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Abstract

In this paper we consider a class of stochastic processes based on binomial observations
of continuous-time, Markovian population models. We derive the conditional probability
mass function of the next binomial observation given a set of binomial observations. For
this purpose, we first find the conditional probability mass function of the underlying
continuous-time Markovian population model, given a set of binomial observations, by
exploiting a conditional Bayes’ theorem from filtering, and then use the law of total
probability to find the former. This result paves the way for further study of the stochastic
process introduced by the binomial observations. We utilize our results to show that
binomial observations of the simple birth process are non-Markovian.
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1. Introduction

Stochastic processes which are partially observed are a common phenomenon when
attempting to recognize patterns (see, e.g. [10]), to analyze digital signals (see, e.g. [26]),
or to understand financial processes (see, e.g. [7], [28]), or biological processes (see, e.g. [1],
[2]). Given the observations, one wishes to make optimal estimates concerning the underlying,
hidden, process. That is, one would like to evaluate the conditional probability mass function
(PMF) of the true state of the process conditioned on the sequence of observations to date.
The procedure to achieve this goal is called filtering and has been extensively studied in the
engineering literature; see [8] and [9] for an introduction.

Throughout the study of biology there is a strong interest in observation error, as partial
observation is a feature common to most studies in that discipline. This can be seen in ecology
(see, e.g. [6], [11], [24], [25]), genetics (see, e.g. [20]), and epidemiology (see, e.g. [22]).
A usual form of partial observation is one where the state of the system, or each component of
the system, can be observed with a fixed probability p at each observation time. For example,
consider the incidence of infection in a population, where each infectious individual seeks
medical attention and, hence, is recorded in the data, and then tests positive to infection

Received 30 August 2013; revision received 9 April 2014.
∗ Postal address: School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
∗∗ Postal address: School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308,
Australia. Email address: ali.eshragh@newcastle.edu.au

457

https://doi.org/10.1239/jap/1437658609 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658609


458 N. G. BEAN ET AL.

(conditional on being infected), with a fixed probability (see, e.g. [12], [13]). Yet another
example is in biological invasions, where the species, or each individual of the species, is only
detected with a certain probability upon each survey (see, e.g. [19]). Furthermore, a class of
stochastic processes often used in modeling biological phenomena is the model of continuous-
time Markovian population (see, e.g. [5], [15], [21]). Hence, the study of continuous-time
Markovian population models (CTMPMs) under a binomial observation process is of interest
and should prove useful in biological applications. We refer below to such processes as a
partially-observable continuous-time Markovian population model (POCTMPM).

The first contribution of this paper is the explicit evaluation of the conditional PMF of the
true state of a partially-observed continuous-time Markovian population model, and of the
conditional PMF of the observed state, given a set of past observations. This result for general
continuous-time Markovian population models makes use of the reference probability method,
an abstract form of Bayes’ theorem, as detailed in [9]. It paves the way for a more detailed
study and further applications of this class of processes.

One of the simplest continuous-time Markovian population models is the simple birth process
(SBP); it is a pure-birth process, (that is, the state of the chain only increases, and then only
increases by one, at each transition), with transition rate λxt when the state of the chain is
xt (> 0) for some birth rate λ. Despite its simplicity, it has found application in modeling
many biological processes, including evolutionary processes (see, e.g. [14], [16], [18], [27])
and epidemiological processes (see, e.g. [4]) and ecological processes (see, e.g. [21]).

The second contribution of this paper is a proof that the partially-observable SBP (that is, the
SBP with binomial observations with fixed probability p) is non-Markovian for 0 < p < 1. In
fact, we prove that it is not Markovian of any order. Whilst for many this statement might not
be surprising, its proof is not trivial and exploits our earlier results. It establishes the necessity
of a new line of analysis when considering such a process, as considered in [3].

2. Partially-observable continuous-time Markovian population models

Suppose that {Xt, t ≥ 0} is a CTMPM with unknown parameter vector θ . The vector θ

parameterises the q-matrix (generator) Q(θ) of the CTMPM. We restrict our attention to
CTMPMs where the range of the random variableXt is the nonnegative integers and the initial
value of this process, x0, is known. Moreover, we suppose that the process is time-homogeneous,
that is the conditional probability P{Xt2 |Xt1 }{xt2 | xt1} for any values of t2 > t1 > 0 depends only
on t2 − t1, (and, of course, xt1 and xt2 ). Hence, for simplicity, we denote the latter conditional
probability by Pxt1 ,xt2 (t2 − t1). In order to estimate the unknown parameter vector θ , we take n
observations of {Xt, t ≥ 0} at times 0 < t1 ≤ t2 ≤ · · · ≤ tn (Clearly, having the first observation
at t1 = 0 is pointless as we assume that x0 is known. Thus, we set t1 > 0.). Suppose that at
each observation time ti , we do not observeXti directly, but rather only a random sample. This
may be due to practical restrictions such as time or budget constraints which limit the ability to
survey comprehensively, or might be because of an implicit component of the data collection
process.

A common model for the sampling is binomial, where the state of the system, or each
component of the system, is observed with a fixed probability p at each observation time.
We therefore define the partially-observable continuous-time Markovian population model as
follows.
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Definition 1. Consider the CTMPM {Xt, t ≥ 0} with the parameter vector θ . Suppose that
the random variables Yt are defined such that the conditional random variable {Yt | Xt = xt }
follows the bin(xt , p) distribution, that is

P{Yt |Xt }{yt | xt } =
(
xt

yt

)
pyt (1 − p)xt−yt for yt = 0, 1, . . . , xt .

Then the stochastic process {Yt , t ≥ 0} is called a POCTMPM with parameters (θ , p).

Remark 1. It is readily seen that a POCTMPM with parameter vector (θ , 1) reduces to a
CTMPM with parameter vector θ .

In order to investigate the POCTMPM, we first need to find the conditional PMF of the
random variable {Ytn+1 | Yn = yn}, where the random vector Yn := (Yt1 , Yt2 , . . . , Ytn) and
the vector yn := (yt1 , yt2 , . . . , ytn). Knowing the distribution of {Ytn+1 | Yn = yn}, almost
all probabilistic properties of the POCTMPM can be extracted. Moreover, it can also be
useful for statistical inference. For instance, the likelihood function LYn{yn | θ , p}, which is
utilized extensively in estimation theory, can be expressed in terms of the conditional PMF of
{Ytn+1 | Yn = yn} as follows:

LYn{yn | θ , p} = P{Yn = yn | θ , p} =
n−1∏
i=1

P{Yti+1 | Yi }{yti+1 | yi; θ , p}P{Yt1 }{yt1 | θ , p}.

3. The distribution of {Ytn+1 | Yn = yn}
This section is mainly devoted to finding the conditional PMF of {Ytn+1 | Yn = yn}. We

first need to derive the conditional PMF of {Xtn | Yn = yn}. For this purpose, we exploit
a technique explained in Elliott et al. [9, Chapter 2]. This replaces the original probability
distribution with an artificial probability distribution under which calculations are made. Then
as stated in Theorem 1, we can convert these results to the results with respect to the original
probability distribution. This is helpful if calculations with respect to the artificial probability
distribution are easier than under the original one. We quote Theorem 1, namely a conditional
Bayes’ theorem, from Elliott et al. [9, Chapter 2].

Theorem 1. Consider a stochastic process {Zt , t ≥ 0} where the discrete random variables
Zt take values from the nonnegative integers and have the PMF PZt . Suppose that P̃Zt is
another family of PMFs with the same support as PZt and define a Radon–Nikodym factor
� := PZt /P̃Zt . If � is a continuous function of the random variable Zt , then

EPZt
{� | Zn = zn} :=

E
P̃Zt

{�� | Zn = zn}
E

P̃Zt
{� | Zn = zn} .

Here Zn := (Zt1 , . . . , Ztn), zn := (zt1 , . . . , ztn) for some fixed observation times t1, . . . , tn
and, EPZt

and E
P̃Zt

represent the expected value with respect to PZt and P̃Zt , respectively.

We shall use this result to determine in Theorem 2 the conditional PMF of the values of
the underlying process given the sequence of binomial observations from that process, that is
{Xtn | Yn = yn}. This result is of interest in its own right. The recursive equation provided
for the conditional PMF of {Xtn | Yn = yn} can be useful in the study of the POCTMPM.
Obviously, in the study of any stochastic process, the main information that we need is an
explicit form for the corresponding PMF.
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Theorem 2. Consider the CTMPM {Xt, t ≥ 0} with parameter vector θ and known initial
population size of x0, and the corresponding POCTMPM {Yt , t ≥ 0} with parameters (θ , p).
Then the conditional PMF of {Xtn | Yn = yn} for xtn = ytn, ytn + 1, . . . is given, for n =
1, 2, . . ., by P{Xtn | Yn}{xtn | yn} = �

xtn
n /

∑∞
�=ytn �

�
n. Here

��n := eytn !
(
�

yn

)
pytn (1 − p)�−ytn

∞∑
j=ytn−1

�
j
n−1Pj,�(tn − tn−1)

for � = ytn, ytn + 1, . . . and n = 1, 2, . . . , with initial conditions �x0
0 = 1 and ��0 = 0 for

� �= x0.

Proof. Motivated by Theorem 1, we define a PMF P̃ such that the random variable Yt is
independent of the random variables Ys for all s �= t . Moreover, the random variable Yt is
independent of the random variables Xs for all s, t , that is P̃{Yt |Xs }{yt | xs} = P̃Yt (yt ). We
also require that the random variables Xt have the same distribution under both P and P̃ for
all values of t . More precisely, we require P̃Xt ≡ PXt . In fact, we shall suppose that under P̃,
Yt has a Poisson distribution with parameter one, that is P̃Yt (yt ) = e−1/yt ! for yt = 0, 1, . . ..
Note that the choice of Poisson distribution with parameter one is arbitrary, but convenient, and
the final result is independent of this choice. We then define the random variable

�̊i := P{Yti |Xti }{Yti | Xti }
P̃{Yti |Xti }{Yti | Xti }

=
(Xti
Yti

)
pYti (1 − p)Xti−Yti

e−1/Yti !
= eYti !

(
Xti

Yti

)
pYti (1 − p)Xti−Yti

for i = 1, 2, . . . and �̊0 := 1. Write

�n :=
n∏
i=1

�̊i . (1)

From Theorem 1, we have

P{Xtn = xtn | Yn = yn} = EP{1{Xtn=xtn } | Yn = yn} = E
P̃
{�n 1{Xtn=xtn } | Yn = yn}

E
P̃
{�n | Yn = yn} ,

where 1 is an indicator function. In the last fraction, if we let the numerator be denoted by
�
xtn
n := E

P̃
{�n 1{Xtn=xtn } | Yn = yn}, then the denominator can be expressed as

∑∞
�=ytn �

�
n.

Therefore, we just need to show that �
xtn
n satisfies the recursive equation given in Theorem 2.

By definition, we have

�
xtn
n = E

P̃
{�n 1{Xtn=xtn } | Yn = yn}

= E
P̃
{�n−1�̊n 1{Xtn=xtn } | Yn = yn}

= E
P̃

{
�n−1eYtn !

(
Xtn

Ytn

)
pYtn (1 − p)Xtn−Ytn 1{Xtn=xtn }

∣∣∣∣ Yn = yn

}
.

In the latter, by considering the indicator random variable 1{Xtn=xtn } as well as the given
information Yn = yn, we can simplify it to

�
xtn
n = eytn !

(
xtn

ytn

)
pytn (1 − p)xtn−ytnE

P̃
{�n−1 1{Xtn=xtn } | Yn = yn}.
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Recall that under P̃, each random variable Yt is independent of all the other random variables.
Therefore, the given information Ytn = ytn does not assist in evaluating the last expectation.
Hence, we change the given information from Yn = yn to Yn−1 = yn−1. By partitioning on
the values of Xtn−1 , we have

�
xtn
n = eytn !

(
xtn

ytn

)
pytn (1 − p)xtn−ytn

×
∞∑

xtn−1=ytn−1

E
P̃
{�n−1 1{Xtn=xtn } 1{Xtn−1=xtn−1 } | Yn−1 = yn−1}

= eytn !
(
xtn

ytn

)
pytn (1 − p)xtn−ytn

×
∞∑

xtn−1=ytn−1

E
P̃
{E

P̃
{�n−1 12{Xtn−1=xtn−1 } 1{Xtn=xtn } | Yn−1 = yn−1, Xtn−1}}.

Considering the definition (1) it follows that �n−1 is a function of Xn−1 and Yn−1, and using
the Markovian property of the stochastic process {Xt, t ≥ 0}, we have

�
xtn
n = eytn !

(
xtn

ytn

)
pytn (1 − p)xtn−ytn

×
∞∑

xtn−1=ytn−1

E
P̃
{E

P̃
{�n−1 1{Xtn−1=xtn−1 } | Yn−1 = yn−1, Xtn−1}}

× E
P̃
{E

P̃
{1{Xtn−1=xtn−1 } 1{Xtn=xtn } | Yn−1 = yn−1, Xtn−1}}

= eytn !
(
xtn

ytn

)
pytn (1 − p)xtn−ytn

×
∞∑

xtn−1=ytn−1

E
P̃
{E

P̃
{�n−1 1{Xtn−1=xtn−1 } | Yn−1 = yn−1, Xtn−1}}

× P{Xtn = xtn | Xtn−1 = xtn−1}

= eytn !
(
xtn

ytn

)
pytn (1 − p)xtn−ytn

∞∑
xtn−1=ytn−1

�
xtn−1
n−1 Pxtn−1 ,xtn

(tn − tn−1).

As the initial population size is almost surely equal to x0, the initial condition for the recursive
equation given in Theorem 2 follows immediately.

The conditional PMF of {Xtn | Yn = yn} found in Theorem 2 can be exploited in devel-
oping further properties of the POCTMPM. The first calculation that we pursue is to find the
conditional PMF of the next observation given the vector of obtained observations. We use the
main result of Theorem 2 to derive an analogous recursive equation for the conditional PMF of
{Ytn+1 | Yn = yn}.
Theorem 3. Consider the CTMPM {Xt, t ≥ 0} with parameter vector θ and known initial
population size of x0 and the corresponding POCTMPM {Yt , t ≥ 0} with parameters (θ , p).
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Then the conditional PMF of {Ytn+1 | Yn = yn} is equal to

∑∞
xtn+1=ytn+1

∑∞
xtn=ytn

(
xtn+1
ytn+1

)
p
ytn+1 (1 − p)

xtn+1−ytn+1 Pxtn ,xtn+1
(tn+1 − tn)�

xtn
n∑∞

�=ytn �
�
n

for ytn+1 = 0, 1, 2, . . ..

Proof. By considering the conditional independence, utilizing the law of total probability,
conditioning on the random variable Xtnas well as the binomial distribution of the conditional
random variable {Ytn+1 | Xtn+1}, we have

P{Ytn+1 | Yn}{ytn+1 | yn}

=
∞∑

xtn+1=ytn+1

P{Ytn+1 = ytn+1 | Yn = yn,Xtn+1 = xtn+1}P{Xtn+1 = xtn+1 | Yn = yn}

=
∞∑

xtn+1=ytn+1

P{Ytn+1 = ytn+1 | Xtn+1 = xtn+1}P{Xtn+1 = xtn+1 | Yn = yn}

=
∞∑

xtn+1=ytn+1

(
xtn+1

ytn+1

)
p
ytn+1 (1 − p)

xtn+1−ytn+1 P{Xtn+1 = xtn+1 | Yn = yn}. (2)

The last conditional probability can be calculated in a similar way and using Theorem 2, as
follows:

P{Xtn+1 = xtn+1 | Yn = yn} =
∞∑

xtn=ytn
Pxtn ,xtn+1

(tn+1 − tn)

(
�
xtn
n∑∞

�=ytn �
�
n

)
. (3)

Substituting (3) into (2) the desired result is achieved.

In the next section we exploit Theorem 3 to show that the process of binomial observation
of a SBP is not Markovian of any order. The simple birth process has many applications in
biological modeling (see, e.g. [4], [14], [16], [18], [21], [27]).

4. The simple birth process

Let the stochastic process {Xt, t ≥ 0} be the time-homogeneous SBP, or Yule process, with
the parameterλ (known as the birth rate). This means that ifXt = xt at time t , then the transition
rate is equal to λxt . We suppose that the initial population size x0 is known. It is shown, see,
e.g. [23], that the PMF of the random variable Xt over the values of xt = x0, x0 + 1, . . . is
equal to

PXt (xt ) =
(
xt − 1

x0 − 1

)
ϑt
x0(1 − ϑt )

xt−x0 ,

where ϑt := e−λt . Furthermore, for t2 > t1, the PMF of the conditional random variable
{Xt2 | Xt1 = xt1} over the values of xt2 = xt1 , xt1 + 1, . . . is given by

P{Xt2 |Xt1 }(xt2 | xt1) =
(
xt2 − 1

xt1 − 1

)
υ1,2

xt1 (1 − υ1,2)
xt2 −xt1 , (4)

where υ1,2 := e−λ(t2−t1). Note that we generally define υj,k := ϑtk−tj for j ≤ k.
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Let the stochastic process {Yt , t ≥ 0} be the corresponding partially-observable simple birth
process (POSBP) with parameters (λ, p). The partially-observable definition states that, if xt
is the population size at time t and each of these xt individuals can be observed independently
with probability p, then the random variable Yt counts the total number of observations at
time t . Bean et al. [3] extensively studied the POSBP. They showed that [3, Theorem 3.2 and
Corollary 3.1] the PMF of the random variable Yt is equal to

PYt (yt ) = ((1 − p)βt )
x0 for yt = 0, (5a)

PYt (yt ) = ((1 − p)βt )
x0(1 − βt )

yt

×
min{x0,yt }∑
ξ=1

(
yt − 1

ξ − 1

)(
x0

ξ

)(
1 − (1 − p)βt

(1 − p)(1 − βt )

)ξ
for yt = 1, 2, . . . , (5b)

where βt := ϑt/(p + (1 − p)ϑt ).

Corollary 1. Consider the SBP {Xt, t ≥ 0} with parameter λ and known initial population
size of x0 and the corresponding POSBP {Yt , t ≥ 0} with parameters (λ, p). Then

P{Xtn | Yn}(xtn | yn) = �
xtn
n∑∞

�=xtn �
�
n

for xtn = xtn, xtn + 1, . . . , (6)

where xtn := max{x0, yt1 , . . . , ytn} and

��n := eyn!
(
�

yn

)
pyn(1 − p)�−yn

�∑
j=xt n−1

�
j
n−1

(
�− 1

j − 1

)
υn−1,n

j (1 − υn−1,n)
�−j

for � = xtn, xtn +1, . . . and n = 1, 2, . . .with initial conditions �x0
0 = 1 and ��0 = 0 for � > x0.

Proof. This result follows directly from Theorem 2 by replacing Pj,�(tn − tn−1) with (4).
However, as the SBP is a nondecreasing stochastic process, that is for t1 < t2, almost surely
Xt1 ≤ Xt2 , the notation xtn is as defined above.

An important question that may arise here is the dependency structure of the random variables
Yt for different values of t ∈ (0,∞). Reference to Theorem 4 will explain such behavior. Firstly,
we recall the definition of a Markov stochastic process (see, e.g. [17]).

Definition 2. A stochastic process {Zt , t ≥ 0} is ‘Markovian’ of order k (for a fixed value of
k = 1, 2, . . .), if and only if for any real values of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, n = 3, 4, . . . and
n > k,

P{Ztn = ztn | Zt1 = zt1 , Zt2 = zt2 , . . . , Ztn−1 = ztn−1}
= P{Ztn = ztn | Ztn−k = ztn−k , . . . , Ztn−1 = ztn−1}. (7)

In the remainder of this section, we utilize Theorem 3 to prove that the POSBP is not
Markovian. For this purpose, we first show that the POSBP with x0 = 1 is not Markovian.
Then we exploit this result to prove that the POSBP for any value of x0 ≥ 1 is not Markovian.
At the outset, we calculate two probabilities in Lemmata 2 and 3 that will be used in our proof.
However, in order to find the probability in Lemma 2, we first consider the following recursive
equation.
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Lemma 1. A general solution of the recursive equation

ψn = (1 − p)υn−1,nψn−1 + 1 − υn−1,n (8)

for n = 2, 3, . . ., where υj,k = ϑtk−tj for j ≤ k, and subject to the initial condition ψ1 =
1 − υ0,1, is equal to

ϕn := 1 − (1 − p)n−1υ0,n − p

n−1∑
i=1

(1 − p)n−1−iυi,n for n ≥ 1. (9)

Proof. We prove this by induction. It is readily seen that (9) for ϕ1 simplifies to the initial
condition ψ1. For n = 2, (8) becomes

ϕ2 = (1 − p)υ1,2(1 − υ0,1)+ 1 − υ1,2 = 1 − (1 − p)υ0,2 − pυ1,2,

which agrees with (9). Assume that the expression (9) satisfies the recursive equation (8) for
all positive integers n ≤ k. By considering (8) and the induction hypothesis, we have

ϕk+1 = (1 − p)υk,k+1ϕk + 1 − υk,k+1

= (1 − p)υk,k+1

(
1 − (1 − p)k−1υ0,k − p

k−1∑
i=1

(1 − p)k−1−iυi,k
)

+ 1 − υk,k+1

= 1 − (1 − p)kυ0,k+1 − p

k∑
i=1

(1 − p)k−iυi,k+1,

and the result follows.

Lemma 2. Consider the SBP {Xt, t ≥ 0} with parameter λ, initial population of size x0 = 1
and its corresponding POSBP {Yt , t ≥ 0} with parameters (λ, p). The conditional random
variable {Xtn | Yn = 0n} (here 0n = (0, 0, . . . , 0)), follows the geometric distribution with
parameter (1 − (1 − p)ϕn), where ϕn is given in Lemma 1. That is, P{Xtn | Yn}{xtn | 0n} =
(1 − (1 − p)ϕn)((1 − p)ϕn)

xtn−1 for xtn = 1, 2, . . ..

Proof. First, we show that for the observation vector yn = 0n, the corresponding �xnn is
equal to

�
xtn
n = en(1 − p)xtn+n−1υ0,nϕ

xtn−1
n , (10)

where ϕn := ψn as given in Lemma 1. We proceed by induction. For n = 1, the recursive
equation given in Corollary 1 is equal to

�
x1
1 = e0!

(
x1

0

)
p0(1 − p)x1−0

x1∑
j=1

�
j
0

(
x1 − 1

j − 1

)
υ
j
0,1(1 − υ0,1)

x1−j = e(1 − p)x1υ0,1ϕ
x1−1
1 .

Now, suppose that (10) holds for all nonnegative integers n ≤ k. We prove that they then hold
for n = k + 1. For n = k + 1, we have

�
xk+1
k+1 = e(1 − p)xk+1

xk+1∑
j=1

�
j
k

(
xk+1 − 1

j − 1

)
υ
j
k,k+1(1 − υk,k+1)

xk+1−j .
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Considering the induction hypothesis, we can now replace �jk with (10). Thus,

�
xk+1
k+1 = ek+1(1 − p)xk+1+kυ0,kυk,k+1

xk+1∑
j=1

(
xk+1 − 1

j − 1

)
((1 − p)υk,k+1ϕk)

j−1

× (1 − υk,k+1)
xk+1−j .

From the definition of υn−1,n, it is easy to see that υ0,kυk,k+1 = υ0,k+1. Changing the index j
to i := j − 1 and considering (8), we have

�
xk+1
k+1 = ek+1(1 − p)xk+1+kυ0,k+1((1 − p)υk,k+1ϕk + 1 − υk,k+1)

xk+1−1

= ek+1(1 − p)xk+1+kυ0,k+1ϕ
xk+1−1
k+1 .

Now, having an explicit expression for �
xtn
n , we can exploit Corollary 1 to calculate the desired

conditional PMF for xtn = 1, 2, . . ., as follows:

P{Xtn | Yn}(xtn | 0n) = �
xtn
n∑∞

�=xtn �
�
n

= en(1 − p)xtn+n−1υ0,nϕ
xtn−1
n∑∞

�=1 en(1 − p)�+n−1υ0,nϕ
�−1
n

= ((1 − p)ϕn)
xtn−1∑∞

�=1((1 − p)ϕn)�−1

= (1 − (1 − p)ϕn)((1 − p)ϕn)
xtn−1.

From the last line, we see that {Xtn | Yn = 0n} follows the geometric distribution-success
model with parameter (1 − (1 − p)ϕn).

Lemma 3. Consider the SBP {Xt, t ≥ 0} with parameter λ, initial population size x0 = 1 and
its corresponding POSBP {Yt , t ≥ 0} with parameters (λ, p). Then the conditional PMF of
P{Xtn | Yn}{xtn | μn} is equal to

(1 − p)(1 − (1 − p)ϕn)
2(ϕn + (1 − p)n−1(υ1,n − υ0,n)(xtn − 1))((1 − p)ϕn)

xtn−2

(1 − (1 − p)ϕn + (1 − p)n(υ1,n − υ0,n))
,

where μn := (1, 0n−1) for xtn = 1, 2, . . ., n = 2, 3, . . ., and ϕn is given in (9).

Proof. We first show that under the observation vector yn = μn for values of n = 1, 2, . . .,

�
xtn
n = ((1 − p)e)npυ0,n((1 − p)ϕn)

xtn−2(ϕn + (1 − p)n−1(υ1,n − υ0,n)(xtn − 1)), (11)

where ϕn is as defined in the recursive equation (8). Similarly to Lemma 2, we show that under
the observation vector yn = μn, �

xtn
n satisfies (11) by using induction. From the recursive

equation (6) of Corollary 1 and considering the assumption that x0 = 1, we have

�
x1
1 = epυ0,1x1((1 − p)(1 − υ0,1))

x1−1.
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Accordingly,

�
x2
2 = e0!

(
x2

0

)
p0(1 − p)x2−0

x2∑
j=1

�
j
1

(
x2 − 1

j − 1

)
υ
j
1,2(1 − υ1,2)

x2−j

= e2pυ0,1υ1,2(1 − p)x2

x2∑
j=1

j

(
x2 − 1

j − 1

)
((1 − p)(1 − υ0,1)υ1,2)

j−1(1 − υ1,2)
x2−j

= e2pυ0,2(1 − p)x2(1 − υ1,2 + (1 − p)(υ1,2 − υ0,2))
x2−2

× (1 − υ1,2 + (1 − p)(υ1,2 − υ0,2)x2). (12)

From Lemma 2, we have

ϕ2 = 1 − (1 − p)υ0,2 − pυ1,2. (13)

It is easy to show that by setting n = 2 and substituting (13) into (11), the result coincides with
(12). Now, suppose that (11) holds for nonnegative integers 2 ≤ n ≤ k. Then for n = k + 1,
we have

�
xk+1
k+1 = e0!

(
xk+1

0

)
p0(1 − p)xk+1−0

xk+1∑
j=1

�
j
k

(
xk+1 − 1

j − 1

)
υ
j
k,k+1(1 − υk,k+1)

xk+1−j

= e(1 − p)xk+1

xk+1∑
j=1

((1 − p)e)kpυ0,k((1 − p)ϕk)
j−2

× (ϕk + (1 − p)k−1(υ1,k − υ0,k)(j − 1))

×
(
xk+1 − 1

j − 1

)
υ
j
k,k+1(1 − υk,k+1)

xk+1−j

= ek+1p(1 − p)xk+1+k−1υ0,k+1

ϕk

×
xk+1∑
j=1

(ϕk + (1 − p)k−1(υ1,k − υ0,k)(j − 1))

×
(
xk+1 − 1

j − 1

)
((1 − p)υk,k+1ϕk)

j−1(1 − υk,k+1)
xk+1−j

= ek+1p(1 − p)xk+1+k−1υ0,k+1

ϕk
ϕk((1 − p)υk,k+1ϕk + 1 − υk,k+1)

xk+1−2

× ((1 − p)υk,k+1ϕk + 1 − υk,k+1 + (1 − p)k(υ1,k − υ0,k)υk,k+1(xtk+1 − 1)).

Using the recursive equation (8), we have

�
xk+1
k+1 = ((1 − p)e)k+1pυ0,k+1((1 − p)ϕk+1)

xk+1−2

× (ϕk+1 + (1 − p)k(υ1,k+1 − υ0,k+1)(xtk+1 − 1)),

which agrees with (11) for n = k+ 1. Thus, similarly to Lemma 2, we can find the conditional

https://doi.org/10.1239/jap/1437658609 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658609


Continuous-time Markovian population models 467

PMF P{Xtn | Yn}{xtn | μn} by calculating

�
xtn
n∑∞

�=xtn �
�
n

= ((1 − p)e)npυ0,n((1 − p)ϕn)
xtn−2(ϕn + (1 − p)n−1(υ1,n − υ0,n)(xtn − 1))∑∞

�=1((1 − p)e)npυ0,n((1 − p)ϕn)�−2(ϕn + (1 − p)n−1(υ1,n − υ0,n)(�− 1))

= (1 − p)(1 − (1 − p)ϕn)
2(ϕn + (1 − p)n−1(υ1,n − υ0,n)(xtn − 1))((1 − p)ϕn)

xtn−2

(1 − (1 − p)ϕn + (1 − p)n(υ1,n − υ0,n))

as required.

Proposition 1. Consider the SBP {Xt, t ≥ 0} with parameter λ and initial population size
x0 = 1. Let {Yt , t ≥ 0} be its corresponding POSBP with parameters (λ, p). The stochastic
process {Yt , t ≥ 0} is not Markovian of any order for any value of 0 < p < 1.

Proof. According to Definition 2, we need only show that for some particular values of
the random variables, condition (7) does not hold. For this purpose, we shall show that for
any value of n = 3, 4, . . ., P{Ytn = 0 | Yn−1 = 0n−1} �= P{Ytn = 0 | Yn−1 = μn−1}. In
order to calculate the first conditional probability, we exploit Lemma 2 along with (5a), and the
geometric structure of the SBP to obtain

P{Ytn = 0 | Yn−1 = 0n−1}

=
∞∑

xtn−1=xtn−1

P{Ytn = 0 | Xtn−1 = xtn−1 ,Yn−1 = 0n−1}

× P{Xtn−1 = xtn−1 | Yn−1 = 0n−1}

=
∞∑

xtn−1=1

P{Ytn = 0 | Xtn−1 = xtn−1}P{Xtn−1 = xtn−1 | Yn−1 = 0n−1}

=
∞∑

xtn−1=1

P{Ytn−tn−1 = 0 | X0 = xtn−1}P{Xtn−1 = xtn−1 | Yn−1 = 0n−1}

=
∞∑

xtn−1=1

((1 − p)βtn−tn−1)
xtn−1 (1 − (1 − p)ϕn−1)((1 − p)ϕn−1)

xtn−1−1

= (1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1
. (14)

Analogously, by utilizing (5a) as well as Lemma 3, the second conditional probability

P{Ytn = 0 | Yn−1 = μn−1}
= (1−p)βtn−tn−1(1−(1−p)ϕn−1)

2(1+(1−p)2βtn−tn−1((1−p)n−2(υ1,n−1−υ0,n−1)−ϕn−1))

(1−(1−p)2βtn−tn−1ϕn−1)2(1−(1−p)ϕn−1+(1−p)n−1(υ1,n−1−υ0,n−1))
.

It is readily seen that P{Ytn = 0 | Yn−1 = μn−1} = γP{Ytn = 0 | Yn−1 = μn−1}, where

γ := (1 − (1 − p)ϕn−1)(1 + (1 − p)2βtn−tn−1((1 − p)n−2(υ1,n−1 − υ0,n−1)− ϕn−1))

(1 − (1 − p)2βtn−tn−1ϕn−1)(1 − (1 − p)ϕn−1 + (1 − p)n−1(υ1,n−1 − υ0,n−1))
.
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Hence, if we can show that γ �= 1, the proof will be complete. For this purpose, we show
that the denominator of γ is strictly greater than its numerator, that is

(1 − (1 − p)2βtn−tn−1ϕn−1)(1 − (1 − p)ϕn−1 + (1 − p)n−1(υ1,n−1 − υ0,n−1))

− (1 − (1 − p)ϕn−1)(1 + (1 − p)2βtn−tn−1((1 − p)n−2(υ1,n−1 − υ0,n−1)− ϕn−1))

= (1 − p)n−1(υ1,n−1 − υ0,n−1)(1 − (1 − p)βtn−tn−1)

> 0.

This inequality holds because of the assumption that 0 < p < 1,

υ1,n−1 − υ0,n−1 = e−λ(tn−1−t1) − e−λtn−1 = e−λtn−1(eλt1 − 1) > 0,

due to t1 > 0, and βtn−tn−1 ≤ 1 as it is a probability.

Having all these results at hand, we are now able to prove Theorem 4.

Theorem 4. Consider the SBP {Xt, t ≥ 0} with parameter λ and initial population size x0 ≥ 1.
Let {Yt , t ≥ 0} be its corresponding POSBP with parameters (λ, p). The stochastic process
{Yt , t ≥ 0} is not Markovian of any order for any value of 0 < p < 1.

Proof. To prove this theorem, we use induction on x0 to show that for any integer value
n ≥ 3,

P{Ytn = 0 | Yn−1 = 0n−1} > P{Ytn = 0 | Yn−1 = μn−1}, (15)

which implies that

P{Ytn = 0 | Yn−1 = 0n−1} �= P{Ytn = 0 | Yn−1 = μn−1}.

From Proposition 1, we see that the inequality (15) holds for x0 = 1, and so the corresponding
stochastic process {Yt , t ≥ 0} is not Markovian. Suppose that the inequality (15) holds for all
values of x0 ≤ k. We shall then show that it is also the case for x0 = k + 1. Label all k + 1
individuals in the initial population from i = 1, 2, . . . , k + 1 and suppose that {Y it , t ≥ 0} is
the corresponding POSBP of ancestor i at time t . Obviously, all Y it s are independent of each
other and Yt = ∑k+1

i=1 Y
i
t . Hence, by considering (14) for the first probability in (15), we have

P{Ytn = 0 | Yn−1 = 0n−1} = P

{k+1∑
i=1

Y itn = 0

∣∣∣∣
k+1∑
i=1

Y it1 = · · · =
k+1∑
i=1

Y itn−1
= 0

}

= P{Y 1
tn

= · · · = Y k+1
tn

= 0 | Y 1
t1

= Y 2
t1

= · · · = Y k+1
tn−1

= 0}

=
k+1∏
i=1

P{Y itn = 0 | Y it1 = · · · = Y itn−1
= 0}

=
(
(1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

)k+1

.

In order to find the second probability in (15), let us define the following random events
for simplicity: Ek := {Y 1

tn
= · · · = Y ktn = 0} and Fk := {Y 1

t2
= Y 2

t2
= · · · = Y ktn−1

= 0}.
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The second probability in (15) is equal to

P{Ytn = 0 | Yn−1 = μn−1}

= P

{k+1∑
i=1

Y itn = 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1,
k+1∑
i=1

Y it2 = · · · =
k+1∑
i=1

Y itn−1
= 0

}

= P

{
Ek+1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

= P

{
Ek+1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Y k+1
t1

= 0, Fk+1

}
P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

+ P

{
Ek+1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Y k+1
t1

= 1, Fk+1

}
P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

= P

{
Ek+1

∣∣∣∣
k∑
i=1

Y it1 = 1, Y k+1
t1

= 0, Fk+1

}
P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

+ P{Ek+1 | Y 1
t1

= · · · = Y kt1 = 0, Y k+1
t1

= 1, Fk+1}

× P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}
.

As the observations from the ancestors of different initial individuals are independent from
each other, we have

P{Ytn = 0 | Yn−1 = μn−1}

= P{Y k+1
tn

= 0 | Y k+1
t1

= · · · = Y k+1
tn−1

= 0}P
{

Ek

∣∣∣∣
k∑
i=1

Y it1 = 1, Fk

}

× P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

+ P{Y k+1
tn

= 0 | Y k+1
t1

= 1, Y k+1
t2

= · · · = Y k+1
tn−1

= 0}
× P{Ek | Y 1

t1
= · · · = Y kt1 = 0, Fk}

× P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}
.

Considering the results of Proposition 1 and the hypothesis of induction, we have

P{Ytn = 0 | Yn−1 = μn−1}
< P{Y k+1

tn
= 0 | Y k+1

t1
= · · · = Y k+1

tn−1
= 0}

× P{Ek | Y 1
t1

= · · · = Y kt1 = 0, Fk}

× P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}
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+ P{Y k+1
tn

= 0 | Y k+1
t1

= 1, Y k+1
t2

= · · · = Y k+1
tn−1

= 0}
× P{Ek | Y 1

t1
= · · · = Y kt1 = 0, Fk}

× P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

< P{Y k+1
tn

= 0 | Y k+1
t1

= · · · = Y k+1
tn−1

= 0}
× (P{Y 1

tn
= 0 | Y 1

t1
= Y 1

t2
= · · · = Y 1

tn−1
= 0})k

× P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

+ P{Y k+1
tn

= 0 | Y k+1
t1

= · · · = Y k+1
tn−1

= 0}
× (P{Y 1

tn
= 0 | Y 1

t1
= Y 1

t2
= · · · = Y 1

tn−1
= 0})k

× P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

= (1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

×
(
(1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

)k

× P

{
Y k+1
t1

= 0

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

+ (1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

×
(
(1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

)k

× P

{
Y k+1
t1

= 1

∣∣∣∣
k+1∑
i=1

Y it1 = 1, Fk+1

}

<

(
(1 − p)βtn−tn−1(1 − (1 − p)ϕn−1)

1 − (1 − p)2βtn−tn−1ϕn−1

)k+1

= P{Ytn = 0 | Yn−1 = 0n−1}.
The last inequality is true since Y k+1

t1
∈ {0, 1, 2, . . .}.

5. Conclusion

In this paper we studied a new class of stochastic processes based on binomial observations
of a continuous-time Markovian population model. In order to investigate these processes,
the conditional PMF of the next binomial observation, given a set of binomial observations,
{Ytn+1 | Yn = yn}, is determined. For this, we first derive the conditional PMF of the true
value of the stochastic process given the binomial observations, that is {Xtn | Yn = yn}, using a
filtering approach. Then the former result was derived by applying the law of total probability.
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This result should help further research on the class of POCTMPMs.
Note that, although we assume the initial value of the continuous-time Markovian population

model is almost surely known, this does not restrict our calculations. All results stated in
Theorems 2 and 3 can be easily converted to the case with an unknown initial population size.
More precisely, in these two theorems we derived the conditional PMFs of the random variables
{Xtn | Yn} and {Ytn+1 | Yn}, when in fact they are {Xtn | Yn,X0} and {Ytn+1 | Yn,X0}. Then
knowing the distribution of the random variable X0 and exploiting the law of total probability,
one can derive the conditional PMFs of {Xtn | Yn} and {Ytn+1 | Yn}.

Next, the SBP is discussed. This has many applications in modeling biological and ecological
systems. We employed the above result to show that the POSBP is not Markovian of any order.
We believe that this result could be extended. One important direction for this line of research
would be to show that the following conjecture is true.

Conjecture 1. Let us consider a CTMPM {Xt, t ≥ 0} with vector parameter θ and a related
POCTMPM {Yt , t ≥ 0} with vector parameter (θ , p). The stochastic process {Yt , t ≥ 0} is not
Markovian of any order for 0 < p < 1.

Theorems 2 and 3 should lead to a greater understanding of the dynamics of many biological
systems in ecology, genetics, and epidemiology and possible applications of the control of the
spread of infectious diseases and to a reduction of the risk of extinction of endangered species.
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