Miguel, I. 2006. Automatic generation of implied constraints.

In Proc. of the 17th European Conference on Artificial Intelligence. Vol. 141, 73–77.

Chrabakh, W. and Wolski, R. 2006. GridSAT: A system for solving satisfiability problems

using a computational grid. Parallel Computing 32, 9, 660–687.

Chu, G., Schulte, C., and Stuckey, P. 2009. Confidence-based work stealing in parallel

constraint programming. In Principles and Practices of Constraint Programming. Springer,

226–241.

Chu, G., Stuckey, P. J. and Harwood, A. 2008. PMiniSAT: A parallelization of MiniSAT

2.0. In SAT Race 2008.

Cire, A. A., Kadioglu, S. and Sellmann, M. 2014. Parallel restarted search. In Proc. of the

28th AAAI Conference on Artificial Intelligence, 842–848.

Clearwater, S. H., Huberman, B. A. and Hogg, T. 1991. Cooperative solution of constraint

satisfaction problems. Science 254, 1181–1183.

Clocksin, W. 1987. Principles of the Delphi parallel inference machine. The Computer

Journal 30, 5, 386–392.

Colton, S. and Miguel, I. 2001. Constraint generation via automated theory formation.

In Proc. of the 7th International Conference on Principles and Practice of Constraint

Programming. Springer, 575–579.

Crainic, T. G., Le Cun, B. and Roucairol, C. 2006. Parallel branch-and-bound algorithms.

In Parallel Combinatorial Optimization. John Wiley & Sons, Hoboken, NJ, USA, 1–28.

Dal Palù, A., Dovier, A., Formisano, A. and Pontelli, E. 2015. CUD@SAT: SAT solving

on GPUs. Journal of Experimental & Theoretical Artificial Intelligence 27, 293–316.

Davenport, A. J., Tsang, E. P. K., Wang, C. J. and Zhu, K. 1994. GENET: A connectionist

architecture for solving constraint satisfaction problems by iterative improvement. In Proc.

of the 12th National Conference on Artificial Intelligence. 325–330.

de Bruin, A., Kindervater, G. A. P. and Trienekens, H. W. J. M. 1995. Asynchronous

parallel branch and bound and anomalies. In Proc. of 2nd International Workshop Parallel

Algorithms for Irregularly Structured Problems, Lyon, France, Sep. 4–6, 1995, A. Ferreira

and J. D. P. Rolim, Eds. Lecture Notes in Computer Science, vol. 980. Springer, 363–377.

Diaz, D. 2001. Yet another local search method for constraint solving. In Proc. of Stochastic

Algorithms: Foundations and Applications. Lecture Notes in Computer Science, vol. 2264,

73–90.

Diaz, D., Abreu, S. and Codognet, P. 2012. Targeting the cell broadband engine for

constraint-based local search. Concurrency and Computation: Practice and Experience 24, 6,

647–660.

Dovier, A., Formisano, A., Pontelli, E. and Vella, F. 2016. A GPU implementation

of the ASP computation. In Proc. of Practical Aspects of Declarative Languages – 18th

International Symposium. 30–47.

Drakakis, K. 2006. A review of Costas arrays. Journal of Applied Mathematics 2006, 32.

Ehlers, T. and Stuckey, P. J. 2016. Parallelizing constraint programming with learning. In

Proc. of Integration of AI and OR Techniques in Constraint Programming – 13th International

Conference, Banff, AB, Canada, May 29–June 1, 2016, C. Quimper, Ed. Lecture Notes in

Computer Science, vol. 9676. Springer, 142–158.

Faltings, B. 2006. Distributed constraint programming. In Handbook of Constraint

Programming, Foundations of Artificial Intelligence, Francesca Rossi, Peter van Beek and

Toby Walsh, Eds., 699–729.

Fioretto, F., Le, T., Pontelli, E., Yeoh, W. and Son, T. C. 2015. Exploiting GPUs in solving

(distributed) constraint optimization problems with dynamic programming. In Proc. of

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


752 I. P. Gent et al.

the 21st International Conference on Principles and Practice of Constraint Programming.

121–139.

Fioretto, F., Le, T., Yeoh, W., Pontelli, E. and Son, T. C. 2014. Improving DPOP with

branch consistency for solving distributed constraint optimization problems. In Proc. of

the 20th International Conference on Principles and Practice of Constraint Programming.

307–323.

Fioretto, F., Yeoh, W. and Pontelli, E. 2016. A dynamic programming-based MCMC

framework for solving DCOPs with GPUs. In Proc. of the 22nd International Conference

on Principles and Practice of Constraint Programming. 813–831.

Fischetti, M., Monaci, M. and Salvagnin, D. 2014. Self-splitting of workload in parallel

computation. In Proc. of Integration of AI and OR Techniques in Constraint Programming

– 11th International Conference, Cork, Ireland, May 19–23, 2014, H. Simonis, Ed. Lecture

Notes in Computer Science, vol. 8451. Springer, 394–404.

Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J. and Walsh, T.

2001. Symmetry in matrix models. In Proc. of SymCon’01, the 1st International Workshop

on Symmetry in CSPs.

Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I. and Walsh, T. 2002.

Matrix modelling: Exploiting common patterns in constraint programming. In Proc. of

the International Workshop on Reformulating Constraint Satisfaction Problems. 27–41.

Freuder, E. C. 1982. A sufficient condition for backtrack-free search. Journal of the

ACM 29, 1, 24–32.

Frisch, A. M., Grum, M., Jefferson, C., Hernández, B. M. and Miguel, I. 2005. The

essence of Essence: A constraint language for specifying combinatorial problems. In Proc.

of the 4th International Workshop on Modelling and Reformulating Constraint Satisfaction

Problems. 73–88.

Frisch, A. M., Grum, M., Jefferson, C., Hernández, B. M. and Miguel, I. 2007a. The

design of Essence: A constraint language for specifying combinatorial problems. In Proc.

of the 20th International Joint Conference on Artificial Intelligence. 80–87.

Frisch, A. M., Harvey, W., Jefferson, C., Hernández, B. M. and Miguel, I. 2008.

Essence: A constraint language for specifying combinatorial problems. Constraints 13, 3,

268–306.

Frisch, A. M., Jefferson, C., Hernández, B. M. and Miguel, I. 2007b. Symmetry in the

generation of constraint models. In Proc. of the International Symmetry Conference.

Frisch, A. M., Jefferson, C. and Miguel, I. 2004. Symmetry breaking as a prelude to implied

constraints: A constraint modelling pattern. In Proc. of the 16th European Conference on

Artificial Intelligence. 171–175.

Frühwirth, T. W., Michel, L. and Schulte, C. 2006. Constraints in procedural and

concurrent languages. In Handbook of Constraint Programming, Foundations of Artificial

Intelligence, Francesca Rossi, Peter van Beek, Toby Walsh, Eds., 453–494.

Furukawa, K. and Ueda, K. 1988. GHC – A language for a new age of parallel programming.

In Proc. of Foundations of Software Technology and Theoretical Computer Science, 8th

Conference, Pune, India, December 21–23, 1988, K. V. Nori and S. Kumar, Eds. Lecture

Notes in Computer Science, vol. 338. Springer, 364–376.

Garcia, V., Debreuve, E. and Barlaud, M. 2008. Fast k nearest neighbor search using

GPU. In Proc. of 2008 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops. 1–6.

Gecode Team. 2006. Gecode: Generic constraint development environment. URL:

http://www.gecode.org

Gent, I. P., Jefferson, C., Miguel, I., Moore, N. C. A., Nightingale, P., Prosser,

P. and Unsworth, C. 2011. A preliminary review of literature on parallel constraint

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 753

solving. In Proc. of PMCS 2011 Workshop on Parallel Methods for Constraint Solving.

499–504.

Gent, I. P., Miguel, I. and Rendl, A. 2008. Common subexpression elimination in automated

constraint modelling. In Proc. of the International Workshop on Modeling and Solving

Problems with Constraints. 24–30.

Gharbi, N. 2015. Using parallel singleton arc consistency to enhance constraint solving. In

Proc. of the 27th IEEE International Conference on Tools with Artificial Intelligence. 17–24.

Gomes, C. P. and Selman, B. 2001. Algorithm portfolios. Artificial Intelligence 126, 1/2,

43–62.

Granvilliers, L. and Hains, G. 2000. A conservative scheme for parallel interval narrowing.

Information Processing Letters 74, 3/4, 141–146.

Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A. and Meisels, A. 2013. Asymmetric

distributed constraint optimization problems. Journal of Artificial Intelligence Research 47,

613–647.

Guo, L., Hamadi, Y., Jabbour, S. and Sais, L. 2010. Diversification and intensification in

parallel SAT solving. In Proc. of 16th International Conference on Principles and Practice

of Constraint Programming. 252–265.

Gustafson, J. L. 1988. Reevaluating Amdahl’s law. Communications of the ACM 31, 5,

532–533.

Hamadi, Y. 2002. Optimal distributed arc-consistency. Constraints 7, 3/4, 367–385.

Hamadi, Y., Jabbour, S., Piette, C. and Sais, L. 2011. Deterministic parallel DPLL. Journal

on Satisfiability, Boolean Modeling and Computation 7, 4, 127–132.

Hamadi, Y., Jabbour, S. and Sais, L. 2009a. Control-based clause sharing in parallel SAT

solving. In Proc. of 21st International Joint Conference on Artificial Intelligence. 499–504.

Hamadi, Y., Jabbour, S. and Sais, L. 2009b. ManySAT: A parallel SAT solver. Journal on

Satisfiability, Boolean Modeling and Computation 6, 245–262.

Hamadi, Y. and Wintersteiger, C. 2013. Seven challenges in parallel SAT solving. AI

Magazine 34, 2, 99–106.

Held, J., Bautista, J. and Koehl, S. 2006. From a Few Cores to Many: A Tera-Scale Computing

Research Overview. Intel White Paper.

Henz, M., Smolka, G. and Würtz, J. 1993. Oz – A programming language for multi-

agent systems. In Proc. of the 13th International Joint Conference on Artificial Intelligence,

Chambéry, France, August 28–September 3, 1993, R. Bajcsy, Ed. Morgan Kaufmann,

404–409.

Heule, M. J., Kullmann, O., Wieringa, S. and Biere, A. 2011. Cube and conquer: Guiding

CDCL SAT solvers by lookaheads. In Haifa Verification Conference. Springer, 50–65.

Heule, M. J. H. and Kullmann, O. 2017. The science of brute force. Communications of the

ACM 60, 70–79.

Heule, M. J. H., Kullmann, O. and Marek, V. W. 2016. Solving and verifying the boolean

pythagorean triples problem via cube-and-conquer. In Proc. of the 19th International

Conference on Theory and Applications of Satisfiability Testing. 228–245.

Hirayama, K. and Yokoo, M. 2005. The distributed breakout algorithms. Artificial

Intelligence 161, 1/2, 89–115.

Hölldobler, S., Manthey, N., Nguyen, V. H., Stecklina, J. and Steinke, P. 2011. A short

overview on modern parallel SAT-solvers. In Proc. of International Conference on Advanced

Computer Science and Information Systems. 201–206.

Hoos, H., Kaminski, R., Lindauer, M. and Schaub, T. 2015. aspeed: Solver scheduling via

answer set programming. Theory and Practice of Logic Programming 15, 1, 117–142.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


754 I. P. Gent et al.

Huberman, B. A., Lukose, R. M. and Hogg, T. 1997. An economics approach to hard

computational problems. Science 275, 5296, 51–54.

Hurley, B., Kotthoff, L., Malitsky, Y. and O’Sullivan, B. 2014. Proteus: A hierarchical

portfolio of solvers and transformations. In Proc. of International Conference on AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer

International Publishing, 301–317.

Hyvärinen, A., Junttila, T. and Niemelä, I. 2009. Incorporating clause learning in grid-based

randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation 6,

223–244.

Hyvärinen, A. E. J. and Manthey, N. 2012. Designing scalable parallel SAT solvers. In

Theory and Applications of Satisfiability Testing – SAT 2012, A. Cimatti and R. Sebastiani,

Eds. Springer, Berlin, Heidelberg, 214–227.

Jaffar, J., Santosa, A. E., Yap, R. H. C. and Zhu, K. Q. 2004. Scalable distributed depth-first

search with greedy work stealing. In Proc. of 16th IEEE International Conference on Tools

with Artificial Intelligence. 98–103.

Järvisalo, M., Heule, M. and Biere, A. 2012. Inprocessing rules. In Proc. of the 6th

International Joint Conference on Automated Reasoning. 355–370.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H. and Sellmann, M. 2011.

Algorithm selection and scheduling. In Proc. of International Conference on Principles and

Practice of Constraint Programming. Springer, 454–469.

Karp, R. M. and Zhang, Y. 1993. Randomized parallel algorithms for backtrack search and

branch-and-bound computation. Journal of the ACM 40, 765–789.

Kasif, S. 1990. On the parallel complexity of discrete relaxation in constraint satisfaction

networks. Artificial Intelligence 45, 3, 275–286.

Kasif, S. and Delcher, A. L. 1994. Local consistency in parallel constraint satisfaction

networks. Artificial Intelligence 69, 1/2, 307–327.

Katsirelos, G., Sabharwal, A., Samulowitz, H. and Simon, L. 2013. Resolution and

parallelizability: Barriers to the efficient parallelization of SAT solvers. In Proc. of the 27th

AAAI Conference on Artificial Intelligence. 481–488.

Kirousis, L. M. 1993. Fast parallel constraint satisfaction. Artificial Intelligence 64, 1, 147–160.

Kotthoff, L. 2014. Algorithm selection for combinatorial search problems: A survey. AI

Magazine 35, 3, 48–60.

Kotthoff, L. and Moore, N. C. A. 2010. Distributed solving through model splitting. In

Proc. of 3rd Workshop on Techniques for Implementing Constraint Programming Systems.

Lai, T. and Sahni, S. 1984. Anomalies in parallel branch-and-bound algorithms.

Communications of the ACM 27, 6, 594–602.

Léauté, T., Ottens, B. and Szymanek, R. 2009. FRODO 2.0: An open-source framework

for distributed constraint optimization. In Proc. of the IJCAI’09 Distributed Constraint

Reasoning Workshop, Pasadena, California, USA, 160–164. URL: https://frodo-ai.tech

Li, G. and Wah, B. W. 1986. Coping with anomalies in parallel branch-and-bound algorithms.

IEEE Transactions on Computers 35, 6, 568–573.

Lindauer, M., Hoos, H. and Hutter, F. 2015. From sequential algorithm selection to parallel

portfolio selection. In International Conference on Learning and Intelligent Optimization.

Springer, 1–16.

Lindauer, M., Hoos, H., Leyton-Brown, K. and Schaub, T. 2017. Automatic construction

of parallel portfolios via algorithm configuration. Artificial Intelligence 244, 272–290.

Machado, R., Pedro, V. and Abreu, S. 2013. On the scalability of constraint programming

on hierarchical multiprocessor systems. In Proc. of 42nd International Conference on

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 755

Parallel Processing, ICPP 2013, Lyon, France, October 1–4, 2013. IEEE Computer Society,

530–535.

Maher, M. J. 1987. Logic semantics for a class of committed-choice programs. In Proc. of the

4th International Conference on Logic Programming, Melbourne, Victoria, Australia, May

25–29, 1987, J. Lassez, Ed. MIT Press, 858–876.

Malapert, A., Régin, J.-C. and Rezgui, M. 2016. Embarrassingly parallel search in constraint

programming. Journal of Artificial Intelligence Research 57, 421–464.

Malitsky, Y., Sabharwal, A., Samulowitz, H. and Sellmann, M. 2012. Parallel SAT solver

selection and scheduling. In Proc. of the 18th International Conference on Principles and

Practice of Constraint Programming. Springer, 512–526.

Malitsky, Y., Sabharwal, A., Samulowitz, H. and Sellmann, M. 2013a. Algorithm

portfolios based on cost-sensitive hierarchical clustering. In Proc. of the 23rd International

Joint Conference on Artificial Intelligence. 608–614.

Malitsky, Y., Sabharwal, A., Samulowitz, H. and Sellmann, M. 2013b. Parallel

Lingeling, CCASat, and CSCH-based portfolios. In Proc. of the SAT Competition 2013 .

26–27.

Manolios, P. and Zhang, Y. 2006. Implementing survey propagation on graphics processing

units. In Proc. of Theory and Applications of Satisfiability Testing – SAT 2006. Lecture

Notes in Computer Science. vol. 4121. 311–324.

Manthey, N. 2011a. A More Efficient Parallel Unit Propagation, Tech. Rep. 11-04, Knowledge

Representation and Reasoning. Technische Universität Dresden.

Manthey, N. 2011b. Parallel sat solving – using more cores. In Proc. of Pragmatics of SAT

Workshop.

Martins, R., Manquinho, V. and Lynce, I. 2012. An overview of parallel SAT solving.

Constraints 17, 304–347.

McCreesh, C. and Prosser, P. 2015. The shape of the search tree for the maximum clique

problem and the implications for parallel branch and bound. ACM Transactions on Parallel

Computing 2, 1, 8:1–8:27.

Menouer, T., Rezgui, M., Cun, B. L. and Régin, J. 2016. Mixing static and dynamic

partitioning to parallelize a constraint programming solver. International Journal of Parallel

Programming 44, 3, 486–505.

Michel, L., See, A. and Van Hentenryck, P. 2006. Distributed constraint-based local search.

In Proc. of Principles and Practice of Constraint Programming – CP 2006. 344–356.

Michel, L., See, A. and Van Hentenryck, P. 2007. Parallelizing constraint programs

transparently. In Proc. of Principles and Practice of Constraint Programming – CP 2007.

514–528.

Michel, L., See, A. and Van Hentenryck, P. 2009. Parallel and distributed local search in

COMET. Computers & Operations Research 36, 2357–2375.

Moisan, T., Gaudreault, J. and Quimper, C.-G. 2013. Parallel discrepancy-based search.

In Proc. of the 19th International Conference on Principles and Practice of Constraint

Programming. 30–46.

Moisan, T., Quimper, C.-G. and Gaudreault, J. 2014. Parallel depth-bounded discrepancy

search. In Proc. of International Conference on AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems. Springer, 377–393.

Montelius, J. and Ali, K. A. M. 1996. An and/or-parallel implementation of AKL. New

Generation Computing 14, 1, 31–52.

Munawar, A., Wahib, M., Munetomo, M. and Akama, K. 2009. Hybrid of genetic algorithm

and local search to solve MAX-SAT problem using nVidia CUDA framework. Genetic

Programming and Evolvable Machines 10, 391–415.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


756 I. P. Gent et al.

Munera, D., Diaz, D. and Abreu, S. 2014. Towards parallel constraint-based local

search with the X10 language. In Declarative Programming and Knowledge Management:

Declarative Programming Days, KDPD 2013, Unifying INAP, WFLP, and WLP, Kiel,

Germany, September 11–13, 2013, Revised Selected Papers, M. Hanus and R. Rocha, Eds.

Springer International Publishing, 169–184.

Munera, D., Diaz, D., Abreu, S. and Codognet, P. 2014. A parametric framework

for cooperative parallel local search. In Evolutionary Computation in Combinatorial

Optimisation: 14th European Conference, EvoCOP 2014, Granada, Spain, April 23-25, 2014,

Revised Selected Papers, C. Blum and G. Ochoa, Eds. Springer, Berlin, Heidelberg, 13–24.

Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V. A. and Codognet, P. 2015. Solving

hard stable matching problems via local search and cooperative parallelization. In Proc. of

the 29th AAAI Conference on Artificial Intelligence. 1212–1218.

Netzer, A., Meisels, A. and Zivan, R. 2016. Distributed envy minimization for resource

allocation. Autonomous Agents and Multi-Agent Systems 30, 2, 364–402.

Nguyen, T. and Deville, Y. 1995. A distributed arc-consistency algorithm. In Proc. of 1st

International Workshop on Concurrent Constraint Satisfaction.

Nguyen, T. and Deville, Y. 1998. A distributed arc-consistency algorithm. Science of

Computer Programming 30, 227–250.

Nightingale, P., Akgün, Ö., Gent, I. P., Jefferson, C. and Miguel, I. 2014. Automatically

improving constraint models in Savile Row through associative-commutative common

subexpression elimination. In Proc. of International Conference on Principles and Practice

of Constraint Programming. Springer, 590–605.

Nightingale, P., Akgün, O., Gent, I. P., Jefferson, C., Miguel, I. and Spracklen, P. 2017.

Automatically improving constraint models in Savile Row. Artificial Intelligence 251, 35–61.

Nightingale, P., Spracklen, P. and Miguel, I. 2015. Automatically improving SAT encoding

of constraint problems through common subexpression elimination in Savile Row. In

International Conference on Principles and Practice of Constraint Programming. Springer,

330–340.

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C. and O’Sullivan, B. 2008. Using

case-based reasoning in an algorithm portfolio for constraint solving. In Proc. of Irish

Conference on Artificial Intelligence and Cognitive Science, 210–216.

Otten, L. and Dechter, R. 2017. AND/OR branch-and-bound on a computational grid.

Journal of Artificial Intelligence Research 59, 351–435.

Palmieri, A., Régin, J. and Schaus, P. 2016. Parallel strategies selection. In Proc. 22nd

International Conference on Principles and Practice of Constraint Programming. 388–404.

Perron, L. 1999. Search procedures and parallelism in constraint programming. In Proc. of

International Conference on Principles and Practice of Constraint Programming, 346–361.

Prosser, P., Conway, C. and Muller, C. 1992. A constraint maintenance system for the

distributed resource allocation problem. Intelligent Systems Engineering 1, 1, 76–83.

Ralphs, T., Shinano, Y., Berthold, T. and Koch, T. 2017. Parallel solvers for mixed integer

linear optimization. Tech. Rep. COR@L Technical Report 16T-014-R3, Lehigh University.

Rao, V. and Kumar, V. 1988. Superlinear speedup in parallel state-space search. In Proc. of

Foundations of Software Technology and Theoretical Computer Science. 161–174.

Reynolds, J. C. 1993. The discoveries of continuations. LISP and Symbolic Computation 6, 3/4,

233–247.

Rice, J. R. 1976. The algorithm selection problem. Advances in Computers 15, 65–118.

Rolf, C. and Kuchcinski, K. 2010. Combining parallel search and parallel consistency

in constraint programming. In Proc. of 3rd Workshop on Techniques for Implementing

Constraint Programming Systems. 38–52.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


Review of parallel constraint solving 757

Rossi, F., van Beek, P. and Walsh, T., Eds. 2006. Handbook of Constraint Programming.

Elsevier Science.

Roussel, O. 2011. Description of ppfolio. Tech. rep.Centre de Recherche en Informatique de

Lens. URL: http://www.cril.univ-artois.fr/∼roussel/ppfolio/solver1.pdf

Ruiz-Andino, A., Araujo, L., Sáenz, F. and Ruz, J. J. 1998. Parallel arc-consistency for

functional constraints. In Proc. of Workshop on Implementation Technology for Programming

Languages based on Logic, ICLP. 86–100.

Salido, M. A. and Barber, F. 2006. Distributed CSPs by graph partitioning. Applied

Mathematics and Computation 183, 1, 491–498.

Saraswat, V. A. and Rinard, M. 1990. Concurrent constraint programming. In Proc. of the

17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,

New York, NY, USA, 232–245.

Sassi, N., Salah, K. B. and Ghédira, K. 2017. DOC-BRelax: A new multi-agent system to

solve distributed constraint optimization problems. Future Generation Computer Systems 73,

44–51.

Schubert, T., Lewis, M. and Becker, B. 2009. PaMiraXT: Parallel sat solving with threads

and message passing. Journal on Satisfiability, Boolean Modeling and Computation 6, 203–

222.

Schulte, C. 2000. Parallel search made simple. In Proc. of the 1st Workshop on Techniques

for Implementing Constraint Programming Systems. 41–57.

Singer, D. 2006. Parallel resolution of the satisfiability problem: A survey. In Parallel

Combinatorial Optimization, E.-G. Talbi, Ed. Wiley, 123–147.

Smith-Miles, K. A. 2009. Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Computing Surveys (CSUR) 41, 1, 6:1–6:25.

Sun, X.-H. and Chen, Y. 2010. Reevaluating Amdahl’s law in the multicore era. Journal of

Parallel and Distributed Computing 70, 2, 183–188.

Van Hentenryck, P. and Michel, L. 2009. Constraint-Based Local Search. The MIT Press.

Van Roy, P. and Haridi, S. 1999. Mozart: A programming system for agent applications.

AgentLink News 4, 3–8.

Verhoeven, M. G. A. and Aarts, E. H. L. 1995. Parallel local search. Journal of

Heuristics 1, 43–65.

Wahbi, M. and Brown, K. N. 2014. Global constraints in distributed CSP: Concurrent GAC

and explanations in ABT. In Proc. of Principles and Practice of Constraint Programming:

20th International Conference, Lyon, France, September 8–12, 2014. 721–737.

Wang, C. J. and Tsang, E. P. K. 1991. Solving constraint satisfaction problems using neural

networks. In Proc. of the 2nd International Conference on Artificial Neural Networks. IET,

295–299.

Wang, C. J. and Tsang, E. P. K. 1992. A cascadable VLSI design for GENET. In Proc. of

International Workshop on VLSI for Neural Networks and Artificial Intelligence, Oxford.

Wetter, J., Akgün, Ö. and Miguel, I. 2015. Automatically generating streamlined constraint

models with ESSENCE and CONJURE. In Proc. of International Conference on Principles

and Practice of Constraint Programming. Springer, 480–496.

Wotzlaw, A., van der Grinten, A., Speckenmeyer, E. and Porschen, S. 2012. pfolioUZK:

Solver description. Proc. of SAT Challenge 2012: Solver and Benchmark Descriptions , 45.

Xie, F. and Davenport, A. J. 2010. Massively parallel constraint programming for

supercomputers: Challenges and initial results. In Proc. of 7th International Conference

on Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, Bologna, Italy, June 14–18, 2010, A. Lodi, M. Milano and P. Toth,

Eds. Lecture Notes in Computer Science, vol. 6140. Springer, 334–338.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340


758 I. P. Gent et al.

Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2008. SATzilla: Portfolio-based

algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606.

Yokoo, M. and Hirayama, K. 2000. Algorithms for distributed constraint satisfaction: A

review. Autonomous Agents and Multi-Agent Systems 3, 2, 185–207.

Yokoo, M., Ishida, T., Durfee, E. H. and Kuwabara, K. 1992. Distributed constraint

satisfaction for formalizing distributed problem solving. In Proc. of the 12th International

Conference on Distributed Computing Systems. IEEE, 614–621.

Yun, X. and Epstein, S. L. 2012. Learning algorithm portfolios for parallel execution. In

Learning and Intelligent Optimization. Springer, Berlin, Heidelberg, 323–338.

Zhang, W., Wang, G., Xing, Z. and Wittenburg, L. 2005. Distributed stochastic search and

distributed breakout: Properties, comparison and applications to constraint optimization

problems in sensor networks. Artificial Intelligence 161, 1, 55–87.

Zhang, Y. and Mackworth, A. K. 1991. Parallel and distributed algorithms for finite

constraint satisfaction problems. In Proc. of the 3rd IEEE Symposium on Parallel and

Distributed Processing. 394–397.

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R. and Sycara, K. 2015. Distributed

constraint optimization for teams of mobile sensing agents. Autonomous Agents and Multi-

Agent Systems 29, 3, 495–536.

Zoeteweij, P. and Arbab, F. 2004. A component-based parallel constraint solver. In Proc. of

the 6th International Conference on Coordination Models and Languages. 307–322.

https://doi.org/10.1017/S1471068418000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000340

