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Abstract. We consider certain non-invertible maps of the square which are
extensions of the quadratic maps of the interval and their small perturbations. We
show that several maps of the type possess attractors which are not hyperbolic but
have invariant measures similar to Bowen-Ruelle measures for hyperbolic
attractors.

1. The properties of a dynamical system f: X - X which possesses an invariant
contracting foliation are closely related to the properties of the system induced on
the quotient space. When (X f) is studied from the point of view of the topology,
this relation is based on the inverse limit construction (see [14]), but when f-invariant
measures are studied one uses the natural extension construction (see [12]).

In this paper we consider the situation when the quotient space is an interval
and the corresponding induced one-dimensional map has a single critical point.
We shall see that several systems of this type possess attractors which are not
hyperbolic but have similar properties.

The maps under consideration are non-invertible. We show, however, that the
set where the inverse map is not defined is negligible from the point of view of
any absolutely continuous measure. We shall say that an attractor A of the map f
admits an absolutely continuous invariant Bernoulli measure if there exists a finite
measure g such that (A, f, 1) is a Bernoulli automorphism and there is an invariant
subset A; < A satisfying u(A;)=1, where A; is a union of rectifiable curves vy,,
forming (mod 0) a measurable partition of A;, and on every curve y,u induces
the conditional measure w(-|y,) which is absolutely continuous with respect to
normalized length.

In §§ 2-5 we consider a map F: S - S of the unit square § similar to the ‘twisted
horseshoe’ map from [7] and prove the following theorem.

THEOREM 1. The attractor of the map F admits an absolutely continuous Bernoulli
measure.
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In §§ 6-10 we consider some one-parameter families of maps F,: § > S which
induce on the quotient space mappings x - g,(x) close to x » ax (1 —x). For these
families we prove the following theorem using the results of [8].

THEOREM 2. There exists a set M of parameter values of positive measure, so that
for any a € M the attractor of the map F, admits an absolutely continuous Bernoulli
measure.

The approach to the proof of these results is based on the ‘induced map’ method
combined with the ‘itinerary schemes’ method due to Alexeyev [1].

In the last year of his life, despite his grave illness, V. M. Alexeyev continued
his work on various mathematical problems. Several times we discussed the subject
of this paper. His attentive and friendly attitude stimulated my work to a great extent.

I would like to thank B. M. Gurevich and I. P. Gornfeld for discussions and
useful remarks.

2. We denote by of = C*([0, 1], [0, 2]) the set of mappings satisfying g(0) = g(1) = 0.
Let € >0 be a small constant. We define &, <./ as the set of mappings g satisfying

() llgx)—4x(1—x)llc2<e;
6 mgx,8=1

A, is a surface of codimension 1 in . The curve I'={x » ax(1 —x)} intersects
o, transversally at a = 4, thus for any one-parameter family x - g, (x) € o sufficiently
close in C*(A x[0, 1], [0, 2]) to x > ax(1 —x) where a € A =[0, 5], x €[0, 1], there
exists an ao such that g, € ..

Let us consider the square § ={0<x =<1,0=<y =<1} and the map F: § » S defined
by

F:(x,y)>(@(y)+A(x —3), g(y)) (1)

where A >0 is a small constant, g(y)e . and ¢(y)isa C? function satisfying the
following conditions:

e'(y)=1;
i+28 foryel0,5+8]
ey)={y forye[ri—8,1—-ri+8]

3-26 foryel[3-6,1]
where r, is defined in (3) and § >0 is the small constant defined in (4), see § 3.
The map F is illustrated by figure 1.

Remark. We have chosen the above formula for ¢ in order to simplify the calcula-
tions. One can check that the following results are valid for a large class of ¢.

A similar ‘twisted horseshoe’ map was analysed in [7]. Bowen in [4] considered
such a map as an example whose dynamics are undecided.

https://doi.org/10.1017/50143385700001644 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001644

Invariant measures for some one-dimensional attractors 319

1

077

0 1 1

FIGURE 1

(1) implies that the horizontal foliation ¢ ={¢,} of § is invariant under F, and
F: ¢, > &) is a contraction with coefficient A.

Let us consider a sequence (Yo, ¥1, . . ., Yns . . .), Where y, €g ' (ya_1), and g~ '(y)
is the inverse image of y under g. We have F"¢, < ¢,, diam F"¢, <A" and thus
(Mn=0 F"¢,, is a point which we denote by M (yo, Y1, ..., Vs - - .).

Following the inverse limit construction (see [14]), we introduce a space Y=
{# = (yo, y1, . . .) and we define the map g:Y > Y by §(5) = (g(yo), yo, ¥1, - . .). We
shall use the notation A =( -0 F"S, and 7:(yo, Y1, ...)>M(yo, ¥1, . . .). It follows
from the definition of the topology in Y that = is continuous, and the construction
implies that 77: ¥ > A is onto and satisfies

mog=Fom. (2)

3. The map = is not one-to-one because g is a homeomorphism and F is non-
invertible on A. We shall see nevertheless that 7 induces an isomorphism between
the dynamical system (A, F, ) and the natural extension (Y, §, /i) of the system
(Y, g, n), where u is a g-invariant measure absolutely continuous with respect to
the Lebesgue measure dy on [0, 1], and 4 = 7 i.

It is known that any g € &/, admits an invariant measure u, absolutely continuous
with respect to dy. Let us recall the construction of u, from [9].

The mapping g has a repelling fixed point ¢ =g(f)#0. Let ' be the second
pre-image of t. Let us denote  =[¢t"",¢]. Let G:I > I be the map induced by g,
i.e., for y e I one sets G(y)=g""(y), where

n(y)=min{n =1:g"(y)el}.
We have I = (_i2,A::) UK, where A;. are open intervals such that for
yeAin(y)=i, Ai_c[0,c], Air<[c, 1],
ghii=gAi, AnA =0,
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and K is the union of the set of end points of A;. and of the critical point c, see
figure 2. Let us denote go(y) =4y (1 —y). Then
o= pg=dy/mVy(1-y)
is the corresponding measure. For g = go we have I = Io={to, to' ], where

to=3% to' =1, Br-=[hn], A =[1-r,3). 3)

AZ_A:;- A3+A2+ \

0 c=3
FIGURE 2

The map G, induced by g satisfies the following conditions:
(A) Fko:|DGE(y)|>co> 1 for any y such that G§°(y) is defined.

(B) sup |D*Go(y)|/|DGoly)|-|A:| <cbh, with ¢y independent from i.

yea;

If € is sufficiently small any g € &/, induces G which also satisfies (A) and (B) on
the interval I = I, =[¢r, t]. Let us denote

A (g)=[t"",p1), Aa(g)=[p2 1],
and let § be defined by

sup max {|t "' =3, [p1—ril, p2— (1 —ry)|, [t =3[} = 8/2. “4)

gesd,
Here & is the constant from the definition of ¢(y) in § 2.
Conditions (A) and (B) imply ([2], [13]) that G admits an invariant measure

veldy)=x(y) dy
on I with y(y) continuous and bounded away from 0.

The f-invariant measure u, is constructed from v, according to the following
formula, which holds not only for the induced map G but also in a more general
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situation when G locally coincides with different powers of the map g:

o i-1

wE)=X 3 vig™(Eng"A)). (5)

When G is an induced map, we have w =v|I and x (dy) =q(y) dy where the density
q(y) is continuous on [0, 1], bounded away from zero and has two singularities of
the type 1/Vy at 0 and at 1.

Let (i é, v) be the natural extention of (I, G, v). The construction of § 8 below
implies that the automorphisms of measure spaces (Y, g, 1) and (f, G, 7) are related
in the following way. (I, G, ) is isomorphic to an automorphism induced by g on
asubset I' of Y. Let §:f - I be this isomorphism. For

zZel, Z=(z0,21,22,...), Gzi=1z; 1,

foranyi=1,2,... we have Gz; = g"z;. Then §(Z) =y is defined by

n,—1

. -1
Vy=(20,8" 21,...,821,21,8" 'Z2,...,822,Z2,....).

Furthermore I’ coincides mod 0 (i.e., neglecting sets of zero 4 -measure) with the
set {y = (yo, y1,-..): yo€I}.

(I, G, v) admits a pair of invariant continuous partitions analogous to contracting
and expanding foliations for Anosov systems (see [11, 12]). Let n be the decreasing
partition, whose elements are

nw= (I’ Ain Aizfl’ e Aiw--izin’ o)

where GA;;, ,..;,=A;._.-j; J is used to denote the entire sequence (ji, j2,...); [
is as above, and

_ -1 . —(n-1)
Ainjn—l"'jl_Ajan Afn—lm. NG Ail'

Lemma 2 of § 7 implies that for any n; the conditional measure 7(:|n;) induced
by 7 on n; satisfies the following inequalities

0<C2<I7(El‘nj)/17(01E)<Cx (6)
where E is a measurable subset of 7y, 8,: > is the projection along the element
of the increasing partition, and ¢, ¢, are independent from J.

When we consider the attractor A the elements 7n;, admit a natural geometric
interpretation.

4. For aset E [0, 1] on the y-axis we shall use the symbol I1g to denote the strip
{(x,y):x€[0,1], y e E}.

Let 7 be the map induced by F on the strip II; where I =[¢ ', ¢] as in § 3. The
horizontal foliation ¢ = {¢,} is invariant under 7 and we have

€y < €ay- (7
The partition of [ into the intervals A;. generates the partition of I1; into the strips
I1;. (we use I1;. instead of I1,,, in order to simplify the notation). Let us consider

the images 7Il;.. Figure 3 illustrates the map F % with the images 71l,. =F 1L,.
shaded in.
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FIGURE 3

Let a be the fixed point of the linear map
X>4+20+A(x —3).
The action of F on Il ,-'; may be written in the form

(x—a,y)>A(x—a), gly).
Thus (a, 0) is a fixed saddle point of the map F, its stable manifold W* coincides
with the x-axis, and the intersection of its unstable manifold W* with the strip
Mo, is a segment of the line x =a. As F acts diffeomorphically on Il,-13, we see
that the images 711,.., 7I1,,. do not intersect for n # m, that 711, ~n7Il,_ = & for

small n but 711, . " 7II,,_ # & for large n, and 711, accumulate to W* when n tends
to infinity (see figure 4).

\{ i

TA, . TAs,

TA2s

FIGURE 4
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We shall denote the map 7|[1,.. by 7,.. Let us consider the action of D7,.. The
derivative of F equals

A <p’(y)>
DF(x, =( )
“=\0 gy)
The choice of & in the definition of ¢(y) implies that all intervals A,. with n=3
are inside the domain where ¢'(y)=1, and besides

¢'(y)=0 forye[0,: 'Juls 1].
Thus for i #2 we have ¢'(y) =1, for any y € A, and for all i =2, 3, ... we have
@'(g*y)=0, k=1,2,...,n,—1.

Therefore we obtain for n =3

n—1
Drpslx,y)= (/\ 0 Mo} Z'(gky)> ' (g g’:y ))

-~ (8)
=( 0 (g")’(y))'
For n =2 we have
Dr3.(x, Y)=(g g'((;y)) (3 Z'((;)))>
AP A@'(y) ”
=( 0 (gz)’(y))'

Let A=g'(0) (for gesA A is close to 4). It is easy to check that there are
constants ¢3, ¢4>0, such that for n =2,3,... and for any y € A,. the following
inequality holds

(VA" <IG () = €™ ()| <caVA)". (10)
Let us consider the images D7,K of the cone
K ={( n):l¢/n|<1}
in the tangent space TS. We have
Dra(g m) =1, m1) = A E +Aem, (87 (0))m).
Thus
Ap'(y)  A? £ 1+A

e/ml= [ &)l < A ab
For n > 2 we have
Do, m) = (1, m) =A"E+A" "0, (") (y)n).
Thus
61/l <A™ A +A)/(VA) ¢3). (12)

If A is sufficiently small the right-hand parts of (11) and (12) are less than 1 and
we get D7,.K <K for all n.
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Let us denote A'=n ;',°=0 7711 the attractor of the map 7:I1; > I1,. In order to
study the structure of A’ we use the ‘itinerary schemes’ method developed by
Alexeyev [1]. In our situation Alexeyev’s theorem (theorem 1~ from [1]) may be
formulated as follows.

Let us denote

Alln Al2n)
A21n A22n

”1411'1_A12n'A£21n'A21nn=I-L1m ||A521n||=ltzn
1A 120 AZ2ull = @1n,  |A220 " A21a]l = G20

Dr, =(

Suppose the following conditions hold. There are two families of cones K(x, y)
and K;(x, y) in the tangent space so that
K,5(1,0), K;3(0,1), KinK,=0

and for any n

(C) Dr.K,>K,, D1K,=K,.
There exist constants w1, g2, @1, @z such that w1, <y, g2, <p2, @1, <ay, dz, <a;
and the following inequalities hold:

(C) mi<l

(Cs) Vur-ma+Var-a;<1.

Then any itinerary Il; < I1; < II, <7 - - - determines the smooth curve
X k
!
Aijigein = N~ I,
k=1

and A’ coincides with the union of such curves. Besides any tangent vector v = (£, 17)
to Aii, i, belongs to 7, K.

If we set K; ={R, 0}. K, =K then (C;) will hold for K, because of the invariance
of the horizontal foliation and for K, because of (11) and (12). Now (8), (9), (10)
imply that (C,), (C;) hold with

pi=A% pa=(c;A)Y, ai=0, a;=A(c;A)"
Thus Alexeyev’s theorem is applicable. The scheme {I1,, vII,} is not separable in
the sense of [1] because

(I, ~r(Il,_)# < forlarge n.

However, the images 7,.K and 7,_K do not intersect for all n. It follows from the
subsequent inequalities where we use the notations of (11) and (12).
For (x, y)eIl, . we have

n—1
Eu/mi =07 (" NI+ @) < =2z (1-2) (13)
while for (x, y)eIl, . we have
n—1
&/m > (1-0), (14)
C4'2
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5. Letus denote by ' :f > A’ the map analogous to m, namely for £ = (xo, x1, X2, * * *)
where x, € G 'xn_1,
T (X) = €N T N T, N e e
The map 7' induces a homomorphism of dynamical systems
i, G, 5)> (A, 1, mhD).
LEMMA 1. 7y is an isomorphism.
Proof. ForagivenJ =(j1,j2,...,Jn...)consider the element n; € n of the partition
defined in § 3. It follows from the definitions of n; and A} that 7'(n;) = Ak and for
Z=(z9,21,...)€ny;, w'(Z) coincides with the projection of zo€ I to the curve A}
along the x axis. In consequence of (6) and of estimates (11) and (12) we obtain
that the induced measures 7,7 (- |n,) are absolutely continuous with respect to the
Lebesgue measure (normalized length) on A},
Let
oy ={Z:card =" (7'5)>1}
and let
m'(or)=8; < AL

We show that mes S; = 0 (mes is the Lebesgue measure Aj). We have

Si=UAINAe U U Al AL (15)

I#J k=1 ix#jx

Let us denote (A’ 1I1,.) by A,.. As 7 is non-singular with respect to Lebesgue
measure on Ax we obtain taking into account that A,, N A, # & only for m =n,,
k = n., that it suffices to check the equality

mes (A:,”'zh---ﬁA;l_):O. (16)

For A <3 the intersection AN ¢, is a Cantor set of zero Lebesgue measure for any
£&,. Now it follows from (13) and (14) that the angles between the curves A, ;.
and A, .. are uniformly bounded away from zero. This implies (16). Thus
mes S; = 0. Thereby we have

{y(Zs|ms)=0 foranyn;
and the Fubini theorem gives
s{fel|card 7' ' (7'2)>1}=0,

and thus 7 is an isomorphism. O

Let A,.={y = (Yo, y1».. .)€ Y |yo€ A,+}. If we neglect a set of zero /& -measure
we can represent Y in the following form

y=U U #A.. (17)
As 7' coincides with m{J = (yo, y1, . . . ) |yoe I} we have

A=U U FYA'nILw). (18)

n O=sk=n-1
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Since F* are non-singular with respect to Lebesgue measure on A we obtain an
isomorphism (Y, 8 1)=(A,F, meit) where w1 has absolutely continuous condi-
tional measures on the curves F'Aj constituting the attractor A. According to the
results of Ledrappier [10] the automorphism (Y, g, i) is Bernoulli. Thus (A, F, wei)
is also Bernoulli and theorem 1 is proved.

Remark Although (18) defines A as a union of Ay and their images F ‘Al itis easy
to verify that every leaf of A is a smooth curve which connects the top of the square
S to its bottom. These curves may be identified as

Ap1p2p3"' = 77{)7 = (YOr Y, Y2 .. -)|YO€ [0’ l]; n= g;: (yO)’ y2= g;zl (yl)’ .. }
where p; €{0, 1}, go' (x)€[0,3], g7 (x) € [3, 1].

6. Now we turn to the proof of theorem 2. We consider again a map of the square
given by (1)

F:(x,y)>(@(y)+A(x —3), g(y))

where ¢(y) is the same as in §2 and ge C*([0, 1],[0, 1]) which satisfies (i) but
instead of (ii) we assume max g(y)=g(c)<1.

Invariant measures for such mappings were studied in [8]. It follows from [8]
that for the family y »ay(1-y) and for any family y - g,(y) sufficiently close to
y »>ay(1—y) in C*(0, 4]1x[0, 11,0, 1]) there is a set of parameter values IR such
that mes I >0 and for a € M the map g, has an absolutely continuous invariant
measure. In contrast with the situation considered in §§ 2-5 we cannot prove the
existence of an absolutely continuous Bernoulli measure for any A € [0, A] although
we think it is true. Instead we will prove it for A belonging to some subset of full
measure. Let a family {g,} and a set I be as above.

THEOREM 2. For the family
Fai(x,y)=>(@(y)+A(x —3), ga(y))

there is a set Z<[0, Ao) such that mes E= A, and for any A € E the subset W' of
I defined by

' ={a: the attractor of F, admits an a.c.B. measure}

satisfies mes (PUI) = 0.

We begin with constructing the induced map G:I - and the corresponding
two-dimensional map 7: II; - I1; induced by F on the strip Il;. This is done exactly
asin §8§ 3 and 4 but now G has only a finite number of monotone branches G :D; - I
and one central parabolic branch. Correspondingly the image 7II; consists of a
finite number of nearly vertical strips 7IIp, and of a narrow horseshoe (figure 5).
Certainly it suffices to construct the desired attractor for 7.

An absolutely continuous invariant measure u (dy) for G was constructed in [8]
with the help of an auxiliary map T':I - I satisfying the following conditions. There
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is a countable number of intervals A; = I such that:

1) intA;nintA; = J;

2) the Lebesgue measure of |_J A; equals mes [ ;

3) T|A;=T;=G" are diffeomorphisms, Im 7; =1 ;

4) sup; max,ea, /DT (x)/DT(x)|(mes A;) < co;

5) IDT(x)|>L>1;

6) Y, nimes A; <oo,
According to [13] there exists a T-invariant Bernoulli measure v(dy) with the
continuous density y (y ) > 0 with respect to dy. v generates the G -invariant measure
w by formula (5).

For Zo=I\UA; set

z=U G‘"(U G"Zo).
n=0 k=0

Then u(Z)=0, G"'(Z) =G(Z)=Z. Consider X =I\Z. Then the endomorphisms
(I, G, x) and (X, G, u) are isomorphic and for any x € X, k e Z and x' € G*(x) T'(x)
is defined. We shall use the notation (I, T, &) for the natural extension of 7, and
X, G, i) for the natural extension of G. Let € be the corresponding two-
dimensional map which coincides with €; = 7™ on 1,4,

Let us denote by A ={\n~o 7" II; the attractor for the map 7; by A'={ \5-0 €"I1;
the attractor for €. We define the map 7:X - A by

(X ={x0,X1,X2,...)) =§xOn'r§xlr\72§,2rw cee

and the map 7': [ > A’ by

TG =0 Yis Y2 - - ) =Eyo N €Ly, N2 E N

7. Let of be the partition of I into cylinders (4, T7'A, T72A,, ...). Consider the
corresponding decreasing partition Va-iT"=mn and the increasing one
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V=0 T "sf =v. Let us denote by a the measure induced by # on the factor space
I/n. Let C, be an element of 7; v(-|C,) the conditional measure induced by # on
C,; C, an element of y; v(-|C,) the conditional measure on C,. The following
assertion may be considered as a simple version of several theorems about systems
with absolutely continuous foliations (see e.g. [3, 11]).

LEMMA 2. 7 is equivalent to the direct product v X «. There are constants c1,¢>>0
so that for any v-measurable set A< I and for any a-measurable set T = I/n one has

5(AxT)
v(A)-a()
Proof. As T " ={(T™"A, T""*PA, ...) we have

<. (19)

<

N
VT = (A0 T gy }
0

where
-1 -N
Aioil"'iN:AiomT A,’lh' -nNT AiN‘
The intersection A, AT 'A,n---AT VA, ~n--- is a point for any sequence
(io, i1, {2, ...In...) because of 5). Thus we obtain

y= \0/ T ={y, T 'y, T %y,... )}
On the other hand
T ={(I,1,....,[A, T 'A; ...
—_—

n times
Hence

f"d = {(I’ Ai19 Aizip cees AiNiN,y”ip T_lAiNiN_l'“ip CRC] )}

~<Z

and we obtain
n 2\1/ T"d ={(I, Aip Aizip PRI AiNi,._l-~~ip AiN+1iN~'~i1; S

Any point y = (Yo, Y1, ¥2s ¢+ +s Vs - -« yel may be uniquely represented as y =
C, < C, where the indices iy, i, ... in the definition of C, are determined by
ya€A4A,...;; and C, = (yo, T_lyo, ...). This gives the direct product structure in I.
Let A< be a measurable set, Ty = (A, T~'A, T72A, .. .),T\,i,.... the cylinder in [
defined by
Fi1i2~~~i,,= (I’ Ails Ai2i1, vy Ai,,"-izl'p T-lAi,‘---l'zila T_2Ain"'i2i1’ v ')'

Let us denote the intersection TanT,;,...., by P(A, [y, ..., in]). We shall use the
notation T;,,,...;,. for the unique monotone branch of T * which maps

A AT A _ N T P4,
onto I. The assertion of lemma 2 will be proved if we show that independently
from A and [ii, - - - i,] the following inequality holds:

G(P(A, [iriy - - - in])
N TN T 20)
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According to the definition of 7 we have
v(Ta) =v(4),
17(Fili2~~-i,.) = V(Ta?2<-~i,. I,
U(P(A, [irizin])) = v(T 5y, ().
Thus (20) is equivalent to
v(Tih,i, (A)) v(4)
v(Ti5, (D) v(I)
Now it follows from properties 4) and 5) of T that 4) holds not only for T; but
also for all their compositions T, °T;,o---°T; with a constant ¢s independent
from [iyi, - - - i,], see for example lemma 5 of [8]. Thus b, <DT"(x)/DT"(y)<b,
for some b1, b,>0; and for any x, y € A;,...;,. This implies an inequality similar to
(21) but for Lebesgue measure. Since 0<d;=min,.x(y)<v(A)/mes A <

max,czx(y) = d, for any measurable set A we obtain (21) which finishes the proof
of lemma 2. O

<c. (21)

C2

COROLLARY. Let 6,:F > I be the projection along C, and 6,:I > I/n the projection
along C,,. Then for any element C,, and for any measurable A< C,

FAIC,) _
V(01A)

C2 Ci.

Similarly for any measurable T < I/n
7([|Cy)
a(6,0)

Cz< 1.

In particular we obtain that n and y are absolutely continuous partitions and the
intersection n A vy is trivial.

8. The following construction which clarifies the relation between (X, é, &) and
(I, T, 7) is similar to the ‘tower’ construction for automorphisms. For any A; consider
the sets

Aik—'—-GkAi, Osksn,-,
and let ¥ =, Ai be the disjoint sum of A;. We define the projection p:Z ->1

by assigning to any u € A, its image under the natural inclusion p(u)e G*A; <l
Then we define amap F: X ->%. If ue Ay, k <n;—1, then

Fw)=p (GW)NnAu+i;
if ue A, 1 then

Fw)=p (Gw)nUAjo.

The construction implies Gep =p°%. Notice that if we identify |_J;A;o with I,
then the map induced by & on I = & coincides with T.
Let us define the measure p on & by

p(U < Ax)=v(F*U).
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Since v is T-invariant p is ¥ -invariant, and the definition of x implies that p,p = u.
Consider the natural extension (¥, %, p). It follows from

Gop=p°F
that the map §:& - X defined by j(uo, us, . . . )= (puo, pus, . . . ) satisfies
peF=Gop.
LEMMA 3. Pisan isomorphism of dynamical systems (& Z, p) and (X, G, @)
Proof. We show that there is a subset M of X such that A (M)=0 and p:&->X\M

is one-to-one. For x € A, set n(x) =n,. We define M= U?ZOA:!,- where the set M;
is defined by

x~=(X(),X1,.. ey Xis Xit1y o )EM

iff there is a sequence j,, - 0 so that n(x; ) >j, —i. Since n(x;, ) > j, — i > % we obtain
for ¥ e M; that x; € A, where p, >0 when n > . Now

v{X:x; €Ay t=u(Ap,)
hence it is sufficient to show that
hllingo {x:n(x)>N}=0.

But this follows from the convergence of Z:;l u(Ax). Thus u.(]\;[,-) =0 and con-
sequently g (M)=0.

We shall use the following decomposition property which follows from the
inductive construction of the maps T; in [8].
PROPERTY D. Let T|A; = T: = G™. Then for every k <n;thereare T;,, ..., T;, r=1,
50 that the restriction of G™* to G* A; may be represented as

G" =T oTppole o T,

Consider a point £ = (xg, X1, .. .) € X\M. From ¢ M, we obtain that there exists
mo(x) =max {m:n{x,,)>m}.
Then property D implies 1 (xm,+x) <k, k =1,2,.... In particular, n(xm,+1) =1.
For k =1 we define
my = max {izn(x)=i-my_}.
Property D implies

i—nx)=my_, forme_<i=mg.

Let £ = (X0, X15+ vy Xngs«« « 5 Xnps - - - s Xnpy - . .) Where (ng, 1y, 0y, . . .) is the sequence
defined above, x,,, € A, Then i = (o, 1, . . ., Ungs - -5 Unys « « + » Uny, - - ) EZ defined
by

k
Upn, = Xp; EAliO, Up—k = F Un, k= 1, Rt (5
~

satisfies pi =X, hence p is onto X\M. Let pi' =%, where i'=(jo,j1,...). Let
no=min{n:u,eltandfork =1

ny=min{n:n>n,_,u,cl}.
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The definition of the sequence (no, n1, . ..) implies Tx,, = x,, and the construction
of (#, ) implies Tx,;=x,,_,. Besides it follows from the definitions of no and of
no that n(x,,)>no and n(x,;) > no. Suppose no <no. Then no€[ni, ni.+1}and using
property D we obtain #n(x,,)<no—ni <no, a contradiction. The same arguments
show that no<ng contradicts to n(x,;) > no. Therefore, no = no. Analogously using
property D one obtains n, = n; for all k. Since

F:Ay->Ai and G:G*A; > G A,
are homeomorphisms for 0 <k <n; -1 we obtain &' = i, and lemma 3 is proved. O

Let us denote
é = {IZ =(u0, U, .. .)EQ?IM()EUA,‘()}.

It follows from the proof of lemma 3 that pB coincides with {£ = (x¢, x1, . . .):no(X) =
0}. As the automorphism induced by % on (B, ) coincides with (I, T, 7) we obtain
that p is an isomorphism between (I, T, 7) and the automorphism induced by G on
(pB, ). For
¥y =0 Y1, ¥2, - - -)Ei, where y; = G™ 'y,
we have
I;)? =()’0, G"‘_lyly vy Gyh YI=Gn2)’2, an_lyZ’ L ) Y2=Gn3)’3, [ ')'

Remark. The representation of (I., T", v) as an induced automorphism, the triviality
of the intersection n A y proved in § 7, and the K -property of T allow us to apply
the results of Gurevich [6] and Blanchard [5] which give the following corollary.

COROLLARY. (X, G, i) is a K-system.

This follows of course from the B-property proved by Ledrappier in [10]. The
above construction gives another way to construct the unstable foliation.

9. Let us consider a point

-~

X =(X0=Xngs X15--+sXnysev+rXng - )EX
and its pre-image

~—1

P X = (Xng Xny» Xnyy - - ) EL

For the projections 7 and 7’ defined in § 6 we have
T(E)= €N e N T E AT A
= é'Xno n.r"lé'x"l n,r"l+"2§xn2 a X
v—] -
=q'(p~ X).
Thus the image of I under 7’ coincides with its image under = when we consider

I as the subset of X. Using the result of the previous section we represent
(A, €, myv) as an induced system with respect to (A, 7, myp ).
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Now we check that {Il,, %:} satisfy the conditions of Alexeyev’s theorem. For
T:A-TI and the corresponding €: I1,~>II; where T =G’, € =7', we can rewrite
(8), (9) as
A" A“‘lcp'(y))

et )= (", o)

where y €Il,,.+, G(y)=g™(y) and ¢'(y)=1 for m >2. Consider a point (x,, y.) € Il4
and for k €[0, r] set

(o yi) =7 (xry yr)
in particular

(x0, yo) =€ (x,, y,) =7"(x,, y,).
Then

’ Ami Amlﬁl ' ;
pey=M (" * 50"

i=1

=1

= Az A A TG0+ AT e )G ) + AT )

0 ‘U1 G'(y:)
Consequently
D(g(xr’ Yr)(f, 7’)= 1s Th)

AFTE AT A ™M (y)

—

X .1;12 G’(yi+- . -+/\Z;‘mi(pl(y’))n’ .l;ll G,(y;)'n).
Hence
&1 (AT (y)  ATT0(y,) AE™ o'(y,) ALimo g
—=A + e , £ 0
e N B TAT T A - el

According to property D G"IG'_"A may be represented as a composition
G*=T,o T,
Since |DT;|>L for any j we have
IG'(y1) e+ o G'(ye)l =I(G*Y|> L.
Thus |¢;/7:] may be estimated as
lé1/ml<A™7/L(1-2). (23)

1t follows from (23) that for any €; = €|I1,, the cone |¢/n] <1 is invariant under
D%.. The remaining conditions of Alexeyev’s theorem are also satisfied with

mi=A% wr=L7"', a1=0, a,=AL"".
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Therefore {I1, %} form an itinerary scheme. This implies just as in § 4 that A’ is

'

the union of smooth curves Ay=Aj,;,..;..... Any A} is a graph of a function x(y)
satisfying |dx/dy| <A/L(1—A). For an element C; of the partition n defined by
Cr=W, Ay, Bpyjys - ) ={0, T3y, T e Ty, .. 0) yel,

we have 7'(C;)=Ajand 7'(y, T,-_,ly, ...} coincides with the projection of y on A}
along the x-axis. Since the conditional measure 7(-|C;) is equivalent to dy, the
conditional measure 7 (-|A}) is equivalent to Lebesgue measure on A} Set A}, =
ANy,

The representation of (A’, €) as an induced system with respect to (A, 7) gives

n—1
A=Uy 7(A4). (24)

Notice that contrary to (18) all the summands in (24) are contained in I1;. One can
check that the leaves or A are smooth curves but their projections on the y-axis
depend now on the curves; the turning points lie on ¢, where ¢, belong to the
trajectory of the critical point c.

10. Now we take into account the dependence on a and A. For a map
Forlx,y)=(@(y)+A(x —3), ga(y))
let ()?,,, éa, ta) and (Ag, Ta, €arxiha) be the corresponding systems. The preceding
results were obtained for any a € I and any 0 <A <A,. Let
Tar =1{x € X, :card 7w (ar (x)) > 1}.
LeEMMA 4. (i) For any a € M and for any A € (0, Ay] either
fa(@a) =0 or fa(Ga)=Ha(X0);
(i1) for any a e M
mes {A: Ba{0ar) = ma(X,)}=0.

Let us show that lemma 4 implies theorem 2. Consider the measure da X dA on
the direct product M x (0, Ao]. Let

ZE={r€(0, Ao): mes{a e M: f.(0a)>0}=0}

It follows from the Fubini theorem that mes E = \q. For A € E the set of parameter
values a such that F,, admits an attractor with an absolutely continuous Bernoulli
measure differs from IN by a set of measure 0.

Proof of lemma 4. (1) First we fix a and A. For any y € o there exists some 7 € o
such that

)7=(YO,)’1,. . .)#2’:(20,21, )
but #(y)=w(Z)=M e A. Let
o,={y:forsomeZwy =nZ andy;, =2z;

fori=0,1,...,n—1,buty, #z,}.
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Consider the points
)7_n=()’n, yn+1-'-)’ £_n=(2n72n+1"')€X~!
Mi"=n(3 "), Mi;=m({")eA.

Then we have M ("€, , M2 " e&, >M " #M5", but r(M1")=7(M3;"). Let oz
be asubsetof o, defined by y, € Ay (the corresponding z, € Ai=). Let y, =lim,, o0 Ym
for a sequence y,, € gnx, and let y ., =lim,, .o ymn be the nth coordinate of y,. For
Zm € Ony satisfying w(£,,) = 7 (¥ ) consider some limit point Z,. As dist (Zum, Yam)>¢
for any m and 7(z.m)=7(y.m) We obtain using the continuity of r that z,, =
lim,, o0 Znm is different from y ., and 7(24n) = 7(y xn). Hence y 4 € onk, onx is closed,
and o =Un k0« is measurable.

It follows from the definition that Go, = o,,+1. Thus o is invariant. As & is ergodic
w(o)=0or g(o) = (X) which proves (i).

(2) Now a is fixed but A varies in (0, Ao]. Then the sets o, o, o depend on A.
Let B be the set of A such that & (o,) =4 (X). As £ (0r,) = (Oan+1) fOr A €B we
have {ox1)>0. Let us define

%mk ={A G%Iﬂ(dklk)z 1/m}
Then B =UpmiBme. Suppose A, =lim, oA, where A, € B, but A& B, Then
floa,,)=cy forsomeO=c,<1/m.
Let dis={f = (x0, X1, X2 " * *): X1 € Ags}. If X € dis\o1i then
dist [T(?T(xl, X2 0), TAk¢]> 0.
Let
V, = {£:dist (rm(x1, x2,...), TA=) = 1/p}.

Then V, is closed and
(U V) =n (B0 =cx> (@0~ 1/m.
14

For any ¢ we can choose Py such that

iU Vi) >u0-coe.

p=Po
Using the continuous dependence of 7 and 7 from A we can choose ¢ > 0 such that
any A € (A, —1, A, +1) satisfies .
fonie) <u(Ar)— (u(Ar) —cx—€)<cyte.

For ¢ sufficiently small and A = A, this contradicts to i (o, 14)=1/m. Hence the

sets B, are closed and B is measurable.
(3) Let mes B>0. Then for some m, k mes B, >0. For £ €011+ We define

Te={A:mE)emorni-}
Applying the Fubini theorem to the product of the measure spaces
(X~1 lz) X ([0’ A0]’ dA)

we see that i{f € ox1x+: mes [';>0}>0. We fix some p = (po, P1+, P2, - . .) such that
mes[;>0. Then to any Ae€I'; there corresponds some £ satisfying X =
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{(xo=po, X1 =P1-, X2, ...), ma(X)=m\(P). Now itis convenient to return to the inverse
limit ([0, 1], §) of the initial one-dimensional map g: [0, 1]-[0, 1] and to the initial
map F:(x,y)>(e(y)+Ax -2, g(y)) of the unit square. Let g1+ =p1+,42,43, - - -
be the coordinates of the point (pi., p2, p3, - - e X considered as the point of
[0,1). Set go=g(g1+) and let the point § = (qo, g1+, g2, . . .)€ [0, 1] correspond to
ﬁe/\;. Similarly to any X =(po,pi-, %2 X3,.. JeX we associate y=
(o, g1~ Y2, ¥3, .- -) € [(7:-1]. For uniformity we shall use I'; instead of I'5. According
to our assumption mes I';>0 and for any A €I'; there exists y = (o, 91—, y2, .. .)
satisfying m\ (y) = ma (§).

(4) Applying subsequently formula (1) we obtain that if y = (yo, y1, y2,...) then
the second coordinate of the point 7, (y) belonging to the unit square is y, and its
first coordinate is given by

s, A)=@(y)+A(e(y2) —D+A @y =2+ (25)

If ALeT'; and y =y(A1)=(qo,q1-, ¥2,...) is a point satisfying m7,,(y) =m,(g, A1)
then s(y, A1) = s(4, A1) but the series s(7,A) and s(4, A) do not coincide identically
because their constant terms differ:

elyD=e¢(@)=q:-<3, and ¢(qi+)=q1+>3

(the map F identifies points lying on &,, and on &,,, only if 1., .- are sufficiently
close to 3 and ¢ (y) =y for such points).

Let us denote by s,,(y,5A) the series s(y,A) expressed as a power series in
(A —A;)=46A. Then

sx, (7, 8A) =50(¥, A1) +51(F, A)BA + -+ - +5,(F, A )SA" +- - -,
Since s,, (¥, A ) % 55,(q, 6A ) thereisan n such thats, (¥, A1) # 5,(d, A1). For any rational
r>0let us define I',, =T'; by
T,,={A;: there exists a y satisfying m,,(¥) = m»,(§), s:(¥, A1) = s:(, A1)
forie[l,n—1},Is.(d, A1) —sa(F, A D) =1}
One checks as above that I',,, are measurable. Thus mes I",,, ,, >0 for some choice

of indices. Set I'=T,,,,.Let I'; eI and let y;, be the corresponding point satisfying
m,(§) =m,(Fa)). Then s,,(4, 8A), sx,(¥(1), 5A) may be written as

S)‘l((‘i, 6A)=S()(A1)+S1(A1)6A 4+ +Sn1—1(A 1)5)\n‘—1 +Snl(/\ 1)8An1+‘ .
(26)
$a,(F 1y, OA) = 50(A 1) + 1A D)X + -+ 5, 1A )EA" 5, (Faps AD)SA ™+ -

Let us define
8(8A) =5,,(d, 6A) —sx,(F 1), 6A),
8 (5, 6A) = s5x,(F, BA) —s$x,(F(1)» BA).
Then
(BA) = 00, (BA)™ + 0y 21 (BA) 4+ -
85, 50) = 00(F) +0:15)BA ++ -+ 01 (FIOA™ T+ 6, (IO £+ (27)
where |6,.,|>r.
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(5) Wefixsome gy, 0<e,<r;/2. Let
d(j,§)= X lyi=yil/2

be the distance in [0, 1]. We denote by B, (y) the ball of radius £ centrediny € [()TT].
There exists a §, = §,(e) > 0 satisfying the following conditions:
(a) if y € Bs,(y)) then |6;(y)| <ey/3 for i €[0, ny];

(b) if |fA]| <8, then for any y

+ + +
nlz_‘lgnﬁl()‘;)s)\ +w 0n1+2().;)8/\2+' . >%'

For A, eT we shall use V(A,) to denote the non-empty set of § =(q0, 91, y2,...)
appearing in the definition of A, i.e.,

7TA1()7) = 77')«,(‘7),
the curves s(g, A), s(¥, A) have tangency of order n;—1 at A = A, and

Isn(§, A1) = $a (¥, A1)| > 11
Let
TA1, Yay) ={6A:|6A| <81, A1 +8A €T,
VA1+80)nBs, (V) # D}

Differentiating (27) n1— 1 times we obtain for

A eT(Ay, ya)) and y e V(A1 +6A) N Bs, (V)

n1

(n1DSA[(6n, — 0, (y)) + (0n1+1 Ony+1(¥))0A

+(n,+1)(n1+2)

e Onrz = Ona(NOA 4 -] = (1= 1)!6p, (). (28)

Taking into account the choice of £, and §, we obtain from (28)

o1 - 1
2 (y)—nl On,-1(¥) 1+ (29)

while |e ()| > 3.

(6) Let
k

Ach) = {dks(y,

N

One easily checks that for Ar<imes A (A = O-for any k (notice that Ay(A;) =
{s(F,A}=AnED. When y varies in [0, 1] the values of 6,,_1(y) belong to the set
A, -1(A1)+c¢ where

n,—1

AT Sy, A)
At Y .

Using (29) we obtain from mes A,,_1(A;) = 0 that mes I'(A4, 1)) = 0.

c =
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Consider a cover {I;}/2; of [0, Ay] by intervals of diam < §,, and a cover {B;;}/*
of the set y = (qo, q1-, ¥2, .. .). Let
Fi,‘ CF={A1 El,':V(Al)mB]‘ # @}

The above arguments show that mes I'; =0 for any choice of /,j. Hence mes [ =
0, which proves lemma 4. O
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