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The Least Trimmed Squares (LTS) regression estimator is known to be very robust to
the presence of “outliers”. It is based on a clear and intuitive idea: in a sample of size
n, it searches for the h-subsample of observations with the smallest sum of squared
residuals. The remaining n−h observations are declared “outliers”. Fast algorithms
for its computation exist. Nevertheless, the existing asymptotic theory for LTS, based
on the traditional ε-contamination model, shows that the asymptotic behavior of both
regression and scale estimators depend on nuisance parameters. Using a recently
proposed new model, in which the LTS estimator is maximum likelihood, we show
that the asymptotic behavior of both the LTS regression and scale estimators are
free of nuisance parameters. Thus, with the new model as a benchmark, standard
inference procedures apply while allowing a broad range of contamination.

1. INTRODUCTION

The Least Trimmed Squares (LTS) estimator (Rousseeuw, 1984) is known to be
very robust to outliers. The robustness of the LTS estimator is often expressed
through its high breakdown point (Rousseeuw and Leroy, 1987, Sect. 3.4). This
means that the estimator remains bounded if, for a given sample, we distort
nearly half of the observations in an arbitrary way. This contrasts with the OLS
estimator and the quantile regression estimator, which have breakdown point
close to zero (He et al., 1990), so that adding one observation to a sample may
change those estimators unboundedly. Another attractive feature is that LTS is
scale equivariant just as OLS and quantile regression, but in contrast to other
M-estimators. Our concern is how to conduct nuisance parameter free inference
with LTS.

The LTS estimator is computed as follows. The user specifies that a sample
with n observations has h “good” observations and n − h “outliers”. The LTS
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estimator is the OLS estimator for the h sub-sample with the smallest resid-
ual sum of squares. Thus, LTS gives an estimator of the unknown regression
parameter and finds two different groups of observations: the “good” and the
“outliers”. In a location-scale model this search is of linear order, while in
regression it is of binomial order, hence, making analysis harder in the regression
context.

The traditional approach in robust statistics is to analyze the asymptotic prop-
erties of the LTS estimator under the assumption that the regression errors are
independent draws from a common ε-contaminated normal distribution, which
mixes a normal distribution with a contamination distribution as popularized by
Huber (1964). The errors are also assumed to be independent of the regressors and
the parameter space is assumed to be compact. In this setting, asymptotic infer-
ence involves nuisance parameters depending on the contamination distribution
(Rousseeuw, 1985; Croux and Rousseeuw, 1992). Butler (1982) gave a formal
proof for the location-scale case. Čížek (2005) and Víšek (2006) considered the
regression case with symmetric density and compact parameter space. A compact
parameter space assumption often appears innocuous, but seems less appropriate
when the purpose of robust estimation is to guard against arbitrary distortions
in the presence of “outliers”. The common error distribution assumed in this
stream of the literature is generally unknown and the practice is to apply nuisance
parameters as if all observations are normal. For later reference, we term this
approach as standard LTS, or in short SLTS.

Our analysis departs from this traditional approach in robust statistics and
delivers an inferential theory that is free of nuisance parameters. Besides, it does
not require a compact parameter space. Our asymptotic theory is inspired by
the LTS model of Berenguer-Rico, Johansen, and Nielsen (2023), in which h
“good” observations follow a classical regression model, while n − h “outliers”
have regression errors that are more extreme than the realized “good” errors.
The LTS estimators for regression, scale and “outlier” classification maximize
the ε-likelihood of the LTS model, in the sense of Scholz (1980). This was
proved along with an asymptotic theory for the location-scale case. Although
informative, the location-scale model is of limited applicability. Asymptotic theory
for the regression case is the relevant theory for practitioners. We deliver this
theory in this paper. The asymptotic arguments used by Berenguer-Rico et al.
(2023) in the linear-order location-scale case do not immediately generalize to
the regression case due to the complexity of the binomial search, which makes
the theoretical problem much harder. We argue differently and more generally
here delivering a nuisance parameter free asymptotic theory for the LTS regression
estimator.

Specifically, the asymptotic analysis in the present paper starts by showing that
the LTS estimator is bounded in probability. To the best of our knowledge, this
result is new in the literature. Boundedness is derived under mild assumptions.
The proof adapts a recent argument for M-estimators with non-convex criterion
functions (Johansen and Nielsen, 2019).The boundedness result resonates with

https://doi.org/10.1017/S0266466624000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000343


LEAST TRIMMED SQUARES 3

the high breakdown point property of the LTS estimator and avoids a compact
parameter space assumption. Next, we show that the proportion of “good” obser-
vations is consistently selected and derive the rate at which this consistent selection
occurs. This uses theory on extreme and intermediate quantiles (Chibisov, 1964;
Galambos, 1978; Leadbetter, Lindgren, and Rootzén, 1982). The final result is
an asymptotic expansion of the LTS estimator in terms of the infeasible OLS
estimator for the “good” observations. This asymptotic equivalence between the
LTS estimator and the infeasible OLS estimator is shown for both the regression
parameters and the scale estimators. This result shows that, in contrast to the tradi-
tional approach based on the ε-contamination model, no nuisance correction and
consistency factors are required. The usual asymptotic distribution theory for OLS
estimators then applies under different assumptions to the “good” observations
such as i.i.d. or heteroscedastic structures and stationary or non-stationary time
series regressors.

In simulations, we consider OLS, LTS, and SLTS inference for various contam-
inated samples. The simulations confirm the asymptotic theory and the fact that
the underlying model is of primary importance when conducting inferences with
the LTS estimator.

In practice, the user will have to choose the number h of “good” observations.
A related matter is to decide whether LTS or SLTS inference is applicable. An
estimator for h and model choice are discussed in Berenguer-Rico et al. (2023).
An overview of these practical aspects is given in Section 6 below.

Many extensions of LTS exist in the literature: covariance estimation using the
minimum covariance determinant (MCD) estimator (Rousseeuw, 1985), the Least
Trimmed sum of Absolute deviations (LTA) estimator, which is a robust version
of the Least Absolute Deviations (LAD) estimator (Hössjer, 1994), nonlinear
regression in time series (Čížek, 2005), multivariate regression (Agullo, Croux,
and Van Aelst, 2008), the forward search algorithm (Atkinson, Riani, and Cerioli,
2010), sparse regression (Alfons, Croux, and Gelper, 2013), canonical correlation
analysis (Wilms and Croux, 2016), algorithms for fraud detection (Rousseeuw
et al., 2019) or covariance estimation using cell-wise outliers (Raymaekers and
Rousseeuw, 2023). Some of these estimators are examples of trimmed likelihood
estimators (Bednarski and Clarke, 1993; Vandev and Neykov, 1993; Gallegos
and Ritter, 2009; Clarke, 2018). The analysis presented here will be useful
for analyzing and applying these extensions. More generally, the asymptotic
analysis in this paper opens up for new inferential procedures in the presence
of “outliers”.

The paper is organized as follows. Section 2 describes the LTS estimator and
the LTS model. Section 3 contains the asymptotic results: boundedness, consistent
selection, and asymptotic expansion. Section 4 discusses regressors allowed by the
theory. Section 5 illustrates the theory via simulations. Section 6 concludes with a
discussion of some practical aspects of LTS. Proofs and technical derivations can
be found in the Appendices.
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4 VANESSA BERENGUER-RICO AND BENT NIELSEN

2. THE LTS ESTIMATOR AND THE LTS MODEL

2.1. The LTS Estimator

We consider the linear regression for a scalar yi and a vector xin of regressors
given by

yi = x′
inβ +σεi for i = 1, . . . ,n, (2.1)

where xin would usually include an intercept, but it does not have to. With this
formulation of the model equation (2.1), all normalizations are built into the
regressors xin so that estimators for β will be n1/2 consistent. For example, xin

could be an i.i.d. regressor, a level shift after a fraction of the sample 0 < τ < 1
so that xin = 1(i≤τn), or a normalized random walk, xin = n−1/2 ∑i

�=1 ψ� with i.i.d.
increments ψ�. In the notation for yi, we suppress the dependence on n noting that
in the asymptotic analysis yi is always replaced by the right-hand side of (2.1).

The LTS estimator can be defined as follows (Rousseeuw and van Driessen,
2000). Let ζ denote an h-subset of (1, . . . ,n) with associated least squares
estimators

β̂ζ = (
∑
i∈ζ

xinx′
in)

−1
∑
i∈ζ

xinyi and σ̂ 2
ζ = h−1

∑
i∈ζ

(yi − x′
inβ̂ζ )

2, (2.2)

where
∑

i∈ζ xinx′
in is assumed invertible for any ζ . Then, the LTS estimator and the

associated scale estimator are given by

β̂ = β̂ζ̂ and σ̂ 2 = σ̂ 2
ζ̂

where ζ̂ = arg min
ζ

σ̂ 2
ζ . (2.3)

That is, for a given number of “good” observations h, the LTS estimator finds the
h-subsample with the smallest residual sum of squares.

2.2. The LTS Estimator in the ε-Contamination Model

The ε-contamination model of Huber (1964) has traditionally been the primary
framework for analyzing the asymptotic properties of the LTS estimator. In this
context, the errors, εi, are assumed to be i.i.d. with a common distribution F =
(1−ε)
+εG that mixes the standard normal distribution 
 with a contamination
distribution G at a contamination level 0 ≤ ε < 1. Moreover, the errors are
independent of the regressors.

In this stream of the literature, the asymptotic properties of the LTS estimator are
derived by imposing conditions on the error distribution F, which in turn restricts
the type of contamination distribution G. For instance, in an early paper, Butler
(1982) studied the asymptotic properties of the LTS estimator for the location-
scale case assuming a unimodal but not necessarily symmetric F. Rousseeuw
(1985) and Croux and Rousseeuw (1992) described the asymptotic behavior of
the LTS estimators for regression and scale, respectively. Víšek (2006) analyzed
the linear regression case with symmetric F and compact parameter space. Using
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Víšek (2006), Johansen and Nielsen (2016) analyzed the consistency of the scale
estimator in the regression case.

More precisely, the above papers show that the asymptotic behavior of the
regression and scale LTS estimators in this setting is as follows. Let h = �λn�
so that λ denotes the proportion of “good” observations associated to h and �.�
the floor function. Suppose (εi,xin) is i.i.d. with fourth moments. Let εi have a
continuous, symmetric, unimodal distribution F with density f and be independent
of xin for which �x = Exinx′

in. Then,

n1/2(β̂ −β)
D→ N(0,σ 2�−1

x ηλ,F), h−1
∑
i∈ζ̂

xinx′
in

P→ �x, σ̂ 2 P→ σ 2ς2
λ,F,

with efficiency factor ηλ,F and consistency factor ς2
λ,F given by

ηλ,F =
∫ c
−c x2dF(x)

{λ−2cf(c)}2
, ς2

λ,F =
∫ c
−c x2dF(x)

λ
, c = F−1{(1+λ)/2}.

Both, ηλ,F and ς2
λ,F, depend on the unknown distribution F. Inference, then, depends

on these nuisance parameters. The state-of-the-art in this context is to proceed
assuming that the errors, εi, are normal so that ε = 0. This prevalent approach
seems contrary to the original intention of using robust estimation to deal with
outliers. Nonetheless, it is customary in the literature to follow this method and,
therefore, we will take it as a framework for comparison with our approach below.
We refer to this approach as standard LTS or in short SLTS inference. Under normal
errors,

∫ c
−c x2d
(x) = λ−2cφ(c), so that ηλ,
 = 1/{λ−2cφ(c)}. Therefore, under

normality, ληλ,
 = 1/ς2
λ,
. The SLTS inferential approach uses, for h = λn, the

estimated asymptotic variance

V̂arSLTS(β̂) = σ̂ 2

nς2
λ,


(
h−1

∑
i∈ζ̂

xinx′
in

)−1
ηλ,
 = σ̂ 2

(∑
i∈ζ̂

xinx′
in

)−1( 1

ς2
λ,


)2
. (2.4)

2.3. The LTS Model

Departing from the traditional ε-contamination approach, Berenguer-Rico et al.
(2023) proposed the following model in which the LTS estimator is maximum
likelihood.

Model 1. (The LTS model). Let yi = x′
inβ + σεi for i = 1,...,n. We condition

on the random regressors x1n, . . . ,xnn. Let h ≤ n be given and ζ be a non-random,
given set with h elements from 1, . . . ,n.

For i ∈ ζ , let εi be i.i.d. N(0,1) distributed.
For j �∈ ζ , let ξj be independent with distribution functions Gj(z) for z ∈R, where

Gj is continuous at 0, but may depend on xjn. The “outlier” errors are defined, for
j �∈ ζ , by

εj = (max
i∈ζ

εi + ξj)1(ξj>0) + (min
i∈ζ

εi + ξj)1(ξj<0). (2.5)
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The parameters are β ∈ R
dimx, σ > 0, ζ which is any h-subset of i = 1, . . . ,n and

Gj which are any n−h arbitrary conditional distributions on R, that are continuous
at 0.

The LTS model allows for many types of “outliers”. Its defining feature is that
the “outlier” errors are outside the realized range of the “good” errors and are
characterized by an un-specified distribution Gj(z). Given the semi-parametric
nature of the model, Berenguer-Rico et al. (2023) used the ε-likelihood concept
of Scholz (1980) to show that the LTS estimator is maximum likelihood in the
LTS model.

Unlike the ε-contamination model described above, the LTS model does not
have an i.i.d. structure. The “outlier” errors are beyond the realized range of
the “good” errors. Hence, there is dependence in the LTS model. Moreover, the
“outlier” errors, εj, have distribution function Gj, which can vary with j and depend
on xjn. Hence, there is heterogeneity in the LTS model. Thus, the probabilistic
structure of the contaminated observations in the ε-contamination model and the
LTS model are different. And, as we will see below, they will bring about very
different properties of the LTS estimator.

The LTS model can generate a great variety of contamination schemes. Apart
from taking values outside the realized range of the “good” errors, the “outlier”
errors are very much unrestricted and could even depend on the regressors. When
showing that the LTS estimator is maximum likelihood in the LTS model, the
regressors were conditioned upon. Hence, the regressors in the LTS model can be
generated in multiple ways: fixed or random, i.i.d. or time series, with or without
“outliers”, etc. We illustrate some of the different types of “outliers” that the LTS
model can generate in a series of simulated data. Specifically, we consider the
linear model yi = β0 +β1zi +σεi, for i = 1,...,100, and generate six different data
generating processes (DGPs). All DGPs have β0 = β1 = 0 and σ = 1. In all cases,
the “good” errors are i.i.d. N(0,1) and the “good” regressors are i.i.d. uniform on
[−10,10], denoted U[−10,10].

Figure 1 gives scatter plots of yi against zi for the six different DGPs with “good”
and “outlying” observations marked with crosses and bullets, respectively. The
dotted lines indicate the maximal absolute “good” errors. Also shown are the full
sample OLS (solid line, grey) and LTS with h = 80 (dashed line, grey) fits.

DGP 1 has no contamination and is illustrated in panel (a). All errors are i.i.d.
N(0,1) and all regressors are i.i.d. U[−10,10]. The OLS and LTS (with wrong
h = 80) lines are both very close to the zero line.

DGPs 2–6, illustrated in panels (b)–(f), have contamination of LTS type. In all
cases, there are h = 80 “good” observations (crosses) and n − h = 20 “outliers”
(bullets).

DGPs 2–3 are illustrated in panels (b) and (c), respectively. In both cases, there
is only contamination in the error term and the regressors are all i.i.d. U[−10,10].
The error term has LTS-type contamination of the form (2.5) where ξj −ν+1(ξj>0)+
ν−1(ξj<0) is i.i.d. normal N(0,1). The constants ν+ and ν− separate “good” and
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Figure 1. Scatter plots for six different DGPs from the LTS model, n = 100. Points are “good”
(cross) and “outliers” (bullet). Lines are max absolute “good” error (dots), LTS fit (dashed, grey), OLS
fit (solid, grey).

“outlying” errors. DGP 2 has ν+ = ν− = 0 (near “outliers”) and DGP 3 has ν+ = 3,
ν− = 1 (skew “outliers”). In DGP 2, with near “outliers”, the OLS and LTS lines
are both very close to the zero line. In DGP 3, with separation and skew “outliers”,
the OLS estimator has slope close to zero but the intercept is off. In contrast, the
LTS line is close to the zero line.

DGPs 4–6, depicted in panels (d)–(f), have contamination in both errors and
regressors. Both “outlier” errors and regressors are of LTS type. Specifically, the
“outlier” errors are of the form (2.5) with ξj = uj + c and uj i.i.d.U[0,1]. The
“outlier” regressors are xj = 10+ej +d, where ej are i.i.d.U[0,1] and independent
of uj, although in the theory below they do not need to be independent. Note that the
“good” regressors are U[−10,10], hence, the “outlier” regressors are also outside
of the range of the “good” regressors. DGP 4 has c = d = 0, generating a near
leverage effect. Both OLS and LTS lines seem to be attracted to the near leverage
“outlier” points in this small sample of size n = 100. DGP 5 has c = 10 and d = 0,
which generates bad leverage points. The OLS line is clearly attracted to the bad
leverage “outliers” while the LTS line is close to the zero line. DGP 6 has c = 10,
d = n1/2, so that the “outlier” regressors are xj = 20 + ej and therefore outlying
themselves. As in DGP 5, the OLS line is attracted by the “outliers”, while the LTS
line remains close to the zero line. The theory that follows will cover DGPs 1-5.
DGP 6, which has d = n1/2, and therefore regressor “outliers” that diverge with the
sample size, has been chosen as an extreme example in which the LTS estimator
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8 VANESSA BERENGUER-RICO AND BENT NIELSEN

fails asymptotically. This is in line with the recommendation (Rousseeuw, 1994)
of looking for “outliers” in the regressors before using the LTS estimator. See the
running example in Section 3 and simulations below for more details.

A feature of the LTS model is that “outlier” values are relative to a given sample.
The “outlier” errors are always beyond the realized range of the “good” normal
errors. The “good” normal errors have unbounded support, therefore, as the sample
size increases, the “outlier” errors are more and more extreme. This implies that
values that are “outliers” in one sample will not be so in larger samples.

One will notice that the LTS model is not a mixture model with an i.i.d. structure,
for which the index set for the “outliers” would have been random. Rather, in the
LTS model “outlier” errors are conditional on the “good” errors and, therefore,
are not i.i.d. Moreover, the index set ζ is fixed and a parameter of the model. The
LTS model is therefore different from the Huber (1964) ε-contamination model.
The LTS model, with its likelihood underpinning, brings a new alternative way to
probabilistically study and incorporate “outliers” in statistical analysis that can
be fruitful. For instance, as we show below, the LTS model approach delivers
nuisance parameter free asymptotic inference in the LTS regression context, which
can be useful in practice when conducting inference using the LTS estimator.

As illustrated by Figure 1, the flexible and semi-parameteric nature of the
LTS model allows for a great variety of contamination schemes. Many other
configurations can be generated as well. Figure 1 has contamination types that
are graphically similar to “outliers” considered previously in the literature. Here,
the “outliers” are generated systematically through the LTS model with its proba-
bilistic structure. This provides an analytic framework for the theoretical study of
the LTS estimator (and potentially other estimators) under general contamination.

3. LTS ASYMPTOTICS

Berenguer-Rico et al. (2023) showed that the LTS estimator is maximum likelihood
in the LTS regression model with yi = x′

inβ + σεi. Asymptotics for the LTS
estimator in the LTS model were analyzed by Berenguer-Rico et al. (2023) but
only in the location-scale case, yi = μ + σεi, where a linear search suffices.
Analyzing the asymptotic properties of the LTS estimator in the regression case,
yi = x′

inβ +σεi, which uses a binomial search, is a non-trivial extension, requiring
new asymptotic tools as provided here.

Hence, the following theory uses the linear regression equation yi = x′
inβ +σεi

in (2.1). The LTS model with the maximum likelihood property as described in
Section 2.3 is taken as a benchmark and it will be relaxed in a series of assumptions.
For instance, separation between “good” and “outlier” errors will be kept but in a
less stringent way so that some overlap is permitted. Moreover, the “good” errors
do not need to be normal. Instead, conditions on their extreme and intermediate
values will be assumed. In this way, other commonly used distributions will
be allowed. Also, instead of conditioning on the regressors, we will introduce
regularity conditions for the regressors allowing them to be random. All in all, the
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asymptotic theory derived below does not assume the LTS model as such. While
the stated assumptions capture its essence, they are more general and allow for a
much broader class of models. This is in line with OLS theory. OLS is maximum
likelihood in the normal model but usually its asymptotic properties are derived
under a relaxed set of assumptions. We proceed similarly here.

For the asymptotic results in this section, the linear regression equation (2.1) is
used, that is yi = x′

inβ + σεi for i = 1, . . . ,n. Let h ≤ n be the number of “good”
observations, which we assume to be known throughout. In the asymptotics, we
consider increasing values of h,n. Assumptions for the errors εi and the regressors
xin are given as we progress. Examples of permitted regressors are discussed in
Section 4. We let ζn be a deterministic sequence of sets of true indices of “good”
observations and ζ be a generic h-set of indices from i = 1,...,n. Let #ζ denote the
count of elements in the set ζ .

To illustrate the assumptions below, we will use the LTS model with leverage
(DGPs 4-6 above) as a running example.

Running Example. Suppose yi = x′
inβ + σεi where x′

in = (1,zin) is bivariate.
Let 1/2 < λ ≤ 1. Further, let �.� denote the floor function and define h = �nλ�
to be the number of “good” observations. Let ζn be the set of indices of “good”
observations.

For i ∈ ζn, εi are i.i.d.N(0,1) and zin are i.i.d.U[−10,10].
For j �∈ ζn, the “outlier” errors and regressors are defined by εj = maxi∈ζn εi + ξj

for ξj = uj + c and zjn = 10+ ej +d, respectively, where uj and ej are i.i.d.U[0,1].
We assume here that uj and ej are independent but the theory allows dependence.
In DGP 4, c = d = 0. In DGP 5, c = 10,d = 0. In DGP 6, c = 10,d = n1/2.
As illustrated in Figure 1, all these data generating processes produce data with
leverage points.

3.1. Boundedness

A boundedness result is presented for the LTS estimator for the linear regression
equation (2.1), that is yi = x′

inβ + σεi, under assumptions to the second sample
moment for the “good” errors and to the frequency of small regressors.

Assumption 3.1. Suppose

(i) Frequency of “good” observations: h/n → λ where λ > 1/2.
(ii) “Good” errors: h−1 ∑

i∈ζn
ε2

i = OP(1).
(iii) Frequency of small regressors: Define

Fnh(a) = max
ζ :#ζ=h

sup
δ:|δ|=1

h−1
∑
i∈ζ

1(|x′
inδ|≤a). (3.1)

Let ξ satisfy 0 < ξ < 2−λ−1 and suppose
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lim
(a,n)→(0,∞)

P{Fnh(a) > ξ} = 0, (3.2)

that is ∀ε > 0, ∃(a0,n0) > 0: ∀a ≤ a0,n ≥ n0 then P{Fnh(a) > ξ} < ε.

Remark 3.1. Assumption 3.1(ii) implies that σ̂ 2 is bounded in probability.
Indeed, since σ̂ 2 is a minimizer then σ̂ 2 ≤ σ̂ 2

ζn
where σ̂ 2

ζn
/σ 2 ≤ h−1 ∑

i∈ζn
ε2

i by
the model equation (2.1).

Remark 3.2. Assumption 3.1(iii) implies that �̂ζ = h−1 ∑
i∈ζ xinx′

in is positive
definite in large samples for all ζ as required in (2.2), see Section 4.1 below.
It covers a wide range of regressors – examples are given in Section 4.

Remark 3.3. The boundedness result in this section, its condition for the
frequency of small regressors and its proof are inspired by the analysis of
M-estimators in Johansen and Nielsen (2019). A major difference is that the
objective functions for M-estimators and the LTS estimator have a different
structure. M-estimators minimize

∑n
i=1 ρ(yi −x′

inβ) for a criterion function ρ, that
may be bounded and the theory is formulated for a general ρ. The LTS objective
function is built around a quadratic criterion function that sums over a set of “good”
observations that is to be estimated. When h = n, the LTS estimator is therefore
an OLS estimator as well as an M-estimator. Moreover, when h = n, the Fnn(a)

function in (3.1) is equal to the quantity Fn(a) in Johansen and Nielsen (2019)
which was used to prove boundedness of M-estimators. It is interesting to note that
the Fn(a) function is related to quantities found in previous papers on M-estimators
(Chen and Wu, 1988) and on S-estimators (Davies, 1990).

Running Example. Assumption 3.1(i) holds in this example since 1/2 < λ ≤ 1.
Assumption 3.1(ii) holds since the “good” errors εi for i ∈ ζn are i.i.d.N(0,1),

so that h−1 ∑
i∈ζn

ε2
i is χ2

h /h distributed and bounded in probability.
Assumption 3.1(iii) holds as follows. We can bound Fnh(a) ≤ Fhh(a) + (n −

h)/h with the convention Fhh(a) = supδ:|δ|=1 h−1 ∑
i∈ζn

1(|x′
inδ|≤a). This is proved

in (4.2) below. Notice that the bound only involves the “good” regressors. For
i ∈ ζn, we have x′

in = (1,zin) where zin is i.i.d. with bounded, continuous density
in this example. We get Fhh(a) = oP(1) (Johansen and Nielsen, 2019, Thm. 3.3).
Moreover, (n−h)/h → λ−1 −1 as h/n → λ. Thus, we can bound Fnh(a) ≤ λ−1 −
1 + oP(1). We have that λ−1 − 1 < 2 −λ−1, whenever λ > 2/3. This leaves space
for choosing a ξ so that Assumption 3.1(iii) is satisfied.

Under Assumption 3.1, the first result bounds the difference between the LTS
estimator and the infeasible OLS estimator, β̂ζn , on the unknown set of “good”
observations, whose indices are given in the deterministic set ζn. The asymptotic
theory of the OLS estimator β̂ζn is of course widely studied. We note that the LTS
estimator may not be unique, so we establish a uniform bound over the sets Mn

of minimizers ζ of σ̂ 2
ζ .

Theorem 3.1. Suppose Assumption 3.1. Let Mn denote the set of minimizers ζ

of σ̂ 2
ζ . Then, maxζ∈Mn |β̂ζ − β̂ζn | = OP(1).

https://doi.org/10.1017/S0266466624000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000343


LEAST TRIMMED SQUARES 11

The boundedness of the LTS estimator derived in Theorem 3.1, holds under very
mild assumptions on the “good” errors and the frequency of small regressors. No
other structure than Assumption 3.1 is imposed. In particular, the defining feature
of the LTS Model of placing “outlier” errors outside the realized range of “good”
errors is not used. This means that the result can be used in a range of situations,
like the LTS or ε-contamination models described above.

Remark 3.4. Theorem 3.1 also provides some insights on the behavior of the
LTS estimator when the wrong h is chosen. Suppose that Assumption 3.1 holds for
h◦ with h◦/n → λ◦ and the LTS procedure is used with h < h◦ observations so that
h/n → λ and 1/2 < λ < λ◦. We study whether Assumption 3.1 will be satisfied
for the sequence h < h◦. First, Assumption 3.1(i) holds by construction since we
choose h so that h/n → λ and 1/2 < λ < λ◦.

Second, if Assumption 3.1(ii) holds for h◦, then there exists a set ζ◦ in which
h−1◦

∑
i∈ζ◦ ε2

i = OP(1). Let ζn ⊂ ζ◦ be a subset of size h < h◦ of the indices
included in ζ◦. Then,

∑
i∈ζn

ε2
i ≤ ∑

i∈ζ◦ ε2
i = OP(h◦). Since h/h◦ → λ/λ◦, then

h−1 ∑
i∈ζn

ε2
i = OP(1). Third, suppose Fnn(a) = oP(1), which is valid in the

Examples 4.1–4.4 below. Then for any index set ζ we can bound
∑

i∈ζ 1(·) ≤∑n
i=1 1(·). In particular, we can bound Fnh◦(a) ≤ (n/h◦)Fnn(a) = oP(1) and

Fnh(a) ≤ (n/h)Fnn(a) = oP(1) so that Assumption 3.1(iii) holds for h◦ as well
as for the h chosen for LTS estimation.

If instead, the LTS procedure is used with h > h◦ observations, then Assumption
3.1 may or may not apply for the h sequence. Specifically, when h > h◦, it would
be possible to construct cases in which the LTS estimator is bounded and cases
in which the LTS estimator is unbounded. Notice that when h > h◦, any choice
of the h-set ζn in Assumption 3.1 must include both “good” observations and
“outliers” due to the constraint that h > n/2. If the “outlier” errors are diverging,
then Assumption 3.1(ii) for the h sequence will fail and this could translate into
unboundedness of LTS.

3.2. Consistent Selection of “Good” Observations

Next, we show that the proportion of wrongly classified observations vanishes. The
convergence rate is improved subsequently. We note that #(ζ ∩ ζn) is the number
of “good” observations that are correctly selected in ζ . The numbers of wrongly
classified “good” observations and wrongly classified “outliers” satisfy #(ζ c ∩
ζn) = #(ζ ∩ ζ c

n ), since h = #(ζ c ∩ ζn) + #(ζ ∩ ζn) and h = #(ζ ∩ ζ c
n ) + #(ζ ∩ ζn).

The proportion of wrong classifications is then #(ζ ∩ ζ c
n )/h. Let ‖m‖ denote the

spectral norm of a matrix m.

Assumption 3.2. Suppose

(i) Regressors: ‖∑n
i=1 xinx′

in‖ = OP(n).
(ii) Infeasible OLS estimator: β̂ζn = OP(1).
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Remark 3.5. Assumption 3.2(i) is a mild assumption to the regressors. It allows
for “outlier” regressors but these should not be divergent. This is consistent with
the recommendation of Rousseeuw (1994) to start an LTS analysis by detecting
“outliers” among the regressors. See the running example below and Section 4 for
other specific examples.

Running Example. Assumption 3.2(i) holds for DGPs 4-5 as follows.
The “good” regressors are i.i.d.U[−10,10], so that z2

in ≤ 100 a.s. whence
h−1 ∑

i∈ζn
z2

in ≤ 100 a.s. Similarly, the “outlier” regressors are i.i.d.U[10+d,11+
d], so that (n−h)−1 ∑

i�∈ζn
z2

in ≤ (11+d)2 a.s. These findings can be combined to
show that ‖∑n

i=1 xinx′
in‖ = OP(n).

Assumption 3.2(i) fails for DGP 6. The “outlier” regressors are i.i.d.U[10 +
d,11 + d] with d = n1/2, so that (n − h)−1 ∑

i�∈ζn
z2

in ≥ (10 + d)2 → ∞ a.s.
Assumption 3.2(ii) holds as follows. Since the “good” errors are normal, it suffices
that

∑n
i∈ζn

xinx′
in is bounded from below. This holds when xin = (1,zin)

′ and zin are
i.i.d.U[−10,10].

Theorem 3.2. Suppose Assumptions 3.1 and 3.2. Let Mn denote the set of
minimizers ζ of σ̂ 2

ζ . Then, maxζ∈Mn #(ζ ∩ ζ c
n )/h = OP(1/minj�∈ζn ε2

j ).

It is worth noting that the LTS model as defined in Section 2.3 is not used in
proving Theorem 3.2. The proof of Theorem 3.2 is derived under Assumptions 3.1
and 3.2 only.

Theorem 3.2 provides a consistency result whenever the smallest “outlier”
error squared, minj�∈ζn ε2

j , diverges. We then have that the proportion of wrong
classifications vanishes in that #(ζ ∩ζ c

n )/h = oP(1). Since #(ζ ∩ζn)+#(ζ ∩ζ c
n ) = h,

we also get that the proportion of correctly classified “good” observations goes to
unity, that is #(ζ ∩ ζn)/h = 1+oP(1).

Running Example. Theorem 3.2 provides a consistency result if minj�∈ζn ε2
j

diverges. We show this is the case. Recall that the “outliers” are εj = maxi∈ζn εi +ξj

where ξj = uj + c > 0 a.s. as c = 0 or c = 10 and uj are i.i.d.U[0,1]. The
“good” errors are i.i.d. standard normal, so that maxi∈ζn εi/

√
2logh → 1 a.s., see

Example B.1 below. We also have that minj�∈ζn uj → 0 a.s. whence minj�∈ζn ξj → c.
In combination, we get, for finite c, that minj�∈ζn εj/

√
2logh → 1 a.s. Hence,

minj�∈ζn ε2
j diverges, so that Theorem 3.2 then shows that maxζ∈Mn #(ζ ∩ ζ c

n )/h =
OP(1/ logh).

In the running example, we have that the smallest “outlier” error squared,
minj�∈ζn ε2

j , is no less than the largest “good” error, maxi∈ζn ε2
i . The latter diverges

at a logarithmic rate because the “good” errors are normal. In general, maxi∈ζn ε2
i

diverges when the “good” errors are i.i.d. with unbounded support. However,
if minj�∈ζn ε2

j is bounded in probability, then Theorem 3.2 says that the wrong
classification rate is bounded in probability. This is rather uninformative as the
wrong classification rate is at most unity by construction. In contrast, when
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minj�∈ζn ε2
j diverges faster than h, then Theorem 3.2 says that we will get perfect

classification #(ζ ∩ ζ c
n ) = oP(1). A variation of the latter case is discussed in

Appendix D.

3.3. Improving the Rate of Consistency

Theorem 3.2 gave conditions under which #(ζ ∩ζ c
n )/h = OP(1/minj�∈ζn ε2

j ), which
will typically be a slow rate. Here, we improve the consistency rate by mak-
ing assumptions to the intermediate extreme values of the “good” errors and
regressors.

Assumption 3.3. Let m2
n = min{(mini∈ζn εi)

2,(maxi∈ζn εi)
2}. Suppose

(i) “Good” errors: εi for i ∈ ζn satisfy
(a) 1/m2

n = oP(1);
(b) maxi∈ζn ε2

i /m2
n = OP(1);

(c) Let ε2
i for i ∈ ζn have order statistics ψ1 ≤ ·· · ≤ ψh. Then, the intermediate

extreme values satisfy ∀0 < ρ < 1, ∃Cρ < 1: ψh−�hρ�/m2
n ≤ Cρ +oP(1);

(d) Extremes are of polynomial order: m2
n = OP(nη)L(n) for some 0 ≤ η < 1/2

and where L(n) is a slowly varying function, that is L(an)/L(n) → 1 as
n → ∞ for any a > 0.

(ii) “Outlier” errors: minj�∈ζn ε2
j ≥ m2

n{1+oP(1)}.
(iii) Regressors: Let |xin| have order statistics x(1) ≤ ·· · ≤ x(n) satisfying either

(a) x(n) = OP(1); or
(b) x2

(n) = OP(m2
n) and ∀0 < δ < 1, ∃0 < r < 1 − η: x2

(n−�nr�)/x2
(n) ≤ δ{1 +

oP(1)}.
(iv) Infeasible OLS estimator: (β̂ζn −β)′(

∑
i∈ζn

xinx′
in)(β̂ζn −β) = OP(1).

Remark 3.6. Assumption 3.3(i) concerns the tail behavior of the “good” errors.
The extreme tail conditions in (a,b,d) can be assessed using the multiplicative
strong law of large numbers (Galambos, 1978, Thm. 4.4.4). The intermedi-
ate tail condition (c) can be assessed by modifying Chibisov (1964, Lem. 1).
See Appendix B for details.

Example 3.1. Assumption 3.3(i) holds in the following cases. Appendix B gives
details.

(i) Normal distribution with m2
n/2logh → 1 a.s. and Cρ = 1−ρ;

(ii) Laplace distribution with mn/ logh → 1 a.s. and Cρ = (1−ρ)2;
(iii) Double geometric distribution with mn/ logh → 1 a.s., Cρ = (1−ρ)2;
(iv) td distribution with d > 4 degrees of freedom. In this case, mn/h1/d converges

in distribution and any choice of Cρ function suffices.

Remark 3.7. Assumption 3.3(ii) relaxes the defining feature of the LTS model
that “outlier” errors are more extreme than “good” errors by allowing some overlap
between “outlier” errors and “good” errors. As an example of such overlap, sup-
pose the “good” errors are standard normal. In that case, maxi∈ζn ε2

i /2logh → 1 a.s.
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If the smallest “outlier” error is minj�∈ζn εj = √
2logh − 1, then (a) P(minj�∈ζn εj <

maxi∈ζn εi) → 1, so there is overlap with high probability, and (b) minj�∈ζn ε2
j =

m2
n{1+oP(1)}, so Assumption 3.3(ii) is satisfied. See Example B.5 in Appendix B

for details.

Remark 3.8. Assumption 3.3(iii) restricts the regressors’ tails. Essentially, the
regressors cannot have thicker tails than the “good” errors. Even so, the assumption
allows a large variety of “good” and “outlier” regressors. Examples follow in
Section 4.

Remark 3.9. Assumption 3.3(iv) restricts the joint distribution of “good” errors
and regressors. Suppose (xi,εi) are i.i.d. for i ∈ ζn. Then, we will need that Exiεi = 0
and a Central Limit Theorem to achieve boundedness of the normalized infeasible
OLS estimator. In particular, Assumption 3.3(iv) fails if Eεi = 0, but xi and εi are
correlated.

Remark 3.10. Assumption 3.3 is very flexible in regards to dependence
between “outlier” errors and regressors. Neither Eεj = 0 nor E(εj | xj) = 0 is
imposed. This is key in allowing for leverage effects.

Running Example. Assumption 3.3(i) holds as follows. The “good” errors
are normal and as noted in Example 3.1 all conditions (a)–(d) are satisfied. In
particular, m2

n/(2logh) → 1 a.s. As the logarithm is slowly varying we find that
m2

n = OP(nη)L(n) with η = 0.
Assumption 3.3(ii) holds as follows. Since εj = maxi∈ζn εi +ξj where ξj ≥ 0 a.s.,

we get that minj�∈ζn ε2
j ≥ maxi∈ζn ε2

i ≥ m2
n.

Assumption 3.3(iii,a) holds for DGPs 4-5 as follows. The “good” regressors
zin are i.i.d.U[−10,10]. The “outlier” regressors are zjn = 10 + ej + d where ej

are i.i.d.U[0,1] with d = 0 in DGPs 4 and 5. Thus, the regressors are bounded
as required.

Assumption 3.3(iii) fails for DGP 6. The “good” regressors zin are i.i.d.U[−10,
10]. The “outlier” regressors are zjn = 10 + ej + d where ej are i.i.d.U[0,1] and
d = √

n. Since maxj�∈ζn ej → 1 a.s., then x(n)/
√

n → 1 a.s. As x(n) diverges at a
√

n
rate it is neither bounded nor bounded by the logarithmically growing m2

n.
Assumption 3.3(iv) holds as the standardized infeasible least squares estimator

based on the “good” normal observations is standard normal as remarked above.

Theorem 3.3. Suppose Assumptions 3.1–3.3. Let Mn denote the set of mini-
mizers ζ of σ̂ 2

ζ . Then, for all 0 < θ < 1, it holds maxζ∈Mn #(ζ ∩ζ c
n )/h = OP(hθ−1).

It is worth mentioning again that the LTS model as defined in Section 2.3 is
not used in proving Theorem 3.3. The proof of Theorem 3.3 is derived under
Assumptions 3.1, 3.2, and 3.3 only. Under these assumptions the consistency rate
is improved to a polynomial rate, hθ−1. This rate is used in the next section to derive
the main result.
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Remark 3.11. Theorem 3.3 shows that the proportion of misclassified obser-
vations vanishes under Assumption 3.3 which allows near “outliers” and even
a slight overlap of “outlier” and “good” errors. We suspect this is a common
situation in practice. The stronger result of perfect classification seems to require
that “outliers” are far away from the regression line. This situation is analyzed in
Appendix D.

More specifically, in Appendix D, we relax Assumption 3.3(i,a) which requires
“good” errors with unbounded support. Allowing for “good” errors that can be
either bounded or unbounded while imposing conditions on the growth of the
“outlier” errors gives sharper results on the asymptotic properties of the LTS
estimator. Perfect classification can be obtained. However, near “outliers”, which
can be common in practice, are not allowed in that case, see Appendix D for
details. We also note that for bounded “good” errors, other estimators than the
LTS estimator might be more desirable. For instance, when the “good” errors are
uniform, then the Least Median Squares (LMS) estimator of Rousseeuw (1984)
is maximum likelihood and LMS is n-consistent in the location scale model, see
(Berenguer-Rico et al., 2023, supplement).

3.4. Main Result

Next, we show that the asymptotic distribution of the normalized LTS estimator
coincides with that of the normalized infeasible OLS estimator on the “good”
observations.

The result below involves a joint diagonalization. As M = ∑
i∈ζ xinx′

in and N =∑
i∈ζn

xinx′
in are symmetric and positive definite, there exists an invertible matrix S

and a diagonal matrix � so that N = SS′ and M = S(Idimx +�)S′ (Johansen, 1995,
Lem. A.5). We define the right square roots N1/2 = S′ and M1/2 = (Idimx +�)1/2S′.
The elements λ of � solve the equation det{(1 +λ)N − M} = 0 so that 1 +λ > 0
with corresponding eigenvectors v, such that (1+λ)Nv = Mv. In matrix notation,
we have V ′NV = Idimx and V ′MV = Idimx +� with V−1 = S′.

Theorem 3.4. Suppose Assumptions 3.1-3.3. Let Mn denote the set of minimiz-
ers ζ of σ̂ 2

ζ . Then

(i) maxζ∈Mn h1/2|σ̂ 2
ζ − σ̂ 2

ζn
| = oP(1),

(ii) maxζ∈Mn |(∑i∈ζ xinx′
in)

1/2(β̂ζ − β) − (
∑

i∈ζn
xinx′

in)
1/2(β̂ζn − β)| = oP(1),

where the square root matrices are defined through joint diagonalization.

Theorem 3.4 generalizes the asymptotic theory for the location-scale case
(Berenguer-Rico et al., 2023). The present assumptions are slightly different and
more general. For instance, these allow td distributions with their polynomial tails.
We note again that the proof of Theorem 3.4 is derived under Assumptions 3.1,
3.2, and 3.3 only, no other structure is imposed.
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Using Theorem 3.4, the asymptotic distribution of the LTS estimator can be
derived from standard OLS results applied to the infeasible OLS estimator on
the “good” observations. For instance, suppose standard OLS assumptions to
the “good” observations hold, so that for i ∈ ζn, suppose (x′

in,εi) are i.i.d. with
finite fourth moments while E(εi|xin) = 0 and E(ε2

i |xin) = σ 2. Then, we get that

h−1 ∑
i∈ζ̂ xinx′

in
P→ �x,

σ̂
P→ σ and

(∑
i∈ζ̂

xinx′
in

)1/2
(β̂ −β)/σ̂

D→ N(0,Idimx). (3.3)

In the latter result, the square root matrix S′ = (
∑

i∈ζ̂ xinx′
in)

1/2 is computed through
a joint diagonalization involving the infeasible matrix

∑
i∈ζn

xinx′
in. However, the

result remains valid if we replace S′ by any matrix R′ so that RR′ = ∑
i∈ζ̂ xinx′

in.
Thus, we can choose R′ as the symmetric square root of

∑
i∈ζ̂ xinx′

in or from a
Choleski decomposition of that matrix. It is valid to replace S′ with R′ since
any right square root matrix of

∑
i∈ζ̂ xinx′

in will be of the form R′ = O′S′ for an
orthogonal matrix OO′ = Idimx. Indeed, if R and S have the same square, that is
SS′ = RR′, then pre- and post-multiplication by S−1 gives Idimx = S−1RR′(S′)−1

so that R′(S′)−1 = O′ is orthogonal, whence R′ = O′S′. Finally, if S′(β̂ −β)/σ̂ is
asymptotically N(0,Idimx), so is O′S′(β̂ −β)/σ̂ . That aside, in LTS inference, the
estimated asymptotic variance is

V̂arLTS(β̂) = σ̂ 2
(∑

i∈ζ̂

xinx′
in

)−1
. (3.4)

This expression avoids the squared consistency factor appearing in V̂arSLTS in (2.4).
The “good” errors can be heteroscedastic as long as Assumptions 3.1, 3.2, and

3.3 are satisfied. For instance, suppose that yi = α+βxi +σεi with univariate xi and
εi|xi ∼ N(0,xω

i ) where ω > 2 for i ∈ ζn. Suppose, x−ω
i is i.i.d. gamma with shape

and inverse scale of p/2. Then, for i ∈ ζn, εi ∼ i.i.d. tp. If p > 4, then Assumptions
3.1, 3.2, and 3.3 are satisfied, see Appendix C for details. Theorem 3.4 says that
in this case the LTS estimator has the same asymptotic distribution as the OLS
estimator on the “good” observations. Since these present heteroscedasticity, valid
inference requires Eicker–Huber–White standard errors for LTS in this case. In
turn, these will be asymptotically equivalent to corrected standard errors for the
infeasible OLS estimator.

4. EXAMPLES OF REGRESSORS

4.1. Assumption to Small Regressors: General Remarks

We start with two general remarks about Assumption 3.1(iii).

Remark 4.1. Recall the frequency of small regressors Fnh(a) in (3.1). Assump-
tion 3.1(iii) implies that �̂ζ = h−1 ∑

i∈ζ xinx′
in is positive definite in large samples

uniformly in all h-sets ζ (Johansen and Nielsen, 2019). Indeed, for all δ �= 0,
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δ′�̂ζ δ ≥ min
ζ

h−1
∑
i∈ζ

δ′xinx′
inδ1(|x′

inδ|>a) ≥ a2 min
ζ

h−1
∑
i∈ζ

1(|x′
inδ|>a).

Since h−1 ∑
i∈ζ 1(|x′

inδ|>a) = 1−h−1 ∑
i∈ζ 1(|x′

inδ|≤a) ≥ 1−Fnh(a), we get

δ′�̂ζ δ ≥ a2{1−Fnh(a)} ≥ a2{1− (ξ + ε)} > 0,

with large probability for large n and for ε < 1− ξ and some a > 0.

Remark 4.2. The Assumption to Fnh(a) involves a supremum over all h-
subsamples. We present two bounds for Fnh(a) that avoid the supremum over sub-
sets. These two bounds are useful when checking Assumption 3.1(iii) in practice.

The first bound to Fnh(a) involves the regressors for all observations

Fnh(a) ≤ (n/h)Fnn(a), (4.1)

noting that
∑

i∈ζ 1(·) ≤ ∑n
i=1 1(·). In particular, Assumption 3.1(iii) holds whenever

Fnn(a) = oP(1). See Examples 4.1-4.4 below.
The second bound to Fnh(a) only involves the regressors of the “good” obser-

vations

Fnh(a) ≤ Fhh(a)+ (n−h)/h, (4.2)

with the convention Fhh(a) = supδ:|δ|=1 h−1 ∑
i∈ζn

1(|x′
inδ|≤a). This bound follows

through
∑

i∈ζ 1(·) = ∑
i∈ζ∩ζn

1(·) +∑
i∈ζ∩ζ c

n
1(·) ≤ ∑

i∈ζn
1(·) +∑

i∈ζ c
n

1. In particular,
if Fhh(a) = oP(1), then the right hand side of (4.2) has limit λ−1 − 1, which is
strictly smaller than 2−λ−1 whenever λ > 2/3. This leaves space for choosing a ξ

so that Assumption 3.1(iii) is satisfied. This bound is useful to study Assumption
3.1(iii) under contaminated regressors, as in the running example above.

4.2. Examples

We analyze regressors with respect to the boundedness Assumption 3.1(iii) and
the tail behavior condition in Assumption 3.3(iii).

Example 4.1. (Polynomial regressors). Let x′
in = {1,(i/n)q} for q > 0 or 0 >

q > −1/2. Use (4.1). Then Fnn(a) = oP(1) (Johansen and Nielsen, 2019, Ex. 3.2,
3.3) and Assumption 3.1(iii) follows. Since xin is bounded, Assumption 3.3(iiia)

holds.

Example 4.2. (i.i.d. regressors). Let x′
in = (1,zin) where zin is i.i.d. with

bounded, continuous density. Use (4.1). Then Fnn(a) = oP(1) (Johansen and
Nielsen, 2019, Thm. 3.3). Assumption 3.3(iiib) follows if zin has thinner tails than
or the same tails as the “good” errors. For instance, zin for 1 ≤ i ≤ n and εi for i ∈ ζn

could be normal.

Example 4.3. (Stationary regressors). Let x′
in = (1,zin) with zin a stationary,

normal autoregression. Use (4.1). Then Fnn(a) = oP(1) (Johansen and Nielsen,
2019, Ex. 3.7). Assumption 3.3(iiib) follows if the “good” errors are also normal,
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since the distribution of the intermediate extreme values for stationary, normal
autoregressions is the same as for i.i.d. normal variables (Watts, Rootzén, and
Leadbetter, 1982, Thm. 3.3).

Example 4.4. (Random walk). Let x′
in = (1,zin) so zin = n−1/2 ∑i

�=1 ψi with ψi

i.i.d. multivariate, zero mean normal. Use (4.1). Then Fnn(a) = oP(1) (Johansen
and Nielsen, 2019, Thm. 3.4) and Assumption 3.1(iii) follows. The maximum of a
normalized random walk converges in distribution so that Assumption 3.3(iiia) is
satisfied. The normalized estimator h1/2(β̂ −β) has an asymptotic Dickey–Fuller
type distribution. The type depends on how “good” and “outlier” errors alternate
(Johansen and Nielsen, 2009).

Example 4.5. (Binary regressors). Let x′
in = {1,1(1≤τn)}. Use (4.1). Here,

Fnn(a) = max(τ,1 − τ) for small a > 0 (Johansen and Nielsen, 2019, Ex. 3.1).
Suppose max(τ,1−τ) < 2λ−1, which is satisfied for instance when τ = 1/2 and
λ > 3/4. The inequality (4.1) then shows that Fnh(a) ≤ (n/h)Fnn(a) < 2 − 1/λ−
ε + o(1) for small ε > 0. Thus, an ξ < 2 − 1/λ can be found so that Fnh(a) ≤ ξ

with large probability. Assumption 3.1(iii) follows. The regressor is bounded and
Assumption 3.3(iiia) follows.

If the “good” regressors satisfy the regularity conditions in Assumptions 3.1–
3.3, they can be combined with “outlier” regressors without much structure. In
particular, if Fhh(a) → 0 as (a,n) → (0,∞) then Assumption 3.1(iii) is satisfied
through the bound (4.2) and it suffices to check that the “outlier” regressors do not
drift too fast to satisfy Assumption 3.3(iii). See DGPs 4-6 in the running example
above.

5. SIMULATIONS

We study the finite sample properties of t-tests for β0 = β1 = 0 in the linear model

yi = β0 +β1zi +σεi. (5.1)

We analyze three statistics and the six data generating processes from Section 2.3.
We consider sample sizes n = 25,100,400,1600,6400 with h/n = λ = 0.8 and use
104 repetitions. The code was written in Matlab with LTS estimation done using
the mlts.m code by Agullo et al. (2008).

Tests. We consider t-statistics tk,s = β̂k,s/sek,s, where k and s denote parameter
and estimation method, respectively. The t-tests reject for |tk,s| > q, where q is the
normal 97.5% quantile giving a target level of 5%. We study three estimators so
that s ∈ {OLS,LTS,SLTS}.

The full sample OLS estimator is β̂OLS = (
∑n

i=1 xix′
i)

−1(
∑n

i=1 xiyi) with xi =
(1,zi)

′ while se2
OLS is the product of σ̂ 2

OLS = (n − 2)−1 ∑n
i=1(yi − x′

iβ̂OLS)
2 and the

relevant diagonal element of (
∑n

i=1 xix′
i)

−1.
The LTS regression estimator β̂ is given in (2.3) and will be applied with

h/n = 0.8. We consider two procedures for testing for zero-coefficients using β̂:
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Table 1. Simulated rejection frequencies for nominal 5% tests on intercepts

Method n DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

OLS 25 0.060 0.083 0.074 0.218 0.378 0.262

100 0.053 0.080 0.128 0.732 0.983 0.628

400 0.050 0.104 0.323 1.000 1.000 0.888

1600 0.055 0.162 0.741 1.000 1.000 0.948

6400 0.049 0.293 0.979 1.000 1.000 0.900

LTS 25 0.377 0.268 0.084 0.581 0.063 0.064

100 0.389 0.177 0.058 0.820 0.053 0.053

400 0.392 0.113 0.052 0.674 0.050 0.050

1600 0.400 0.069 0.048 0.263 0.049 0.067

6400 0.389 0.053 0.050 0.052 0.047 0.918

SLTS 25 0.039 0.017 0.002 0.169 0.000 0.001

100 0.042 0.003 0.000 0.608 0.000 0.000

400 0.051 0.000 0.000 0.654 0.000 0.000

1600 0.050 0.000 0.000 0.220 0.000 0.017

6400 0.048 0.000 0.000 0.002 0.000 0.724

Note: In all cases, the LTS estimator is computed with h = 0.8n observations. In DGP1, with no
contamination, h is chosen wrongly. In all other DGPs, h is chosen correctly.

LTS approach and SLTS approach. First, in the LTS model, we have that β̂ is
asymptotically normal with estimated asymptotic variance given in (3.4). From
this we can derive standard errors seLTS, say, and form t-statistics for testing β0 = 0
and β1 = 0. Second, under the ε-contaminated normal model, the SLTS inference
procedure is used. The estimated asymptotic variance is given in (2.4) leading to
standard errors seSLTS and another set of t-statistics. We note that the standard
errors satisfy seSLTS = seLTS/ς

2
0.8, where ς2

0.8 = 0.438, so that rejection frequencies
for SLTS inference are always smaller than for LTS inference.

Data Generating Processes (DGPs). We consider the six DGPs described in
Section 2.3, see also Figure 1.

Tables 1 and 2 report simulated rejection frequencies for nominal 5% tests on
the intercept and the slope, respectively. Results are based on 104 repetitions. The
Monte Carlo standard error is 0.2% for correctly sized tests.

DGP 1 has no contamination. Both OLS and SLTS statistics perform well in
small samples. The LTS statistic uses the wrong h = 80. Hence, it is oversized for
all samples sizes. LTS with the correct h = n in DGP 1 is OLS, which has excellent
size control. These results are seen both for intercept and slope.

DGPs 2–3 have contamination in the errors, but not in the regressors. The
LTS test has empirical size approaching 5% as the sample size increases for both
intercept and slope. The LTS procedure works better in finite samples under DGP
3 than DGP 2, since DGP 3 has more separation of “good” and “outlier” errors.
The OLS procedure performs differently for intercept and slope. Specifically, the
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Table 2. Simulated rejection frequencies for nominal 5% tests on slopes

Method n DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

OLS 25 0.064 0.057 0.059 0.754 0.999 1.000

100 0.051 0.052 0.051 1.000 1.000 1.000

400 0.053 0.049 0.048 1.000 1.000 1.000

1600 0.047 0.049 0.049 1.000 1.000 1.000

6400 0.050 0.051 0.050 1.000 1.000 1.000

LTS 25 0.366 0.290 0.092 0.905 0.065 0.066

100 0.374 0.191 0.060 0.877 0.050 0.050

400 0.386 0.135 0.053 0.683 0.052 0.052

1600 0.390 0.098 0.051 0.279 0.054 0.069

6400 0.398 0.084 0.053 0.065 0.049 1.000

SLTS 25 0.035 0.023 0.003 0.628 0.000 0.001

100 0.039 0.003 0.000 0.859 0.000 0.000

400 0.046 0.000 0.000 0.655 0.000 0.000

1600 0.046 0.000 0.000 0.220 0.000 0.018

6400 0.047 0.000 0.000 0.002 0.000 1.000

Note: In all cases, the LTS estimator is computed with h = 0.8n observations. In DGP1, with no
contamination, h is chosen wrongly. In all other DGPs, h is chosen correctly.

empirical size for the intercept increases with sample size; whereas the empirical
size for the slope statistic is approximately 5% for all sample sizes considered. The
SLTS tests have empirical size close to zero for almost all sample sizes considered
for both intercept and slope.

DGPs 4–5 have leverage points with positive contamination in both errors and
regressors. The LTS test has empirical size approaching 5% as the sample size
increases, for both intercept and slope. We note that LTS works better in finite
samples under DGP 5 than DGP 4, since DGP 5 has more separation of “good”
and “outlier” errors. The near “outliers” configuration in DGP 4 requires larger
sample sizes for the asymptotic approximation to come through. The OLS test has
empirical size approaching one for both intercept and slope. The SLTS test has a
more complicated behavior. For DGP 4, the size first increases for both intercept
and slope and then decreases to near zero for large samples. For DGP 5, the size
is near zero in all cases.

DGP 6 has positive contamination in the errors and positively contaminated
regressors which are growing at the order of n1/2 and larger than the largest “good”
regressors. The leverage points therefore become relatively closer to the regression
line as n grows and are designed to violate Assumptions 3.2(i) and 3.3(iii) in the
LTS asymptotics. The LTS test has empirical size around 5% for most sample
sizes, but the size jumps to near unity for the largest sample size. This supports
the idea of looking for “outliers” in the regressors before using the LTS estimator
(Rousseeuw, 1994). The OLS test has an empirical size that is steadily growing
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with the sample size for the intercept and constantly at unity for the slope. The
SLTS test has empirical size close to 0% for most sample sizes, but the size jumps
to near unity for the largest sample size.

6. DISCUSSION: LTS IN PRACTICE

6.1. Inference

The asymptotic theory provided in the previous sections together with the simula-
tion evidence make it clear that inference using LTS depends on the underlying
model that generated the data. We have seen that critical values to test for
significance of regression parameters vary depending on whether an LTS model
or an ε-contamination model is the relevant choice. The LTS model will be
appropriate for some data sets. For other data sets, ε-contamination—the SLTS
model—could be attractive despite the nuisance parameters in the inference.

In order to discriminate between models, misspecification tests can be used in
practice. The LTS estimator divides the sample into two groups: the “good” and
the “outliers”. Testing the distributional properties of the “good” LTS residuals
can guide users in choosing the relevant model for the data at hand and, hence,
in conducting valid inference. For instance, if the “good” errors are normal, then
the new LTS inference derived above can be used. Given Theorem 3.4, we suspect
that a standard cumulant based test on the “good” residuals will be asymptotically
valid to test for normality, but this is yet to be proved. Alternatively, a test for
truncated normality after LTS estimation is proposed by Berenguer-Rico and
Nielsen (2023). Evidence of truncated normality in this context indicates that
an ε-tail contamination model where the errors have an i.i.d. structure with a
common distribution that is normal in the middle but has flexible tails would
be more appropriate, see Berenguer-Rico and Nielsen (2023) for details. In the
setting of ε-tail contamination, subsequent inference on the regression parameters
requires taking into account the presence of nuisance parameters in the asymptotic
distribution of the LTS estimator.

In contrast, if there is evidence in favor of an LTS model structure, like for
instance, evidence of untruncated normal “good” errors, then Theorem 3.4 tells
us that subsequent inference on the regression parameters can be conducted as
usual with the LTS estimator. That is, as if we had known which were the “good”
observations and we had used OLS on those. If evidence of heteroscedasticity or
autocorrelation of the “good” errors is suspected, then Theorem 3.4 indicates that
it might be a good idea to account for these features.

6.2. Choosing h

When using the LTS estimator in practice, the user has to choose h, the number
of “good” observations. Some methodologies to choose h exist in the literature
but not so many. We describe some of these as presented in Berenguer-Rico et al.
(2023).

https://doi.org/10.1017/S0266466624000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000343


22 VANESSA BERENGUER-RICO AND BENT NIELSEN

The traditional approach for choosing h is the index plot method of Rousseeuw
and Leroy (1987), Rousseeuw and Hubert (1997), which works as follows. First,
compute the LTS estimator with h = n/2, approximately. Second, standardize all n
residuals. This is done using an estimator for the scale that includes a consistency
factor computed under the assumption of normal errors and no contamination
which leads to the SLTS inference described in Section 2.2. Third, keep obser-
vations with absolute scaled residuals smaller than 2.5. This third step determines
the value of h. Note that this method will typically declare some observations as
“outliers” even when there is no contamination and the errors are all, say, normal.

To improve upon the index plot methodology, Berenguer-Rico et al. (2023)
investigate two alternative approaches for estimating h based on the LTS model.
The first approach uses information criteria in the context of a location-scale
model, that is a regression model without regressors. The standard AIC/BIC idea
of penalizing the estimated residual variance is not practical, because the resulting
estimator of λ = h/n appears to converge rather slowly at a loglogn rate.

The second approach estimates h by choosing the h value that minimizes
the cumulant based normality test statistic. Berenguer-Rico et al. (2023) argued
that this method delivers a consistent estimation of the proportion of “good”
observations, λ, in the location-scale case with a logn rate.

Consistency of the latter two approaches (information criteria or cumulant based
normality test statistic) is argued as follows. Suppose data are generated with h◦
“good” observations. Consider the three scenarios where: (i) h = h◦; (ii) h > h◦;
and (iii) h < h◦. Berenguer-Rico et al. (2023) showed that in the location-scale
case, if h = h◦, then the LTS estimator is h1/2-consistent, asymptotically normal,
and free of nuisance parameters. It is argued that when h > h◦, then the LTS
estimator in the LTS location-scale model will be divergent and so will be the
criterion function for choosing h. Moreover, when h < h◦, then the LTS estimator
truncates the distribution of the residuals and the sample moments converge to a
truncated distribution. The criterion functions for estimating h do not account for
this truncation. Therefore, the criterion functions diverge in this case too. These
considerations lead to a consistency argument in either approach for the location-
scale case.

Whether these arguments extend to regression is an open question, but some
intuition can be drawn from the above results. On the one hand, if h > h◦, then
“outliers” are included in the set of estimated “good” errors making LTS potentially
unbounded, see Remark 3.4 in Section 3.1. On the other hand, if h < h◦, then the
LTS estimator truncates the distribution of the “good” residuals and the theory
above does not apply, see the simulation results in Tables 1 and 2 for DGP 1
using LTS where h = 80 < h◦ = 100. Significance tests for both intercept and
slope are heavily oversized in that case. Hence, pinning down the correct h is
crucial in practice. Extending the h estimators in Berenguer-Rico et al. (2023) to
the regression context would make LTS even more useful in practice. The results
in this paper are a stepping stone in this direction.
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APPENDIX

A. Proofs

A.1. Boundedness

Proof of Theorem 3.1. We adapt the proof of Johansen and Nielsen (2019).
(a) Overview. We want to prove that maxζ∈Mn |β̂ζ − β̂ζn | = OP(1), where Mn is the set

of minimizers. That is, ∀ε > 0, ∃B0,n0 > 0, ∀n > n0 and withAn = (maxζ∈Mn |β̂ζ − β̂ζn | >
B0), then P(An) < ε.

Defining the set Anζ = (|β̂ζ − β̂ζn | > B0), we can write An = ∪ζ∈MnAnζ .

Any minimizer ζ ∈ Mn has a residual variance satisfying σ̂ 2
ζ ≤ σ̂ 2

ζn
. Let Zn be the set

of all possible ζ and define the set Bnζ = (σ̂ 2
ζ ≤ σ̂ 2

ζn
). Since Bnζ contains all minimizers,

ζ ∈ Mn and some non-minimizers, we get An ⊂ ∪ζ∈Zn(Anζ ∩Bnζ ).
Given an ε > 0, we will find a B0 > 0 and sets Cn with probability P(Cn) ≥ 1−ε. On Cn,

we will argue deterministically that if |β̂ζ − β̂ζn | > B0 for some ζ then σ̂ 2
ζ ≥ (1+ ε)σ̂ 2

ζn
>

σ̂ 2
ζn

. Thus, such a ζ cannot be a minimizer. Hence, on Cn, the intersection, Anζ ∩Bnζ , that
is (Anζ ∩Bnζ ∩Cn), is empty. We get

(Anζ ∩Bnζ ) = (Anζ ∩Bnζ ∩Cn)∪ (Anζ ∩Bnζ ∩C
c
n) = (Anζ ∩Bnζ ∩C

c
n) ⊂ C

c
n.

We can then bound An ⊂ ∪ζ∈Zn(Anζ ∩Bnζ ) ⊂ C
c
n, so that P(An) ≤ P(Cc

n) < ε.
(b) Criterion function. Given a set ζ we find the least squares estimator

β̂ζ = (
∑
i∈ζ

xinx′
in)−1

∑
i∈ζ

xinyi = β + (
∑
i∈ζ

xinx′
in)−1

∑
i∈ζ

xinεiσ

using the model equation (2.1). The scaled residuals are ε̃ζ i = (yi −x′
inβ̂ζ )/σ , so that hσ̂ 2

ζ =∑
i∈ζ (yi − x′

inβ̂ζ )2 = σ 2 ∑
i∈ζ ε̃2

ζ i.

For ζ = ζn write ε̃i for ε̃ζni. For general ζ write ε̃ζ i = εi − x′
in(β̂ζ − β)/σ . Add and

subtract x′
inβ̂ζn/σ to get ε̃ζ i = εi −x′

in(β̂ζn −β)/σ −x′
in(β̂ζ − β̂ζn)/σ and in turn ε̃ζ i = ε̃i −

x′
in(β̂ζ − β̂ζn)/σ . Introduce polar coordinates with length �̂ζ = |β̂ζ − β̂ζn |/σ and direction

δ̂ζ = (β̂ζ − β̂ζn)/|β̂ζ − β̂ζn | when �̂ζ > 0. When �̂ζ = 0 the direction δ̂ζ can be chosen as an

arbitrary vector of unit length. Thus, β̂ζ − β̂ζn = �̂ζ δ̂ζ σ and |δ̂ζ | = 1. The residuals satisfy

ε̃ζ i = ε̃i − �̂ζ x′
inδ̂ζ , so that

hσ̂ 2
ζ = σ 2

∑
i∈ζ

(ε̃i − �̂ζ x′
inδ̂ζ )2. (A.1)

(c) Bounding residuals under constraints to εi, x′
inδ̂ζ and �̂ζ . We will later choose

A0,a0,C0 > 0. Let Bn0 = (A0 + C0σ̂ζn/σ)/a0. Consider |ε̃i| ≤ A0 and |x′
inδ̂ζ | > a0 and

�̂ζ > Bn0. Then, by the reverse triangle inequality, |x− y| ≥ |(|x|− |y|)| ≥ |y|− |x|,
|ε̃i − �̂ζ x′

inδ̂ζ | ≥ �̂ζ |x′
inδ̂ζ |− |ε̃i| > Bn0a0 −A0 ≥ C0σ̂ζn/σ . (A.2)

(d) Bounding residual variance for large �̂ζ . Apply the expression for σ̂ 2
ζ in (A.1). Delete

summands of σ̂ 2
ζ for which |ε̃i| > A0 or |x′

inδ̂ζ | ≤ a0 and consider only values of ζ with large
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�̂ζ > Bn0 to get the lower bound

hσ̂ 2
ζ ≥ 1

(�̂ζ >Bn0)
σ 2

∑
i∈ζ

(ε̃i − �̂ζ x′
inδ̂ζ )21(|ε̃i|≤A0)

1
(|x′

inδ̂ζ |>a0)
.

Now, for �̂ζ > Bn0 we can apply (A.2) to get the further bound

hσ̂ 2
ζ ≥ 1

(�̂ζ >Bn0)
C2

0σ̂ 2
ζn

∑
i∈ζ

1(|ε̃i|≤A0)
1
(|x′

inδ̂ζ |>a0)
.

Use that for sets A and B then 1A∩B = 1A −1A∩Bc ≥ 1A −1Bc so that

hσ̂ 2
ζ ≥ 1

(�̂ζ >Bn0)
C2

0σ̂ 2
ζn

{∑
i∈ζ

1(|ε̃i|≤A0)
−

∑
i∈ζ

1
(|x′

inδ̂ζ |≤a0)

}
. (A.3)

For each sum in (A.3), we find bounds not depending on ζ . The first sum satisfies, noting
that 1(|ε̃i|≤A0)

= 1−1(|ε̃i|>A0)
,∑

i∈ζ

1(|ε̃i|≤A0)
≥

∑
i∈ζ∩ζn

1(|ε̃i|≤A0)
= #(ζ ∩ ζn)−

∑
i∈ζ∩ζn

1(|ε̃i|>A0)
.

Note that #(ζ ∩ ζn) = #ζ − #(ζ ∩ ζ c
n ) ≥ #ζ − #ζ c

n . Since #ζ = h and #ζ c
n = n − h, then

#(ζ ∩ ζn) ≥ 2h − n. Further, by summing over additional non-negative elements, we have
that

∑
i∈ζ∩ζn

1(|ε̃i|>A0)
≤ ∑

i∈ζn
1(|ε̃i|>A0)

. The inequality 1(|ε̃i|>A0)
≤ ε̃2

i /A2
0 gives the

further bound
∑

i∈ζn
ε̃2

i /A2
0. Since ε̃i are the residuals from OLS regression on ζn, we get∑

i∈ζn
ε̃2

i ≤ ∑
i∈ζn

ε2
i . Thus, the first sum in (A.3) satisfies

∑
i∈ζ 1(|ε̃i|≤A0)

≥ 2h − n −∑
i∈ζn

ε2
i /A2

0.

For the second sum in (A.3), replace δ̂ζ by an arbitrary δ, take supremum over δ and take
maximum over sets ζ of length h to get the bound∑
i∈ζ

1
(|x′

in δ̂ζ |≤a0)
≤ max

ζ :#ζ=h
sup

|δ|=1

∑
i∈ζ

1(|x′
inδ|≤a0)

= hFnh(a0).

Insert the bounds in (A.3) to get, uniformly in ζ satisfying �̂ζ > Bn0, that

σ̂ 2
ζ ≥ 1

(�̂ζ >Bn0)
C2

0σ̂ 2
ζn

{2h−n

h
−A−2

0
1

h

∑
i∈ζn

ε2
i −Fnh(a0)

}
. (A.4)

(e) Probability argument. We construct sets Cn with large probability.
Assumption 3.1(i) has h/n → λ > 1/2. Thus, (2h−n)/h → 2−λ−1 > 0.
Assumption 3.1(ii) states that h−1 ∑

i∈ζn
ε2

i = OP(1). This implies that σ̂ 2
ζn

/σ 2 = OP(1),
see Remark 3.1.

Assumption 3.1(iii) states that lim(a,n)→(0,∞) P{Fnh(a) > ξ} = 0 for some ξ < 2−λ−1.
These assumptions show that for all ε > 0 there exists a0,A0,n0 > 0 and sets Cn with

P(Cn) ≥ 1− ε for all n > n0 so that on Cn we have

1

h

∑
i∈ζn

ε2
i ≤ εA2

0 and σ̂ 2
ζn

/σ 2 ≤ A0 and Fnh(a0) ≤ ξ .

Now, choose C2
0 = (1 + ε)/(2 −λ−1 − 2ε − ξ), noting that C2

0 > 0 for small ε since ξ <

2−λ−1. Let B0 = (A0 +C0A0)/a0 so that B0 ≥ Bn0 on Cn.
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(f) Bound residual variance on Cn. As argued in (a), consider any ζ with �̂ζ = |β̂ζ −
β̂ζn | > B0 ≥ Bn0. Apply the constraints defining Cn to the lower bound for σ̂ 2

ζ in (A.4) to
get the bound

σ̂ 2
ζ ≥ C2

0σ̂ 2
ζn

{(2−λ−1 − ε)− ε − ξ} = (1+ ε)σ̂ 2
ζn

on the set Cn. Thus, this ζ cannot be a minimizer since minimizers satisfy σ̂ 2
ζ ≤ σ̂ 2

ζn
. This

is what had to be proved as outlined in item (a). �

A.2. Consistent Selection of “Good” Observations

For a matrix m let ‖m‖ be the spectral norm. Thus, ‖m‖2 = maxeigen(m′m). If the matrices
m1,m2 are conformable then ‖m1m2‖ ≤ ‖m1‖‖m2‖.

Proof of Theorem 3.2. We note that for any minimizer, ζ ∈ Mn, then σ̂ 2
ζ ≤ σ̂ 2

ζn
.

We construct a high probability set Dn, where we can deterministically bound certain
statistics. Assumptions 3.1, 3.2(ii) along with Remark 3.1 and Theorem 3.1 show that
maxζ∈Mn |β̂ζ | and σ̂ 2

ζn
are OP(1). Assumption 3.2(i) is that ‖∑n

i=1 xinx′
in‖ = OP(n) =

OP(h). Thus, for all ε > 0 there exist C,n0 > 0 and a sequence of sets Dn with P(Dn) > 1−ε

for all n > n0, so that on Dn

max
ζ∈Mn

|β̂ζ −β|/σ ≤ C, σ̂ 2
ζn

/σ 2 ≤ C, ‖
n∑

i=1

xinx′
in‖ ≤ Ch. (A.5)

For a minimizer ζ , we expand the least squares residual variance as

hσ̂ 2
ζ = σ 2

∑
i∈ζ

ε2
i − (β̂ζ −β)′(

∑
i∈ζ

xinx′
in)(β̂ζ −β). (A.6)

The first term satisfies
∑

i∈ζ ε2
i ≥ ∑

i∈ζ∩ζ c
n
ε2

i ≥ #(ζ ∩ζ c
n )minj �∈ζn ε2

j . For the second term,

‖∑
i∈ζ xinx′

in‖ ≤ ‖∑n
i=1 xinx′

in‖ ≤ Ch and |β̂ζ −β| ≤ Cσ . Further, Cσ 2 ≥ σ̂ 2
ζn

≥ σ̂ 2
ζ . Thus,

on the set Dn, we get

hC ≥ hσ̂ 2
ζ /σ 2 ≥ #(ζ ∩ ζ c

n )min
j �∈ζn

ε2
j −C3h. (A.7)

On Dn, solve to get #(ζ ∩ ζ c
n ) ≤ (C +C3)h/minj �∈ζn ε2

j , uniformly in ζ ∈ Mn. �

A.3. Improving the Rate of Consistency

When improving the consistency rate we will bound terms like
∑

i∈ζ∩ζ c
n

xinx′
in. The bounds

should be uniform in ζ where the number of misclassifications, #(ζ ∩ ζ c
n ), is bounded by

some sequence gn. Thus, everywhere, gn > 0 is a sequence in n not depending on ζ . When
applying the bounds we will first choose gn = Ch/m2

n and later gn = Chθ . The bounds will
be expressed in terms of

Rgn =
n∑

i>n−gn

x2
(i) and Sgn =

n∑
i>n−gn

φ2
i ,

where x(i) and φi are the increasing order statistics of |xin| and x′
in(

∑
�∈ζn

x�nx′
�n)−1xin.
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Lemma A.1. (a) Suppose Assumption 3.3 parts (ia,iiia) or parts (ia,id,iiib). Then, ∀C >

0: Rgn = oP(h) for gn ≤ Ch/m2
n.

(b) Suppose Assumption 3.3(ia,id,iii). Then, ∀C,θ > 0: Rgn = OP(nη+θ )L(n) for gn ≤
Chθ .
(c) Suppose Assumption 3.1(iii). Then Sgn = Rgn OP(n−1).

Remark A.1. For Lemma A.1, and hence for Theorem 3.3, it suffices that 0 < η < 1 in
Assumption 3.3(id,iii).

Proof of Lemma A.1. (a) with Assumption 3.3(iiia), where x2
(n)

= OP(1). Assumption

3.3(ia) has m2
n → ∞ so that x2

(n)
= oP(m2

n). Thus, Rgn/gn ≤ x2
(n)

= oP(m2
n).

(a) with Assumption 3.3(iiib) where x2
(n)

= OP(m2
n). Since Rgn is increasing in gn,

it suffices to consider gn = Ch/m2
n. Assumption 3.3(ia,id) have m2

n → ∞ but m2
n =

OP(nη)L(n). Further, by Assumption 3.3(iiib), then for all 0 < δ < 1 exists r < 1 − η so
that x2

(n−�nr�)/x2
(n)

≤ δ{1 + oP(1)}. For such r, then nr ≤ δn1−η/L(n) for any δ > 0 and

large n, since n1−η−r dominates the slowly varying function L(n) (Karamata, 1930, p. 45).
Now, partition

Rgn =
n∑

i>n−gn

x2
(i) =

i≤n−nr∑
i>n−gn

x2
(i) +

n∑
i>n−nr

x2
(i) ≤ gnx2

(n−�nr�) +nrx2
(n). (A.8)

Insert first the bounds x2
(n−�nr�) ≤ δx2

(n)
{1+oP(1)} and nr ≤ δn1−η/L(n) to bound

Rgn ≤ gnδx2
(n){1+oP(1)}+ x2

(n)δn1−η/L(n) = δx2
(n)

[
gn{1+oP(1)}+n1−η/L(n)

]
.

Apply the assumed bound x2
(n)

= OP(m2
n). In the square bracket term, insert gn = Ch/m2

n

for the first summand so that the m2
n terms cancel and use the bound m2

n = OP(nη)L(n) for
the second term to get

Rgn ≤ OP(δ)
[
Ch{1+oP(1)}+OP(n)

] = OP(δ)h,

since n ≤ 2h, so that we can take common factor h and simplify the remainder terms. Since
δ > 0 can be chosen small, we find Rgn = oP(h).

(b) First bound Rgn = ∑n
i>n−gn

x2
(i) ≤ gnx2

(n)
. It suffices to consider gn = Chθ . Hence,

Rgn ≤ Chθ x2
(n)

. By Assumption 3.3(ia,iii), x2
(n)

= OP(m2
n). Therefore, Rgn = hθ OP(m2

n).

By Assumption 3.3(id), m2
n = OP(nη)L(n). Hence, Rgn = hθ OP(nη)L(n). (c) We bound

x′
in(

∑
�∈ζn

x�nx′
�n)−1xin ≤ |xin|2‖(

∑
�∈ζn

x�nx′
�n)−1‖.

Taking sum over the largest gn order statistics on the left hand side is less than the sum of
the largest gn order statistics on the right hand side. Thus, we get

Sgn ≤ Rgn‖(
∑
�∈ζn

x�nx′
�n)−1‖. (A.9)

The inverse square sum is OP(h−1) under Assumption 3.1(iii), see Remark 4.1. We then
get that Sgn = Rgn OP(h−1). �
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The following notation is convenient. Apply the joint diagonalization
∑

i∈ζn
xinx′

in = SS′
and

∑
i∈ζ xinx′

in = S(Idimx +�)S′ as discussed in Section 3.3. Define the asymmetric right

square roots of
∑

i∈ζn
xinx′

in and its inverse (
∑

i∈ζn
xinx′

in)−1 = (S′)−1S−1 as

(
∑
i∈ζn

xinx′
in)1/2 = S′, (

∑
i∈ζn

xinx′
in)−1/2 = S−1. (A.10)

In general, the latter is not the inverse of the former. In a similar fashion, define

(
∑
i∈ζ

xinx′
in)1/2 = (Idimx +�)1/2S′, (

∑
i∈ζ

xinx′
in)−1/2 = (Idimx +�)−1/2S−1.

(A.11)

Now, let

zjn = (
∑
i∈ζn

xinx′
in)−1/2xjn,

Aζ = (
∑
i∈ζ

xinx′
in)1/2(β̂ζ −β)/σ = (

∑
i∈ζ

xinx′
in)−1/2

∑
i∈ζ

xinεi,

Bζ =
∑
i∈ζ

zinεi −
∑
i∈ζn

zinεi, (A.12)

Cζ = (
∑
i∈ζ

xinx′
in)−1/2{(

∑
i∈ζn

xinx′
in)1/2}′ − Idimx,

so that Aζn = ∑
i∈ζn

zinεi.

Lemma A.2. The squared difference |Aζ −Aζn |2 can be bounded as follows

1

3
|Aζ −Aζn |2 ≤ |Bζ |2(1+‖Cζ ‖2)+‖Cζ ‖2|

∑
i∈ζn

zinεi|2. (A.13)

Proof of Lemma A.2. By definition

Aζ −Aζn = (
∑
i∈ζ

xinx′
in)−1/2{(

∑
i∈ζn

xinx′
in)1/2}′(

∑
i∈ζ

zinεi)− (
∑
i∈ζn

zinεi).

Rewrite as Aζ −Aζn = Bζ +Cζ Bζ +Cζ (
∑

i∈ζn
zinεi). The triangle and Jensen’s inequalities

and the spectral norm sub-multiplicativity give the desired result. �

Lemma A.3. Let #(ζ ∩ ζ c
n ) ≤ gn. Then

∑
i∈ζ∩ζ c

n
z′inzin,

∑
i∈ζ c∩ζn

z′inzin are at most Sgn .

Proof of Lemma A.3. By definition z′inzin = x′
in(

∑
�∈ζn

x�nx′
�n)−1xin. As remarked in

Section 3.2, we have #(ζ ∩ ζ c
n ) = #(ζ c ∩ ζn). Since φi are the increasing order statistics of

z′inzin and #(ζ ∩ ζ c
n ) ≤ gn both sums are bounded by Sgn . �

https://doi.org/10.1017/S0266466624000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000343


28 VANESSA BERENGUER-RICO AND BENT NIELSEN

Lemma A.4. Let #(ζ ∩ ζ c
n ) ≤ gn. The term |Bζ |2 can be bounded by

|Bζ |2 ≤ 2
( ∑

i∈ζ∩ζ c
n

ε2
i +

∑
i∈ζ c∩ζn

ε2
i

)
Sgn .

Proof of Lemma A.4. Decompose Bζ as

Bζ =
∑
i∈ζ

zinεi −
∑
i∈ζn

zinεi =
∑

i∈ζ∩ζ c
n

zinεi −
∑

i∈ζ c∩ζn

zinεi,

where the second equality follows from cancelling elements with index in ζ ∩ζn. Apply the
triangle, Jensen and Cauchy–Schwarz inequalities to get

|Bζ |2 ≤
( ∑

i∈ζ∩ζ c
n

|zinεi|+
∑

i∈ζ c∩ζn

|zinεi|
)2

≤ 2
{( ∑

i∈ζ∩ζ c
n

|zinεi|
)2 +

( ∑
i∈ζ c∩ζn

|zinεi|
)2}

≤ 2
( ∑

i∈ζ∩ζ c
n

|zin|2
∑

i∈ζ∩ζ c
n

ε2
i +

∑
i∈ζ c∩ζn

|zin|2
∑

i∈ζ c∩ζn

ε2
i

)
.

Lemma A.3 bounds
∑

i∈ζ∩ζ c
n
|zin|2 and

∑
i∈ζ c∩ζn

|zin|2 by Sgn . �

Lemma A.5. Let Mζ = (
∑

i∈ζn
xinx′

in)−1/2 ∑
i∈ζ xinx′

in{(∑i∈ζn
xinx′

in)−1/2}′. Suppose
#(ζ ∩ ζ c

n ) ≤ gn. Then, ‖Mζ − Idimx‖ ≤ 2Sgn .

Proof of Lemma A.5. Since zjn = (
∑

i∈ζn
xinx′

in)−1/2xjn, we get Mζ = ∑
i∈ζ zinz′in.

Write

Mζ =
∑
i∈ζn

zinz′in + (
∑
i∈ζ

zinz′in −
∑
i∈ζn

zinz′in),

and note that the first sum satisfies
∑

i∈ζn
zinz′in = Idimx while, in the last two sums, we can

cancel elements with index in ζ ∩ ζn. Hence,

Mζ = Idimx +
∑

i∈ζ∩ζ c
n

zinz′in −
∑

i∈ζ c∩ζn

zinz′in. (A.14)

Use the spectral norm and the triangle inequality to get that

‖Mζ − Idimx‖ ≤
∑

i∈ζ∩ζ c
n

‖zinz′in‖+
∑

i∈ζ c∩ζn

‖zinz′in‖ =
∑

i∈ζ∩ζ c
n

z′inzin +
∑

i∈ζ c∩ζn

z′inzin.

By Lemma A.3, each of the sums is bounded by Sgn . The desired bound follows. �

Lemma A.6. Suppose #(ζ ∩ ζ c
n ) ≤ gn and Sgn ≤ 1/4. Then ‖Cζ ‖ ≤ 4Sgn .

Proof of Lemma A.6. Let Mζ = (
∑

i∈ζn
xinx′

in)−1/2 ∑
i∈ζ xinx′

in{(∑i∈ζn
xinx′

in)−1/2}′
as before and recall that Cζ = (

∑
i∈ζ xinx′

in)−1/2{(∑i∈ζn
xinx′

in)1/2}′ − Idimx.
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Apply the definitions of the square roots stated in (A.10), (A.11), to see that

Mζ − Idimx = S−1{S(Idimx +�)S′}(S′)−1 − Idimx = �,

Cζ = (Idimx +�)−1/2S−1S − Idimx = (Idimx +�)−1/2 − Idimx.

We will exploit that both matrices are diagonal. Further, Lemma A.5 shows that ‖�‖ =
‖Mζ − Idimx‖ ≤ 2Sgn . Due to the condition Sgn ≤ 1/4 we have that the diagonal elements
of � satisfy |λi| ≤ 1/2. Due to the diagonality, it suffices to check the bound for ‖Cζ ‖ by
bounding each diagonal element using the scalar inequality |(1+λ)−1/2 −1| ≤ 2|λ| for any
scalar |λ| ≤ 1/2.

The scalar inequality is equivalent to 1 − 2|λ| ≤ (1 + λ)−1/2 ≤ 1 + 2|λ|. The upper
inequality, for instance, holds by inspection for λ ≥ 0, while, for λ < 0, we can square the
inequality to get (1+λ)−1 ≤ (1−2λ)2 or equivalently 1 ≤ (1−2λ)2(1+λ) = 1−3λ+4λ3

or equivalently 0 ≤ (−λ)(3−4λ2), which is indeed true since −λ > 0 and 3−4λ2 ≥ 2 for
−1/2 ≤ λ < 0. The lower inequality follows by an analogous argument. �

Lemma A.7. Suppose Assumption 3.3(iv). Let Sgn = oP(1). Consider all ζ so that #(ζ ∩
ζ c

n ) ≤ gn. Then,

|Aζ −Aζn |2 ≤
( ∑

i∈ζ∩ζ c
n

ε2
i +

∑
i∈ζ c∩ζn

ε2
i

)
OP(Sgn)+oP(1),

where the remainder terms are uniform in ζ .

Proof of Lemma A.7. By Lemma A.2,

|Aζ −Aζn |2 ≤ 3|Bζ |2{1+‖Cζ ‖2}+3‖Cζ ‖2|
∑
i∈ζn

zinεi|2. (A.15)

By Assumption 3.3(iv), |∑i∈ζn
zinεi|2 = (

∑
i∈ζn

εiz
′
in)(

∑
i∈ζn

zinεi) = OP(1). By Lemma
A.6 using the Assumption that Sgn = oP(1), we get ‖Cζ ‖ = OP(Sgn) = oP(1) uniformly

in ζ . By Lemma A.4, |Bζ |2 ≤ 2(
∑

i∈ζ∩ζ c
n
ε2

i +∑
i∈ζ c∩ζn

ε2
i )Sgn . Insert these results into

(A.15). �

Lemma A.8. Suppose Assumption 3.3(iv). Let Sgn = oP(1). Consider all ζ so that #(ζ ∩
ζ c

n ) ≤ gn. Then,

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ {1+oP(1)}

∑
i∈ζ∩ζ c

n

ε2
i −{1+oP(1)}

∑
i∈ζ c∩ζn

ε2
i +OP(1),

where all remainder terms are uniform in ζ .

Remark A.2. Note that Lemma A.8 only uses Assumption 3.3(iv). In particular, it is not
used that εj diverge for j �∈ ζn.

Proof of Lemma A.8. Write

Qζ = h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 =

∑
i∈ζ

ε2
i −A′

ζ Aζ −
∑
i∈ζn

ε2
i +A′

ζn
Aζn . (A.16)
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Cancelling elements with index in ζ ∩ ζn and note A′
ζn

Aζn ≥ 0 to bound

Qζ ≥
∑

i∈ζ∩ζ c
n

ε2
i −

∑
i∈ζ c∩ζn

ε2
i −A′

ζ Aζ . (A.17)

Write Aζ = Aζn + (Aζ −Aζn) to get

A′
ζ Aζ ≤ 2{A′

ζn
Aζn + (Aζ −Aζn)

′(Aζ −Aζn)} = 2A′
ζn

Aζn +2|Aζ −Aζn |2. (A.18)

Assumption 3.3(iv) has A′
ζn

Aζn = OP(1). Lemma A.7 using Assumption 3.3(iv) and Sgn =
oP(1) uniformly in ζ bounds |Aζ − Aζn |2 ≤ (

∑
i∈ζ∩ζ c

n
ε2

i + ∑
i∈ζ c∩ζn

ε2
i )oP(1) + oP(1),

where the remainders are uniform in ζ . Therefore, the bound (A.18) becomes

A′
ζ Aζ ≤ OP(1)+

( ∑
i∈ζ∩ζ c

n

ε2
i +

∑
i∈ζ c∩ζn

ε2
i

)
oP(1)+oP(1). (A.19)

Insert (A.19) in (A.17) to get the desired result. �

Lemma A.9. Suppose Assumptions 3.1(iii), 3.3. Then, ∀C > 0, 0 < θ < 1 −η, we have
that minζ :hθ≤#(ζ∩ζ c

n )≤hC/m2
n

h1−θ (σ̂ 2
ζ − σ̂ 2

ζn
) → ∞ in probability.

Proof of Lemma A.9. Let # be shorthand for #(ζ c ∩ ζn) = #(ζ ∩ ζ c
n ).

We consider hθ ≤ # ≤ gn where gn = hC/m2
n. We have that Sgn = oP(1), by Lemma

A.1(a,c) using Assumptions 3.1(iii) and 3.3(ia,id,iii). Thus, Lemma A.8 using Assumption
3.3(iv) and Sgn = oP(1), shows

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ {1+oP(1)}

∑
i∈ζ∩ζ c

n

ε2
i −{1+oP(1)}

∑
i∈ζ c∩ζn

ε2
i +OP(1), (A.20)

where all remainder terms are uniform in ζ . We show that the lower bound diverges.
The first sum in (A.20) relates to “outliers”, which satisfy ε2

j ≥ m2
n{1+oP(1)} for j �∈ ζn

by Assumption 3.3(ii). Thus,
∑

i∈ζ∩ζ c
n
ε2

i ≥ m2
n#{1+oP(1)}.

The second sum in (A.20) relates to “good” errors. Let ψ1 ≤ ·· · ≤ ψh be the order
statistics of ε2

i for i ∈ ζn. Given θ > 0 choose 0 < ρ < θ . Since �hρ� < #, then

∑
i∈ζ c∩ζn

ε2
i ≤

h∑
i=h+1−#

ψi =
h−�hρ�∑

i=h+1−#

ψi +
h∑

i=h−�hρ�+1

ψi ≤ #ψh−�hρ� +hρψh.

For the first term, Assumption 3.3(ic) shows a Cρ < 1 exists so that ψh−�hρ�/m2
n ≤ Cρ +

oP(1). Thus, the first term is bounded by m2
n#{Cρ +oP(1)}.

For the second term, we have ρ < θ so that hρ = o(hθ ) while hθ ≤ # by construction.
Further, Assumption 3.3(ib) shows ψh/m2

n = OP(1). Thus, the second term is bounded by
m2

n#oP(1). Overall, we get
∑

i∈ζ c∩ζn
ε2

i ≤ m2
n#{Cρ +oP(1)}.

Inserting the above bounds in (A.21), we find

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ m2

n#(1−Cρ){1+oP(1)}.
Since m2

n diverges due to Assumption 3.3(ia), # ≥ hθ and Cρ < 1, then h1−θ (σ̂ 2
ζ − σ̂ 2

ζn
) →

∞ in probability. �
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Proof of Theorem 3.3. First, Theorem 3.2 using Assumptions 3.1 and 3.2, shows
that maxζ∈Mn #(ζ ∩ ζ c

n ) = OP(h/minj �∈ζn ε2
j ). Here, minj �∈ζn ε2

j ≥ m2
n{1 + oP(1)} by

Assumption 3.3(ii). Hence, maxζ∈Mn #(ζ ∩ ζ c
n ) = OP(h/m2

n).
Second, Lemma A.9 using Assumptions 3.1(iii), 3.3 considers estimators σ̂ 2

ζ for index

sets ζ that contain a positive number of “outliers” in the range hθ ≤ #(ζ ∩ζ c
n ) ≤ Ch/m2

n for
any C > 0, 0 < θ < 1−η. This set of ζ does not include the true set of “good” observations,
ζn. Lemma A.9 states that h1−θ (σ̂ 2

ζ − σ̂ 2
ζn

) diverges to positive infinity uniformly in values

of ζ in the set. Since the function (σ̂ 2
ζ − σ̂ 2

ζn
) is zero at ζn, the considered set of ζ values

cannot contain a minimizer in the limit.
In combination, all minimizers, ζ ∈ Mn, satisfy maxζ∈Mn #(ζ ∩ ζ c

n ) = OP(hθ ). �

A.4. Main Result

Proof of Theorem 3.4. (a) Theorem 3.3, using the Assumptions 3.1, 3.2, and 3.3, gives
that #(ζ ∩ζ c

n ) = OP(hθ ) for any 0 < θ < 1. Hence, consider minimizers ζ so that #(ζ ∩ζ c
n ) ≤

gn = Chθ . Then, by Lemma A.1(b,c) using Assumptions 3.1(iii) and 3.3(ia,id,iii), we have
that Sgn = OP(hθ+η−1)L(n). Since L(n) is slowly varying, η < 1/2 and θ > 0 is arbitrary,
we have Sgn = oP(1), see Karamata (1930, p. 45).

For any minimizer σ̂ 2
ζ − σ̂ 2

ζn
≤ 0. Thus we need to show that σ̂ 2

ζ − σ̂ 2
ζn

≥ −εh−1/2 with
large probability for any small ε > 0. Lemma A.8, using Assumption 3.3(iv) and the fact
that Sgn = oP(1), gives the lower bound

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ {1+oP(1)}

∑
i∈ζ∩ζ c

n

ε2
i −{1+oP(1)}

∑
i∈ζ c∩ζn

ε2
i +OP(1), (A.21)

where all remainder terms are uniform in ζ . First, we bound
∑

i∈ζ∩ζ c
n
ε2

i ≥ 0. Second, as

maxi∈ζn ε2
i = OP(m2

n) and m2
n = OP(nη)L(n) by Assumption 3.3(ib,id), while using #(ζ c ∩

ζn) ≤ Chθ , we get, uniformly in ζ ,∑
i∈ζ c∩ζn

ε2
i ≤ (max

i∈ζn
ε2

i ){#(ζ c ∩ ζn)} = OP(hθ+η)L(n). (A.22)

Thus, for η < 1/2 and small θ > 0, we get
∑

i∈ζ c∩ζn
ε2

i = oP(h1/2). It follows that 0 ≥
σ̂ 2
ζ − σ̂ 2

ζn
≥ oP(h−1/2).

(b) We show that for all ζ so that #(ζ ∩ ζ c
n ) ≤ Chθ , we have

Dζ = |(
∑
i∈ζ

xinx′
in)1/2(β̂ζ −β)− (

∑
i∈ζn

xinx′
in)1/2(β̂ζn −β)| = oP(1).

Lemma A.7 using Assumption 3.3(iv) and Sgn = oP(1) gives that

D2
ζ = |Aζ −Aζn |2 ≤

( ∑
i∈ζ∩ζ c

n

ε2
i +

∑
i∈ζ c∩ζn

ε2
i

)
OP(Sgn)+oP(1). (A.23)

For the first sum, we use (A.21) in part (a) to bound

{1+oP(1)}
∑

i∈ζ∩ζ c
n

ε2
i ≤ h(σ̂ 2

ζ − σ̂ 2
ζn

)/σ 2 +{1+oP(1)}
∑

i∈ζ c∩ζn

ε2
i +OP(1), (A.24)
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where all remainder terms are uniform in ζ . Insert the bound σ̂ 2
ζ − σ̂ 2

ζn
≤ 0 and use that {1+

oP(1)}−1 = 1 + oP(1) and {1 + oP(1)}{1 + oP(1)} = 1 + oP(1) while {1 + oP(1)}OP(1) =
OP(1) to get the further bound∑
i∈ζ∩ζ c

n

ε2
i ≤ {1+oP(1)}

∑
i∈ζ c∩ζn

ε2
i +OP(1). (A.25)

Insert this bound into (A.23) and use Sgn = oP(1) to get

D2
ζ ≤

( ∑
i∈ζ c∩ζn

ε2
i

)
OP(Sgn)+oP(1). (A.26)

As noted above, Sgn = OP(nθ+η−1)L(n) and
∑

i∈ζ c∩ζn
ε2

i = OP(hθ+η)L(n) in (A.22). In

combination, D2
ζ = OP(h2θ+2η−1){L(n)}2 + oP(1). Noting that L(n) is a slowly varying

function, η < 1/2 and that θ > 0 can be chosen small, we get D2
ζ = oP(1). �

B. ON EXTREME AND INTERMEDIATE QUANTILES

We verify Assumption 3.3(i) for some common distributions. We let ε1, . . . ,εn be i.i.d.
from a symmetric, unbounded distribution F with extremes ε(n) = max1≤i≤n εi and ε(1) =
min1≤i≤n εi. We write an ∼ bn if an/bn → 1.

B.1. Extreme Quantiles

If F has exponential tails, we can establish Assumption 3.3(ib,id) with η = 0 as follows.
It suffices to show that ε(n)/an → 1 in probability for some increasing sequence an of
logarithmic rate, so that an = O(nη)L(n) for η = 0 and a slowly varying function L. In
that case, ε(1)/an → −1 by symmetry so that max{ε2

(n)
,ε2

(1)
}/min{ε2

(n)
,ε2

(1)
} → 1 and

Assumption 3.3(ib,id) follows. We can check the sufficient condition using the following
multiplicative strong law of large numbers.

Lemma B.1 (Galambos, 1978, Thm. 4.4.4). Let an = inf{y : F(y) ≥ 1 − 1/n}. Then,
ε(n)/an → 1 a.s., if and only if, for any k > 1,

∞∑
n=3

{1−F(kan)} < ∞. (B.1)

Example B.1. Let F be standard normal. Condition (B.1) is satisfied and an ∼ √
2log(n)

(DasGupta, 2008, Ex. 8.13). Thus, ε2
(n)

∼ 2log(n) a.s.

Example B.2. Let F be standard Laplace. This symmetric distribution has F(x) = 1 −
exp(−x)/2 for x ≥ 0 so that an = F−1(1−1/n) = − log(2/n) for n > 2. Thus, 1−F(kan) =
(2/n)k/2 for n > 2. Since

∑∞
n=3 n−k < ∞ for k > 1 then condition (B.1) is satisfied. We

note that an ∼ logn, so that ε(n) ∼ logn a.s.

Example B.3. Let F be double geometric with f(x) = (1 − p)|x|−1p/2 for x ∈ Z\{0}, so
that F(x) = 1 − (1 − p)x/2 for x ∈ N and an = �log(2/n)/ log(1 − p)� for n > 2 where �·�
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is the ceiling. Note, an ∼ logn. We note that this distribution is not of an extremal type. To
see this, modify Example 1.7.15 for the geometric distribution in Leadbetter et al. (1982).
To apply Lemma B.1 note that �x� > x, so that an > log(2/n)/{2log(1−p)} = ãn for n > 2.
Thus, 1−F(kan) ≤ 1−F(kãn) = (2/n)k/2 and the argument is completed as in Example B.2.

If F has polynomial tail behavior, so that η > 0, we need a different argument.

Example B.4. Let F be td with d > 4 degrees of freedom. The extremal quotient ε(n)/ε(1)

converges to a non-degenerate, positive distribution with median 1 (Gumbel and Keeney,
1950). Assumption 3.3(ib) follows. Next, 1−F(x) ∼ Cdx−d for x → ∞ and F−1(1−1/n) ∼
cdn1/d for n → ∞ for some constants Cd,cd depending on d (Soms, 1976). Thus, {1 −
F(tx)}/{1 − F(t)} → x−d for t → ∞ so that ε(n) ∼ n1/d (Galambos, 1978, Thm. 2.1.1).
Assumption 3.3(id) follows for η ≥ 2/d. Thus, to get η < 1/2, we need d > 4.

Example B.5. Suppose that the “good” errors are standard normal while the “outlier”
errors satisfy minj �∈ζn εj = √

2logh−1. We prove that in this case:

(a) P(minj �∈ζn εj < maxi∈ζn εi) → 1 and (b) minj �∈ζn ε2
j = m2

n{1+oP(1)}.
The proof of each of these two results uses extreme value theory for standard normal

random variables. In particular, for ε(n) = max1≤i≤n εi and εi ∼ i.i.d.N(0,1), we have

P[an{ε(n) −bn} ≤ x] → exp{−exp(−x)}, (B.2)

when an = (2logn)1/2 and bn = (2logn)1/2 − 1
2 (2logn)−1/2(log logn + log4π), see

Leadbetter et al. (1982, Thm. 1.5.3).
Proof of (a). We show that Pn = P(maxi∈ζn εi ≤ minj �∈ζn εj) → 0. By construction, Pn =

P(maxi∈ζn εi ≤ √
2logh−1). Standardize so that

Pn = P{ah(max
i∈ζn

εi −bh) ≤ ah(
√

2logh−1−bh)}.

Use the expression for an, bn in (B.2), but evaluated at h, to get

Pn = P{ah(max
i∈ζn

εi −bh) ≤ xh)} where xh = −√
2logh+ 1

2
(log logh+ log4π).

Note that xh → −∞. Therefore, Pn → 0 by (B.2).
Proof of (b). We prove that Tn = (minj �∈ζn ε2

j /m2
n) − 1 vanishes. The “outlier” errors

satisfy minj �∈ζn εj = (
√

2logh − 1) so that minj �∈ζn ε2
j = (minj �∈ζn εj)

2 = (
√

2logh − 1)2.
Hence,

Tn =
minj �∈ζn ε2

j

m2
n

−1 =
(2logh

m2
n

−1
)

+ 1−2
√

2logh

m2
n

.

From Example B.1, we have that maxi∈ζn ε2
i ∼ 2logh a.s. By symmetry, we also get

mini∈ζn ε2
i ∼ 2logh. Thus, m2

n ∼ 2logh. Insert above to get that Tn vanishes a.s.
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B.2. Intermediate Quantiles

We now consider the Assumption 3.3(ic,iiib) concerning intermediate quantiles. We con-
sider general (right-continuous) distribution functions F and choose the lower quantile func-
tion F−1(p) = inf{x : F ≥ p} as the inverse. This is left-continuous, so that F{F−1(p)} ≥ p.

Lemma B.2. Let ε1, . . . ,εn be i.i.d. with distribution function F with inf{x : F(x) > 0} =
−∞. Let n → ∞ and 0 < ρ < 1. Define Cn = F−1(nρ−1/ logn)/F−1(n−1 logn). For any
Cρ < 1 so that limsupn→∞ Cn ≤ Cρ then ε(nρ)/ε(1) ≤ Cρ +oP(1).

Proof. Apply Theorem 1.8.1 in Leadbetter et al. (1982) with vn = F−1(n−1 logn) so that
nF(vn) ≥ logn → ∞ shows that P{ε(1) > vn} → exp(−∞) = 0. Noting that vn is negative,
we get further that P{ε(1)/vn ≥ 1} → 1.

Lemma 1 in Chibisov (1964) with an = F−1(nρ−1/ logn),x = 1, bn = 0, kn = nρ and

un(x) = {nF(anx + bn)− kn}/k1/2
n shows that P{ε(kn) ≤ anx + bn}−
{un(x)} → 0. In our

case, un(x) = nρ/2{(logn)−1 − 1} → −∞, so that 
{un(x)} → 0 and P{ε(kn) ≤ an} → 0.
Noting that an is negative, we get further that P{ε(kn)/an > 1} → 0.

Let ε > 0 be given. Consider the set An = {ε(kn)/ε(1) ≤ Cρ + ε}. We must show that
P(An) → 1. Rewrite An = {(ε(kn)/an) < (Cρ +ε)(vn/an)(ε(1)/vn)}. Let Bn = {ε(1)/vn ≥ 1}
and Dn = {ε(kn)/an < 1}, so that P(Bn),P(Dn) → 1, noting that vn,an are negative as
found above. By assumption, limsupn→∞ an/vn ≤ Cρ . Thus, ∀ε > 0 then an/vn ≤ Cρ + ε

for large n. Hence, (C + ε)vn/an ≥ 1. Thus, An holds on Bn ∩ Cn, so that P(An) ≥
P(Bn ∩Cn) → 1. �

Example B.6. Let F be standard normal. By Mill’s ratio, x
(x) ∼ −ϕ(x) for x →
−∞, so that log(−x) ∼ logϕ(x) − log
(x). Apply for x = 
−1(s−1

n ) with sn → ∞ to
get 2 log{−
−1(s−1

n )} ∼ − log(2π)−{
−1(s−1
n )}2 + 2logsn. Since log{−
−1(s−1

n )} =
o{
−1(s−1

n )} then the previous asymptotic equivalence implies 2 logsn ∼ {
−1(s−1
n )}2.

Thus, 
−1(s−1
n ) ∼ −(2logsn)1/2 → ∞ for sn → ∞. We find, for 0 < ρ < 1, that Cn =

{log(nρ−1/ logn)/ log(n−1 logn)}1/2 ∼ (1−ρ)1/2 = Cρ < 1. Assumption 3.3(ic) follows
by Lemma B.2. Example B.1 shows that ε2

(n)
∼ 2logn = O(nη)L(n) a.s. with η = 0. Thus,

∀δ > 0, ∃ρ < 1 − η = 1, so that ε2
(nρ)

/ε2
(1)

≤ Cρ + oP(1) < δ and Assumption 3.3(iiia)

follows.

Example B.7. Let F be Laplace. Then F(x) = exp(x)/2 for x < 0 and F−1(ψ) = log(2ψ)

for ψ < 1/2 Thus, Cn = log(2nρ−1/logn)/ log(2n−1 logn) so that Cn ∼ 1 −ρ = Cρ < 1.
Assumption 3.3(ic,iiia) follow by Lemma B.2.

Example B.8. Let F be double geometric. Then F(x) = (1 − p)−x/2 for x ∈ −N and
F−1(ψ) ∼ − log(2ψ)/ log(1 − p) for ψ → 0. Assumption 3.3(ic,iiia) follow by Lemma
B.2 since Cn ∼ {log(2nρ−1/ logn)}/{log(2n−1 logn)} ∼ 1−ρ = Cρ < 1.

Example B.9. Let F be the td with d degrees of freedom, so that F−1(ψ) ∼ −cdψ−1/d

for ψ → 0 and some constant cd depending on d (Soms, 1976). Thus, for any 0 < ρ < 1,
we get Cn ∼ {(nρ−1/ logn)/(n−1 logn)}−1/d = n−ρ/d(logn)2/d → 0. Thus, by Lemma
B.2 we have that ε(nρ)/ε(1) vanishes for any ρ.

Example B.10. Let (−X)−ω with ω > 0 be gamma distributed with shape and inverse
scale of ν > 0. Then F(x) = P(X ≤ x) = P(Z ≤ z), where Z = ν(−X)−ω and z = ν(−x)−ω.
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Since Z is gamma with shape ν and unit scale, then F(x) = γ (ν,z)/�(ν), where γ

and � are the lower incomplete and the complete gamma function, respectively. For
large −x then z is small. We get F(x) ∼ zν/{ν�(ν)} for small z > 0 (Gradshteyn and
Ryzhik, 1965, 8.354.1), so that F(x) ∼ (−x)−νωνν−1/�(ν) for large −x. Thus, F−1(ψ) ∼
−{ψ�(ν)/νν−1}−1/(νω) for ψ → 0. Following Lemma B.2, we find for 0 < ρ < 1 that
Cn = {(nρ−1/ logn)/(n−1 logn)}−1/(νω) = (logn)2/(νω)n−ρ/νω → 0 for large n so that
ε(nρ)/ε(1) vanishes for any ρ.

C. HETEROSCEDASTIC EXAMPLE

Let z = x−ω be gamma distributed with shape and inverse scale of ν = p/2 and some ω > 2.
Let ε given x, and therefore also given z, be N(0,1/z). We will require that p > 4 so that x,ε
have the fourth moments needed for heteroscedastic inference.

We show that ε is tp distributed. Using a gamma integral, the density is found to be

fε(ε) =
∫ ∞

0

1√
2π/z

exp(−zε2/2)
νν

�(ν)
zν−1 exp(−νz)dz

= νν

�(ν)
√

2π

∫ ∞
0

zν−1+1/2 exp{−z(ν + ε2/2)}dz (C.1)

=
{ νν

�(ν)
√

2π

}{ �(ν +1/2)

(ν + ε2/2)ν+1/2

}
= �{(p+1)/2}

�(p/2)
√

πp
(1+ ε2/p)−(p+1)/2.

We show that x = z−1/ω has a bounded density so that Assumption 3.1(iii) is satisfied
through Example 4.2. By the change-of-variable formula with mapping z �→ z−1/ω = x,
inverse mapping x �→ x−ω and Jacobean ωx−ω−1, we get that x has density

fx(x) = fz(x
−ω)ωx−ω−1 = ωνν

�(ν)
x−ων−1 exp(−νx−ω).

The density is positive and continuous for x > 0 with f(x) → 0 for x → 0 since the
exponential function dominates the power function. Thus, the density is bounded.

We show that Ex4 < ∞ so that Assumption 3.2(i) is satisfied by the Law of Large
Numbers and x has the required moments. With ν = p/2 > 2 and ω > 2 we get

(Ex4)ω/2 ≤ Ex2ω = E(1/z2) = νν

�(ν)

∫ ∞
0

1

z2
zν−1 exp(−νz)dz

=
{ νν

�(ν)

}{�(ν −2)

νν−2

}
= ν2

(ν −1)(ν −2)
< ∞.

We study the tail behavior of x required in Assumption 3.3. First, we show that x2
(n)

=
OP(m2

n). Consider n i.i.d. repetitions of x,ε. We have that max1≤i≤n ε2
i ∼ n2/p since εi is tp

and using Example B.4. Thus, we show Pn = P(max1≤i≤n x2
i ≤ n2/p) → 1. Exploiting the

i.i.d. structure, we get

Pn = P∩1≤i≤n (x2
i ≤ n2/p) = {P(x2

1 ≤ n2/p)}n = exp{n logP(x2
1 ≤ n2/p)}. (C.2)

Exploiting that z = x−ω where y = νz is gamma with shape ν = p/2 and scale 1 gives

P(x2
1 ≤ n2/p) = P(z ≥ n−ω/p) = P(y ≥ νn−ω/p) = 1

�(ν)

∫ ∞
νn−ω/p

yν−1 exp(−y)dy.
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Expand the gamma integral (Gradshteyn and Ryzhik, 1965, 8.354.2) to get

P(x2
1 ≤ n−2/p) = 1− (νn−ω/p)ν

ν�(ν)
+o{(n−ω/p)ν} = 1− νν−1n−ω/2

�(ν)
+o(n−ω/2).

We find that P(x2
1 ≤ n−2/p) = 1 + o(n−1) when ω > 2. Insert in (C.2) and expand the

logarithm as n log{1+o(n−1)} = o(1) to see that Pn → 1 when ω > 2.
Second, we show that ∀0 < δ < 1, ∃0 < r < 1−η: x2

(n−�nr�)/x2
(n)

≤ δ{1+oP(1)}. Since

max1≤i≤n ε2
i ∼ n2/p we can choose η = 2/p, so that 1 −η > 0 whenever p > 2. Example

B.10 with ν = p/2 shows that x2
(n−�nr�)/x2

(n)
vanishes in probability for any 0 < r < 1 and

in particular for 0 < r < 1−η as desired.

D. VARIATION OF THE ASSUMPTIONS

Theorem 3.2 shows that the “good” observations are consistently selected as long as the
smallest “outlier” squared error, minj �∈ζn ε2

j , diverges. This result allows for “good” errors
with both bounded or unbounded support. Theorem 3.3 improves the consistency rate
of Theorem 3.2, while Theorem 3.4 provides an asymptotic expansion of the estimators.
Theorems 3.3 and 3.4 require that the largest “good” squared error, maxi∈ζn ε2

i , diverges.
Hence, these two results apply for “good” errors with unbounded support. Here, we
investigate how far we can get with bounded “good” errors.

Assumption D.1. Suppose

(i) “Good” errors: 1/(maxi∈ζn ε2
i ) = OP(1);

(ii) “Outlier” errors: (maxi∈ζn ε2
i )/(minj�∈ζn ε2

j ) = oP(1);

(iii) Regressors: Let |xin| have order statistics x(1) ≤ ·· · ≤ x(n) satisfying x2
(n) =

oP(minj�∈ζn ε2
j );

(iv) Infeasible OLS estimator: (β̂ζn −β)′(
∑

i∈ζn
xinx′

in)(β̂ζn −β) = OP(1).

Note that in Assumption D.1, we have that part (iv) restates Assumption 3.3(iv).
We start with a variation of Lemma A.1.

Lemma D.1 (Variation of Lemma A.1). Suppose Assumption D.1(iii). Then, ∀C > 0:
Rgn = oP(h) for gn ≤ Ch/minj �∈ζn ε2

j .

Proof of Lemma D.1. Bound Rgn ≤ gnx2
(n)

. Since gn ≤ Ch/minj �∈ζn ε2
j , by construction

and x2
(n)

= oP(minj �∈ζn ε2
j ) by Assumption D.1(iii), then Rgn = oP(h). �

We take the following results as stated in Appendix A.3:
Lemma A.1(c) stands using Assumption 3.1(iii).
Lemmas A.2, A.3, A.4, A.5, A.6, stand using no Assumptions.
Lemmas A.7, A.8 stand using Assumption D.1(iv) that replaces Assumption 3.3(iv).

Lemma D.2 (Variation of Lemma A.9). Suppose Assumptions 3.1(iii), D.1. Then,
min

ζ :1≤#(ζ∩ζ c
n )≤hC/minj �∈ζn ε2

j
h(σ̂ 2

ζ − σ̂ 2
ζn

) → ∞ in probability.

https://doi.org/10.1017/S0266466624000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000343


LEAST TRIMMED SQUARES 37

Proof of Lemma D.2. Let # be shorthand for #(ζ c ∩ ζn) = #(ζ ∩ ζ c
n ).

We consider 1 ≤ # ≤ gn where gn = hC/minj �∈ζn ε2
j . We get that Sgn = Rgn OP(n−1)

by Lemma A.1(c) using Assumption 3.1(iii). Further Rgn = oP(h) by Lemma D.1 using
Assumption D.1(iii). Thus, Sgn = oP(1). Then, Lemma A.8 using Assumption D.1(iv)
shows

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ {1+oP(1)}

∑
i∈ζ∩ζ c

n

ε2
i −{1+oP(1)}

∑
i∈ζ c∩ζn

ε2
i +OP(1), (D.1)

where all remainder terms are uniform in ζ . We show that the lower bound diverges. Insert
the following bounds. For i ∈ ζ ∩ ζ c

n , then ε2
i ≥ minj �∈ζn ε2

j . For i ∈ ζ c ∩ ζn, then ε2
i ≤

maxi∈ζn ε2
i . Further, the sums in (D.1) have the same number of elements # = #(ζ c ∩ ζn) =

#(ζ ∩ ζ c
n ). Thus,

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ (

min
j �∈ζn

ε2
j
){1+oP(1)}#− (

max
i∈ζn

ε2
i
){1+oP(1)}#+OP(1).

Take common factor (minj �∈ζn ε2
j )# to get

h(σ̂ 2
ζ − σ̂ 2

ζn
)/σ 2 ≥ [{1+oP(1)}−

(maxi∈ζn ε2
i

minj �∈ζn ε2
j

)
{1+oP(1)}](min

j �∈ζn
ε2

j
)
#+OP(1).

Since # ≥ 1 by construction in this Lemma and (maxi∈ζn ε2
i )/(minj �∈ζn ε2

j ) vanishes while

minj �∈ζn ε2
j diverges due to Assumption D.1(i,ii), then h(σ̂ 2

ζ − σ̂ 2
ζn

)/σ 2 diverges with large
probability. �

Theorem D.3 (Variation of Theorem 3.3). Suppose Assumptions 3.1, 3.2, D.1. Let Mn
denote the set of minimizers ζ of σ̂ 2

ζ . Then, P{maxζ∈Mn #(ζ ∩ ζ c
n ) = 0} → 1.

Proof of Theorem D.3. First, Theorem 3.2, using Assumptions 3.1, 3.2, shows that
maxζ∈Mn #(ζ ∩ ζ c

n ) = OP(h/maxj �∈ζn ε2
j ).

Second, Lemma D.2, using Assumptions 3.1(iii), D.1, considers estimators σ̂ 2
ζ for

index sets ζ that contain a positive number of “outliers”, in the range, 1 ≤ #(ζ ∩ ζ c
n ) ≤

Ch/maxj �∈ζn ε2
j . Such sets ζ do not include the true set of “good” observations, ζn. Lemma

D.2, states that h(σ̂ 2
ζ − σ̂ 2

ζn
) diverges to positive infinity uniformly in considered values of

ζ . Since the function (σ̂ 2
ζ − σ̂ 2

ζn
) is zero at ζn, the considered set of ζ values cannot contain

a minimizer in the limit.
In combination, minimizers ζ ∈ Mn satisfy P{maxζ∈Mn #(ζ ∩ ζ c

n ) = 0} → 1. �

Theorem D.4 (Variation of Theorem 3.4). Suppose Assumptions 3.1, 3.2, D.1.
Then

(a) P(σ̂ 2 = σ̂ 2
ζn

) → 1.

(b) P{(∑i∈ζ̂
xinx′

in)
1/2(β̂ −β)− (

∑
i∈ζn

xinx′
in)

1/2(β̂ζn −β)} → 1.
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Proof of Theorem D.4.

(a) Theorem D.3, using the Assumptions 3.1, 3.2, D.1, shows that P{maxζ∈Mn #(ζ ∩
ζ c

n ) = 0} → 1. Whenever maxζ∈Mn #(ζ ∩ζ c
n ) = 0, then the LTS estimator σ̂ 2 equals

the OLS estimator on ζn. Thus, P(σ̂ 2 = σ̂ 2
ζn

) → 1.

(b) Further, whenever maxζ∈Mn #(ζ ∩ζ c
n ) = 0, then the LTS estimator β̂ equals the OLS

estimator on ζn, while ζ̂ equals ζn. Thus, the desired result follows. �
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