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Abstract. This paper extends to quasi-projective varieties earlier work by the author and H. Blaine
Lawson concerning spaces of algebraic cocycles on projective varieties. The topological monoid
C-(Y) (U) of effective cocycles on anormal, quasi-projective variety U with values in a projective
variety Y consists of algebraic cycleson U x Y equi-dimensional of relative dimension r over U.
A careful choice of topology enables the establishment of various good properties: the definition is
essentially algebraic, thegroup completion Z,. (Y') (U) has* sensible’ homotopy groups, the construc-
tioniscontravariant with respect to U, covariant with respect to Y, and thereisanatural * duality map’
tothetopologica group of cycleson U x Y. The fundamental theorem presented hereisthe extension
of Friedlander—Lawson duality to this context: the duality map Z,(Y') (U) = Z,+m(U x Y) isa
homotopy equivalence provided that both U and Y are smooth (where m = dimU). Various appli-
cation are given, especially the determination of the homotopy types of certain topological groups of
algebraic morphisms.

M athematics Subject Classifications (1991): 14C25, 14C05.
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Introduction

Blaine Lawson and the author introduced algebraic cocycles on complex alge-
braic varieties in [FL-1] and established a duality theorem relating spaces of
algebraic cocycles and spaces of algebraic cycles in [FL-2]. This theorem has
non-trivial (and perhaps surprising) applications in several contexts. In particular,
duality enables computations of ‘algebraic mapping spaces consisting of algebra-
ic morphisms. Moreover, duality appears to be an important property in motivic
cohomology/homology (cf. [F-V]).

Inthispaper, weextend thetheory of [FL-1], [FL-2] to quasi-projective varieties.
(Indeed, our duality theorem is an assertion of a natural homotopy equivalence
from cocycle spacesto cycle spaces and thus is arefinement of the duality theorem
of [FL-2] when specialized to projective varieties.) One can view this work as
developing an algebraic bivariant theory for complex quasi-projective varieties
which is closely based on algebraic cycles. On the other hand, one can also view
the resulting spaces of algebraic cocycles as function complexes equipped with a
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natural topology. Thus, the theory of cycle spaces, cocycle spaces, and duality has
both aformal rolein providing invariants for algebraic varieties (closely related to
classical invariants and problems as seen in [F-2]) and a more explicit role in the
analysis of heretofore inaccessible function complexes.

Our consideration of quasi-projective varieties enables computations as exem-
plified in Section7. Many local calculations, useful even for projective varieties,
should now be accessible. Other applications of this theory in the quasi-projective
context can be found in Section 6.

Duality for cocycle and cycle spaces should be viewed as a somewhat sophisti-
cated generalization of the comparison of Cartier and Well divisors on a (smooth)
variety. From this point of view, one doesindeed expect that the theory devel oped
for projective varieties to extend to quasi-projective varieties. The essential diffi-
culty in providing such an extension istheformulation of a suitable definition of the
topological monoid ¢,.(Y")(U) of effective cocycles on a normal, quasi-projective
variety U with values in a projective variety Y. On the one hand, these cocycles
should be related by a ‘duality map’ to cycles on the product U x Y'; again, one
wants the group completion of the space of effective cocyclesto provide ‘ sensible’
homotopy groups; further, onerequiresthat this space be contravariant with respect
to U, covariant with respect to Y. Indeed, onewould like that the definition be alge-
braic in nature. Asthe reader will see, ¢, (Y')(U) and its ‘ naive group completion’
Z,(Y')(U) do meet our criteriafor a useful working definition.

The defining property of thetopological monoid ¢, (Y')(U) of effectivecocycles
on a normal variety U is that this be the quotient of the monoid of effective
cycleson X x Y equidimensional over U modulo cycles on X, x Y, where
U C X isaprojective closure with complement X .. The formalism of tractable
monoids (introduced by O. Gabber and the author in [F-G]) enables us to work
with this monoid and its group completion. For quasi-projective range V', we
provide a definition of cocycles with values in a pair (Y,Y.), whereY,, C Y
are projectiveand V = Y — Y. Of primary interest is the case V' = A" with
evident compactification P™. As a consequence of our duality theorem (Thm. 5.4),
we conclude that the space of cocycles on U with values in the pair (Y, Y,,) has
homotopy type depending only uponU and V =Y — Y, provided that U, Y, Y
satisfy certain smoothness hypotheses. To complete the formalism of cycle spaces,
we also introduce the space of cocycleson U with supportinUg C U.

Basic properties proved in Section 3 include the fundamental ones of covariant
functoriality with respect to Y and contravariant functoriality with respect to U.
Homotopy invariance with respect to bundle projections and a projective bundle
theorem are also proved. As recognized in [FL-1], the cocycle analogue of Law-
son’s ‘agebraic suspension theorem’ of [L] is valid. Mayer—Vietoris sequences
are established which are useful for calculations. Moreover, homotopy groups of
spaces of algebraic cocycleson U naturally map to conomology groups of U, one
of the original motivating aspects of algebraic cocyclesin [FL-1].
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Theduality map D: Z,(Y)(U) = Z,4m(U x YY), m =dimU, isthemap on
naive group completions induced by the natural inclusion of effective cocycles
into effective cycles. We show that this duality map enjoys all the good properties
established in [FL-2] in the case of projective varieties. Our proof of duality (i.e.,
that D is ahomotopy equivalence under appropriate hypotheses of smoothness) in
Section 5 follows along the lines of [FL-2]; in particular, the essential ingredient
of the proof of duality is the ‘Moving Lemma for Cycles of Bounded Degree’
established by the author and Blaine Lawson in [FL-3].

We anticipate many applications of duality both for projective and quasi-
projective varieties, a few of which were presented in [FL-2]. In this paper, we
provide evident extensions of those results to quasi-projective varieties as well as
obtain results not heretofore proven even for projective varieties. For example, we
extend the construction of Chern classesgivenin [FL-1] to algebraic vector bundles
not necessarily generated by their global sections (cf. Rem. 6.4.). The families of
examples presented in Section 7 are a first sampler of computations of non-trivial
homotopy groups of the topological monoids Mot (U, €, (Y)).

Throughout, X and Y will denote reduced schemes proper over the complex
field C of pure dimension m and n respectively which admit a (Zariski) closed
embedding in some projective space. We shall refer to such schemes X and Y as
projective varieties of dimension m and n respectively. We shall consider consider
arbitrary Zariski closed subvarieties X, ¢ X andY,, C Y; thus, X, and Y, are
reduced but not necessarily irreducible closed subschemesof X and Y respectively.
We denoteby U € X and V C Y the Zariski open complementsof X, and Y.
Weshall letr, t denotenon-negativeintegerswithr < n = dimY, t < m =dimX.
We shall usually view locally closed algebraic subsets of projective spaces with
their analytic topology and state explicitly when subsets are to be viewed as open
or closed in the Zariski topology.

We recall that an (effective) algebraic r-cycleon avariety Y isa(non-negative)
integral combination of irreducible subvarieties of Y each of dimension r. If
Z =Y ;n;V;issuchacycle, itssupport | Z| isthe Zariski closed subset | J; V; C Y.
Our study involves the consideration of Chow varieties (cf. [S]). In particular, we
shall consider various topological submonoids of the Chow monoid

def
Crim(X xY) = [[ Crima(X xY),
d

where C ., q(X x Y') is a (Zariski) closed algebraic subset of an appropriate
complex projective space whose points correspond naturally to effectiver + m-
cycleson X x Y of degree d (with respect to some unspecified embedding of
X XY inaprojective space).

1. Cocycleson normal varieties

We begin by introducing the monoids which occur in our definition of the cocycle
space ¢, (Y')(U). We then summarize the key properties of tractable monoids and
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observe their applicability in our context. The new property we verify is that the
spaceswe consider admit the structure of C.W. complexes. We concludethis section
by defining ¢,.(Y)(U) and identifying its topology.

Consider the incidence correspondence

ZCCrim(X xXY)x (X xY)

consisting of triples (Z, z, y) suchthat (z,y) € X x Y liesinthesupport |Z| of Z.
Consider the composition of this closed embedding and the projection ¢, ;,,, (X x
Y)x (X XY) = Cin(X xY) x X,

P = Cym(X xXY) x X,
and let
pUZIU — Cr+m(X X Y) x U

denote the restriction of p;; above U. We denote by Zz ,, the fibre of p;; above
(Z,u). By upper semi-continuity of dimension of the fibres of py,

WE (Zu):dimT, >r+1} CC (X xY) x U

is a Zariski closed subset of ¢, (X xY) x U. Let m:Cryp(X X Y) x U —
Crim(X x Y') denote the projection and let (—)“ denote the operation of taking
complements.

Recall that a subset S of an algebraic variety V is said to be constructible if
it is afinite union of subsets each of which islocally closed in V' with respect to
the Zariski topology. If S C V is a constructible subset of a variety V, then the
inclusion 8" C S of asubset of S is said to be a constructible embedding if S’ is
also a constructible subset of V.

DEFINITION 1.1. With notation as above, we define

&)(U) Z

T(W) C €rym(X xY), 111
to bethetopol ogical submonoid consisting of those effectiver+m-cycleson X xY
whoserestrictionsto U x Y are equidimensional over U of relative dimension r.
The embedding of (1.1.1) is constructible, in the sensethat it is a disjoint union of
constructible embeddings.

Moreover, the embedding ¢, (X0 X Y) C € (X x Y) factors through
an embedding

¢r+m(Xoo X Y) C ET‘(Y)(U) (112)

which is Zariski closed (in the sense that it is a digoint union of Zariski closed
embeddings of algebraic varieties).
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Warning. Asused above (and throughout this paper), theterminology of an effective
cycleZ onU x Y equidimensional of relative dimension » over U refersto acycle
whosefibresabovepointsof U areeither empty or of puredimension . In particular,
if U isreducible, then such a cycle need not dominate U even if it doesnot liein
Q:7~+m (Xoo X Y)

Werecall that the naive group completion M T of an abelian topol ogical monoid
M with the cancellation property is the quotient (with the quotient topology) of
M x M by the equivalence relation consisting of pairs (m1,m2), (n1,n2) with
the property that m1 + no = mg + n1. In general, the relationship between the
algebraic invariants of M and M ™ is obscure at best. Moreover, even if M is
algebro-geometric (e.g., the Chow monoid €, ,,,,(X x Y)), M ™ appears to have
no such geometric structure.

Nonetheless, in our context of Chow monoids this construction of naive group
completion turns out to be quite reasonable. As formalized by O. Gabber and the
author in [F-G], a tractable monoid M has the property that M is obtained by
successive push-out diagrams which enables one to identify the homotopy type
of M™ and view it in some sense as algebro-geometric provided that M itself is
algebro-geometric.

With the example of &.(Y')(U) in mind, we now introduce the formalism of
tractability.

DEFINITION 1.2. The action of an abelian topological monoid on a topological
spaceT issaid to betractable if T isthe topological union of inclusions

0=T_,CcTocTrC---

such that for eachn > 0T,,_1 C T, fitsinto a push-out square of M -equivariant
maps (with Ry empty)
R, xM —S,xM

l { 2.
Tn-1 Ty,

whose upper horizontal arrow is induced by a cofibration R,, C S,, of Hausdorff
spaces. The monoid M itself is said to be tractable if the diagonal action of M on
M x M istractable.

LEMMA 1.3. Let T be a tractable space for the abelian topological monoid M.
If T has a presentiation as in Definition 1.2 with each R,, C S,, a relative C.W.
complex, then T'/M admits the structure of a C.W. complex.

Proof. SinceT},/M fitsin the push-out square

R, - Sn

{ { (131)
Tp1/M —— T, /M,
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we concludethat 7;,_1/M — T, /M isarelative C.W. complex and thus an induc-
tion argument immediately implies that 7;, /M is a C.W. complex. Consequently,
colim,, (T}, /M) is aso a C.W. complex.

We conclude that it sufficesto verify that the natural continuous bijection

colim, (T,,/M) — (colim,T,,)/M =T /M

is a homeomorphism. This follows from the observation that Y C 7'/M is closed
iff 71V ¢ Tisclosediff 7=V N T}, C T, isclosed for each n iff 1Y, C T,
is closed for each n iff Y,, C T,/M is closed for each n iff Y C colim, (T}, /M)
isclosed (Wheren: Y — Y/M, r,:Y, — Y, /M arethe projectionsand where Y,
equasY NT,/M.) O

The importance for us of the existence of the structure of a C.W. complex on a
cycle spaceis the following well known fact (cf. [Sp;7.6.24]).

RECOLLECTION 1.4. Let f: A — B be a weak homotopy eguivalence between
spaces A, B having the homotopy type of C.W. complexes. Then f is a homotopy
equivalence.

If M isatopological monoid, then we denote by B[M] its classifying space and
by QB[ M] the loop space on this classifying space. We recall that QB[M], which
we call the homotopy-theoretic group completion, is the usual group completion
considered by topologists (cf. [F-M;appQ]).

Thefollowing theorem summarizesthe topological consequencesof tractability
that we shall require.

THEOREM 1.5. Assume that &£, C €, (X X Y) - ¢, is a topological sub-
monoid of ¢, whose embedding is constructible.

(@) &, isatractable monoid which admits the structure of a C.W. complex.
(b) The natural homotopy class of maps of H-spaces

Qo BI&] — [&]F

is a weak homotopy equivalence.

(c) If . C &, isaZariski closed submonoid, then £, istractableasa F,.-space
and the quotient monoid (with the quotient topology) &,./F, is also a
tractable monoid admitting the structure of a C.W. complex.

(d) For 7. C &, asin(c), the following is a fibration sequence (i.e., induces a
long exact sequence in homotopy groups) of spaces each of which admits
the structure of a C.W. complex

[F T = &) = [&/F

Proof. Thetractability of £, in (a) isverified in [FL-2;T.3] (whichisitself merely a
modification of [FG;1.3]). Thefact that £, admits the structure of a C.W. complex
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is an immediate consequence of the triangulation of semi-algebraic sets as proved
in [H-2]. The weak homotopy equivalence of (b) is established in [FL-2;T.4]. The
tractability properties asserted in part (c) are also proved in [FL-2;T.3]; the fact
that &, /F, admits the structure of a C.W. complex follows from Lemma 1.3 and
the observation that each R,, C S, in the presentation of £, as a F,. spaceis a
Zariski closed embedding of constructible spaces and thereby admits the structure
of a relative C.W. complex. This latter fact is a consequence of the following
result proved in the appendix of [FI]: if R,, € S,, S, — S, C S,, are simplicial
embeddingsof finite polyhedraandif R,, = R,NS,,then R,, C S, isapolyhedral
pair. The fact that the sequencein part (d) is afibration sequenceis established in
the proof of [F-G;1.6]. To verify that each of the spaces occurring in this sequence
admits the structure of a C.W. complex, we let M denote any of the tractable
monoids F;, &, &, / F, and apply Lemma 1.3 to the tractable M space M *? asin
the proof of part (c). O

In the following definition of effective cocycles, we assume that the quasi-
projective variety U is normal. Indeed, the same definition could be given for any
guasi-projective variety U and Corollary 1.7 and Proposition 1.8 would remain
valid without the hypothesis of normality on U. On the other hand, normality is
needed for Proposition 1.9 and (more importantly) to establish functoriality in
Proposition 3.3.

DEFINITION 1.6. Let U be a normal, quasi-projective variety. We define the
monoid of effective cocycleson U equidimensional of relativedimensionr inY to
be the following quotient monoid (with the quotient topol ogy)
o E(Y)(U)
 Cm(Xee x YY)

We define the topological abelian group of cocycleson U equidimensional of
relative dimension  in Y to be the naive group completion of ¢,.(Y)(U),

Z.(V)(U) £ [e,(V)(U)]*. (16.2)

¢ (Y)(U)

(1.6.1)

Theorem 1.5 immediately provides the following corollary which shows that
Definition 1.6 agrees with the definitions of [FL-1] and [FL-2] for the special case
inwhich U equalsthe projective variety X.

COROLLARY 1.7. Asin (1.4), let U be a normal, quasi-projective variety. The
natural map ¢,(Y)(U) — Qo B¢&,.(Y)(U) determines a weak homotopy equiva-

lence
Qo Ble,(Y)(U)] = Z.(Y)(U). (1.7.2)
Moreover, the following sequence of topological abelian groupsis a fibration
sequence

Zrim(Xoo X V) = [ (V) O)F = Z,(V)(U). (17.2)
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Werecall (cf. [LF-2], [F-G]) that the monoid of effective cocyclesonU x Y is
defined as the quotient (with the quotient topology)

def Crpm(X X Y)
Gam(UXY) = TS5

PROPOSITION 1.8. Let U be a normal, quasi-projective variety. The topological
embedding (1.1.1) induces a topological embedding

& (Y)U) C €pm(U x Y). (1.8.1)

In particular, the homeomorphismtype of ¢,.(Y")(U) is independent of the choice
of projectiveclosureU C X.

Proof. Since&, (Y)(X) C €1 (X xY) issaturated for ¢, 4, (X x Y') and
since ¢, (X x Y)isclosedin €, (X x Y) andthusalsoin &,.(Y)(X), we
conclude easily that (1.8.1) is atopological embedding.

The second assertion follows from the fact that the homeomorphism type of
¢1m (U x Y') isindependent of projectiveclosure U ¢ X asshownin[LF- ] and
[F-G]. O

In[FL-1], Lawson and the author considered ‘ continuous algebraic maps’ (i.e.,
morphisms from the weak normalization of the domain) from a quasi-projective
variety U to the Chow monoid ¢, (Y'). Since we restrict our attention to normal
varieties U, such maps are always morphisms. We recall from [F-1] that any
morphism f:U — ¢,.(Y) admitsa‘graph’ Z; Cc U x Y and that Z; # Z,
whenever f # g. (The graph Z; can be defined as the Zariski closurein U x Y
of the effective cycle on Yspec k- associated to the restriction of f to the generic
point Spec K € U.) Moreover, sending a morphism f to its graph is a bijection
whenever U is normal: thisis shown in [FL-1;1.5], where proof of bijectivity is
local and thus applies to quasi-projective U.

The following characterization of the topology on ¢, (Y)(U) is verified in
Appendix C of [FL-2].

PROPOSITION 1.9. [FL-2;C.3]. Let Mor(U, €, (Y")) denote the abelian monoid of
mor phismsfroma normal, quasi-projectivevariety U to ¢, (Y"). Thus, the graphing
construction

G: Mor(U, ¢, (Y)) — ¢,.(Y)(U)

is an isomorphism. Then the topology on 9tor(U, €,(Y")) inherited from that on
¢,.(Y)(U) via G is characterized by the following property: a sequence{ f,,;n €
N} C Mmor(U, ¢, (Y)) convergesfor thistopology if and only if
(i) {fn;n € N} convergeswhen viewed in Homeont (U, ¢, (Y")) provided with the
compact-open topol ogy.
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(i) Theassociatedsequence{Z,;n € N} C ¢,.(Y)(U) of graphshasthe property
that for somelocally closed Zariski embeddingU x Y C PN thereisapositive
integer E such that each Z,, has closure Z,, ¢ PV of degree < F.

We call this topology on 9tor(U, ¢,.(Y")) inherited from that of ¢,.(Y)(U) the
topology of convergence with bounded degree.

REMARK 1.10. There are severa other definitions of the space of cocycles on
U with valuesin Y which come readily to mind but which appear to us to be less
useful.

(@ If one considered the monoid of effective cocycles to be Mo (U, €, (Y))
for U not normal, then it would be difficult to identify this as an accessible
submonoid of ¢, 1, (U x Y'). Evenfor U normal, if one were to define the
monoid of effective cocycles to be Mot (U, €,.(Y)) with the compact-open
topology (assuggestedin [FL-1]), Proposition 1.7 tells us that we would fail
to have a continuous map to ¢, ., (U x Y") which we require for duality.

(b) Another possible approach is to define effective cocycles on U with values
in' Y as a quotient of effective cocycles on X with values on Y, for the
latter is well understood thanks to [FL-2]. This definition has the strong
disadvantage that it depends (even as a discrete monoid) upon the choice of
projectiveclosureU C X.

(c) A third aternative isto retain our definition of effective cocycle on U with
valuesin Y but to define the topological abelian group of all cocycleson U
with valuesinY" asthe subgroup of Z,,,,,(U x Y') generated by ¢, (Y')(U).
One has a continuous bijection from Z,.(Y)(U) to this subgroup, but this
bijectionisnot ahomeomorphism. Thisformulation suffersfrom thefact that
its algebraic invariants have no evident relationship to those of ¢,.(Y)(U).

2. Relative cocyclesand cocycleswith support

In this section, we define the topological abelian group of algebraic cocycles on
U with valuesin a pair (Y,Y.). Thisis to be viewed as our approximation of
a suitable definition of cocycles on U with values in the quasi-projective variety
V =Y —Y,.A special caseof particular interest isthepair (P*, P*~1). To complete
the formalism, we also define cocycles with support.

We remind the reader that Y is assumed to be projective (i.e., to admit a Zariski
closed embedding in some projective space) and Y, C Y is a Zariski closed
embedding. Throughout this section, the quasi-projective variety U is assumed to
be normal.

DEFINITION 2.1. We define the topological submonoid F,.(Y,)(U) by
Fo(Yao) (U) 22 & (Yao)(U) + Cripm(Xoo x V) C £ (Y)(U).
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We definethetopological monoid ¢, (Y '\ Y5, ) (U) of effectiveagebraic cocycles
on U equidimensional of relative dimension r in (Y, Y,,) by

o E(V)(U)

€ (Y \Ya)(U) 5 s 2.1.1)

We define the topological abelian group Z,.(Y'\ Yy ) (U) to be the naive group
completion of €, (Y'\Y)(U),

Z,(Y\Yoo)(U) £ [ (Y\Yoo) (U)] (2.1.2)

Theorem 1.5 easily implies the following properties of our definition of relative
cocycles.

PROPOSITION 2.2. Thetopological monoid ¢, (Y'\Y)(U) of (2.1.1) isalso giv-
en as the following quotient

& (N\Y)(0) = g AT
The natural map
Qo B¢, (Y\Yoo)(U)] = Z,(Y\Yoo)(U)

is a weak homotopy equivalence.
Furthermore, the following localization sequence of topol ogical abelian groups

Z,(Yoo)(U) = Z:(Y)(U) = Z,(Y\Yoo)(U)

is a fibration sequence.
Proof. The equality

&EY)U) _ &(Y)(U)
Fo(Yoo)(U) & (Yao)(U)

is verified by inspection.

Since addition in &.(Y)(U) is a proper map (the restriction of addition in
Cram(X xY))andsinceboth &, (Yo ) (U) C E(Y)(U) and €1, (Xoo X Y) C
E-(Y)(U) are Zariski closed, we conclude that F,. (Yoo )(U) C &.(Y)(U) isaso
Zariski closed. Thus, the fact that

Z,(Y\Yoo)(U) = Qo B[&,(Y\Yoo ) (U)]

isaweak homotopy equivalencefollows from Theorem 1.5.
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Consider the following diagram

[Q:r-i-m(Xoo X Y)]+ - [}-r(Yoo)(U)]—i— — Z:(Yso)(U)

: | |

[€rim(Xoo X V)T —— [&:(V)(U)]" —— Z,(Y)(U)

| |

Z,(Y\Yeo)(U) Q,

where Q is the homotopy fibre of B[Z,(Yx)(U)] = B[Z,(Y)(U)], the delooping
of the upper right vertical map. Each of the columns and the upper two rows of
this diagram are fibration sequences. We conclude by the ‘3 x 3 Lemma’ that
Zr(Y\Y%)(U) — Q is ahomotopy equivalence, thereby implying the asserted
fibration sequence. O

*

REMARK 2.3. One could define ¢,(V)(U) as the topological submonoid of
¢om(U x V) consisting of equidimensional cycles, thereby giving a definition
which depends only upon U, V, but not upon the projective closure Y. However,
such a definition would not appear to have good properties (e.g., functoriality,
comparison with the naive group completion and homotopy-theoretic group com-
pletion, fibration sequences), in view of the fact that the natural map

¢ (Y \Yoo)(U) = €rym(U x V), V=Y Yy

is a continuous monomorphism but not necessarily atopological embedding.

For example, we can take X = P* = U and Y, to be some point oo € PL.
Consider the cycles Z, in P! x P! given by the equationsy = =/n in the affine
chart A x A, Then the sequence {W,, = Z,1 — Z,} convergesin Z1(A! x P1)
to the graph of the function which is everywhere 0 on P*. On the other hand, the
sequence { W, } doesnot convergein

¢o(PY)(PY) ]*
¢o(PY)({0})

since each of the sequences {Z,,},{Z, .1} convergesto P! x {0} 4+ {oo} x P!
which does not lie in ¢o(P?)(P).

Zo(PY\{O})(P") = l

Proposition 2.2 implies that the following definition of Z!(U') generalizes to
guasi-projectiveU thedefinition of algebraic cocyclespacesgivenin[FL1], [FL-2].
Asweshall see, these spacesfor U smooth are homotopy equivalent to correspond-
ing cycle spaces. Thisis onejustification of our view of Z*(U) asthe contravariant
aspect of the bivariant Z,.(Y)(U).

Recall that ¢ is anon-negativeinteger < dimX = dimU.
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DEFINITION 2.4. We define the topological abelian group of ¢-cocycleson X to
be

ZHU) £ Zo(P\P (D).

For the sake of compl eteness, we introduce the following definition of the space
of cocycleson U with supportsin a closed subvariety Uy C U. Taking homotopy
groups gives a definition of cohomology groups with support, leading to a theory
satisfying most of the properties of a‘Bloch-Ogus' theory (cf. [B-QO]). Indeed, the
one property that we lack is aversion of Poincaré duality which involves a pairing
of cycle spaces (rather than our formulation of duality given in Sect. 5).

DEFINITION 2.5. Let Uy C U be a closed subvariety of the quasi-projective
variety U. Then we define the topol ogical abelian group of codimension ¢ cocycles
on U supported on Uy by

71, (U) = htyfib{Z*(U) — Z"(U — Uo)}.

REMARK 2.6. Although we shall rarely explicitly discuss Z[t]O(U), our duality
theorems provide some understanding of these spaces. For example, Proposition
6.1in conjunctionwith Remark 4.4 impliestheexistence of ahomotopy equivalence

Z4,(U) = ZH(Uo),

provided that Uy C U is aclosed immersion of smooth varieties. More generally,
if we know only that U is smooth, then Theorem 5.2 implies that the duality map
induces a homotopy equivalence

Z5,(U) =5 Zin—y(Uo).

One can view this homotopy equivalence as aform of Alexander Duality.

3. Basic properties

In this section, we prove some basic properties of our topological abelian groups
of algebraic cocycles. The primary oneis functoriality. Another is the existence of
anatural map to singular conomol ogy. We also show that the algebraic suspension
theorem, first proved for cycle spaces by Lawson in [L] and subsequently for
cocycle spaces in the context of projective varieties in [FL-1], remains valid for
cocycles on a quasi-projective variety U. We conclude this section with a Mayer-
Vietoris fibration sequence. Once again, throughout this section U will denote a
normal quasi-projectivevariety of dimension m embedded asaZariski open subset
in the projective variety X.
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PROPOSITION 3.1. Let f:Y — Y’ be a morphism of projective varieties. Then
proper push-forward of cyclesvial x f:U x Y — U x Y’ determines continuous
homomor phisms

fee(V)(U) = & (Y)U), [f:Z2:(Y)(U) = Z.(Y) (V).

Moreover, if f restricts to Yo, — Y, then push forward of cycles determines
continuous homomor phisms on relative cocycle spaces

f & (Y\Yoo)(U) = & (Y\YL)(U),
fi Z:(Y\Yoo)(U) = Z,(Y\YL)(U).

Proof. Werecall that (1X f).: €y (X XY) — €, (X xY') isacontinuous
algebraic map (cf. [F]). Sincethisclearly restrictsto (1 X f).: €ppm(Xoo X Y) —
Crim(Xoo X Y'), weobtain

(1 X f)* Q:r+m(U X Y) — ¢r+m(U X Y’) (311)

Moreover, if Z C U x Y isanirreducible cycleequidimensional over U of relative
dimension r, then (1 x f).(Z) restricted to some irreducible component of U is
either O (because the dimension of (1 x f)(U) is < r 4+ m) or has fibres which
are generically of dimension r over U. By the upper semi-continuity of dimension
of the fibres of (1 x f)(Z) — U, we conclude that (1 x f).(Z) in this latter
case is equidimensional of relative dimension r over U. Thus, (3.1.1) restricts to
[ & (Y)(U) — ¢.(Y')(U) which determines f,.: Z,.(Y)(U) — Z.(Y')(U) via
naive group completion.

The map on spaces of effective relative cocycles is merely the quotient of the
map f. constructed above; this being well defined by naturality. Finally, the map
on topological abelian groups of relative cocyclesis the group completion of this
map. O

The following lemma shows that even though Chow varieties do not represent
families of cycles(and, in particular, thereisno universal family of cycleson Chow
varieties), they do provide a sort of universality for the coarser context of supports
of cycles.

LEMMA 3.2. LetZ, 4 C C,4(Y) x Y denote the incidence correspondence con-
sisting of pairs (Z,y) withy € |Z|. If f:U — C, 4(Y’) is any morphism, then the
support of the graph Z of f is given by

1Z¢| = U x¢,,(v) Lra-

Proof. We recall here that Z; is defined as follows: for each generic point
n.Spec K — U, let Z,, = 3" n;V; ; denotethe cycleon Yx with Chow point f(7);
let V,, ; C U x Y denotethe closure of V;, ;; then we define

Zs = Zznjvn,j-
noj
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SinceZ, 4 C €, 4(Y) x Y isZariski closed, theequality |V, ;| = |V;, ;| immediately
implies the inclusion

|Zf| cuU XQ'T,d(Y) Ir,d-

To prove the reverseinclusion, it sufficesto show for any u € U that | Z(,,)| C
|Z¢|. Since u is the specialization of some generic point 7, there exists a smooth
curve C' and amap g: C — U sending the generic point -y to  and sending some
closed point ¢ € C to u. Thenthe graph of f o g, Z;.,, isflat over C' and has the
property that the cycle associated to the scheme theoretic fibre of Z ., above any
point of C isthe cycle Z;. (. (i.€., the cycle with Chow point f o g(c)) [F1.3].
In particular, we conclude that |Z .| lies in the closure of |Z;.,,)| (which
equals al of |Zje,[). Thisimplies that |Z.4)| = |Zfu)| liesin the closure of
|Zng(77)| = |Zf(77)| asrequired. a

Using Lemma3.2, we now establish the contravariant functoriality of ¢, (Y')(U)
with respect to U. The reader is referred to [S-V] for a proof of functoriality for
normal varieties over general fields (requiring the mastery of technicalities arising
from purely inseparable extensions).

PROPOSITION 3.3. Let g: U’ — U be a morphism (of normal quasi-projective
varieties). Then composition with ¢ determines continuous homomor phisms

g GY)U) = &Y)(U), ¢ Z)U) = Z(Y)(U).

If g is a regular closed immersion of codimension ¢, then g* is the restriction
of the intersection-theoretic pull-back ¢': Z,..,,,(U X Y) = Zrim (U’ x Y)
(cf. [Fu]).

Moreover, for Y, C Y aclosed subvariety, ¢* induces

9" € (Y\Yo)(U) = € (Y\Yoo) (U'),
7 Z.(Y\Yoo)(U) = Z.(Y\Yoo)(U").

Proof. Composition with g determines a continuous homomorphism of mapping
spaces with the compact-open topol ogy

HomMeont (U, €-(Y)) — HomMeont (U, €, (Y)).

Using Proposition 1.9, we conclude that to prove the continuity of ¢* it sufficesto
prove the following

if {fn:U — ¢.(Y)} isasequenceof mapswhosegraphs{Z, } haveclosuresin
some P of bounded degree, then the graphs { 7! } associated to { f,, o g} likewise
have closures of bounded degree.
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Choose projective closures U ¢ X,U’ C X' together withamap §: X' — X
extending g. Let Z,, denotetheclosurein X x Y of Z,,. By Lemma3.2, X' x x | Z,,|
istheclosurein X’ x Y of the support | Z!,| of Z! . Granted that the degrees of Z,,
are bounded, we conclude that the sum of the multiplicities of the components of
Z, and thus also of Z/, are bounded. Hence, it sufficesto prove that the degrees of
irreducible components of X’ x x |Z,| C X' x Y are bounded. We conclude that
it sufficesto prove that whenever {V,, } is aseguence of irreducible subvarieties of
X xY of bounded degreethen {V}, x x X'} isalso asequence of bounded degree.
We can further reduce the problem to the assertion that for any d > 0 there exists
someng suchthat every irreduciblecycleV on X x Y of degree d hasthe property
that the degree of V' x x X' has degree bounded by 7.

We consider the family (parametrized by an open subset U of Cy, 1. 4(X x Y))
of al irreducible cycleson X x Y of degree d. Pull-back via g x 1 givesus a
family {V,;;u € U} of subvarietiesof X’ x Y parametrized by U. This family is
flat when restricted to some open dense subset U; € U and hence {V,); u € U1} is
afamily of constant degree. Similarly, thereis an open dense subset U, of U — U;
such that this family is flat when restricted to U, and hence {V,);u € Uz} isa
family of constant degree. Since U isfinite dimensional, this process (‘ noetherian
induction’) eventually stops so that we conclude that the degreesof {V,/;u € U}
are bounded.

If g: U' — U isaregular closedimmersion, then we may apply [F-M;3.2] which
asserts that the intersection-theoretic pull-back ¢' constructed in [Fu] is given on
effective cocycles by composition with g. Thus, ¢* = ¢'.

It is now evident that ¢* so defined as composition with ¢ restricts to
"¢ (Yso)(U) — ¢,.(Yoo)(U') and therefore induces a map on quotient monoids
g ¢ (Y\Ys)(U) = €. (Y\Y)(U') and their naive group completions. O

Asdemonstratedin [FL-1], the homotopy groupsof the cocycle spacesnaturally
map to singular cohomology. We verify that this map remains well defined with
the definition of cocycle spaces Z,. (Y '\ Yoo ) (U) givenin Section 2.

PROPQOSITION 3.4. Thereis a natural map
®: Z,(Y\Y)(U) = Homeone (U, Z,(V)), V =Y =Y.
In the special case (Y, Y,,) = (P!, P'~Y) and r = 0, thismap
®: ZHU) — Homeont (U, Zo(A1))
induces on jth homotopy groups 7; a map of the form
o, LLH21(U) & 7 (24(U)) —» H2I(U). (34.1)
Proof. Proposition 1.9 implies that the natural inclusion

¢ (Y)(U) = Homeont (U, €, (Y))
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is continuous, thereby inducing
¢ (Y)(U) = Homeon (U, Z,(Y)).

The naturality of this map when applied to Y., — Y implies that this induces
¢ (Y\ Yoo ) (U) = Homeone(U, Z,(V)),

since Z,(V) = Z,(Y)/2,(Yx). The naive group completion of this last map
provides the asserted map ®.

The second assertion follows from the observation that Zy(A') is a model for
the Eilenberg—MacL ane space K (Z, 2t). |

We next verify the homotopy invariance of Z,.(Y)(U) with respect to U.
Unfortunately, the proof does not apply to prove the more general assertion
that p*: Z,.(Y)(U) — Z,.(Y)(FE) is a homotopy equivalence for any affine tor-
sor p: E — U. Using the duality theorem, this more general assertion is proved for
U smooth in Proposition 6.3.

PROPOSITION 3.5. As usual, asssume that U’, U are normal and consider an
algebraic homotopy G: U’ x Al — U relating two morphismsg, ¢': U’ — U. Then
G induces a continuous homotopy

Gz: Z.(Y)(U) x Al = Z.(Y)(U")

relating ¢*, ¢"*: Z,(Y)(U) — Z,.(Y)(U").

Consequently, if p: E — U isthe projection of an algebraic vector bundle, then
p*: Z.(Y)(U) — Z,(Y)(E) isahomotopy equivalence.

Proof. We define Gz as the composition

Z(V)(U) x At 25 z (V) (U' x ALy x AT = Z (V) (U").

To verify that Gz is continuous, it suffices to prove that the evaluation map ev
is continuous. Since U’ x {t} ¢ U’ x Al isaregular immersion, evaluation at ¢
has the effect on acycle Z € Z,.(Y)(U’ x Al) of sending Z to its intersection
theoretic fibre above ¢; in particular, effective cocycles of some bounded degree
on U’ x Al x Y are sent via evaluation at ¢ to effective cocycles of bounded
degreeon U’ x Y. Consequently, Proposition 1.9 and the well-behaved nature of
the compact-open topol ogy with respect to evaluation imply that ev is continuous.

If p: E — U isthe bundle projection of an algebraic vector bundle, then clearly
p admits an algebraic homotopy E x A — E relating the identity to o o p, where
o denotesthe O-sectiono: U — F. |
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REMARK 3.6. A suitably genera homotopy invariance property would follow
from the verification that whenever U is written as aunion of Zariski open subsets
Ui, U, thefollowing triple

Mor(U, €, (V) — Mor(Uy, €, (V) @ Mor(Up, & (V)
— Mot (U N U2,¢,(Y))

determines upon naive group completion a distinguished triangle in the derived
category (and hence a Mayer—Vietoris exact sequence). Our present techniques
fail to prove such aresult for several reasons. First, this triple is not a short exact
sequenceof topol ogical monoids. Second, it isnot clear that the required tractability
condition for thistripleis valid.

We recall that one of fundamental properties of cycles spaces is the algebraic
suspension theorem proved by Lawson in [L]. This theorem asserts that sending
acycle Z on a projective variety Y to its ‘algebraic suspension’ ¥(Z) on the
algebraic suspension ¥(Y) of Y induces aweak homotopy equivalence

¥: 2, (Y) = Zra(B(Y)). (3.6.1)

This theorem was extended to cocycle spacesin [FL-1;3.3] (see also [FL-2;1.7]):
relative algebraic suspension ¥ y induces aweak homotopy equivalence

EX: Z, (Y)(X) - Zr+1(>ZY)(X)- (362)

By Recollection 1.4 and Theorem 1.5, (3.6.1) and (3.6.2) are in fact homotopy
eguival ences.

We now verify that this algebraic suspension theorem extends to the quasi-
projective context.

PROPOSITION 3.7. Relative algebraic suspension ¥.i: ¢, (Y)(U) — €.1(XY)
(U) induces a homotopy equivalence

EU: Zr(Y)(U) - Zr+1(2Y)(U)- (3-7-1)
Moreover, if Yo, C Y is a closed subvariety, then ¥ induces a homotopy

equivalence
Yuri Z,(Y\Yoo) (U) = Z42(EY\ Vo) (U). (37.2)

Proof. The proof of [FL-1;3.3] appliesto prove that

Yu: & (Y)U) = E41(XY)(U)
induces a weak homotopy equivalence on homotopy-theoretic group completions

Yu: Qo B[E(Y)(U)] = Qo B[Ea (YY) (U],
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for the argument only involves algebraic suspension in the second factor of cycles
on U x Y and explicitly permits the first factor to be quasi-projective. Moreover,
this weak homotopy equivalence restricts to the weak homotopy equivalence

Yx.:Q0B[C m(Xe XY)] = Qo B[€, 1m(Xe x XY)].
Thus, Corollary 1.7 enables us to conclude that
Yu: Z2:(Y)(U) = Z,41(XY)(U)

isalso aweak homotopy equivalence; Recollection 1.4 and Theorem 1.4 now imply
that this map is a homotopy equivalence.

Using thefirst assertion in conjunction with the fibration sequence of Corollary
1.7, the second assertion follows by the 5-Lemma. O

The following Mayer—Vietoris fibration sequence with respect to the covariant
argument Y is an elementary consequence of our definitions and Theorem 1.5.

PROPOSITION 3.8. Assume that Y can be written as a union of closed subvari-
gties, Y = Y1UY>2. Letii Y1 — Y, j1: YiNY> — Y3 denotethe closed immersions
and let 75, j» denote the corresponding closed immersions for Y,. Then the short
exact sequences of abelian topological monoids

0= & (Y1 NY)(U) =2 ¢, (V1)(U) @ € (Y2)(U)
e e (V)(U) = 0,
0= Crum(U x (YiNY2)) 2222 ¢ (U X Y1) @ Cram (U % Y2)
2 (U X Y) 0,
determine by naive group completion the following fibration sequences
Z,NNY2)(U) = 2M)(U) & Z:(Y2)(U) = Z,(Y)(U), (38.1)
Zr+m(U X (Yl N Yz)) — Zr+m(U X Y]_) & Zr+m(U X Yz)
— Zeom(U X Y). (38.2

Proof. The short exact sequences follow from the evident observation that an
irreducible cocyclein ¢, (Y')(U) (respectively, an irreducible cyclein ¢, 1, (U x
Y)) liesin the image of either ¢,(Y1)(U) or €,.(Y2)(U) (resp., €, +m (U x Y1) Or
Cram(U X Y3)). We observe that j1. @ j2. IS a closed immersion, for it is the
restrictionto €, (Y1)(U) @ ¢, (Y2)(U) (resp., €, 4m(U X Y1) ® €1 (U x Y2)) Of
the closed immersion

Cram(X X (Y1NY2)) = €pm(X X Y1) & €y (X X Y2).
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Thus, the fact that (3.6.1) and (3.6.2) are fibration sequences follows from
Theorem 1.5. O

4. Duality map

This section defines our duality map from spaces of cocyclesto spaces of cycles
and verifies that this map is compatible with various constructions. Many of these
verifications are little different than those of [FL-2], so that we can refer to proofs
given there; on the other hand, the more delicate nature of functoriality in the
guasi-projective case requires alternate proofs of various compatibility properties.

We retain our notational conventions, including the consideration of a Zariski
open subvariety V' C Y with not necessarily irreducible complement Y., C Y. As
inprevioussections, U will denoteanormal quasi-projectivevariety with projective
closureU C X.

DEFINITION 4.1. We define the duality map
D:Z.(Y)YU) = Zr4om(U xXY) (4.1.1)

to be the map on naive group completions induced by (1.8.1).
For any closed subvariety Y, C Y, we define

D: Z,(Y\Yoo)(U) = Zrym(U X V), V=Y —Ys (4.1.2)

to be the map on naive group completions induced by the following map defined
asaquotient (cf. Prop. 2.2)

& \V0) = S U o e vy = 20
of maps of the form (1.8.1).
For any ¢ < m, we define the duality map
D: ZHU) = Zy 4(U) (4.1.3)

as the homotopy class of maps given by the composition of D: ZH(U) = Zo(P'/
P13 (U) — Z,,(U x A?) and ahomotopy inverse of the natural homotopy equiv-
dence Z,, (U) — Z,(U x A?). (Observe that this map is only well defined up
to homotopy).

In the following proposition, we verify that the duality map D of (4.1.1) is
natural with respect to functorial constructions on cyclesand cocycles.
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PROPOSITION 4.2. Let f:Y — Y’ be a morphism of projective algebraic vari-
eties. Then the continuous homomorphism f..: Z,.(Y)(U) — Z,.(Y')(U) of Propo-
sition 3.1 fits in the following commutative square

Z(V)(U) -2+ Z (U x Y)

f+ (1xf)« (4.2.1)

Z,(Y')U) -2+ 2, (U x Y).

Letg: Y — Y beaflat map of projective varieties of relative dimension k. Then
¢ induces a continuous homomor phism
g Z/(V)(U) = Zk(V)(0),
which fits in the following commutative square

Z.(Y)(U) —2

g~ (gXl)* (422)

Zrim(U X Y)

2,k (V)(U) 2+ Zpiman(U x V),

Let h:U — U be a flat morphism of relative dimension e between (quasi-
projective, normal) varieties. Then
h*: Z.(Y)(U) = Z,.(Y)(U)
fitsin the following commutative square

Z,(Y)(U) —— Zrym(U xY)

h* (hx1)* (4.2.3)

Z(V)(0) > Zpmie(U x V).

Let ::Up — U be a regular closed immersion of codimension ¢ of normal
guasi-projective varieties. Then

i1 Z.(Y)(U) = Z.(Y)(Uo)
fitsin the following homotopy commutative square

Z(V)(U) —2— Z (U x Y)

i (ix1)! (4.2.4)
Z,(Y)(Uo) == Zyim—c(Uo X ),
where (1 x i)' isthe Gysin map of [F-G] (well defined up to homotopy).
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Proof. The commutativity of (4.2.1) follows immediately from the fact that £,
isinduced by (1 x f.).

To exhibit ¢g* fitting in the commutative diagram (4.2.2), it suffices to observe
that

(g X 1)* ¢r+m(U X Y) — Q:r—l—m—i-k(U X Y)

is a continuous algebraic map and restrictsto ¢, (V) (U) — ¢,.(Y)(U). The conti-
nuity is proved in [F-G;1.5ff], whereas the property of restriction is evident.

To verify the commutativity of (4.2.3), we must show the following: if Z C
U x Y isanirreducible cycle equidimensional over U and corresponding to amap
j:U = &, (Y), then (h x 1)*(Z) equalsthe cycle Z;,, corresponding to the map
joh:U — &.(Y"). Thisisverified by observing that the restrictions of (h x 1)*(Z)
and Z, to Spec(K') x Y' are equal, where Spec(K) — U isageneric point.

Asverifiedin [F-G;3.4], the Gysin map

(i X D' Crpm(U X Y) = Cpme(Ug X Y)

can be represented (in the derived category, thus up to homotopy equivalence
between spaces having the homotopy type of C.W. complexes) by intersection
with Up x Y on the submonoid ¢, ., (U x Y'; Up x Y') of those cycleswhich meet
U x Yy properly. Clearly, ¢, (Y)(U) C €4 (U XY'; Upx Y'). Ontheother hand, by
[F-M;3.2] the homomorphism i*: ¢, (Y)(U) — ¢,(Y)(Up) given by intersection
with Up x Y equalsthat given sending acyclerepresented by j: U — ¢,.(Y') tothe
cyclerepresented by j o i: Up — €,(Y). O

We state without proof the following relative version of Proposition 4.2 for the
duality map D of (4.1.2) and its special case givenin (4.1.3).

PROPOSITION 4.3. The relative versions of the commutative sguares (4.2.1),
(4.2.2), (4.2.3), and the homotopy commutative square (4.2.4) remain valid pro-
vided that onereplaces Y by Y'\ Y, in the left-hand sides of these squares and by
V =Y — Y, intheright-hand sides. In particular, we have the following special
cases of these relative versions of (4.2.3) and (4.2.4).

If h:U — U is a flat morphism of relative dimension e, then the following
sguare commutes up to homotopy

h* (hx1)* (4.3.1)

https://doi.org/10.1023/A:1000240504306 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000240504306

148 ERIC M. FRIEDLANDER

If i:Up — U isaregular closed immersion of codimension ¢, then the following
sguare commutes up to homotopy

ZHU) —2— Zpy(U)

i t(ixl)’ (4.3.2)

Zt(UO) —D’ m—t—c(UO)'

REMARK 4.4. For any t < m and any closed subvariety Uy C U, one can define
aduality map

D: 24, (U) = Zm—t(Uo) (4.4.1)

as follows. We consider the following commutative diagram

2HU) —L— 24U - Up)
D D (4.4.2)

Z,(U)

Zm 1(Uo) — Zm o(U) L 2, (U = Up),

where j: U — Uy — U is the Zariski open complement of Uy C U. In view of
the facts that Z;;, (U) = htyfib{Z*(U) — ZY(U — Up)}, that Z,,_+(Uo) admits a
natural equivalenceto the homotopy fibreof Z,,,_4(U) — Z,,,—+(U — Up), and that
the square of (4.4.2) is commutative, we conclude that there is a natural homotopy
class of maps asin (4.4.1) induced by (4.4.2). This map extends (4.4.2) to amap
of fibration sequences.

We next proceed to exhibit a Gysin morphism on cocycles with respect to a
regular embeddinge: Yo — Y. Essentialy, we show that the Gysin map constructed
in [F-G] on cycle spaces for aregular immersion e: Tp — T restricts to a map on
cocycle spaces. To carry out this argument, we require the fundamental ingredient
of our duality theorem (namely, Prop. 5.1 of the next section), so that smoothness
conditions are required.

THEOREM 4.5 (cf. [FL-2;2.4]). Let : Yy — Y be a closed immersion of codi-
mension e of smooth, projective varieties and assume that U is also smooth. Then
thereis a natural homotopy class of maps

el Z,(Y)U) = Zr—(Yo)(U),
which fits in the following homotopy commutative diagram

D

ZT(Y)(U) Zr-i—m(U X Y)

e (1xe)! (4.5.1)

2, o(Yo)(U) 2+ Zrim—e(U X Yo).
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Moreover, if Y., meets Yy properly and if V denotesthe Zariski open comple-
ment of Y1 = Yy N Vs, then ¢! admits a relative version

£ Z,(Y\Yoo) (U) = Z,—e(Yo\Y2) (V)
which fits in the following homotopy commutative diagram

D

ZT(Y\YOO)(U) Zr-i—m(U X V)
. (1xe) (4.5.2)

2, o(Yo\YD)(U) > Zyim—o(U x Vo).
Proof. We define
E(Y;Yo)(U) C &(Y)(U) (4.5.3)

to be the submonoid of those effective r + m-cycleson X x Y which intersect
X x Yy properly and whoserestrictionsto U x Y, U x Yy are equidimensional over
U. To verify that (4.5.3) is a constructible embedding, we proceed as follows. We
first argue asfor Definition 1.1, using the upper semi-continuity of the fibres of the
projection

I NEY)U) x (X x Yo)] = &(Y)(U),

where 7 C €1, (X xY) x (X x Yp) consists of those (Z, z,y) such that
z,y € |Z] N (X x Yp). Thereby obtaining &, (Y)(U) C &:.(Y)(U) consisting of
cocycleson U intersecting X x Yp properly. We then apply the same argument to
the projection

TOTEW)U) x (U x Yo)] = "&(Y)(U) x U.

Sincel, 1 (XooxY) C & (Y)(U) isaZariski closedimmersion, SOiS¢, 1, (X oo X
Y) C &(Y;Yo)(U). Set

Z(Y:Yo)(U) <& [e,(Y; Yo) (U)]

def gr(Y;YO)(U)

¢ (Y; Yo)(U) = Crim(Xoo X Y)'

By Proposition 5.1, (4.5.3) induces a equivalence

£ (Y Yo) ()] = [E: (V) ()] (4.54)
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Hence we may apply the 5-Lemma (in conjunction with Cor. 1.5) to the map of
fibration sequences

Zrim(Xoo X Y) — [£:(Y; Yo)(U)]F — Z,(Y; Yo)(U)

Zrim(Xoo X Y) ——r [5,«(Y)(U)]+ Z,(Y)(U)

to conclude that
Z.(Y;Yo)(U) — Z:(Y)(U)

isahomotopy equivalence.
We define the Gysin map ¢' as the composition

e Z.(Y)U) ~ Z.(Y;Yo)(U) = Z,_o(Yo)(U),

where the first map is the homotopy inverse of the homotopy equivalence estab-
lished above and the second is the naive group completion of the map ¢, (Y;
Yo)(U) — ¢, .(Yo)(U) given by intersection with U x Yp. So defined €' fitsin
the homotopy commutative square (4.5.1) by [F-G;3.4].

To exhibit ' in the relative case and provethat it fits in the homotopy commuta-
tive square (4.5.2), we first observe that the conditionon Z € &,.(Y)(U) supported
onU x Y, tomeet X x Yy properly in U x Y and hence have intersection with
U x Yy equidimensional over U isthe same condition asthe condition that Z when
viewedin &, (Yoo )(U) meet X x Y7 properly in U x Y, and haveintersection with
U x Y3 equidimensional over U. Conseguently, intersection with U x Yp induces
awell defined continuous map

&Y Yo)(U) | & e(Yo)(U)
/}“r(Yoo)(U) fr—e(Yl)(U)’

(4.5.5)

where 'F, (Yoo ) (U) = Fr (Yoo )(U) N E(Y;Y0)(U). Then since F,. (Yoo )(U) C
E-(Y)(U) (cf. Def.2.1) is a Zariski closed submonoid, so is 'F,.(Yy)(U) C
E-(Y; Yo)(U). A now familiar argument comparing fibration sequencesand appeal -
ing to the 5-Lemma shows that the homotopy equivalence (4.5.4) implies that

&Y Yo)(U) } -

———= = Z.(Y\Y)(U

] 0

is an equivalence. Thus, we may define the relative Gysin map &' fitting in the
homotopy commutative square (4.5.2) (by [F-G;3.4.2]) as the composition

+

EW YOO, 2 v ),

£ Z:(Y\Yoo) (U) = [ffr(yoo)(U)
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where the first map is the homotopy inverse of the homotopy equivalence estab-
lished above and the second is the naive group completion of (4.5.4). O

In[F-M], theoperation s: Qo B[¢,(X)]AS? — Qo B[e, (¥ X)] wasintroduced
and studied. In [F-G], this operation was extended to an operation s: Z,.(U) A
S2 — Z,_41(U) for cycles on a quasi-projective variety and was shown to be
independent of the projective embedding. In [FL-2;2.5,2.6], this operation was
refined for cocycles spaces on a smooth projective variety X with values in a
smooth projective variety Y. (The smoothness hypotheses were required in order
to employ the Gysin map of Proposition 45t0 Y x {0} C Y x PY). Indeed, the
proofs given there apply verbatim with X replaced by a smooth, quasi-projective
variety U.

PROPOSITION 4.6 (cf. [FL-2;2.5,2.6]). Let Y bea projective, smooth variety and
let U be a smooth quasi-projectivevariety. The s-map deter minesa homotopy class
of maps

s:Z,(Y)U)AS? = Z,_1(Y)(U),

which fits in the following homotopy commutative square

Z,(Y)U)AS2 2 2, (U x YY) A S2
) s (4.6.1)
Z, A (V)U) —2— Z, 00 a(U x V).

Furthermore, the s-map determines a homotopy class of maps
$:Z,(Y\Yo)(U) = Z,-1(Y\Ys)(U),
which fits in the following homotopy commutative square

Z,(Y\Yaoo)(U) A S% P22 2, (U x V) A S2

s s (4.6.2)
Z, (Y \Yoo) (U) —2

Zrim1(U x V).

We single out the following special case of (4.6.2).

COROLLARY 4.7. Let U be a smooth quasi-projective variety (of dimension m,
asusual). Then thereis a natural homotopy class of maps

s: ZHU) A §%2 = 2HHU),
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which fits in the following homotopy commutative square

ZHUYAS2 2Lz (U) A S2

s ) (4.7.1)
D

2 ) Zm_1-1(U).

Proof. By Proposition 3.5, there is a natural algebraic suspension homotopy
equivalence

Yo ZHU) = Zo(P'\P" 1)(U) — Z1(PTH\PH(U).

We define Zt(U) — Z'*1(U) to be the composition of this map and the relative
s-map of Proposition 4.6

st Z1(PPIN\PY(U) A S% — Zo(PHH\PY)(U) = 2HH(D).

The homotopy commuitativity of (4.7.1) follows consideration of the following
diagram

Zo(P /P YUY A2 B 2,,(U x A AS? T 2, (U) A S?

%l m*l l:

21 (PP () A 8% PPLe 2, (U x AT A 82 AL 2, (1) A 87

T |

Zo(PHY /P (V) Zn(U x A Tz ().

The commuitativity of the upper squaresof thisdiagramiseasily seen by inspection,
the homotopy commuitativity of the lower left square follows from (4.6.2), and the
homotopy commutativity of the right lower square follows from the naturality
of s. m|

In [FL-2;2.7], the intersection product defined in [F-G] for cycle spaces of
smooth varieties is shown to correspond to the fibrewise join product introduced
in [FL-1]. The proof given there applies to quasi-projective U, so that we content
ourselves with merely stating this result in our context of cocycles on a quasi-
projective variety U.
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PROPOSITION 4.8. If U is smooth and if ¢, are non-negative integers with
t + u < m, then the fibre-wise join pairing #; fits in a homotopy commutative

diagram
Zo(PY(U) x Zo(P)(U) — Z(U) x Z4U) 222+ Z0 y(U) X Zpeu(U)
#r .
ZO(Pt+u)(U) Zt+u(U) metfu(U)a

(4.8.1)

where the |eft horizontal arrows are the defining projections and where (—) o (—)
denotes the intersection product on cycle spaces.
Proof. See[FL-2;2.7]. O

5. Duality theorems

In this section, we present various forms of duality relating spaces of algebraic
cocycles and spaces of algebraic cycles. We retain our notational conventions on
X, YU, X,V,Ys, randt of previous sections.

The following fundamental technical result is a consequence of the ‘Moving
Lemmafor Cycles of Bounded Degree’ [FL-3].

PROPOSITION 5.1. Let&,(Y)(U) C €,4m (X xY') bethe embedding of monoids
of (1.6.1). If Y and U are both smooth, then this embedding induces a homotopy
equivalence of naive group completions

D: &) = Zrpm(X xY).

Moreover, if Yo C Y isa closed subvariety of some dimension > n — r and if
E(Y;Yo)(U) C &(Y)(U) isthesubmonoid of (4.5.3) consisting of cocycleswhich
meet X x Yy properly and whose intersections with U x Yy are equidimensional
over U, then the induced map of naive group completions

[£: (Y Yo)(U)]" — [€:(V)(U)]

is a homotopy equivalence.
Proof. Let

T Cim(X XY) X Cin(X XY) = Z4n(X xXY),
" E(Y)(U) x E(Y)(U) = [&:(X)(O)],
denote the quotient projection maps, and let

J: ET‘(Y)(U) - Q:r—i-m(X x Y)
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denote the embedding of (1.6.1). Then the filtration { K.}2°, of Z, (X x Y)
given by setting

Ke=rm{ J] €rimaX xY) X €ppma(X XY)
d+d' <e

is alocally compact filtration in the sense of [FL-2;4.1]; namely, any map from
a compact space K to Z,,,,(X x Y factors through some K,.. Consider the
associated filtration { K’ }5°, of [£,(Y)(U)]*"

K= W'{ I &a)U) % Er,df(Y)(U)},

d+d' <e

where &, 4(Y)(U) = € ymd(X xY)NE(Y)(U). If K iscompactand f: K —
(€ (Y)(U)]" is continuous, then (j o f)(K) liesin some K., sothat f(K) liesin
some K. We conclude that { K’ }22 , is also alocally compact filtration.

Let e beany positive integer > thedegreesof {u} xY € X xY foralu € U.
Then [FL-2;3.1], the ‘Moving Lemmafor Cycles of Bounded Degree’, implies the
existence of

pe: Ke X I = Zpm(X xY), @K, xT—= Z.(Y)(U)

satisfying the conditions of a very weak deformation retract in the sense of [FL-
2;4.1]. Namely, ¢, covers ¢, with respect to j; (¢e)|K {0}’ (¢’e)|K,X{O} are the

|k qry Nifts 10 [£:(V)(D)]F for any ¢ # 0. Thus,

D:[E(Y)U)T — Z,1m(X x Y) iseasily seen to be aweak homotopy equiv-
alence using the easy technical lemma [FL-2;4.2]. Since these spaces have the
homotopy type of C.W. complexes, D isin fact a homotopy equivalence.

To prove the second assertion, recall that the Moving Lemma enables one to
move s-cyclesof degree< eon ¢, ., (X x Y') sothat the resulting cyclesintersect
properly (off the singular locus of X x Y) all effective cycles of degree < e and
of dimension > m — s [FL-3;3.2]. We apply this result to move effective cycles
in €4 (X x YY) with respect to the cyclesu x Y,u x Yp;u € U and the cycle
X x Yp. Thus, the preceding argument applies to prove that

natural inclusions; and (¢.)

5,«(Y; YO)(U) - Zr-i—m(X X Y)
is also a homotopy equivalence. The second assertion now follows. O

Thefollowing duality theorem follows easily from Proposition 5.1.
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THEOREM 5.2. Asusual, let U be a quasi-projective variety of dimension m and
let Y be a projective variety of dimension n. If both U and Y are smooth, then the
duality map of (4.1.1)

D:Z.(Y)U) = Z,4:m(U xXY)

isa homotopy equivalencefor any » < n.
Furthermore, if Y,, C Y is a smooth, closed subvariety with Zariski open
complement V' C Y/, then the relative duality map of (4.1.2)
D:Z,(Y\Yoo)(U) = Zr 4 (U x V)

isalso a homotopy equivalencefor any r < n.
SpecializingtoY = P!, Y., = P'~1, we concludethat the duality map of (4.1.3)

D: ZHU) = Zp_4(U)
is also a homotopy equivalencefor any ¢ > 0 (where

Zm—t(U) = ZO(ZtimU)a m <1

asin[F-M]).
Proof. We consider the following diagram
Zrym(Xoo X Y) — [E(V)(U)]F zZ,(Y)(U)
= D D (5.2.1)

Zr—i—m(Xoo X Y) —_— 7-+m(X X Y) — r+m(U X Y)

Both the rows of (5.2.1) are fibration sequences: the top by Corollary 1.5, the
bottom by [F-G;1.6]. Consequently, the fact that the duality map D is a homotopy
equivalence follows from Proposition 5.1 and an application of the 5-Lemma.

In the relative case, we consider the following diagram

Z,(Yoo)(U)

Z,(Y)U) —— Z(Y\Ys)(U)
D D D (5.2.2)
Zrim(U xXYy) — Zoym(UXY) — Z. (U X V).

The upper row of (5.2.2) is afibration sequence by Proposition 2.2, whereas the
lower row isafibration sequence by [F-G;1.6] onceagain. Sincetheleft and middle
maps are homotopy equivalences by the first part of our theorem, the 5-Lemma
implies that the relative duality map D is also a homotopy equivalence. O
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We recall that the homotopy groups of Z!(U) and Z,.(U) are caled ‘mor-
phic cohomology groups' and ‘ Lawson homology groups’ respectively. These are
indexed as follows

LHYU) 2 o (21(U),  LeHe(U) 2 1 00 (2,(0)).

Using this notation, we re-state the relative case of Theorem 5.2 (with Y =
P Y =P 1.

COROLLARY 5.3. Let U be a smooth variety of dimensionm and let 0 < k& <
2t, 2m. Then the duality map D: Z4(U) — Z,, +(U) of (4.1.3) induces isomor-
phisms

L'H*(U) ~ Ly, ¢Hop—(U).

Applying the Mayer—Vietoris sequence of Proposition 3.8, we obtain the fol-
lowing mild generalization of Theorem 5.2.

COROLLARY 5.4. LetYq,...,Y; besmooth projective varieties and assume that
each multipleintersectionY;, N ---NY;, isalso smooth. Let Y denote the union of
theY;'s Y =Y U--- UY;. If U isasmooth quasi-projective variety, then

D: ZT‘(Y)(U) - Zr-l—m(U X Y)
is a homotopy equivalence.

Proof. We proceed by induction on k, the case k = 1 provided by Theorem5.2.
Let Y =YU---UY,_1andletY” = Y’ NY}. We consider the commutative

diagram
Z,(Y")(U) Z,(Y')(U) & 2 (Ye)(U) Z,(Y)(U)
D DHD D

ZT‘-I—m(U X Y”) —_— r+m(U X YI) D ZT+m(U X Yk) _— r+m(U X Y)

By Proposition 3.8, both rows are fibration sequences. Thus, induction and the 5-
Lemmaimply that D: Z,.(Y)(U) — Z,+m(U x Y') isahomotopy equivalence. O

We recall that Hironaka's resolution of singularities asserts that any smooth
guasi-projective variety V' admits a smooth projective closure Y with the property
that Y — V = Y isadivisor with normal crossings[H-1]. In particular, such a
‘complement at infinity’ satisfies the conditionson Y of Theorem 5.4.
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COROLLARY 55. LetY,, C Y beaclosedimmersion of projectivevarietiesboth
of which can be written as a union of smooth closed subvarieties whose multiple
intersections are also smooth (e.g., Y., might be a divisor with normal crossings
in a smooth projective variety Y)). Then the relative duality map (4.1.2)

D: Z,(Y\Yao)(U) = Zrym(U X V)

isa homotopy equivalence.

In particular, the homotopy type of Z,. (Y \Ys)(U) depends only upon U and
V and not their projectiveclosuresU ¢ X andV C Y.

Proof. We consider the following commutative diagram

Zr(Yoo)(U) ZT(Y)(U) - ZT(Y\YOO)(U)

D D D

ZT+m(U X YOO) e r+m(U X Y) e r+m(U X V)

By Proposition 2.2, the upper row is a fibration sequence; by [LF-2] or [F-G], the
lower row is also a fibration sequence. Thus, the corollary follows from Corol-
lary 5.4 and the 5-Lemma. |

6. First consequences

Using Theorem 5.4, we define a Gysin map for cocycle spaces compatible with the
duality map. We can view this next proposition as a supplement to Propositions 4.2
and 4.3.

PROPOSITION 6.1. Asin Theorem5.4, let Y be a union of smooth projectivevari-
eties whose multiple intersections are also smooth. Consider a closed embedding
1. Up C U of smooth quasi-projective varieties of codimension ¢ with Zariski open
complement U’ C U. Then there exists a homotopy class of maps (i.e.,, a Gysin

map)
ir: Zr40(Y)(Uo) = Z(Y)(U), (6.1.1)

which fits in the following map of fibration sequences

Zr4o(Y)(Uo) —— Z,(Y)(U) —L— Z,(Y)(U)

D D D (6.1.2)
Zoim(Uo X Y) —2o 2, (U x Y) L+ 2, (U x ).

Moreover, if Y, C Y is also a union of smooth projective varieties whose
multiple intersections are al so smooth, then there exists a homotopy class of maps

it: Zr4o(Y\Yoo) (Uo) = 21 (Y\Yoo)(U), (6.1.3)
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which fits in the following map of fibration sequences

2y oY \Yao) (Uo) —> Z, (Y \Yao) (U) L+ Z,(¥)\Yao) ()
D D D (6.1.4)

Zoim(Uox Y) —2w 2, (U xY) L 2, (U x Y).

Proof. Using Theorem 5.2, we define 4, for (6.1.1) and (6.1.3) by
W plsi, oD, (6.1.5)

So defined, 4, fitsin homotopy commutative diagrams (6.1.2) and (6.1.4). Sincethe
vertical maps are homotopy equivalences, the fact that the bottom rows of these
diagrams constitute fibration sequencesimplies that thetop rowsareaswell. O

We restate Proposition 6.1 in terms of the notation used in Corollary 5.3.

COROLLARY 6.2. Leti: Uy C U bea Zariski closed immersion of smooth subva-
rietiesof purecodimensioncandlet j: U’ C U denotethe Zariski open complement.
Then the duality map determines an isomor phism of long exact sequences

i

Ls—ch—ZC(UO) LsHk'(U) Jx LsHk(U/)

y | |

Lin—sHom 1(Uo) —> L—sHom 1(U) = Lyp_sHopm x(U') —— -+

Observe that Theorem 5.2 implies that
T (2™ (U)) = 1;(20(U)) ~ HPM (U)

is an isomorphism, where HEM denotes Borel-Moore homology. This suggests,
but does not imply, that the map ®,.: m;(Z™(U)) — H?>™ J(U) of (3.4.1) isan
isomorphism. For U = X projective, the map @, is an isomorphism thanksto the
compatibility of the duality map with the Poincaré duality map demonstrated in
[FL-2;4.4].

Theduality isomorphism permits usto extend the homotopy invariance property
proved in Proposition 3.5 to arbitrary affine torsors over a smooth base U .

PROPOSITION 6.3. Let m: E — U be an affine torsor for some smooth quasi-
projective variety U. Then

7 ZHU) — ZY(E)

is a homotopy equivalence.
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Proof. Since m: E — U is locally for the Zariski topology on U a product
projection U x A® — U, weconcludeasin [F-G;2.3] that 7*: Z,.(U) — Z,1.(F)
isahomotopy equivalence, where e denotesthe fibre dimension of 7. The assertion
now follows from Theorem 5.2 and the commutative diagram (4.3.1). O

REMARK 6.4. As redlized by Blaine Lawson and the author, Proposition 6.3
permits one to extend the Chern classes defined in [FL-1] for vector bundles
generated by their global sectionsto all vector bundleson asmooth, quasi-projective
variety. Namely, given any such U, ‘ Jouanolou’sdevice’ (cf. [Q]) providesan affine
torsor

ps.Jy = U,

with Jy an affine variety. Then, given any algebraic vector bundle E — U, we
consider p%(E) — Jy which is avector bundle generated by its global sections.
Thus, p%(E) is associated to some morphism fz: J; — Grass®(PY). Embed-
ding Grass®(PY) in ¢y_.(P"), we conclude that fr determines a element in
¢n—e(PY)(Jy). Proposition 6.3 enables us to associate to this map an element

(fE) € m0(Z20(P°)(Ju)) = mo(Z0(P°)(V)).

Finally, the splitting construction of [FL-1] enables one to obtain from (fg)
elements

(fe) € L'H®(U), 0<t<e. -

In[F-G;2.5], aprojective bundle theoremwas proved in the following form. Let
E bearank e + 1 algebraic vector bundle over asmooth quasi-projectivevariety U
andletp: P(E) — U denoteProj(Sym,, E*) over U. Let c1(Opg) (1)) denotethe
‘first Chern class operator for the canonical linebundle’ Op)(1) on P(E) defined
in terms of intersection with a global section. Then the following is a homotopy
equivalence

PE S (Opm@W) op' [[ Z04i(U) = Zre(P(E).  (65.1)

0<j<e 0<j<e

This result is the key to the construction of further Chern classes in Lawson
homology introduced by O. Gabber and the author in [F-G].
Theorem 5.2 immediately gives us the following cocycle version of (6.5.1).

PROPOSITION 6.5. Assumethat U is smooth. With notation as above,
D toPoD: [[ 2™ (U) = 2™ HP(E))

0<j<e

is a homotopy equivalence, where D~ is a homotopy inverse of D.
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REMARK 6.6. As presented in [F-G], the construction of Chern classes requires
the smoothness of U'. If one could find a direct proof of Proposition 6.5 which did
not use duality and therefore did not require the smoothness of U, then one should
be able to extend that construction to algebraic vector bundles on normal varieties
which are not smoath.

7. Examples

In thisfinal section, we show how known computations of Lawson homology (i.e.,
homotopy groups of cycle spaces) permit computations of homotopy groups of
cocycle spaces. Such computations appear highly non-trivial if one views (using
Prop. 1.9) these cocycle spaces as the naive group completions of Mor(U, ¢, (Y)),
the topological monoid of morphismsfrom U to the Chow monoid ¢,.(Y).

We introduce the following alternate notation for cocycle spaces

Mor(U, Z, (V) = [Mox(U, &, (V)]* = Z,(¥)(U),

in order to emphasize this mapping complex point of view and to compare more
easily with the computations of [FL-2].

We begin by recalling that the homotopy groups of 9ter(U, Z,.(Y')) are merely
the stabilized homotopy groups of 9tor(U, €,.(Y)).

PROPOSITION 7.1. Assumethat U is normal and let Mo (U, ¢,(Y')) denote the
topological abelian monoid of morphismsfromU to ¢,.(Y") with the topology that
of convergence of bounded degree (asin Prop. 1.7). Then

moMor(U, Z,(Y)) = ], T2 momor(U, ¢, (Y)).

For each connected component . € 11, let ¢, ,(Y) (U') denotethe corresponding
connected component of ¢, (Y')(U) and choosesome Z,, € €, (Y )(U). Let {a, }
denote a sequence in which each element of a generating set of II occursinfinitely
often among the «;,,’s and set ag equal to the O-component. Then for any 7 > 0,
m; Mor(U, Z,.(Y)) equals the direct limit of the sequence given by translation
by Za,

— T imor(U ¢ (Y))

) T’Ej<naj
(Zan+) (Za 1)
Ganbly zmor(U, Cry e (Y)) Zenpae

Proof. By Proposition 1.2, it suffices to identify the homotopy groups of
the homotopy-theoretic group completion QB[¢,.(Y)(U)]. The computation of
(B¢, (Y)(U)]) asthe indicated direct limit is givenin [F;2.6]. O
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EXAMPLE 7.2. Asafirst, relatively trivial example, weconsider Mtor(A™, Z,(Y')).
Then the homotopy invariance of Proposition 3.4 enables usto conclude that eval-
uation at 0 € A™ determines a homotopy equivalence

Mor(A™, Z,(Y)) — Z,(Y).
In particular, setting » = 0, we conclude the homotopy equivalence
Mor(A™, Zo(Y)) = [[ K(Hi(Y),4)
by the Dold-Thom theorem. O

EXAMPLE 7.3. We next consider the example of 9oc(A™ — {0}, Z,(Y)). By
Proposition 6.1, we have the following map of fibration sequences

Mor({0}, Z,4m (V) — Mor(A™, Z,(Y)) — Mor(A™ — {0}, Z,(Y))
= D D
ZH-m(Y)

We observe that the map on homotopy groupsinduced by ;5* admits a section, for
theinverse of algebraic suspension ¥™: Z,.(Y) — Z..,,(Y x A™) isgiven by the
Gysin map associated to the regular immersion {1} C A™ which factors through
A™ — {0}. Thus, we conclude that

Zrm(Y x A™) L Z (Y x (AT {0))).

7 Mor(A™ — {0}, Z,(Y)) = 1.2, (V) ® 1i1Z1m(Y).

In particular, we conclude using Proposition 7.1 the existence of interesting
elementsin the homotopy of ¢, (Y')(A™ — {0}) = Mor(A™ — {0}, ¢, (Y')) which
reflect the structure of 2, ,,,(Y). O

EXAMPLE 7.4. By work of Lima-Filho [LF-1], any generalized flag manifold
Y (or more generally, any projective variety Y with a ‘cell decomposition’) has
the property that 7; Z,.(Y") is naturally isomorphic to H; 2, (Y"). Since the product
of varieties with a cell decomposition again has such a decomposition, we can
make explicit computations of homotopy groups of cocycle spaces as follows. Let
X+ C X beaclosed immersion of projective varieties with a cell decomposition
(e.g., a projective embedding of a generalized flag manifold X, in a projective
space X = P™) and let Y also be a projective variety with a cell decomposition.
Set U = X — X .. Then we conclude that Mor(U, Z,.(Y')) has the homotopy type
of Z,1m(U xY). Thus,

7Ti9n0t(U, Z,«(Y)) = H2r+2m+i(X X Y, Xoo X Y)

Once again, by applying Proposition 7.1, we conclude the existence of interesting
elements in the homotopy of Mor(U, €,(Y)). O
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