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Abstract. Calculations show that a significant variation in the minima of eclipsing binaries should 
arise for systems where axial precession exists. Several different angular velocity distributions are 
assumed in order to estimate the expected photometric variation as a function of the model param­
eters. It is found that the solid body rotation approximation is a reasonable representation unless 
interiors rotate more rapidly than present models predict. 

Plavec (1960) has applied the detailed perturbation theory describing the interaction 
of close binary components as developed by Kopal (1959) to estimate the periodic 
variation of the orbital motion of twelve binaries typical of detached, semi-detached, 
and contact configurations. The perturbations are expressed in terms of apsidal 
motion, nodal regression, nutation and their cross products. He found that with the 
exception of the apsidal term, the perturbation periods are short, most less than one 
year, with amplitudes too small to be readily detected. The purpose of this work is to 
re-investigate the axial precession or nodal line regression by numerical evaluations 
of stellar models with the view of estimating the magnitude of observable photometric 
effects. The technique to be used was proposed originally by Luyten (1943). 

For arbitrary axial orientations, the precession of the rotation axes of binary 
components must be accompanied by the precession of the orbital plane on the 
invariable plane of the system in order that the total angular momentum be conserved. 
In the case of an eclipsing binary, this perturbation causes the apparent inclination 
of the orbit to change with respect to the celestial sphere thereby changing the eclipse 
minima. The maximum differential inclination, Aimax, of the orbital plane to the 
invariable plane occurs when the angular momentum vectors of the two components 
are coplanar and at the same azimuthal angle. In this case, 

J, sinfl, + J2 sin 02 
tan(J/m a x)= ——-•- —, (1) 

L + J t cosOl + J2 cosu2 

where L is the orbital angular momentum, J, and J2 are the rotational angular mo­
menta of the two components, and 0X and 02 are the inclination angles of the J, 
vectors to the orbital normal. It has been shown by Kopal (1942) and by Hosokawa 
(1953) that the axial inclinations, 9h can be found from an analysis of the velocity 
curve during eclipse phases. During these phases the so-called rotational disturbance 
appears asymmetric in both phase and amplitude about conjunction if the eclipsed 
component rotates about an axis inclined to the orbital normal as projected on the 
plane of the sky. Since the effect is second order, high quality spectrographic data 
are required and the system must be free of 'complications'. Two such investigations 
have been reported. Kopal (1942) found a value of 01 = 15° for the B8 component of 
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/? Persei and Koch and Sobieski (1969) recently reported finding a 0j not less than 4° 
for the B2 component of 68 Herculis. A value of 0—15° will be adopted for all 
calculations below. 

The angular momentum, J, for a star of radius R in the case of radial symmetry is 
given by 

R 

J=fnQ0 f <?(r)w(r)r4dr, (2) 

o 

where Q0 is the surface value of the angular velocity, w{r) is the angular velocity 
distribution, and g(r) is the density distribution with distance from the stellar center. 
Equation (2) was integrated numerically using the density distributions for the 10 MQ 

and 2.5 M 0 models of Schwarzschild (1958) combined with the angular velocity 
distributions published by Roxburgh (1964) and by Clement (1969). Their w(r) 
distributions based on an electron scattering opacity were coupled with the 10 MG 

model density distribution while the w(r) distribution for the models involving the 
Kramer opacity were used with the 2.5 MQ density distribution. Since Clement's w{r) 
distributions are neither axisymmetric nor radially symmetric, a distribution ap­
propriate to an astrographic latitude of 30° was adopted to simplify the calculations. 
His radiative braked (R.B) and viscous braked (V.B.) cases are considered separately. 
Calculations were also made for the case of solid body rotation for reference purposes. 
A surface angular velocity for each mass model and a representative orbital angular 
momentum for each system investigated were read from a mean curve passed through 
the basic data given in Table I. For these tabulated systems, solid body rotation and 
a radius of gyration equal to 0.2753, appropriate to the Eddington standard model, 
were assumed to calculate the angular momenta listed in column 8. Absolute dimen­
sions are from the Kopal and Shapley Catalogue (1956) and equatorial velocities are 
those determined by Koch et al. (1965). With the boundary condition thus derived 
the angular momenta for the different angular velocity distributions, calculated by 
using Equation (2), are listed in Table II. These results were applied, in turn, to the 
solution of Equation (1). The values of Aimax thus found are tabulated in Table III. 

Several conclusions apropos of these calculations can be drawn. 

(1) For even moderate axial inclinations, the estimated values for the differential 
inclination are surprisingly large. A characteristic value and a maximum value for 
Aimm can be taken as 0?4 and 1?4, respectively. These values will be used below to 
estimate characteristic photometric variations. 

(2) Since the orbital angular momentum is significantly greater than the rotational 
angular momentum, the contributions by the two components are approximately 
additive. The differential inclination is not a strong function of mass. Although the 
rotational angular momentum is larger for the more massive stars, this increase is 
counterbalanced by the larger orbital angular momentum expected in close systems. 

(3) The most significant result, however, is that with the exception of the radiative 
braked model the differential inclination is sensibly model independent. The result 
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TABLE I 

Basic data for close binary systems 

Sp. C. Mass Fe q Radius fio x 105 Period log (JIM) 
(MQ) (km/sec) (R0) (sec-1) (days) 

log (LjEM) 

ffAgl 

W W A u r 

UCep 

AHCep 

YCyg 

68 Her 

R X H e r 

<5Lib 

U O p h 

j? Per 

£Phe 

VPup 

USge 

H Sco 

BH Vir 

RSVul 

B3 
B4 

A3 
A3 

B8 
G8 

B0.5 
Bl 

BO 
BO 

B2 
B5 

B9.5 
A0.5 

AO 
G2 

B4 
B6 

B8 
KO 

B6 
AO 

Bl 
B3.5 

B7 
G2 

B1.5 
B3 

F9 
G2 

B4 
F9 

6.8 
5.4 

1.81 
1.75 

2.9 
1.4 

16.5 
14.2 

17.4 
17.2 

7.9 
2.8 

2.75 
2.33 

2.6 
1.1 

5.30 
4.65 

5.2 
1.0 

6.1 
3.0 

16.6 
9.8 

6.7 
2.0 

18.0 
9.3 

0.87 
0.90 

4.6 
1.4 

123 
142 

41 
39 

310 
-

210 
195 

146 
148 

119 
90 

78 
68 

85 
-

107 
87 

60 
-

100 
-

180 
-

76 
-

225 
-

90 
90 

80 
-

4.2 
3.3 

1.9 
1.9 

2.4 
2.9 

6.1 
5.5 

5.9 
5.9 

4.5 
4.3 

2.1 
1.8 

3.5 
3.5 

3.4 
3.1 

3.6 
3.8 

3.4 
2.0 

6.0 
5.3 

4.1 
5.4 

4.8 
5.3 

1.1 
1.2 

3.9 
5.3 

4.21 
6.18 

3.10 
3.10 

1.95 

2.53 

17.435 
17.393 

16.614 
16.614 

18.56 2.49 17.594 

4.95 1.78 
5.09 

3.56 

3.01 

5.34 1.78 
5.43 

3.49 2.33 

4.52 1.68 
4.03 

17.830 
17.752 

3.56 3.00 17.658 
17.658 

3.80 2.05 17.441 
17.310 

16.937 
16.810 

17.196 

17.283 
17.153 

2.39 2.87 17.056 

4.23 1.67 17.254 

4.31 1.45 17.756 

2.66 3.38 17.215 

6.73 1.45 17.755 

19.24 

18.83 

18.70 

19.21 

19.25 

18.80 

18.67 

18.64 

18.94 

18.66 

18.84 

19.17 

18.78 

19.12 

11.76 0.82 16.718 17.92 
10.78 16.756 

2.95 4.48 17.217 18.78 
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TABLE II 
Rotational angular momenta 

Mi 

2.5 
2.5 
2.5 

10.0 
10.0 
10.0 
10.0 
10.0 

MilM] 

0.25 
1.00 
1.00 
0.25 
0.25 
0.25 
1.00 
1.00 

Mass (M 

2.5 
10.0 

L 01 

15° 
15° 
15° 
0° 

15° 
15° 
15° 
15° 

0 ) 

02 

0° 
0° 

15° 
15° 
0° 

15° 
0° 

15° 

log / (cgs units) 

Solid 

50.60 
51.73 

Rox. 

50.66 
51.92 

TABLE III 

V.B. 

50.68 
51.79 

Computed differential inclinations 

logL 
(cgs) 

52.04 
52.39 
52.39 
53.10 
53.10 
53.10 
53.46 
53.46 

climax 

Solid 

0°.27 
0°.12 
0°.24 
0°.02 
0°.32 
0°.34 
0°.14 
0°.27 

Rox. 

0°.31 
0°.14 
0°.28 
0°.03 
0.°48 
0.°51 
0°.21 
0°.42 

R.B. 

51.36 
52.30 

V.B. 

0°.32 
0°.14 
0°.29 
0.°03 
0°.36 
0°.39 
0°.16 
0°.31 

R.B. 

1°.42 
0°.63 
1°.27 
0°.12 
r . 1 0 
1°.22 
0°.48 
0°.96 

found for solid body rotation becomes a fair general approximation and one must 
expect that only for rapid core rotation will model delineation through observation 
be possible. 

The photometric variation of the eclipse minima can be related directly to the differ­
ential inclination through the geometric eclipse depth, p0. In the notation of Russell 
and Merrill (1952), 

cos; = rg(l + kp0) 

while the brightness at minimum is 

l0 = (1 - a 0 ^ s ) 

for occultations and 

1„=(1 -TotfL,) 

for transits. Since a0 = a0(k;p0), the variation of the eclipse minima, expressed in 
magnitudes is given by 

Am=-2-5log\-wrpo)-\' (3) 

where 

sin 1 
Ap0 = Ai. 
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Table IV lists line results found by applying Equation (3) to several representative 
model solutions as well as to the two 'observed' systems fi Per and 68 Her. The last 
column in Table IV lists estimates of the nodal regression period calculated using the 
method and relevant constants given by Plavec. 

TABLE IV 

Photometric variations 

Model i rs/re rs Ls Ai Am0" Amir P^Pa 

Assumed 84° 0.85 0.30 0.85 +1°.4 0.181 103 

M2 = l M 

Assumed 84° 0.85 0.30 0.15 1°.4 0.087 12 
Mi=-- 10 MQ 

M2 = 2.5 Mr> 

ySPer 80°.5 0.74 0.20 0.72 1°.4 0.133 64 

68 Her 78°.6 0.80 0.28 0.19 1°.4 0.058 52 

Ai 

+ 1°.4 
+ 1°.4 
- 0 ° . 4 
- T . 4 

1°.4 
0°.4 

- 0 ° . 4 
- 1 ° . 4 

1°.4 
0°.4 

- 0 ° . 4 
- l . ° 4 

1°.4 
0°.4 

- 0 ° . 4 
- 1 ° . 4 

Amoc 

0.181 
0.052 

- 0.048 
-0 .171 

0.133 
0.039 

- 0.039 
- 0 . 1 4 2 

Amir 

0.087 
0.020 

- 0 . 0 1 9 
- 0 . 0 8 2 

0.058 
0.017 

- 0 . 0 1 7 
-0 .058 

Notes: Limb-darkening of 0.6 assumed in all cases. 
U + Lg=\. 
Pi/Po = nodal regression period expressed in units of the orbital period for assumed syn­
chronism of rotation. 

One may conclude that the magnitude of the photometric variation is adequately 
large to be detected by photoelectric means. Since the expected precessional period 
can be quite short for semi-detached and contact systems, each series of eclipse obser­
vations must be treated separately. This applies both to the photometric data necessary 
for determining the depth of the eclipse minimum and to the velocity data required 
to define the instantaneous axial inclination. 
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