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Omnigenity is a desirable property of toroidal magnetic fields that ensures confinement
of trapped particles. Confining charged particles is a basic requirement for any fusion
power plant design, but it can be difficult to satisfy with the non-axisymmetric
magnetic fields used by the stellarator approach. Every ideal magnetohydrodynamic
equilibrium previously found to approximate omnigenity has been either axisymmetric,
quasi-symmetric or has poloidally closed contours of magnetic field strength B. However,
general omnigenous equilibria are a much larger design space than these subsets. A
new model is presented and employed in the DESC stellarator optimization suite to
represent and discover the full parameter space of omnigenous equilibria. Although exact
omnigenity aside from quasi-symmetry is impossible, these results reveal that excellent
particle confinement can be achieved in practice. Examples far from quasi-symmetry with
poloidally, helically and toroidally closed B contours are attained with DESC and shown
to have low neoclassical collisional transport and fast particle losses.

Key words: fusion plasma, plasma confinement

1. Introduction

Controlled nuclear fusion offers the possibility of reliable power generation without
greenhouse gas emissions to satiate the growing global energy demand. The magnetic
confinement approach to fusion involves containing a high-temperature plasma for long
periods of time and requires a magnetic geometry that can confine these energetic
charged particles. The stellarator concept (Spitzer 1958) makes an attractive fusion
reactor: its reliance on external magnetic fields rather than driving plasma current to
confine the plasma enables it to operate at steady state and makes it less susceptible to
plasma disruptions (Helander et al. 2012). Yet historically, stellarators were not pursued
due to their relatively high levels of neoclassical transport. Unlike its axisymmetric
counterpart, the tokamak, stellarators are not guaranteed to confine trapped particles in a
collisionless plasma. Careful attention must be paid to design a stellarator with comparably
good particle confinement, but this is becoming increasingly achievable with modern
optimization tools.
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FIGURE 1. Classification of magnetic fields. The decreasing area of the inner subsets represents
the smaller dimensionality of these subspaces. Note that OP refers to the same set of magnetic
fields that are sometimes labelled QI.

Trapped particles cannot be avoided altogether in a toroidal geometry. If the radial
drifts of trapped particles vanish everywhere, it is called an isodynamic magnetic field,
but this is similarly unrealistic (Palumbo 1968; Helander 2014). The next best theoretical
option is omnigenity, the class of magnetic fields in which the bounce-averaged radial
drifts of trapped particles vanish (Hall & McNamara 1975; Cary & Shasharina 1997b).
Pseudo-symmetry is a broader category of fields in which the contours of constant
magnetic field strength B = |B| on a flux surface are closed curves (Isaev et al. 1999).
Omnigenity implies pseudo-symmetry and also that the Bmax contour is straight in Boozer
coordinates (and other straight field line coordinate systems with a Jacobian that only
depends on B and the flux surface label) (Helander 2014). There are three classes of
omnigenous magnetic fields: the B contours can close either poloidally, helically or
toroidally. These cases will be referred to as omnigenity with poloidal contours (OP),
omnigenity with helical contours (OH) and omnigenity with toroidal contours (OT). (The
term quasi-isodynamic (QI) has often been used in previous literature to mean omnigenity
with poloidally closed B contours. This terminology has been inconsistent, however, and
is easily conflated with more general omnigenity; QI is avoided in favour of OP in this
article for the sake of clarity.) Quasi-symmetry (QS) is a special subset of omnigenity
where all contours of B are straight in these coordinates, not only the Bmax contour
(Nührenberg & Zille 1988; Rodriguez, Helander & Bhattacharjee 2020). QS magnetic
fields are further subdivided by their helicity: quasi-poloidal symmetry (QP), quasi-helical
symmetry (QH) and quasi-axisymmetry (QA) are the quasi-symmetric subspaces of OP,
OH and OT, respectfully. The Venn diagram in figure 1 visualizes the relationship between
these different classes of magnetic fields.

Since omnigenity is a less restrictive requirement than quasi-symmetry, it provides
a larger design space with equivalent neoclassical confinement. This extra flexibility
could help satisfy additional physics and engineering constraints on a stellarator reactor,
such as reduced turbulent transport and simplified coil geometry. Unfortunately, Cary &
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Shasharina (1997a, b) proved that the only omnigenous fields that are analytic are those
that are quasi-symmetric. Moreover, Garren & Boozer (1991) suggested from a near-axis
expansion that exact quasi-symmetry cannot be satisfied beyond a single flux surface. This
is not a significant restriction in practice, however, QA and QH solutions have been found
with good QS throughout a volume (Nührenberg & Zille 1988; Zarnstorff et al. 2001;
Henneberg et al. 2019; Bader et al. 2020; Landreman & Paul 2022), and many solutions
have been discovered that approach OP while being far from QS (Camacho Mata, Plunk &
Jorge 2022; Jorge et al. 2022; Sánchez et al. 2023; Goodman et al. 2023). The performance
of QH and OP have also been experimentally verified by the HSX and W7-X stellarators,
respectively. These devices were optimized to have approximately quasi-symmetric or
omnigenous designs, and both experiments have demonstrated reduced neoclassical
transport (Canik et al. 2007; Beidler et al. 2021).

These recent results have been restricted to QS or OP magnetic fields, which excludes
most of the full omnigenity solution space. Plunk, Landreman & Helander (2019) explain
that OT and OH magnetic fields (that are not QS) cannot be achieved with a first-order
expansion in the distance from the magnetic axis, but admit that these solutions could exist
more generally. These classes of omnigenity have previously been neglected due to the lack
of an efficient method to parametrize and explore their optimization space. Accessing this
larger design space would unlock new possibilities for stellarators and is worthwhile to
consider despite its increased computational complexity. This article presents an approach
to achieve this goal, which is made possible through the DESC stellarator optimization
code suite (Dudt & Kolemen 2020; Conlin et al. 2023; Dudt et al. 2023; Panici et al.
2023; Dudt et al. 2024). It is similar to the original idea of Cary & Shasharina (1997a), in
the sense that a perfectly omnigenous magnetic field is constructed to have the same form
on every field line in terms of some new coordinate. This omnigenous field is generalized
to any helicity, as was also done by Landreman & Catto (2012). The difference between
the actual equilibrium magnetic field and the constructed target field is then penalized, like
the technique devised by Goodman et al. (2023).

In contrast to previous approaches, this article provides a parametrization of the full
phase space of all omnigenous magnetic fields, and is not restricted to a near-axis
expansion formulation or to stellarator symmetry. Section 2 gives a derivation of the
omnigenity model and explains how it is used as an optimization target. Numerical
examples of equilibria obtained from this method are provided in § 3 for all six classes
of omnigenity: OP, QP, OH, QH, OT and QA. This is the first demonstration of good
neoclassical confinement throughout a volume for realistic equilibria with arbitrary
omnigenous magnetic fields. The implications of these results and directions for future
work are discussed in § 4.

2. Method

Let the ‘helicity’ of the omnigenous magnetic field be defined by the pair of integers M
and N such that each B contour closes on itself after traversing the torus M times toroidally
and N times poloidally. In addition to having closed contours of magnetic field strength,
the ‘bounce distance’ δ =

√
�θ 2

B + �ζ 2
B in Boozer coordinates (θB, ζB) along a field line

between consecutive points with equal magnetic field strength must be independent of the
field line label

α = θB − ι-ζB

N − ι-M
, (2.1)
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where ι- is the rotational transform. This normalization has the useful property that α
increases by 2π as a constant-B curve is followed until it closes on itself (Landreman &
Catto 2012).

2.1. Magnetic well
First, the "magnetic well shape" is parametrized. Assuming the magnetic field strength
has the same maximum and minimum values along each field line, it can be written in the
form

B = B(ρ, η), (2.2)

where ρ is the flux surface label and contours of constant magnetic field strength are now
contours of the new coordinate η (Cary & Shasharina 1997b). The domain is chosen to
be −(π/2) ≤ η ≤ π/2 such that B(0) = Bmin and B(±π/2) = Bmax. The B(η) should be
monotonically increasing from Bmin to Bmax and satisfy the boundary conditions

∂B
∂η

∣∣∣∣
η=0

= ∂B
∂η

∣∣∣∣
η=±π/2

= 0. (2.3)

Additionally, B must be an even function of η, which will be justified later. A magnetic
well shape that satisfies these criteria is represented by the parameters

Bij = B(ρi, ηj), (2.4)

where the knot locations ηj are linearly spaced in the domain [0,π/2] and the parameters
are sorted to ensure monotonicity. The B at other locations on the flux surface ρi is
evaluated by monotonic spline interpolation at η = |η| to ensure it is an even function.
The C1 continuity of these monotonic splines is not a limitation since the omnigenous
magnetic field is generally not analytic anyway. Omnigenity with multiple unique local
minima and maxima of B on each flux surface can exist, as shown by Parra et al. (2015),
and this work could be extended to accommodate those cases.

2.2. Coordinate transformation
Now all that remains is to parametrize the transformation between the Boozer coordinates
(θB, ζB) and the computational coordinates (η, α). This mapping will be defined through
the transformation

h : (θB, ζB) ↔ (ρ, η, α). (2.5)

In Boozer coordinates, the function h is related to the helicity of the omnigenous field:

h(θB, ζB) =
⎧⎨
⎩

NζB for M = 0,

−θB + N
M

ζB for M �= 0.
(2.6)

(Note that the Boozer angles are an implicit function of ρ, since the transformation to
Boozer coordinates is unique to each flux surface.) Contours of constant h are parallel
to the Bmax contour (which must be straight in Boozer coordinates) and in the limit of
quasi-symmetry B = B(h). In the computational coordinates, the function is parametrized
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as

h(ρ, η, α) = 2η + π +
Lρ∑

l=0

Mη∑
m=0

Nα∑
n=−Nα

xlmnTl(2ρ − 1)Fm(η)FnNFP(α), (2.7)

where NFP is the number of field periods, Tk(y) are Chebyshev polynomials of the first
kind defined as Tk(cos y) = cos(ky) and Fk(y) are Fourier series defined as

Fk(y) =
{

cos(|k|y) for k ≥ 0,

sin(|k|y) for k < 0.
(2.8)

Chebyshev polynomials are chosen as the radial basis functions to allow for an independent
well shape on each flux surface. (Any set of orthogonal polynomials would suffice.
Zernike polynomials are not used since they would impose additional unphysical boundary
conditions near the magnetic axis.) The coefficients xlmn in (2.7) parametrize the variation
of the well shape on different field lines and Nα = 0 represents the subspace of
quasi-symmetry. The boundary condition h(ρ, η = −π/2, α) = 0 is required to ensure
Bmax is a straight contour, which is chosen to be located at h = 0 by construction. This
boundary condition is enforced by a linear constraint on the even Fourier modes:

Mη∑
m=0,2,4,...

(−1)m/2xlmn = 0. (2.9)

This constraint also satisfies the periodicity requirement that h(η = π/2) = 2π is another
Bmax contour.

2.3. Optimization objective function
The optimization function penalizes the difference between the equilibrium magnetic field
Beq and the constructed omnigenous field B, similar to the approach used by Goodman
et al. (2023). The errors are evaluated at a series of collocation points in the computational
coordinates as

fom(ρi, ηi, αi) = [
Beq(ρi, ηi, αi) − B(ρi, ηi)

]
w(ηi), (2.10)

where the weighting function w(ηi) = 3
2 + 1

2 cos(2ηi) is used to weight the minimum
of the magnetic well relative to the maximum. The omnigenous target field B can be
readily evaluated at these collocation points from the magnetic well shape parameters
Bij presented in (2.4). The equilibrium field Beq, however, must be evaluated at the Boozer
coordinates that correspond to the desired computational coordinates, using the mapping
defined by (2.5).

Simultaneously solving (2.1) and (2.6) gives the system of equations[
α

h(ρ, α, η)

]
=

[ 1
N

− ι-
N

0 N

] [
θB
ζB

]
for M = 0, N �= 0, (2.11a)

[
α

h(ρ, α, η)

]
=

[−1
M ι-

1
M−1 0

] [
θB
ζB

]
for M �= 0, N = 0, (2.11b)

[
α

h(ρ, α, η)

]
=

⎡
⎢⎣

1
N − M ι-

− ι-
N − M ι-

−1
N
M

⎤
⎥⎦ [

θB
ζB

]
for M �= 0, N �= 0, (2.11c)
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(a) (b) (c)

FIGURE 2. Example of an exact omnigenous magnetic field for an OP case with helicity M =
0, N = 1 and the parameters x0,1,−1 = −π/8, x0,1,0 = π/8, x0,1,+1 = π/4: (a) well shape B(η)
given by a monotonic spline; (b) magnetic well along different field lines, which all have the same
bounce distances �h; (c) B contours plotted in Boozer coordinates with a rotational transform of
ι- = 1/4.

which can be inverted to yield

[
θB
ζB

]
=

⎡
⎣N

ι-
N

0
1
N

⎤
⎦ [

α

h(ρ, α, η)

]
for M = 0, N �= 0, (2.12a)

[
θB
ζB

]
=

[
0 −1

M
−1
ι-

][
α

h(ρ, α, η)

]
for M �= 0, N = 0, (2.12b)

[
θB
ζB

]
=

⎡
⎢⎣N

M ι-
N − M ι-

M
M

N − M ι-

⎤
⎥⎦ [

α
h(ρ, α, η)

]
for M �= 0, N �= 0. (2.12c)

The mapping parameters xlmn are used to compute h(ρ, η, α) through (2.7), and then
(2.12) gives the corresponding Boozer coordinates such that Beq(ρ, η, α) can be evaluated
in Boozer coordinates as Beq(θB, ζB). These values of the equilibrium magnetic field
strength are then used to compute the deviation from omnigenity in (2.10). Note that
(2.12c) is undefined when ι- = N/M, but this case is physically uninteresting because it
corresponds to field lines being parallel to the Bmax contour (for example, an axisymmetric
vacuum field with no rotational transform). If M = 0, then it must be the case that N �= 0,
so (2.12a) is also always well defined. See figure 2 for an illustration of how an omnigenous
magnetic field is constructed and mapped to Boozer coordinates.

2.4. Results
It can be shown that this model is guaranteed to yield a perfectly omnigenous target
magnetic field. Since the straight field line coordinate system has the property �θB =
ι-�ζB along a field line and ι- is constant on each flux surface, and also because h(θB, ζB)
is always a linear combination of the Boozer angles, the bounce distance is directly
proportional to the change in h: δ ∝ �h. The bounce points on any field line are always
±η by construction, since (2.2) was chosen to be an even function of η. Therefore the
bounce distance can be computed as
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δ ∝ �h = h(ρ,+η, α) − h(ρ,−η, α) (2.13a)

= 4η +
Lρ∑

l=0

Mη∑
m=0

Nα∑
n=−Nα

xlmn
[
Tl(2ρ − 1)FnNFP(α) (Fm(+η) − Fm(−η))

]
(2.13b)

= 4η. (2.13c)

In the last step, the Fourier series in η cancel each other out because
∑

m≥0 Fm(η) is an
even function of η. This ensures that the bounce distances set by the parameters Bij will
be preserved across all field lines, regardless of the variation introduced by the parameters
xlmn. However, there are bounds on the allowable amplitudes of these coefficients to ensure
(2.7) is a single-valued function.

Since the basis functions span the full domain, this model can approximate any
omnigenous magnetic field in the limit of increasing resolution (although this work is
restricted to fields with a single magnetic well). Whether a particular omnigenous target
can be well approximated by an equilibrium solution is an unresolved question. The
total number of coefficients used to describe an omnigenous magnetic field in (2.7) is
(Lρ + 1)(Mη + 1)(2Nα + 1). Quasi-symmetry corresponds to the condition Nα = 0, so
that the magnetic well shape is identical on all field lines and B = B(h(ρ, η)). Assuming
Lρ = Mη = Nα, the dimension of the full omnigenous parameter space scales as O(M3

η),
while the quasi-symmetric subspace has a dimension of O(M2

η). This scaling reveals
that quasi-symmetry is only a small set of the possible solutions with good particle
confinement and motivates the discovery of stellarator equilibria in the much broader
omnigenous design space. (This analysis is independent of the dimension of the magnetic
well parametrization Bij.) Stellarator symmetry imposes no constraints on the parameters
xlmn due to the nonlinear nature of the coordinate mapping in (2.5). This implies that the
size of the parameter space is not reduced by stellarator symmetry, but consequently no
additional computational complexity is required if it is not assumed.

3. Examples

Numerical examples from each class of omnigenity are presented: the three types
of quasi-symmetry (QP, QH and QA) and their more general omnigenous counterparts
(OP, OH and OT, respectfully). These six solutions were obtained in DESC using the
following optimization procedure. First, an initial guess was generated from the near-axis
expansion code pyQIC (Jorge 2024) (for the OP and QP cases) or pyQSC (Landreman
& Sengupta 2019; Landreman, Sengupta & Plunk 2019) (for the other cases). It was
evaluated at an aspect ratio of R0/a ≈ 20, since the near-axis expansions are most accurate
at high aspect ratios. This configuration was re-solved in DESC while preserving the O(ρ)
behaviour of the near-axis expansion solution. The equilibrium was then optimized using
a multi-objective cost function of the form

f =
[

fom(ρ, η, α)

σ feq(ρ, θ, ζ )

]
, (3.1)

where fom(ρ, η, α) are the omnigenity errors from (2.10), feq(ρ, θ, ζ ) are the equilibrium
force balance errors as described by Dudt & Kolemen (2020) and σ is a relative
weighting between the two objective functions. This penalty method was used instead
of the traditional optimization approach of re-solving the fixed-boundary equilibrium at
each iteration (Dudt et al. 2023) because it can better handle the near-axis constraints
and is equivalent in the limit σ → ∞. Omnigenity was targeted on five flux surfaces
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Aspect ratio Maximum elongation Quasi-symmetry error Omnigenity error

OP 19.35 6.70 3.73 × 10−2 8.96 × 10−4

QP 17.91 10.10 1.78 × 10−2 1.02 × 10−2

OH 18.27 5.74 2.24 × 10−2 3.15 × 10−3

QH 18.24 2.48 1.62 × 10−3 8.64 × 10−4

OT 19.56 3.37 1.41 × 10−2 2.74 × 10−3

QA 19.44 1.95 2.81 × 10−4 1.78 × 10−4

TABLE 1. Comparison between the six omnigenous solutions of geometric parameters and
magnetic field errors at the ρ = 1 surface. The aspect ratios are calculated using the same
formula as the VMEC equilibrium code (Hirshman & Whitson 1983). The omnigenity errors
were computed with different collocation points than those used in the optimization.

ρ = 0.2, 0.4, 0.6, 0.8, 1.0 and the shape of the magnetic well B(η) on each surface
was parametrized by a monotonic spline with eight knots. The force balance errors
were evaluated throughout the plasma volume. The residuals in (3.1) were minimized
with a least-squares trust region algorithm. The total magnetic flux, equilibrium profiles
and O(ρ) behaviour from the near-axis expansion solution were constrained during the
optimization. This process was repeated three times, with the numerical resolutions and σ
increasing at each iteration. Finally, the optimal configuration underwent a fixed-boundary
solve to ensure its volume-averaged normalized force balance error was <1 % (Panici et al.
2023).

Each optimization took less than thirty minutes to run on a single NVIDIA A100 GPU.
All of the examples have a major radius of 1 m and an average magnetic field strength on
axis of 1 T by construction. The results are stellarator symmetric, but this was a design
choice and not a limitation of the method. Figure 3 displays the magnetic field strength
in Boozer coordinates on the ρ = 1 surface for these equilibria. These plots clearly reveal
the desired helicity of the (straight) Bmax contours for each case, and they help picture
how the bounce distances are roughly equal on every field line (satisfying the condition
∂δ/∂α = 0). A scalar omnigenity error is defined as the mean of the local relative errors:

1
K

K∑
i=1

∣∣Beq(ρi, ηi, αi) − B(ρi, ηi)
∣∣

B(ρi, ηi)
(3.2)

and the normalized quasi-symmetry error in Boozer coordinates is defined as (Rodriguez,
Paul & Bhattacharjee 2022) √∑

n/m �=N/M B2
mn√∑

m,n B2
mn

. (3.3)

These errors along with the aspect ratio and maximum elongation of each solution are
provided in table 1. The aspect ratio was indirectly constrained during the optimization by
fixing the magnetic axis shape, magnetic field strength on axis, and total magnetic flux;
the elongation was not constrained.

As another measure of the levels of omnigenity achieved, the effective ripple ε
3/2
eff –

the magnitude of the neoclassical collisional transport in the 1/ν regime, where ν is the
collision frequency – is computed by NEO (Nemov et al. 1999) for each solution. As
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Contours of constant magnetic field magnitude in Boozer coordinates at the
boundary surface ρ = 1 for a single field period. The magnetic field line at α = 0 is shown
as a black dashed line in panels (a–f ). The insets show a three-dimensional view of the field
strength on each surface.
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another measure of confinement, the time history of fusion-born alpha particles lost in a
reactor scale device is also computed by SIMPLE (Albert, Kasilov & Kernbichler 2020).
In a perfectly omnigenous magnetic field, ε

3/2
eff should be zero and no particles should

be lost besides those with banana orbits that are wide enough to leave the plasma volume.
Both of these confinement measures are plotted in figure 4. The numerical examples shown
here were only optimized for omnigenity and equilibrium quality, and other factors that
may be important for a fusion reactor design were not considered. More details about each
optimized solution are provided in the following subsections.

3.1. Poloidal contours
Omnigenity with poloidally closed B contours is characterized by a helicity of M = 0.
These examples of OP and QP are vacuum equilibria (〈β〉 = 0) that were based on initial
guesses generated by pyQIC. The OP case is a two field period configuration with a mirror
ratio of Δ = 0.13 and the QP case has a single field period with Δ = 0.17, where the
mirror ratio is defined as

Δ = Bmax − Bmin

Bmax + Bmin
(3.4)

on the magnetic axis. In addition to the flux surface geometry, the omnigenity parameters
Bij and xlmn were also considered free variables during the optimization. A resolution of
Lρ = Mη = Nα = 4 was used for the OP case, while the QP case used a resolution of
Lρ = Mη = 4, Nα = 0 to enforce quasi-symmetry. The OP solution has worse QS error
than the QP example, as expected, but achieves an order of magnitude lower omnigenity
error and effective ripple, and two orders of magnitude lower fast particle losses (see
table 1 and figure 4).

3.2. Helical contours
The typical case of omnigenity with helically closed B contours is M = 1 and N = NFP.
These examples of OH and QH are five field period vacuum equilibria (〈β〉 = 0) using
the same initial guess from pyQSC. As in the previous poloidal examples, the parameters
Bij describing the magnetic well shapes on each surface were considered free optimization
variables. However, in these runs, the coordinate mapping of (2.7) was prescribed: xlmn =
0 ∀l, m, n in the QH case, and x0,1,+1 = −π/6 was the only non-zero parameter in the OH
case. This parameter value for the OH example was chosen such that the resulting field,
shown in figure 3(c), qualitatively resembles the M = 1, N = 4 omnigenous field example
constructed by Landreman & Catto (2012). In both cases, all of the xlmn variables were
held fixed during the optimizations to ensure that they converged to a quasi-symmetric
and general omnigenous magnetic field, respectively. The QS error of the OH solution
is an order of magnitude higher than that of the QH result, verifying that it is far from
quasi-symmetry (see table 1).

3.3. Toroidal contours
Here, N = 0 describes omnigenity with toroidally closed B contours. As explained by
Landreman & Catto (2012), "it is difficult to construct N = 0 omnigenous fields that depart
strongly from quasi-symmetry . . . because the B contours in a N = 0 quasi-symmetric
field are already nearly parallel to the field lines when ι-/NFP < 1". These examples of OT
and QA are single field period equilibria based on the same initial guess from pyQSC,
with a finite toroidal current profile and a volume averaged normalized plasma pressure of
〈β〉 = 1.2 %. The plasma current provides additional rotational transform, which allows
for an OT case that is far from quasi-symmetry (as seen in figure 3b and by the relatively
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(a)

(b)

FIGURE 4. Measures of confinement. The quasi-symmetric solutions are plotted as dotted lines,
while the more general omnigenous solutions are plotted as solid lines. Solutions with the same
type of helicity are plotted in the same colour. The Wendelstein 7-X configuration with β = 4 %
is plotted in a black dashed line for comparison (Landreman 2021). (a) Neoclassical collisional
transport magnitude, computed by NEO. (b) Collisionless losses of fusion-born alpha particles
initialized at ρ = 0.5, computed by SIMPLE. All configurations were scaled to the minor radius
and magnetic field strength of ARIES-CS.

high QS error in table 1). These toroidal solutions were found using the same optimization
process as the previous helical examples, except that the coordinate mapping for the target
OT field had x0,1,−1 = π/6 as the only non-zero parameter. As in the helical examples, all
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of the xlmn variables were constrained to their target values while all of the Bij were free
variables during the optimization.

4. Discussion

This is the first demonstration of equilibria solutions that closely approximate every
class of omnigenous magnetic fields. All of the B contour plots in figure 3 have their
expected helicities and it can be seen that the distances between equal contours are roughly
equivalent along any field line. The average relative omnigenity errors listed in table 1 are
all � 1 %, indicating the optimized equilibria closely resemble their omnigenous targets.
The good confinement properties of these omnigenous solutions at moderate aspect ratio
are verified by the neoclassical collisional transport magnitudes ε

3/2
eff and the loss fractions

displayed in figure 4. These relatively low values of both confinement metrics are all
comparable in magnitude to previous optimized configurations (Landreman & Paul 2022).
In particular, the OT solution has very low effective ripple, and the OP and OH solutions
have almost no alpha particle losses – on par with the QS results. This indicates the
existence of stellarator equilibria other than OP that can approach omnigenity without
being quasi-symmetric.

The OH and OT results do have higher omnigenity errors and worse confinement than
their respective quasi-symmetric counterparts, but the target parameters for these examples
were chosen arbitrarily and other omnigenous fields with better confinement properties
might exist. Omnigenous fields that are not quasi-symmetric are impossible to achieve
exactly, and more examples are needed to understand if they can generally be approximated
well. The OT result also has surprisingly high alpha particle losses considering its very low
effective ripple, exemplifying the complicated relationship between these two confinement
metrics. This could be explained by wide banana orbits that extend beyond the plasma
volume, but more investigation is required to determine the cause. The outlier of all the
results is the QP solution, which cannot exist near the magnetic axis (Plunk et al. 2019)
and is known to be difficult to achieve far from the axis without highly elongated surfaces.
This QP example may have unrealistic geometry for a reactor, but it is still encouraging to
find a quasi-poloidally symmetric configuration with similar levels of confinement as the
Wendelstein 7-X experiment.

The purpose of the examples in § 3 is to establish solutions that are representative of
each type of omnigenity that can exist. The model presented in § 2 and the optimization
capabilities of DESC provide flexibility for a variety of applications. The parameters Bij
and xlmn can either be constrained to target a specific location in the omnigenity design
space (as in the OH, OT, QH and QA examples), or they can be free optimization variables
(as in the OP and QP examples). Providing more degrees of freedom would likely result
in the discovery of configurations with even better confinement properties or that satisfy
additional optimization objectives. Eliminating the assumption of stellarator symmetry is
a logical step in this direction, as it doubles the size of the omnigenity solution space that
can be explored. As another example, the boundary condition of (2.9) could be relaxed
and only satisfied approximately; this would violate the already impossible goal of exact
omnigenity, but might improve the solution quality overall. Alternatively, constraining
most of the parameters would enable a systematic scan of the full omnigenity design space.
Mapping this space, like the surveys of quasi-symmetry made by Landreman (2022) and
Rodríguez, Sengupta & Bhattacharjee (2023), is an exciting direction for future research.
Other ideas for future work include investigating how the larger omnigenity phase space
(in contrast to QS) could simplify stellarator coil geometry and yield more promising
candidates for fusion power plants.
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