
JFP 16 (1): 21–34, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005721 Printed in the United Kingdom

21

FUNCTIONAL PEARLS

Probabilistic functional programming
in Haskell

MARTIN ERWIG and STEVE KOLLMANSBERGER

School of Electrical Engineering and Computer Science,

Oregon State University, Corvallis, OR 97331, USA

(e-mail: [erwig, kollmast]@eecs.oregonstate.edu)

1 Introduction

At the heart of functional programming rests the principle of referential transpar-

ency, which in particular means that a function f applied to a value x always yields

one and the same value y = f(x). This principle seems to be violated when contem-

plating the use of functions to describe probabilistic events, such as rolling a die: It is

not clear at all what exactly the outcome will be, and neither is it guaranteed that the

same value will be produced repeatedly. However, these two seemingly incompatible

notions can be reconciled if probabilistic values are encapsulated in a data type.

In this paper, we will demonstrate such an approach by describing a probabilistic

functional programming (PFP) library for Haskell. We will show that the proposed

approach not only facilitates probabilistic programming in functional languages, but

in particular can lead to very concise programs and simulations. In particular, a

major advantage of our system is that simulations can be specified independently

from their method of execution. That is, we can either fully simulate or randomize

any simulation without altering the code which defines it. In the following we will

present the definitions of most functions, but also leave out some details for the sake

of brevity. These details should be obvious enough to be filled in easily by the reader.

In any case, all function definitions can be found in the distribution of the library,

which is freely available at eecs.oregonstate.edu/~erwig/pfp/.

The probabilistic functional programming approach is based on a data type for

representing distributions. A distribution represents the outcome of a probabilistic

event as a collection of all possible values, tagged with their likelihood.

newtype Probability = P Float

newtype Dist a = D {unD :: [(a,Probability)]}

This representation is shown here just for illustration; it is completely hidden from

the users of the library by means of functions which construct and operate on

distributions. In particular, all functions for building distribution values enforce the

constraint that the sum of all probabilities for any non-empty distribution is 1. In

this way, any Dist value represents the complete sample space of some probabilistic

event or “experiment”.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

22 M. Erwig and S. Kollmansberger

Distributions can represent events, such as the roll of a die or the flip of a coin.

We can construct these distributions from lists of values using spread functions, that

is, functions of the following type.

type Spread a = [a] -> Dist a

The library defines spread functions for various well-known probability distributions,

such as uniform or normal, and also a function enum that allows users to attach

specific probabilities to values. With uniform we can define, for example, the outcome

of die rolls.

die = uniform [1..6]

Probabilities can be extracted from distributions through the function ?? that is

parameterized by an event, which is represented as a predicate on values in the

distribution.

type Event a = a -> Bool

(??) :: Event a -> Dist a -> Probability

(??) p = P . sum . map snd . filter (p . fst) . unD

There are principally two ways to combine distributions: If the distributions are

independent, we can obtain the desired result by forming all possible combinations

of values while multiplying their corresponding probabilities. For efficiency reasons,

we can perform normalization (aggregation of multiple occurrences of a value). The

normalization function is mentioned later.

joinWith :: (a -> b -> c) -> Dist a -> Dist b -> Dist c

joinWith f (D d) (D d’) = D [(f x y,p*q) | (x,p) <- d, (y,q) <- d’]

prod :: Dist a -> Dist b -> Dist (a,b)

prod = joinWith (,)

Examples of combined independent events are rolling a number of dice. The function

certainly constructs a distribution of one element with probability 1.

dice :: Dist [Int]

dice 0 = certainly []

dice n = joinWith (:) die (dice (n-1))

On the other hand, if the second event depends on the first, it must be represented

by a function that accepts values of the distribution produced by the first event.

In other words, whereas the first event can be represented by a Dist a value, the

second event should be a function of type a -> Dist b. This dependent event

combination is nothing other than the bind operation when we regard Dist as a

monad.

instance Monad Dist where

return x = D [(x,1)]

(D d) >>= f = D [(y,q*p) | (x,p) <- d, (y,q) <- unD (f x)]

fail = D []

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 23

The functions return and fail can be used to describe outcomes that are certain

or impossible, respectively. We also use the synonyms certainly and impossible

for these two operations. We will also need monadic composition of two functions

and a list of functions.

(>@>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

f >@> g = (>>= g) . f

sequ :: Monad m => [a -> m a] -> a -> m a

sequ = foldl (>@>) return

We have defined Dist also as an instance of MonadPlus, but this definition is not

important for this paper.

The observation that probability distributions form a monad is not new (Giry,

1981). However, previous work was mainly concerned with extending languages

by offering probabilistic expressions as primitives and defining suitable semantics

(Jones & Plotkin, 1989; Morgan et al., 1996; Ramsey & Pfeffer, 2002; Park et al.,

2004). The focus of those works is on identifying semantics to support particular

aspects, such as the efficient evaluation of expectation queries in (Ramsey & Pfeffer,

2002) by using a monad of probability measures or covering continuous distributions

in addition to discrete ones by using sampling functions as a semantics basis (Park

et al., 2004) (and sacrificing the ability to express expectation queries). However, we

are not aware of any work that is concerned with the design of a probability and

simulation library based on this concept.

Having defined distributions as monads allows us to define functions to repeatedly

select elements from a collection without putting them back, which causes later

selections to be dependent on earlier ones. First, we define two functions that, in

addition to the selected element, also return the collection without that element.

selectOne :: Eq a => [a] -> Dist (a,[a])

selectOne c = uniform [(v,List.delete v c) | v <- c]

selectMany :: Eq a => Int -> [a] -> Dist ([a],[a])

selectMany 0 c = return ([],c)

selectMany n c = do (x,c1) <- selectOne c

(xs,c2) <- selectMany (n-1) c1

return (x:xs,c2)

Since in most applications the elements that remain in the collection are not of

interest, it is helpful to provide derived functions that simply project onto the values

of the distributions. The implementation reveals that Dist is also a functor. We will

also use the function name mapD to refer to fmap to emphasize that the mapping is

across distributions.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

24 M. Erwig and S. Kollmansberger

instance Functor Dist where

fmap f (D d) = D [(f x,p) | (x,p) <- d]

mapD :: (a -> b) -> Dist a -> Dist b

mapD = fmap

With mapD we can now define the functions for repeatedly selecting elements from a

collection. Note that the function fst is used in select because selectMany returns

a tuple containing the list of selected elements and the list of remaining (unselected)

elements. We wish to discard the latter. We reverse the returned list because the

elements retrieved in selectMany are successively cons’ed onto the result list, which

causes the first selected element to be the last in that list.

select :: Eq a => Int -> [a] -> Dist [a]

select n = mapD (reverse . fst) . selectMany n

With this initial set of functions we can already approach many problems found

in textbooks on probability and statistics and solve them by defining and applying

probabilistic functions. For example, what is the probability of getting at least 2

sixes when throwing 4 dice? We can compute the answer through the following

expression.

> ((>=2) . length . filter (==6)) ?? dice 4

13.2%

Another class of frequently found problems is exemplified by “What is the probability

of drawing a red, green, and blue marble (in this order) from a jar containing two red,

two green, and one blue marble without putting them back?”. With an enumeration

type for marbles containing the constructors R, G, and B, we can compute the answer

as follows.

> (==[R,G,B]) ?? select 3 [R,R,G,G,B]

6.7%

Many more examples are contained in the library distribution.

A final concept that is employed in many examples is the notion of a probabilistic

function, that is, a function that maps values into distributions. For example, the

second argument of the bind operation is such a probabilistic function. Since it

turns out that in many cases the argument and the result type are the same, we also

introduce the derived notion of a transition that is a probabilistic function on just

one type.

type Trans a = a -> Dist a

A common operation for a transition is to apply it to a distribution, which is already

provided through the bind operation.

In the next two sections, we illustrate the use of basic library functions with two

examples to demonstrate the high-level declarative style of probabilistic functional

programming. In section 4 we will show how randomization fits into the described

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 25

approach and, in particular, how it allows the approximation of distributions to cope

with exponential space growth. In section 5 we describe how to deal with traces of

probabilistic computations. Conclusions in section 6 complete this paper.

2 The Monty Hall problem

In the Monty Hall problem, a game show contestant is presented with three doors,

one of which hides a prize. The player chooses one of the doors, and then the host

opens another door which does not have the prize behind it. The player then has the

option of staying with the door they have chosen or switching to the other closed

door. This problem is also discussed in Hehner (2004) and Morgan et al. (1996).

When presented with this problem, most people will assume that switching makes

no difference – since the host has opened a door without the prize, it leaves a 50/50

chance of the remaining two doors.

However, statistical analysis has shown that the player doubles their chance of

winning if they switch doors. How can this be? We can use our library to determine

if this analysis is correct, and how.

A simple approach is to first consider that of the three doors, only one is the

winning door. Thus, the player’s initial pick has a one third chance of being the

winning door.

data Outcome = Win | Lose

firstChoice :: Dist Outcome

firstChoice = uniform [Win,Lose,Lose]

If the player has chosen a winning door, and then switches, they will lose. However,

if they initially chose a losing door, the host only has one choice for a door to open:

the other losing door. Thus, if they switch, they win. This process can be captured

by a transition on outcomes.

switch :: Trans Outcome

switch Win = certainly Lose

switch Lose = certainly Win

We can analyze the probabilities of winning by comparing firstChoice and

applying the transition switch to firstChoice.

*MontyHall> firstChoice

Lose 66.7%

Win 33.3%

*MontyHall> firstChoice >>= switch

Win 66.7%

Lose 33.3%

Therefore, not switching gives the obvious one third chance of winning, while

switching gives a two thirds chance of winning.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

26 M. Erwig and S. Kollmansberger

We can also model the game in more detail, replicating each step with the precise

rules that accompany them. We first construct the structure of the simulation from

the bottom up. We start with three doors.

data Door = A | B | C

doors :: [Door]

doors = [A .. C]

Next we create a data structure to represent the state of the game by having fields

that indicate which door (A, B, or C) contains the prize, which is chosen, and which

is opened.

data State = Doors {prize :: Door, chosen :: Door, opened :: Door}

Of course, these will not all be assigned at once, but in sequence. In the initial state,

the prize has not yet been hidden, no door has been chosen, and no door is open.

Since the state will be evaluated only after all fields are set, we can initialize all fields

with undefined.

start :: State

start = Doors {prize=u,chosen=u,opened=u} where u=undefined

Now each step of the game can be modeled as a transition on State. First, the host

will choose one of the doors at random to hide the prize behind.

hide :: Trans State

hide s = uniform [s{prize=d} | d <- doors]

A transition takes a value of some type and produces a distribution of that type.

In this case, the transition hide takes a State and produces a uniform distribution

of states – one state for each door the prize could be hidden behind. Next, the

contestant will choose, again at random, one of the doors.

choose :: Trans State

choose s = uniform [s{chosen=d} | d <- doors]

Once the contestant has chosen a door, the host will then open a door that is not the

one chosen by the contestant and is not hiding the prize. This is the first transition

which depends on the value of State it receives by considering the value of s in

the definition.

open :: Trans State

open s = uniform [s{opened=d} | d <- doors \\ [prize s,chosen s]]

Next the player can switch or stay with the door already chosen. Both strategies can

be represented as transitions on State.

type Strategy = Trans State

Switching means chose a door that is currently not chosen and that has not been

opened.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 27

switch :: Strategy

switch s = uniform [s{chosen=d} | d <- doors\\ [chosen s,opened s]]

We can also create a strategy for stay, which would simply be to leave everything

precisely as it already is.

stay :: Strategy

stay = certainlyT id

For constructing transitions which produce a distribution of only one element, we

provide the function certainlyT which converts any function of type a -> a into

a function of type a -> Dist a.

certainlyT :: (a -> a) -> Trans a

certainlyT f = certainly . f

Finally, we define an ordered list of transitions that represents the game: hiding the

prize, choosing a door, opening a door, and then applying a strategy.

game :: Strategy -> Trans State

game s = sequ [hide,choose,open,s]

Recall that sequ implements the composition of a list of monadic functions, which

are transitions in this example.

If, once all the transitions have been applied, the chosen door is the same as the

prize door, the contestant wins.

result :: State -> Outcome

result s = if chosen s==prize s then Win else Lose

We can define a function eval that plays the game for a given strategy and computes

the outcome for all possible resulting states.

eval :: Strategy -> Dist Outcome

eval s = mapD result (game s start)

Again, we can determine the value of both strategies by computing a distribution.

*MontyHall> eval stay

Lose 66.7%

Win 33.3%

*MontyHall> eval switch

Win 66.7%

Lose 33.3%

Note that the presented model can be easily extended to four (or more) doors. All

we have to do is add a D constructor to the definition of Door and change C to D

in the definition of doors. A third take on this example will be briefly presented in

section 4.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

28 M. Erwig and S. Kollmansberger

3 An example from biology: tree growth

Many applications in biology are based on probabilistic modeling. In fact, the

motivation for creating the PFP library results from a joint project with the Center

for Gene Research and Biotechnology at Oregon State University in which we have

developed a computational model to explain the development of microRNA genes

(Allen et al., 2005).

Consider the simple example of tree growth. Assume a tree can grow between

one and five feet in height every year. Also assume that it is possible, although

less likely, that a tree could fall down in a storm or be hit by lightning, which

we assume would kill it standing. How can this be represented using probabilistic

functions?

We can create a data type to represent the state of the tree and, if applicable, its

height.

type Height = Int

data Tree = Alive Height | Hit Height | Fallen

We can then construct a transition function for each state that the tree could be in.

grow :: Trans Tree

grow (Alive h) = normal [Alive k | k <- [h+1..h+5]]

When the tree is alive, it grows between 1 and 5 feet every year. We distribute these

values on a normal curve to make the extreme values less likely.

hit :: Trans Tree

hit (Alive h) = certainly (Hit h)

fall :: Trans Tree

fall _ = certainly Fallen

When the tree is hit, it retains its height, but when fallen, the height is discarded. We

can combine these three transitions into one transition that probabilistically selects

which action should happen to a live tree.

evolve :: Trans Tree

evolve t@(Alive _) = unfoldT (enum [0.9,0.04,0.06] [grow,hit,fall]) t

evolve t = certainly t

Here we use the function enum to create a custom spread with the given probabilities.

We apply this spread to the list of transitions (grow, hit, and fall) which creates

a distribution of transitions. The function unfoldT converts a distribution of

transitions into a regular transition.

unfoldT :: Dist (Trans a) -> Trans a

This transition is then applied to t, the state of the tree, to produce a final

distribution for that year. With an initial value, such as seed = Alive 0, we can

now run simulations of the tree model.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 29

Table 1. Comparing the maximum heap size (in kilobytes) for fully simulated and

randomized tree growth simulations

Generations Fully simulated Randomized (500 runs)

5 700 650

6 4000 800

7 19000 800

To find out the situation after several generations, it is convenient to have a

combinator that can iterate a transition a given number of times or while a certain

condition holds. Three such combinators are collected in the class Iterate, which

allows the overloading of the iterators for transitions and randomized changes (see

next section).

class Iterate c where

(*.) :: Int -> (a -> c a) -> (a -> c a)

while :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until p = while (not . p)

For example, to compute the distribution of possible tree values after n years, we

can define the following function.

tree :: Int -> Tree -> Dist Tree

tree n = n *. evolve

For large values of n, computing complete distributions is computationally infeasible.

In such cases, randomization of values from distributions provides a way to

approximate the final distribution with varying degrees of precision. We will discuss

this randomization in the next section.

Since the distribution spreads out into many different values quickly, we do not

show an example run here.

4 Randomization

The need for randomization arises quickly when an iterated transition creates a new

set of values for each value currently in the distribution, thus creating an exponential

space explosion. We provide functions to transform a regular transition into a

randomized change, which select only one result from the created distribution. By

repeatedly applying such a randomized change to the same value, we can construct an

arbitrarily good approximation of the exact probabilistic distribution. An example

of the space explosion compared to the roughly constant space requirement in

randomization is shown in Table 1 for the tree growth simulation given in the

previous section.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

30 M. Erwig and S. Kollmansberger

Library users need not be concerned about randomization when they first

design transitions. Instead, randomization can be performed later automatically

by employing corresponding library functions. Likewise, tracing can be provided

on request by the library without changes to the transition function itself. In this

way, tracing and randomization are concepts that are orthogonal to the library’s

probabilistic modeling capabilities.

All randomized values live within the R monad, which is simply a synonym for

IO. Elementary functions to support randomization are pick, which selects exactly

one value from a distribution by randomly yielding one of the values according to

the specified probabilities (performed by selectP), and random, which transforms a

transition into a randomized change.

type R a = IO a

type RChange a = a -> R a

pick :: Dist a -> R a

pick d = Random.randomRIO (0,1) >>= return . selectP d

random :: Trans a -> RChange a

random t = pick . t

Randomly picking a value from a distribution or randomizing a transition is not an

end in itself. Instead, the collection of values obtained by repeated application of

randomized changes can be aggregated to yield an approximation of a distribution,

represented by the type RDist a, representing a randomized distribution. Given a

list of random values, we can first transform them into a list of values within the

R monad. Then we can assign equal probabilities with uniform and group equal

values by a function norm that also sums their probabilities.

type RDist a = R (Dist a)

type RTrans a = a -> RDist a

rDist :: Ord a => [R a] -> RDist a

rDist = fmap (norm . uniform) . sequence

With rDist we can implement a function ~. that repeatedly applies a randomized

change or a transition and derives a randomized distribution. The Ord constraint

on a in the signature of ~. is required because the instance definitions are based on

norm (through rDist).1

1 The function norm sorts the values in a distribution to achieve grouping for efficiency reasons. Since we
have found that in most examples that we encountered defining an Ord instance is not more difficult
than an Eq instance, we have preferred the more efficient over the more general definition.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 31

class Sim c where

(~.) :: Ord a => Int -> (a -> c a) -> RTrans a

instance Sim IO where

(~.) n t = rDist . replicate n . t

instance Sim Dist where

(~.) n = (~.) n . random

In particular, the latter instance definition allows us to simulate transitions in

retrospect. In other words, we can define functions to compute full distributions

and can later turn them into computations for randomized distributions without

changing their definition. For example, the tree growth computation that is given

by the function tree can be turned into a simulation that runs a randomized tree

growth k times as follows.

simTree :: Int -> Int -> Tree -> RDist Tree

simTree k n = k ~. tree n

Similarly, for the Monty Hall problem we could randomly perform the trial many

times instead of deterministically calculating the outcomes.

simEval :: Int -> Strategy -> RDist Outcome

simEval k s = mapD result ‘fmap‘ (k ~. game s) start

Since in many simulation examples it is required to simulate the n-fold repetition

of a transition k times, we also introduce a combination of the functions *. and ~.

that performs both steps.

class Sim c where

(~*.) :: Ord a => (Int,Int) -> (a -> c a) -> RTrans a

instance Sim IO where

(~*.) (k,n) t = k ~. n *. t

instance Sim Dist where

(~*.) x = (~*.) x . random

Note that *. is defined to bind stronger than the ~. function. We can thus implement

the tree simulation also directly based on evolve.

simTree k n = (k,n) ~*. evolve

Again, we do not have to mention random number generation anywhere in the

model of the application.

5 Tracing

As simulation complexity increases, some computational aspects become difficult.

If, for example, we wished to evaluate the growth of the tree at each year for one

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

32 M. Erwig and S. Kollmansberger

hundred years, it would be quite redundant to calculate it first for one year, then

separately for two years, and again for three, and so on. Instead, we could calculate

the growth for one hundred years and simply keep track of all intermediate results.

To facilitate tracing, we define types and functions to produce traces of probab-

ilistic and randomized computations. For deterministic and probabilistic values we

introduce the following types.

type Trace a = [a]

type Space a = Trace (Dist a)

type Walk a = a -> Trace a

type Expand a = a -> Space a

A walk is a function that produces a trace, that is, a list of values. Continuing the

idea of iteration described in the previous section, we define a function to generate

walks, which is simply a bounded version of the predefined function iterate.

walk :: Int -> Change a -> Walk a

walk n f = take n . iterate f

Note that the type Change a is simply a synonym for a -> a, introduced for

completeness and symmetry (see RChange a in the previous section).

While a walk produces a trace, iteration of a transition yields a list of distributions,

which represents the explored probability space. We use the symbol *.. to represent

the trace-producing iteration. The definition is based on the function >>:, which

prepends the result of a transition to a space, and singleton, which maps x into

[x].

(*..) :: Int -> Trans a -> Expand a

0 *.. _ = singleton . certainly

1 *.. t = singleton . t

n *.. t = t >>: (n-1) *.. t

(>>:) :: Trans a -> Expand a -> Expand a

f >>: g = \x -> let ds@(D d:_)=g x in

D [(z,p*q) | (y,p) <- d,(z,q)<- unD (f y)]:ds

The potential space problem of plain iterations is even worse in trace-producing

iterations. Therefore, we also define randomized versions of the types and iterators.

type RTrace a = R (Trace a)

type RSpace a = R (Space a)

type RWalk a = a -> RTrace a

type RExpand a = a -> RSpace a

The function rWalk iterates a random change to create a random walk, which can

produce a random trace.

rWalk :: Int -> RChange a -> RWalk a

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

Functional pearls 33

The definition is similar to that of *.., but not identical, because the result types are

structurally different: While Dist is nested within Trace in the result type of *..,

R is wrapped around Trace in the result type of rWalk. This structural difference

in the result types is also the reason why we cannot overload the notation for these

two functions.

Similar to ~. we can now implement a function ~.. that simulates the repeated

application of a randomized change or transition and derives a randomized space,

that is, a randomized sequence of distributions that approximate the exact distribu-

tions. Since ~.. is overloaded like ~. for transitions and random changes, it can

reside in the same class Sim. The function replicate k produces a list containing

k copies of the given argument. In the second instance definition, mergeTraces

transposes a list of random lists into a randomized list of distributions, which

represent an approximation of the explored probabilistic space.

class Sim c where

(~..) :: Ord a => (Int,Int) -> (a -> c a) -> RExpand a

instance Sim IO where

(~..) (k,n) t = mergeTraces . replicate k . rWalk n t

instance Sim Dist where

(~..) x = (~..) x . random

Note that the first argument of ~.. is a pair of integers representing the number of

simulation runs and the number of repeated application of the argument function.

The latter is required to build the correct number of elements in the trace unlike for

~. where only the final result matters.

Applied to the tree-growth example we can now define functions for computing

an exact and approximated history of the probabilistic tree space as follows.

hist :: Int -> Tree -> Space Tree

hist n = n *.. evolve

simHist :: Int -> Int -> Tree -> RSpace Tree

simHist k n = (k,n) ~.. evolve

6 Conclusion

We have illustrated an approach to express probabilistic programs in Haskell.

The described ideas are implemented as a collection of Haskell modules that are

combined into a probabilistic functional programming library. In addition to the

examples described here, the PFP library contains modules defining functions for

queueing simulations, bayesian networks, predator/prey simulations, dice rolling,

card playing, etc. Moreover, the library provides a visualization module to produce

plots and figures that can be rendered by the R package (Maindonald & Braun,

2003).

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

34 M. Erwig and S. Kollmansberger

Probabilistic functional programming can be employed as a constructive approach

to teach (or study!) statistics, as shown in the first two sections. Moreover, the PFP

library provides abstractions that allow the high-level modeling of probabilistic

scientific models and their execution or simulation. We have illustrated this aspect

here with a toy example, but we have successfully applied the library to investigate

a real scientific biological problem (Allen et al., 2005). In particular, the high-level

abstractions allowed us to quickly change model aspects, in many cases immediately

during discussions with biologists about the model.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments

on an earlier version of this paper.

References

Allen, E., Carrington, J., Erwig, M., Kasschau, K. and Kollmansberger, S. (2005)

Computational Modeling of microRNA Formation and Target Differentiation in Plants.

In preparation.

Giry, M. (1981) A categorical approach to probability theory. In: Banaschewski, B. (editor),

Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics 915, pp. 68–85.

Hehner, Eric C. R. (2004) Probabilistic predicative programming. 7th Int. Conf. on Mathematics

of Program Construction: LNCS 3125, pp. 169–185.

Jones, C. and Plotkin, G. D. (1989). A probabilistic powerdomain of evaluations. 4th IEEE

Symp. on Logic in Computer Science, pp. 186–195.

Maindonald, J. and Braun, J. (2003) Data Analysis and Graphics Using R. Cambridge

University Press.

Morgan, C., McIver, A. and Seidel, K. (1996) Probabilistic predicate transformers. ACM

Trans. Program. Lang. Syst. 18(3), 325–353.

Park, S., Pfenning, F. and Thrun, S. (2004) A probabilistic language based upon sampling

functions. 32nd Symp. on Principles of Programming Languages, pp. 171–182.

Ramsey, N. and Pfeffer, A. (2002) Stochastic lambda calculus and monads of probability

distributions. 29nd Symp. on Principles of Programming Languages, pp. 154–165.

https://doi.org/10.1017/S0956796805005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005721

