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Abstract. This paper extends to quasi-projective varieties earlier work by the author and H. Blaine
Lawson concerning spaces of algebraic cocycles on projective varieties. The topological monoid
Cr(Y ) (U) of effective cocycles on a normal, quasi-projective variety U with values in a projective
variety Y consists of algebraic cycles on U � Y equi-dimensional of relative dimension r over U .
A careful choice of topology enables the establishment of various good properties: the definition is
essentially algebraic, the group completionZr(Y ) (U) has ‘sensible’ homotopy groups, the construc-
tion is contravariant with respect toU , covariant with respect to Y , and there is a natural ‘duality map’
to the topological group of cycles onU�Y . The fundamental theorem presented here is the extension
of Friedlander–Lawson duality to this context: the duality map Zr(Y ) (U) ! Zr+m(U � Y ) is a
homotopy equivalence provided that both U and Y are smooth (where m = dimU ). Various appli-
cation are given, especially the determination of the homotopy types of certain topological groups of
algebraic morphisms.
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Introduction

Blaine Lawson and the author introduced algebraic cocycles on complex alge-
braic varieties in [FL-1] and established a duality theorem relating spaces of
algebraic cocycles and spaces of algebraic cycles in [FL-2]. This theorem has
non-trivial (and perhaps surprising) applications in several contexts. In particular,
duality enables computations of ‘algebraic mapping spaces’ consisting of algebra-
ic morphisms. Moreover, duality appears to be an important property in motivic
cohomology/homology (cf. [F-V]).

In this paper, we extend the theory of [FL-1], [FL-2] to quasi-projective varieties.
(Indeed, our duality theorem is an assertion of a natural homotopy equivalence
from cocycle spaces to cycle spaces and thus is a refinement of the duality theorem
of [FL-2] when specialized to projective varieties.) One can view this work as
developing an algebraic bivariant theory for complex quasi-projective varieties
which is closely based on algebraic cycles. On the other hand, one can also view
the resulting spaces of algebraic cocycles as function complexes equipped with a
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128 ERIC M. FRIEDLANDER

natural topology. Thus, the theory of cycle spaces, cocycle spaces, and duality has
both a formal role in providing invariants for algebraic varieties (closely related to
classical invariants and problems as seen in [F-2]) and a more explicit role in the
analysis of heretofore inaccessible function complexes.

Our consideration of quasi-projective varieties enables computations as exem-
plified in Section 7. Many local calculations, useful even for projective varieties,
should now be accessible. Other applications of this theory in the quasi-projective
context can be found in Section 6.

Duality for cocycle and cycle spaces should be viewed as a somewhat sophisti-
cated generalization of the comparison of Cartier and Weil divisors on a (smooth)
variety. From this point of view, one does indeed expect that the theory developed
for projective varieties to extend to quasi-projective varieties. The essential diffi-
culty in providing such an extension is the formulation of a suitable definition of the
topological monoid Cr(Y )(U) of effective cocycles on a normal, quasi-projective
variety U with values in a projective variety Y . On the one hand, these cocycles
should be related by a ‘duality map’ to cycles on the product U � Y ; again, one
wants the group completion of the space of effective cocycles to provide ‘sensible’
homotopy groups; further, one requires that this space be contravariant with respect
toU , covariant with respect to Y . Indeed, one would like that the definition be alge-
braic in nature. As the reader will see, Cr(Y )(U) and its ‘naı̈ve group completion’
Zr(Y )(U) do meet our criteria for a useful working definition.

The defining property of the topological monoid Cr(Y )(U) of effective cocycles
on a normal variety U is that this be the quotient of the monoid of effective
cycles on X � Y equidimensional over U modulo cycles on X1 � Y , where
U � X is a projective closure with complement X1. The formalism of tractable
monoids (introduced by O. Gabber and the author in [F-G]) enables us to work
with this monoid and its group completion. For quasi-projective range V , we
provide a definition of cocycles with values in a pair (Y; Y1), where Y1 � Y
are projective and V = Y � Y1. Of primary interest is the case V = An with
evident compactification Pn. As a consequence of our duality theorem (Thm. 5.4),
we conclude that the space of cocycles on U with values in the pair (Y; Y1) has
homotopy type depending only upon U and V = Y � Y1 provided that U; Y; Y1
satisfy certain smoothness hypotheses. To complete the formalism of cycle spaces,
we also introduce the space of cocycles on U with support in U0 � U .

Basic properties proved in Section 3 include the fundamental ones of covariant
functoriality with respect to Y and contravariant functoriality with respect to U .
Homotopy invariance with respect to bundle projections and a projective bundle
theorem are also proved. As recognized in [FL-1], the cocycle analogue of Law-
son’s ‘algebraic suspension theorem’ of [L] is valid. Mayer–Vietoris sequences
are established which are useful for calculations. Moreover, homotopy groups of
spaces of algebraic cocycles on U naturally map to cohomology groups of U , one
of the original motivating aspects of algebraic cocycles in [FL-1].
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ALGEBRAIC COCYCLES ON PROJECTIVE VARIETIES 129

The duality map D:Zr(Y )(U) ! Zr+m(U � Y ) , m = dimU , is the map on
naı̈ve group completions induced by the natural inclusion of effective cocycles
into effective cycles. We show that this duality map enjoys all the good properties
established in [FL-2] in the case of projective varieties. Our proof of duality (i.e.,
that D is a homotopy equivalence under appropriate hypotheses of smoothness) in
Section 5 follows along the lines of [FL-2]; in particular, the essential ingredient
of the proof of duality is the ‘Moving Lemma for Cycles of Bounded Degree’
established by the author and Blaine Lawson in [FL-3].

We anticipate many applications of duality both for projective and quasi-
projective varieties, a few of which were presented in [FL-2]. In this paper, we
provide evident extensions of those results to quasi-projective varieties as well as
obtain results not heretofore proven even for projective varieties. For example, we
extend the construction of Chern classes given in [FL-1] to algebraic vector bundles
not necessarily generated by their global sections (cf. Rem. 6.4.). The families of
examples presented in Section 7 are a first sampler of computations of non-trivial
homotopy groups of the topological monoids Mor(U;Cr(Y )).

Throughout, X and Y will denote reduced schemes proper over the complex
field C of pure dimension m and n respectively which admit a (Zariski) closed
embedding in some projective space. We shall refer to such schemes X and Y as
projective varieties of dimensionm and n respectively. We shall consider consider
arbitrary Zariski closed subvarietiesX1 � X and Y1 � Y ; thus,X1 and Y1 are
reduced but not necessarily irreducible closed subschemes ofX and Y respectively.
We denote by U � X and V � Y the Zariski open complements of X1 and Y1.
We shall let r; t denote non-negative integers with r 6 n = dimY; t 6 m = dimX .
We shall usually view locally closed algebraic subsets of projective spaces with
their analytic topology and state explicitly when subsets are to be viewed as open
or closed in the Zariski topology.

We recall that an (effective) algebraic r-cycle on a variety Y is a (non-negative)
integral combination of irreducible subvarieties of Y each of dimension r. If
Z =

P
i niVi is such a cycle, its support jZj is the Zariski closed subset

S
i Vi � Y .

Our study involves the consideration of Chow varieties (cf. [S]). In particular, we
shall consider various topological submonoids of the Chow monoid

Cr+m(X � Y )
def
==

a
d

Cr+m;d(X � Y );

where Cr+m;d(X � Y ) is a (Zariski) closed algebraic subset of an appropriate
complex projective space whose points correspond naturally to effective r +m-
cycles on X � Y of degree d (with respect to some unspecified embedding of
X � Y in a projective space).

1. Cocycles on normal varieties

We begin by introducing the monoids which occur in our definition of the cocycle
space Cr(Y )(U). We then summarize the key properties of tractable monoids and
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130 ERIC M. FRIEDLANDER

observe their applicability in our context. The new property we verify is that the
spaces we consider admit the structure of C.W. complexes. We conclude this section
by defining Cr(Y )(U) and identifying its topology.

Consider the incidence correspondence

I � Cr+m(X � Y )� (X � Y )

consisting of triples (Z; x; y) such that (x; y) 2 X�Y lies in the support jZj ofZ .
Consider the composition of this closed embedding and the projection Cr+m(X �

Y )� (X � Y )! Cr+m(X � Y )�X ,

p:I ! Cr+m(X � Y )�X;

and let

pU :IU ! Cr+m(X � Y )� U

denote the restriction of pU above U . We denote by IZ;u the fibre of pU above
(Z; u). By upper semi-continuity of dimension of the fibres of pU ,

W
def
== f(Z; u): dimIu > r + 1g � Cr(X � Y )� U

is a Zariski closed subset of Cr(X � Y ) � U . Let �: Cr+m(X � Y ) � U !

Cr+m(X � Y ) denote the projection and let (�)c denote the operation of taking
complements.

Recall that a subset S of an algebraic variety V is said to be constructible if
it is a finite union of subsets each of which is locally closed in V with respect to
the Zariski topology. If S � V is a constructible subset of a variety V , then the
inclusion S0 � S of a subset of S is said to be a constructible embedding if S0 is
also a constructible subset of V .

DEFINITION 1.1. With notation as above, we define

Er(Y )(U)
def
== �(W)c � Cr+m(X � Y ); (1.1.1)

to be the topological submonoid consisting of those effective r+m-cycles onX�Y
whose restrictions to U � Y are equidimensional over U of relative dimension r.
The embedding of (1.1.1) is constructible, in the sense that it is a disjoint union of
constructible embeddings.

Moreover, the embedding Cr+m(X1 � Y ) � Cr+m(X � Y ) factors through
an embedding

Cr+m(X1 � Y ) � Er(Y )(U) (1.1.2)

which is Zariski closed (in the sense that it is a disjoint union of Zariski closed
embeddings of algebraic varieties).

comp3933.tex; 5/12/1997; 11:37; v.7; p.4

https://doi.org/10.1023/A:1000240504306 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000240504306
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Warning. As used above (and throughout this paper), the terminology of an effective
cycleZ on U �Y equidimensional of relative dimension r overU refers to a cycle
whose fibres above points ofU are either empty or of pure dimension r. In particular,
if U is reducible, then such a cycle need not dominate U even if it does not lie in
Cr+m(X1 � Y ).

We recall that the naı̈ve group completionM+ of an abelian topological monoid
M with the cancellation property is the quotient (with the quotient topology) of
M �M by the equivalence relation consisting of pairs (m1;m2); (n1; n2) with
the property that m1 + n2 = m2 + n1. In general, the relationship between the
algebraic invariants of M and M+ is obscure at best. Moreover, even if M is
algebro-geometric (e.g., the Chow monoid Cr+m(X � Y )), M+ appears to have
no such geometric structure.

Nonetheless, in our context of Chow monoids this construction of näıve group
completion turns out to be quite reasonable. As formalized by O. Gabber and the
author in [F-G], a tractable monoid M has the property that M+ is obtained by
successive push-out diagrams which enables one to identify the homotopy type
of M+ and view it in some sense as algebro-geometric provided that M itself is
algebro-geometric.

With the example of Er(Y )(U) in mind, we now introduce the formalism of
tractability.

DEFINITION 1.2. The action of an abelian topological monoid on a topological
space T is said to be tractable if T is the topological union of inclusions

; = T�1 � T0 � T1 � � � �

such that for each n > 0 Tn�1 � Tn fits into a push-out square of M -equivariant
maps (with R0 empty)

Rn �M - Sn �M

(1:2:1)

Tn�1

?

- Tn;
?

whose upper horizontal arrow is induced by a cofibration Rn � Sn of Hausdorff
spaces. The monoid M itself is said to be tractable if the diagonal action of M on
M �M is tractable.

LEMMA 1.3. Let T be a tractable space for the abelian topological monoid M .
If T has a presentiation as in Definition 1.2 with each Rn � Sn a relative C.W.
complex, then T=M admits the structure of a C.W. complex.

Proof. Since Tn=M fits in the push-out square

Rn � Sn

(1:3:1)

Tn�1=M
?

- Tn=M;
?
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132 ERIC M. FRIEDLANDER

we conclude that Tn�1=M ! Tn=M is a relative C.W. complex and thus an induc-
tion argument immediately implies that Tn=M is a C.W. complex. Consequently,
colimn(Tn=M) is also a C.W. complex.

We conclude that it suffices to verify that the natural continuous bijection

colimn(Tn=M)! (colimnTn)=M = T=M

is a homeomorphism. This follows from the observation that Y � T=M is closed
iff ��1Y � T is closed iff ��1Y \ Tn � Tn is closed for each n iff ��1

n Yn � Tn
is closed for each n iff Yn � Tn=M is closed for each n iff Y � colimn(Tn=M)
is closed (where �:Y ! Y=M; �n:Yn ! Yn=M are the projections and where Yn
equals Y \ Tn=M .) 2

The importance for us of the existence of the structure of a C.W. complex on a
cycle space is the following well known fact (cf. [Sp;7.6.24]).

RECOLLECTION 1.4. Let f :A ! B be a weak homotopy equivalence between
spaces A;B having the homotopy type of C.W. complexes. Then f is a homotopy
equivalence.

IfM is a topological monoid, then we denote byB[M ] its classifying space and
by 
B[M ] the loop space on this classifying space. We recall that 
B[M ], which
we call the homotopy-theoretic group completion, is the usual group completion
considered by topologists (cf. [F-M;appQ]).

The following theorem summarizes the topological consequences of tractability
that we shall require.

THEOREM 1.5. Assume that Er � Cr+m(X � Y )
def
== Cr is a topological sub-

monoid of Cr whose embedding is constructible.

(a) Er is a tractable monoid which admits the structure of a C.W. complex.
(b) The natural homotopy class of maps of H-spaces


 �B[Er]! [Er]
+

is a weak homotopy equivalence.
(c) IfFr � Er is a Zariski closed submonoid, then Er is tractable as aFr-space

and the quotient monoid (with the quotient topology) Er=Fr is also a
tractable monoid admitting the structure of a C.W. complex.

(d) For Fr � Er as in (c), the following is a fibration sequence (i.e., induces a
long exact sequence in homotopy groups) of spaces each of which admits
the structure of a C.W. complex

[Fr]
+ ! [Er]

+ ! [Er=Fr]
+:

Proof. The tractability of Er in (a) is verified in [FL-2;T.3] (which is itself merely a
modification of [FG;1.3]). The fact that Er admits the structure of a C.W. complex
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is an immediate consequence of the triangulation of semi-algebraic sets as proved
in [H-2]. The weak homotopy equivalence of (b) is established in [FL-2;T.4]. The
tractability properties asserted in part (c) are also proved in [FL-2;T.3]; the fact
that Er=Fr admits the structure of a C.W. complex follows from Lemma 1.3 and
the observation that each Rn � Sn in the presentation of Er as a Fr space is a
Zariski closed embedding of constructible spaces and thereby admits the structure
of a relative C.W. complex. This latter fact is a consequence of the following
result proved in the appendix of [Fl]: if Rn � Sn, Sn � Sn � Sn are simplicial
embeddings of finite polyhedra and ifRn = Rn\Sn, thenRn � Sn is a polyhedral
pair. The fact that the sequence in part (d) is a fibration sequence is established in
the proof of [F-G;1.6]. To verify that each of the spaces occurring in this sequence
admits the structure of a C.W. complex, we let M denote any of the tractable
monoids Fr; Er; Er=Fr and apply Lemma 1.3 to the tractable M space M�2 as in
the proof of part (c). 2

In the following definition of effective cocycles, we assume that the quasi-
projective variety U is normal. Indeed, the same definition could be given for any
quasi-projective variety U and Corollary 1.7 and Proposition 1.8 would remain
valid without the hypothesis of normality on U . On the other hand, normality is
needed for Proposition 1.9 and (more importantly) to establish functoriality in
Proposition 3.3.

DEFINITION 1.6. Let U be a normal, quasi-projective variety. We define the
monoid of effective cocycles on U equidimensional of relative dimension r in Y to
be the following quotient monoid (with the quotient topology)

Cr(Y )(U)
def
==

Er(Y )(U)

Cr+m(X1 � Y )
: (1.6.1)

We define the topological abelian group of cocycles on U equidimensional of
relative dimension r in Y to be the naı̈ve group completion of Cr(Y )(U),

Zr(Y )(U)
def
== [Cr(Y )(U)]

+: (1.6.2)

Theorem 1.5 immediately provides the following corollary which shows that
Definition 1.6 agrees with the definitions of [FL-1] and [FL-2] for the special case
in which U equals the projective variety X .

COROLLARY 1.7. As in (1.4), let U be a normal, quasi-projective variety. The
natural map Cr(Y )(U) ! 
 � BCr(Y )(U) determines a weak homotopy equiva-
lence


 �B[Cr(Y )(U)]! Zr(Y )(U): (1.7.1)

Moreover, the following sequence of topological abelian groups is a fibration
sequence

Zr+m(X1 � Y )! [Er(Y )(U)]
+ ! Zr(Y )(U): (1.7.2)
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We recall (cf. [LF-2], [F-G]) that the monoid of effective cocycles on U � Y is
defined as the quotient (with the quotient topology)

Cr+m(U � Y )
def
==

Cr+m(X � Y )

Cr(X1 � Y )
:

PROPOSITION 1.8. Let U be a normal, quasi-projective variety. The topological
embedding (1.1.1) induces a topological embedding

Cr(Y )(U) � Cr+m(U � Y ): (1.8.1)

In particular, the homeomorphism type of Cr(Y )(U) is independent of the choice
of projective closure U � X .

Proof. Since Er(Y )(X) � Cr+m(X � Y ) is saturated for Cr+m(X1� Y ) and
since Cr+m(X1 � Y ) is closed in Cr+m(X � Y ) and thus also in Er(Y )(X), we
conclude easily that (1.8.1) is a topological embedding.

The second assertion follows from the fact that the homeomorphism type of
Cr+m(U � Y ) is independent of projective closure U � X as shown in [LF- ] and
[F-G]. 2

In [FL-1], Lawson and the author considered ‘continuous algebraic maps’ (i.e.,
morphisms from the weak normalization of the domain) from a quasi-projective
variety U to the Chow monoid Cr(Y ). Since we restrict our attention to normal
varieties U , such maps are always morphisms. We recall from [F-1] that any
morphism f :U ! Cr(Y ) admits a ‘graph’ Zf � U � Y and that Zf 6= Zg
whenever f 6= g. (The graph Zf can be defined as the Zariski closure in U � Y
of the effective cycle on YSpecK associated to the restriction of f to the generic
point SpecK 2 U .) Moreover, sending a morphism f to its graph is a bijection
whenever U is normal: this is shown in [FL-1;1.5], where proof of bijectivity is
local and thus applies to quasi-projective U .

The following characterization of the topology on Cr(Y )(U) is verified in
Appendix C of [FL-2].

PROPOSITION 1.9. [FL-2;C.3]. Let Mor(U;Cr(Y )) denote the abelian monoid of
morphisms from a normal, quasi-projective varietyU to Cr(Y ). Thus, the graphing
construction

G:Mor(U;Cr(Y ))
�=
�! Cr(Y )(U)

is an isomorphism. Then the topology on Mor(U;Cr(Y )) inherited from that on
Cr(Y )(U) via G is characterized by the following property: a sequence ffn;n 2
Ng �Mor(U;Cr(Y )) converges for this topology if and only if

(i) ffn;n 2 Ng converges when viewed in Homcont(U;Cr(Y )) provided with the
compact-open topology.
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(ii) The associated sequencefZn;n 2 Ng � Cr(Y )(U) of graphs has the property
that for some locally closed Zariski embeddingU�Y � PN , there is a positive
integer E such that each Zn has closure �Zn � PN of degree 6 E.

We call this topology on Mor(U;Cr(Y )) inherited from that of Cr(Y )(U) the
topology of convergence with bounded degree.

REMARK 1.10. There are several other definitions of the space of cocycles on
U with values in Y which come readily to mind but which appear to us to be less
useful.

(a) If one considered the monoid of effective cocycles to be Mor(U;Cr(Y ))
for U not normal, then it would be difficult to identify this as an accessible
submonoid of Cr+m(U � Y ). Even for U normal, if one were to define the
monoid of effective cocycles to be Mor(U;Cr(Y )) with the compact-open
topology (as suggested in [FL-1]), Proposition 1.7 tells us that we would fail
to have a continuous map to Cr+m(U � Y ) which we require for duality.

(b) Another possible approach is to define effective cocycles on U with values
in Y as a quotient of effective cocycles on X with values on Y , for the
latter is well understood thanks to [FL-2]. This definition has the strong
disadvantage that it depends (even as a discrete monoid) upon the choice of
projective closure U � X .

(c) A third alternative is to retain our definition of effective cocycle on U with
values in Y but to define the topological abelian group of all cocycles on U
with values in Y as the subgroup of Zr+m(U � Y ) generated by Cr(Y )(U).
One has a continuous bijection from Zr(Y )(U) to this subgroup, but this
bijection is not a homeomorphism. This formulation suffers from the fact that
its algebraic invariants have no evident relationship to those of Cr(Y )(U).

2. Relative cocycles and cocycles with support

In this section, we define the topological abelian group of algebraic cocycles on
U with values in a pair (Y; Y1). This is to be viewed as our approximation of
a suitable definition of cocycles on U with values in the quasi-projective variety
V = Y �Y1. A special case of particular interest is the pair (Pt;Pt�1). To complete
the formalism, we also define cocycles with support.

We remind the reader that Y is assumed to be projective (i.e., to admit a Zariski
closed embedding in some projective space) and Y1 � Y is a Zariski closed
embedding. Throughout this section, the quasi-projective variety U is assumed to
be normal.

DEFINITION 2.1. We define the topological submonoid Fr(Y1)(U) by

Fr(Y1)(U)
def
== Er(Y1)(U) + Cr+m(X1 � Y ) � Er(Y )(U):
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We define the topological monoidCr(Y nY1)(U) of effective algebraic cocycles
on U equidimensional of relative dimension r in (Y; Y1) by

Cr(Y nY1)(U)
def
==

Er(Y )(U)

Fr(Y1)(U)
: (2.1.1)

We define the topological abelian group Zr(Y nY1)(U) to be the naı̈ve group
completion of Cr(Y nY1)(U),

Zr(Y nY1)(U)
def
== [Cr(Y nY1)(U)]

+: (2.1.2)

Theorem 1.5 easily implies the following properties of our definition of relative
cocycles.

PROPOSITION 2.2. The topological monoid Cr(Y nY1)(U) of (2.1.1) is also giv-
en as the following quotient

Cr(Y nY1)(U) =
Cr(Y )(U)

Cr(Y1)(U)
:

The natural map


 �B[Cr(Y nY1)(U)]! Zr(Y nY1)(U)

is a weak homotopy equivalence.
Furthermore, the following localization sequence of topological abelian groups

Zr(Y1)(U)! Zr(Y )(U)! Zr(Y nY1)(U)

is a fibration sequence.
Proof. The equality

Er(Y )(U)

Fr(Y1)(U)
=

Cr(Y )(U)

Cr(Y1)(U)

is verified by inspection.
Since addition in Er(Y )(U) is a proper map (the restriction of addition in

Cr+m(X � Y )) and since both Er(Y1)(U) � Er(Y )(U) and Cr+m(X1 � Y ) �
Er(Y )(U) are Zariski closed, we conclude that Fr(Y1)(U) � Er(Y )(U) is also
Zariski closed. Thus, the fact that

Zr(Y nY1)(U)! 
 � B[Cr(Y nY1)(U)]

is a weak homotopy equivalence follows from Theorem 1.5.
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Consider the following diagram

[Cr+m(X1 � Y )]+ - [Fr(Y1)(U)]
+

- Zr(Y1)(U)

[Cr+m(X1 � Y )]+

=
?

- [Er(Y )(U)]
+

?

- Zr(Y )(U)
?

�
?

- Zr(Y nY1)(U)
?

- Q;
?

where Q is the homotopy fibre of B[Zr(Y1)(U)]!B[Zr(Y )(U)], the delooping
of the upper right vertical map. Each of the columns and the upper two rows of
this diagram are fibration sequences. We conclude by the ‘3 � 3 Lemma’ that
Zr(Y nY1)(U) ! Q is a homotopy equivalence, thereby implying the asserted
fibration sequence. 2

REMARK 2.3. One could define Cr(V )(U) as the topological submonoid of
Cr+m(U � V ) consisting of equidimensional cycles, thereby giving a definition
which depends only upon U; V , but not upon the projective closure Y . However,
such a definition would not appear to have good properties (e.g., functoriality,
comparison with the naı̈ve group completion and homotopy-theoretic group com-
pletion, fibration sequences), in view of the fact that the natural map

Cr(Y nY1)(U)! Cr+m(U � V ); V = Y � Y1

is a continuous monomorphism but not necessarily a topological embedding.
For example, we can take X = P1 = U and Y1 to be some point 1 2 P1.

Consider the cycles Zn in P1 � P1 given by the equations y = x=n in the affine
chart A1 �A1. Then the sequence fWn = Zn+1 �Zng converges in Z1(A1 � P1)
to the graph of the function which is everywhere 0 on P1. On the other hand, the
sequence fWng does not converge in

Z0(P1nf0g)(P1) =

"
C0(P1)(P1)

C0(P1)(f0g)

#+

since each of the sequences fZng; fZn+1g converges to P1 � f0g + f1g � P1

which does not lie in C0(P1)(P1).

Proposition 2.2 implies that the following definition of Zt(U) generalizes to
quasi-projectiveU the definition of algebraic cocycle spaces given in [FL1], [FL-2].
As we shall see, these spaces for U smooth are homotopy equivalent to correspond-
ing cycle spaces. This is one justification of our view of Zt(U) as the contravariant
aspect of the bivariant Zr(Y )(U).

Recall that t is a non-negative integer 6 dimX = dimU .

comp3933.tex; 5/12/1997; 11:37; v.7; p.11

https://doi.org/10.1023/A:1000240504306 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000240504306


138 ERIC M. FRIEDLANDER

DEFINITION 2.4. We define the topological abelian group of t-cocycles on X to
be

Zt(U)
def
== Z0(PtnPt�1)(U):

For the sake of completeness, we introduce the following definition of the space
of cocycles on U with supports in a closed subvariety U0 � U . Taking homotopy
groups gives a definition of cohomology groups with support, leading to a theory
satisfying most of the properties of a ‘Bloch–Ogus’ theory (cf. [B-O]). Indeed, the
one property that we lack is a version of Poincaré duality which involves a pairing
of cycle spaces (rather than our formulation of duality given in Sect. 5).

DEFINITION 2.5. Let U0 � U be a closed subvariety of the quasi-projective
variety U . Then we define the topological abelian group of codimension t cocycles
on U supported on U0 by

Zt
U0
(U) � htyfibfZt(U)! Zt(U � U0)g:

REMARK 2.6. Although we shall rarely explicitly discuss Zt
U0
(U), our duality

theorems provide some understanding of these spaces. For example, Proposition
6.1 in conjunction with Remark 4.4 implies the existence of a homotopy equivalence

Zt
U0
(U) �= Zt(U0);

provided that U0 � U is a closed immersion of smooth varieties. More generally,
if we know only that U is smooth, then Theorem 5.2 implies that the duality map
induces a homotopy equivalence

Zt
U0
(U)

�=
�! Zm�t(U0):

One can view this homotopy equivalence as a form of Alexander Duality.

3. Basic properties

In this section, we prove some basic properties of our topological abelian groups
of algebraic cocycles. The primary one is functoriality. Another is the existence of
a natural map to singular cohomology. We also show that the algebraic suspension
theorem, first proved for cycle spaces by Lawson in [L] and subsequently for
cocycle spaces in the context of projective varieties in [FL-1], remains valid for
cocycles on a quasi-projective variety U . We conclude this section with a Mayer-
Vietoris fibration sequence. Once again, throughout this section U will denote a
normal quasi-projective variety of dimensionm embedded as a Zariski open subset
in the projective variety X .
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PROPOSITION 3.1. Let f :Y ! Y 0 be a morphism of projective varieties. Then
proper push-forward of cycles via 1� f :U �Y ! U �Y 0 determines continuous
homomorphisms

f�:Cr(Y )(U)! Cr(Y
0)(U); f�:Zr(Y )(U)! Zr(Y

0)(U):

Moreover, if f restricts to Y1 ! Y 0
1, then push forward of cycles determines

continuous homomorphisms on relative cocycle spaces

f�:Cr(Y nY1)(U)! Cr(Y
0nY 0

1)(U);

f�:Zr(Y nY1)(U)! Zr(Y
0nY 0

1)(U):

Proof. We recall that (1�f)�: Cr+m(X�Y )! Cr+m(X�Y 0) is a continuous
algebraic map (cf. [F]). Since this clearly restricts to (1� f)�: Cr+m(X1� Y )!
Cr+m(X1 � Y 0), we obtain

(1� f)�: Cr+m(U � Y )! Cr+m(U � Y 0): (3.1.1)

Moreover, if Z � U �Y is an irreducible cycle equidimensional overU of relative
dimension r, then (1 � f)�(Z) restricted to some irreducible component of U is
either 0 (because the dimension of (1 � f)(U) is < r +m) or has fibres which
are generically of dimension r over U . By the upper semi-continuity of dimension
of the fibres of (1 � f)(Z) ! U , we conclude that (1 � f)�(Z) in this latter
case is equidimensional of relative dimension r over U . Thus, (3.1.1) restricts to
f�:Cr(Y )(U) ! Cr(Y

0)(U) which determines f�:Zr(Y )(U) ! Zr(Y
0)(U) via

naı̈ve group completion.
The map on spaces of effective relative cocycles is merely the quotient of the

map f� constructed above; this being well defined by naturality. Finally, the map
on topological abelian groups of relative cocycles is the group completion of this
map. 2

The following lemma shows that even though Chow varieties do not represent
families of cycles (and, in particular, there is no universal family of cycles on Chow
varieties), they do provide a sort of universality for the coarser context of supports
of cycles.

LEMMA 3.2. Let Ir;d � Cr;d(Y ) � Y denote the incidence correspondence con-
sisting of pairs (Z; y) with y 2 jZj. If f :U ! Cr;d(Y ) is any morphism, then the
support of the graph Zf of f is given by

jZf j = U �Cr;d(Y ) Ir;d:

Proof. We recall here that Zf is defined as follows: for each generic point
�: SpecK ! U , letZ� =

P
njV�;j denote the cycle on YK with Chow point f(�);

let �V�;j � U � Y denote the closure of V�;j ; then we define

Zf
def
==

X
�

X
j

nj �V�;j :
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Since Ir;d � Cr;d(Y )�Y is Zariski closed, the equality j �V�;j j = jV�;j j immediately
implies the inclusion

jZf j � U �Cr;d(Y )
Ir;d:

To prove the reverse inclusion, it suffices to show for any u 2 U that jZf(u)j �
jZf j. Since u is the specialization of some generic point �, there exists a smooth
curve C and a map g:C ! U sending the generic point 
 to � and sending some
closed point c 2 C to u. Then the graph of f � g, Zf�g, is flat over C and has the
property that the cycle associated to the scheme theoretic fibre of Zf�g above any
point of C is the cycle Zf�g(c) (i.e., the cycle with Chow point f � g(c)) [F;1.3].
In particular, we conclude that jZf�g(c)j lies in the closure of jZf�g(
)j (which
equals all of jZf�gj). This implies that jZf�g(c)j = jZf(u)j lies in the closure of
jZf�g(�)j = jZf(�)j as required. 2

Using Lemma 3.2, we now establish the contravariant functoriality of Cr(Y )(U)
with respect to U . The reader is referred to [S-V] for a proof of functoriality for
normal varieties over general fields (requiring the mastery of technicalities arising
from purely inseparable extensions).

PROPOSITION 3.3. Let g:U 0 ! U be a morphism (of normal quasi-projective
varieties). Then composition with g determines continuous homomorphisms

g�: Cr(Y )(U)! Cr(Y )(U
0); g�:Zr(Y )(U)! Zr(Y )(U

0):

If g is a regular closed immersion of codimension c, then g� is the restriction
of the intersection-theoretic pull-back g!:Zr+m(U � Y ) ! Zr+m�c(U

0 � Y )
(cf. [Fu]).

Moreover, for Y1 � Y a closed subvariety, g� induces

g�: Cr(Y nY1)(U)! Cr(Y nY1)(U
0);

g�:Zr(Y nY1)(U)! Zr(Y nY1)(U
0):

Proof. Composition with g determines a continuous homomorphism of mapping
spaces with the compact-open topology

Homcont(U;Cr(Y ))! Homcont(U
0;Cr(Y )):

Using Proposition 1.9, we conclude that to prove the continuity of g� it suffices to
prove the following

if ffn:U ! Cr(Y )g is a sequence of maps whose graphs fZng have closures in
some PN of bounded degree, then the graphs fZ 0ng associated to ffn � gg likewise
have closures of bounded degree.
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Choose projective closures U � X;U 0 � X 0 together with a map ~g:X 0 ! X
extending g. Let �Zn denote the closure inX�Y ofZn. By Lemma 3.2,X 0�X j �Znj
is the closure in X 0 � Y of the support jZ 0nj of Z 0n. Granted that the degrees of �Zn
are bounded, we conclude that the sum of the multiplicities of the components of
Zn and thus also of Z 0n are bounded. Hence, it suffices to prove that the degrees of
irreducible components of X 0 �X j �Znj � X 0 � Y are bounded. We conclude that
it suffices to prove that whenever fVng is a sequence of irreducible subvarieties of
X�Y of bounded degree then fVn�X X 0g is also a sequence of bounded degree.
We can further reduce the problem to the assertion that for any d > 0 there exists
some nd such that every irreducible cycle V onX�Y of degree d has the property
that the degree of V �X X 0 has degree bounded by nd.

We consider the family (parametrized by an open subset U of Cm+r;d(X �Y ))
of all irreducible cycles on X � Y of degree d. Pull-back via ~g � 1 gives us a
family fV 0

u;u 2 Ug of subvarieties of X 0 � Y parametrized by U . This family is
flat when restricted to some open dense subset U1 � U and hence fV 0

u;u 2 U1g is
a family of constant degree. Similarly, there is an open dense subsetU2 of U �U1

such that this family is flat when restricted to U2 and hence fV 0
u;u 2 U2g is a

family of constant degree. Since U is finite dimensional, this process (‘noetherian
induction’) eventually stops so that we conclude that the degrees of fV 0

u;u 2 Ug
are bounded.

If g:U 0 ! U is a regular closed immersion, then we may apply [F-M;3.2] which
asserts that the intersection-theoretic pull-back g! constructed in [Fu] is given on
effective cocycles by composition with g. Thus, g� = g!.

It is now evident that g� so defined as composition with g restricts to
g�:Cr(Y1)(U) ! Cr(Y1)(U

0) and therefore induces a map on quotient monoids
g�:Cr(Y nY1)(U)! Cr(Y nY1)(U

0) and their naı̈ve group completions. 2

As demonstrated in [FL-1], the homotopy groups of the cocycle spaces naturally
map to singular cohomology. We verify that this map remains well defined with
the definition of cocycle spaces Zr(Y nY1)(U) given in Section 2.

PROPOSITION 3.4. There is a natural map

�:Zr(Y nY1)(U)! Homcont(U;Zr(V )); V = Y � Y1:

In the special case (Y; Y1) = (Pt;Pt�1) and r = 0, this map

�:Zt(U)! Homcont(U;Z0(At))

induces on jth homotopy groups �j a map of the form

��:L
tH2t�j(U)

def
== �j(Z

t(U))! H2t�j(U): (3.4.1)

Proof. Proposition 1.9 implies that the natural inclusion

Cr(Y )(U)! Homcont(U;Cr(Y ))
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is continuous, thereby inducing

Cr(Y )(U)! Homcont(U;Zr(Y )):

The naturality of this map when applied to Y1 ! Y implies that this induces

Cr(Y nY1)(U)! Homcont(U;Zr(V ));

since Zr(V ) = Zr(Y )=Zr(Y1). The naı̈ve group completion of this last map
provides the asserted map �.

The second assertion follows from the observation that Z0(At) is a model for
the Eilenberg–MacLane space K(Z; 2t). 2

We next verify the homotopy invariance of Zr(Y )(U) with respect to U .
Unfortunately, the proof does not apply to prove the more general assertion
that p�:Zr(Y )(U) ! Zr(Y )(E) is a homotopy equivalence for any affine tor-
sor p:E ! U . Using the duality theorem, this more general assertion is proved for
U smooth in Proposition 6.3.

PROPOSITION 3.5. As usual, asssume that U 0; U are normal and consider an
algebraic homotopyG:U 0�A1 ! U relating two morphisms g; g0:U 0 ! U . Then
G induces a continuous homotopy

GZ :Zr(Y )(U) �A1 ! Zr(Y )(U
0)

relating g�; g0�:Zr(Y )(U)! Zr(Y )(U
0).

Consequently, if p:E ! U is the projection of an algebraic vector bundle, then
p�:Zr(Y )(U)! Zr(Y )(E) is a homotopy equivalence.

Proof. We define GZ as the composition

Zr(Y )(U)� A1 G��1
- Zr(Y )(U

0 �A1)� A1 ev
- Zr(Y )(U

0):

To verify that GZ is continuous, it suffices to prove that the evaluation map ev
is continuous. Since U 0 � ftg � U 0 � A1 is a regular immersion, evaluation at t
has the effect on a cycle Z 2 Zr(Y )(U

0 � A1) of sending Z to its intersection
theoretic fibre above t; in particular, effective cocycles of some bounded degree
on U 0 � A1 � Y are sent via evaluation at t to effective cocycles of bounded
degree on U 0 � Y . Consequently, Proposition 1.9 and the well-behaved nature of
the compact-open topology with respect to evaluation imply that ev is continuous.

If p:E ! U is the bundle projection of an algebraic vector bundle, then clearly
p admits an algebraic homotopy E � A1 ! E relating the identity to o � p, where
o denotes the 0-section o:U ! E. 2
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REMARK 3.6. A suitably general homotopy invariance property would follow
from the verification that wheneverU is written as a union of Zariski open subsets
U1; U2 the following triple

Mor(U;Cr(Y ))!Mor(U1;Cr(Y ))�Mor(U2;Cr(Y ))

!Mor(U1 \ U2;Cr(Y ))

determines upon naı̈ve group completion a distinguished triangle in the derived
category (and hence a Mayer–Vietoris exact sequence). Our present techniques
fail to prove such a result for several reasons. First, this triple is not a short exact
sequence of topological monoids. Second, it is not clear that the required tractability
condition for this triple is valid.

We recall that one of fundamental properties of cycles spaces is the algebraic
suspension theorem proved by Lawson in [L]. This theorem asserts that sending
a cycle Z on a projective variety Y to its ‘algebraic suspension’ =�(Z) on the
algebraic suspension =�(Y ) of Y induces a weak homotopy equivalence

=�:Zr(Y )! Zr+1( =�(Y )): (3.6.1)

This theorem was extended to cocycle spaces in [FL-1;3.3] (see also [FL-2;1.7]):
relative algebraic suspension =�X induces a weak homotopy equivalence

=�X :Zr(Y )(X)! Zr+1( =�Y )(X): (3.6.2)

By Recollection 1.4 and Theorem 1.5, (3.6.1) and (3.6.2) are in fact homotopy
equivalences.

We now verify that this algebraic suspension theorem extends to the quasi-
projective context.

PROPOSITION 3.7. Relative algebraic suspension =�U :Cr(Y )(U) ! Cr+1( =�Y )
(U) induces a homotopy equivalence

=�U :Zr(Y )(U)! Zr+1( =�Y )(U): (3.7.1)

Moreover, if Y1 � Y is a closed subvariety, then =�U induces a homotopy
equivalence

=�U :Zr(Y nY1)(U)! Zr+1( =�Y n =�Y1)(U): (3.7.2)

Proof. The proof of [FL-1;3.3] applies to prove that

=�U : Er(Y )(U)! Er+1( =�Y )(U)

induces a weak homotopy equivalence on homotopy-theoretic group completions

=�U :
 �B[Er(Y )(U)]! 
 � B[Er+1( =�Y )(U)];
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for the argument only involves algebraic suspension in the second factor of cycles
on U � Y and explicitly permits the first factor to be quasi-projective. Moreover,
this weak homotopy equivalence restricts to the weak homotopy equivalence

=�X1:
 � B[Cr+m(X1 � Y )]! 
 �B[Cr+m(X1 � =�Y )]:

Thus, Corollary 1.7 enables us to conclude that

=�U :Zr(Y )(U)! Zr+1( =�Y )(U)

is also a weak homotopy equivalence; Recollection 1.4 and Theorem 1.4 now imply
that this map is a homotopy equivalence.

Using the first assertion in conjunction with the fibration sequence of Corollary
1.7, the second assertion follows by the 5-Lemma. 2

The following Mayer–Vietoris fibration sequence with respect to the covariant
argument Y is an elementary consequence of our definitions and Theorem 1.5.

PROPOSITION 3.8. Assume that Y can be written as a union of closed subvari-
eties, Y = Y1[Y2. Let i1:Y1 ! Y; j1:Y1\Y2 ! Y1 denote the closed immersions
and let i2; j2 denote the corresponding closed immersions for Y2. Then the short
exact sequences of abelian topological monoids

0 ! Cr(Y1 \ Y2)(U)
j1��j2�

- Cr(Y1)(U)� Cr(Y2)(U)

i1��i2�
- Cr(Y )(U)! 0;

0 ! Cr+m(U � (Y1 \ Y2))
j1��j2�

- Cr+m(U � Y1)� Cr+m(U � Y2)

i1��i2�
- Cr+m(U � Y )! 0;

determine by naı̈ve group completion the following fibration sequences

Zr(Y1 \ Y2)(U)! Zr(Y1)(U)�Zr(Y2)(U)! Zr(Y )(U); (3.8.1)

Zr+m(U � (Y1 \ Y2))! Zr+m(U � Y1)�Zr+m(U � Y2)

! Zr+m(U � Y ): (3.8.2)

Proof. The short exact sequences follow from the evident observation that an
irreducible cocycle in Cr(Y )(U) (respectively, an irreducible cycle in Cr+m(U �

Y )) lies in the image of either Cr(Y1)(U) or Cr(Y2)(U) (resp., Cr+m(U � Y1) or
Cr+m(U � Y2)). We observe that j1� � j2� is a closed immersion, for it is the
restriction to Cr(Y1)(U)� Cr(Y2)(U) (resp., Cr+m(U � Y1)� Cr+m(U � Y2)) of
the closed immersion

Cr+m(X � (Y1 \ Y2))! Cr+m(X � Y1)� Cr+m(X � Y2):
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Thus, the fact that (3.6.1) and (3.6.2) are fibration sequences follows from
Theorem 1.5. 2

4. Duality map

This section defines our duality map from spaces of cocycles to spaces of cycles
and verifies that this map is compatible with various constructions. Many of these
verifications are little different than those of [FL-2], so that we can refer to proofs
given there; on the other hand, the more delicate nature of functoriality in the
quasi-projective case requires alternate proofs of various compatibility properties.

We retain our notational conventions, including the consideration of a Zariski
open subvariety V � Y with not necessarily irreducible complement Y1 � Y . As
in previous sections,U will denote a normal quasi-projective variety with projective
closure U � X .

DEFINITION 4.1. We define the duality map

D:Zr(Y )(U)! Zr+m(U � Y ) (4.1.1)

to be the map on naı̈ve group completions induced by (1.8.1).
For any closed subvariety Y1 � Y , we define

D:Zr(Y nY1)(U)! Zr+m(U � V ); V = Y � Y1 (4.1.2)

to be the map on naı̈ve group completions induced by the following map defined
as a quotient (cf. Prop. 2.2)

Cr(Y nY1)(U) �
Cr(Y )(U)

Cr(Y1)(U)
! Cr(U � V ) �

Cr(U � Y )

Cr(U � Y1)

of maps of the form (1.8.1).

For any t 6m, we define the duality map

D:Zt(U)! Zm�t(U) (4.1.3)

as the homotopy class of maps given by the composition of D:Zt(U) � Z0(Pt=
Pt�1)(U)! Zm(U �At) and a homotopy inverse of the natural homotopy equiv-
alence Zm�t(U) ! Zm(U � At). (Observe that this map is only well defined up
to homotopy).

In the following proposition, we verify that the duality map D of (4.1.1) is
natural with respect to functorial constructions on cycles and cocycles.
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PROPOSITION 4.2. Let f :Y ! Y 0 be a morphism of projective algebraic vari-
eties. Then the continuous homomorphism f�:Zr(Y )(U)! Zr(Y

0)(U) of Propo-
sition 3.1 fits in the following commutative square

Zr(Y )(U)
D
- Zr+m(U � Y )

(4:2:1)

Zr(Y
0)(U)

f�
?

D
- Zr+m(U � Y 0):

?

(1�f)�

Let g: ~Y ! Y be a flat map of projective varieties of relative dimension k. Then
g induces a continuous homomorphism

g�:Zr(Y )(U)! Zr+k( ~Y )(U);

which fits in the following commutative square

Zr(Y )(U)
D
- Zr+m(U � Y )

(4:2:2)

Zr+k( ~Y )(U)

g�

?

D
- Zr+m+k(U � ~Y ):

?

(g�1)�

Let h: ~U ! U be a flat morphism of relative dimension e between (quasi-
projective, normal) varieties. Then

h�:Zr(Y )(U)! Zr(Y )( ~U )

fits in the following commutative square

Zr(Y )(U)
D
- Zr+m(U � Y )

(4:2:3)

Zr(Y )( ~U )

h�

?

D
- Zr+m+e( ~U � Y ):

?

(h�1)�

Let i:U0 ! U be a regular closed immersion of codimension c of normal
quasi-projective varieties. Then

i�:Zr(Y )(U)! Zr(Y )(U0)

fits in the following homotopy commutative square

Zr(Y )(U)
D
- Zr+m(U � Y )

(4:2:4)

Zr(Y )(U0)

i�

?

D
- Zr+m�c(U0 � Y );

?

(i�1)!

where (1 � i)! is the Gysin map of [F-G] (well defined up to homotopy).
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Proof. The commutativity of (4.2.1) follows immediately from the fact that f�
is induced by (1� f�).

To exhibit g� fitting in the commutative diagram (4.2.2), it suffices to observe
that

(g � 1)�: Cr+m(U � Y )! Cr+m+k(U � ~Y )

is a continuous algebraic map and restricts to Cr(Y )(U)! Cr( ~Y )(U). The conti-
nuity is proved in [F-G;1.5ff], whereas the property of restriction is evident.

To verify the commutativity of (4.2.3), we must show the following: if Z �

U � Y is an irreducible cycle equidimensional over U and corresponding to a map
j:U ! Cr(Y ), then (h � 1)�(Z) equals the cycle Zj�h corresponding to the map
j �h: ~U ! Cr(Y

0). This is verified by observing that the restrictions of (h�1)�(Z)
and Zj�h to Spec(K 0)� Y 0 are equal, where Spec(K)! U is a generic point.

As verified in [F-G;3.4], the Gysin map

(i� 1)!: Cr+m(U � Y )! Cr+m�c(U0 � Y )

can be represented (in the derived category, thus up to homotopy equivalence
between spaces having the homotopy type of C.W. complexes) by intersection
with U0 �Y on the submonoid Cr+m(U � Y ;U0 � Y ) of those cycles which meet
U�Y0 properly. Clearly,Cr(Y )(U) � Cr+m(U�Y ;U0�Y ). On the other hand, by
[F-M;3.2] the homomorphism i�: Cr(Y )(U) ! Cr(Y )(U0) given by intersection
with U0 �Y equals that given sending a cycle represented by j:U ! Cr(Y ) to the
cycle represented by j � i:U0 ! Cr(Y ). 2

We state without proof the following relative version of Proposition 4.2 for the
duality map D of (4.1.2) and its special case given in (4.1.3).

PROPOSITION 4.3. The relative versions of the commutative squares (4.2.1),
(4.2.2), (4.2.3), and the homotopy commutative square (4.2.4) remain valid pro-
vided that one replaces Y by Y nY1 in the left-hand sides of these squares and by
V = Y � Y1 in the right-hand sides. In particular, we have the following special
cases of these relative versions of (4.2.3) and (4.2.4).

If h: ~U ! U is a flat morphism of relative dimension e, then the following
square commutes up to homotopy

Zt(U)
D
- Zm�t(U)

(4:3:1)

Zt( ~U)

h�

?

D
- Zm+e�t( ~U ):

?

(h�1)�
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If i:U0 ! U is a regular closed immersion of codimension c, then the following
square commutes up to homotopy

Zt(U)
D
- Zm�t(U)

(4:3:2)

Zt(U0)

i�

?

D
- Zm�t�c(U0):

?

(i�1)!

REMARK 4.4. For any t 6 m and any closed subvariety U0 � U , one can define
a duality map

D:Zt
U0
(U)! Zm�t(U0) (4.4.1)

as follows. We consider the following commutative diagram

Zt
U0
(U) - Zt(U)

j�
- Zt(U � U0)

(4:4:2)

Zm�t(U0) - Zm�t(U)

D

?

j�
- Zm�t(U � U0);

?

D

where j:U � U0 ! U is the Zariski open complement of U0 � U . In view of
the facts that Zt

U0
(U) = htyfibfZt(U) ! Zt(U � U0)g, that Zm�t(U0) admits a

natural equivalence to the homotopy fibre ofZm�t(U)! Zm�t(U �U0), and that
the square of (4.4.2) is commutative, we conclude that there is a natural homotopy
class of maps as in (4.4.1) induced by (4.4.2). This map extends (4.4.2) to a map
of fibration sequences.

We next proceed to exhibit a Gysin morphism on cocycles with respect to a
regular embedding ":Y0 ! Y . Essentially, we show that the Gysin map constructed
in [F-G] on cycle spaces for a regular immersion ":T0 ! T restricts to a map on
cocycle spaces. To carry out this argument, we require the fundamental ingredient
of our duality theorem (namely, Prop. 5.1 of the next section), so that smoothness
conditions are required.

THEOREM 4.5 (cf. [FL-2;2.4]). Let ":Y0 ! Y be a closed immersion of codi-
mension e of smooth, projective varieties and assume that U is also smooth. Then
there is a natural homotopy class of maps

"!:Zr(Y )(U)! Zr�e(Y0)(U);

which fits in the following homotopy commutative diagram

Zr(Y )(U)
D
- Zr+m(U � Y )

(4:5:1)

Zr�e(Y0)(U)

"!

?

D
- Zr+m�e(U � Y0):

?

(1�")!
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Moreover, if Y1 meets Y0 properly and if V0 denotes the Zariski open comple-
ment of Y1 = Y0 \ Y1, then "! admits a relative version

"!:Zr(Y nY1)(U)! Zr�e(Y0nY1)(U)

which fits in the following homotopy commutative diagram

Zr(Y nY1)(U)
D
- Zr+m(U � V )

(4:5:2)

Zr�e(Y0nY1)(U)

"!

?

D
- Zr+m�e(U � V0):

?

(1�")!

Proof. We define

Er(Y ;Y0)(U) � Er(Y )(U) (4.5.3)

to be the submonoid of those effective r +m-cycles on X � Y which intersect
X�Y0 properly and whose restrictions to U �Y;U �Y0 are equidimensional over
U . To verify that (4.5.3) is a constructible embedding, we proceed as follows. We
first argue as for Definition 1.1, using the upper semi-continuity of the fibres of the
projection

J \ [Er(Y )(U)� (X � Y0)]! Er(Y )(U);

where J � Cr+m(X � Y ) � (X � Y0) consists of those (Z; x; y) such that
x; y 2 jZj \ (X � Y0). Thereby obtaining 0Er(Y )(U) � Er(Y )(U) consisting of
cocycles on U intersecting X � Y0 properly. We then apply the same argument to
the projection

J \ [0Er(Y )(U)� (U � Y0)]!
0Er(Y )(U) � U:

SinceCr+m(X1�Y ) � Er(Y )(U) is a Zariski closed immersion, so isCr+m(X1�

Y ) � Er(Y ;Y0)(U). Set

Zr(Y ;Y0)(U)
def
== [Cr(Y ;Y0)(U)]

+;

Cr(Y ;Y0)(U)
def
==

Er(Y ;Y0)(U)

Cr+m(X1 � Y )
:

By Proposition 5.1, (4.5.3) induces a equivalence

[Er(Y ;Y0)(U)]
+ ! [Er(Y )(U)]

+: (4.5.4)
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Hence we may apply the 5-Lemma (in conjunction with Cor. 1.5) to the map of
fibration sequences

Zr+m(X1 � Y ) - [Er(Y ;Y0)(U)]
+

- Zr(Y ;Y0)(U)

Zr+m(X1 � Y )

=

?

- [Er(Y )(U)]
+

?

- Zr(Y )(U)
?

to conclude that

Zr(Y ;Y0)(U)! Zr(Y )(U)

is a homotopy equivalence.
We define the Gysin map "! as the composition

"!:Zr(Y )(U) ' Zr(Y ;Y0)(U)! Zr�e(Y0)(U);

where the first map is the homotopy inverse of the homotopy equivalence estab-
lished above and the second is the naïve group completion of the map Cr(Y ;
Y0)(U) ! Cr�e(Y0)(U) given by intersection with U � Y0. So defined "! fits in
the homotopy commutative square (4.5.1) by [F-G;3.4].

To exhibit "! in the relative case and prove that it fits in the homotopy commuta-
tive square (4.5.2), we first observe that the condition on Z 2 Er(Y )(U) supported
on U � Y1 to meet X � Y0 properly in U � Y and hence have intersection with
U �Y0 equidimensional overU is the same condition as the condition that Z when
viewed in Er(Y1)(U) meetX�Y1 properly in U �Y1 and have intersection with
U � Y1 equidimensional over U . Consequently, intersection with U � Y0 induces
a well defined continuous map

Er(Y ;Y0)(U)
0Fr(Y1)(U)

!
Er�e(Y0)(U)

Fr�e(Y1)(U)
; (4.5.5)

where 0Fr(Y1)(U) � Fr(Y1)(U) \ Er(Y ;Y0)(U). Then since Fr(Y1)(U) �
Er(Y )(U) (cf. Def. 2.1) is a Zariski closed submonoid, so is 0Fr(Y1)(U) �

Er(Y ;Y0)(U). A now familiar argument comparing fibration sequencesand appeal-
ing to the 5-Lemma shows that the homotopy equivalence (4.5.4) implies that

�
Er(Y ;Y0)(U)
0Fr(Y1)(U)

�+
! Zr(Y nY1)(U)

is an equivalence. Thus, we may define the relative Gysin map "! fitting in the
homotopy commutative square (4.5.2) (by [F-G;3.4.2]) as the composition

"!:Zr(Y nY1)(U) '

�
Er(Y ;Y0)(U)
0Fr(Y1)(U)

�+
! Zr�e(Y0nY1)(U);
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where the first map is the homotopy inverse of the homotopy equivalence estab-
lished above and the second is the naı̈ve group completion of (4.5.4). 2

In [F-M], the operation s:
�B[Cr(X)]^S2 ! 
�B[Cr( =�X)]was introduced
and studied. In [F-G], this operation was extended to an operation s:Zr(U) ^
S2 ! Zr�1(U) for cycles on a quasi-projective variety and was shown to be
independent of the projective embedding. In [FL-2;2.5,2.6], this operation was
refined for cocycles spaces on a smooth projective variety X with values in a
smooth projective variety Y . (The smoothness hypotheses were required in order
to employ the Gysin map of Proposition 4.5 to Y � f0g � Y � P1). Indeed, the
proofs given there apply verbatim with X replaced by a smooth, quasi-projective
variety U .

PROPOSITION 4.6 (cf. [FL-2;2.5,2.6]). Let Y be a projective, smooth variety and
letU be a smooth quasi-projective variety. The s-map determines a homotopy class
of maps

s:Zr(Y )(U) ^ S
2 ! Zr�1(Y )(U);

which fits in the following homotopy commutative square

Zr(Y )(U) ^ S
2 D^1

- Zr+m(U � Y ) ^ S2

(4:6:1)

Zr�1(Y )(U)

s

?

D
- Zr+m�1(U � Y ):

?

s

Furthermore, the s-map determines a homotopy class of maps

s:Zr(Y nY1)(U)! Zr�1(Y nY1)(U);

which fits in the following homotopy commutative square

Zr(Y nY1)(U) ^ S
2 D^1

- Zr+m(U � V ) ^ S2

(4:6:2)

Zr�1(Y nY1)(U)

s

?

D
- Zr+m�1(U � V ):

?

s

We single out the following special case of (4.6.2).

COROLLARY 4.7. Let U be a smooth quasi-projective variety (of dimension m,
as usual). Then there is a natural homotopy class of maps

s:Zt(U) ^ S2 ! Zt+1(U);
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which fits in the following homotopy commutative square

Zt(U) ^ S2 D^1
- Zm�t(U) ^ S

2

(4:7:1)

Zt+1(U)

s
?

D
- Zm�t�1(U):

?

s

Proof. By Proposition 3.5, there is a natural algebraic suspension homotopy
equivalence

=�U :Zt(U) � Z0(PtnPt�1)(U)! Z1(Pt+1nPt)(U):

We define Zt(U) ! Zt+1(U) to be the composition of this map and the relative
s-map of Proposition 4.6

s:Z1(Pt+1nPt)(U) ^ S2 ! Z0(Pt+1nPt)(U) � Zt+1(U):

The homotopy commutativity of (4.7.1) follows consideration of the following
diagram

Z0(Pt=Pt�1)(U) ^ S2 D^1
- Zm(U � At) ^ S2

�
��^1

Zm�t(U) ^ S
2

Z1(Pt+1=Pt)(U) ^ S2

=�U
?

D^1
- Zm+1(U � At+1) ^ S2

1���
?

�
��^1

Zm�t(U) ^ S
2

?

=

Z0(Pt+1=Pt)(U)

s
?

D
- Zm(U �At+1)

s
?

�
��

Zm�t�1(U):

s

?

The commutativity of the upper squares of this diagram is easily seen by inspection,
the homotopy commutativity of the lower left square follows from (4.6.2), and the
homotopy commutativity of the right lower square follows from the naturality
of s. 2

In [FL-2;2.7], the intersection product defined in [F-G] for cycle spaces of
smooth varieties is shown to correspond to the fibrewise join product introduced
in [FL-1]. The proof given there applies to quasi-projective U , so that we content
ourselves with merely stating this result in our context of cocycles on a quasi-
projective variety U .
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PROPOSITION 4.8. If U is smooth and if t; u are non-negative integers with
t + u 6 m, then the fibre-wise join pairing #U fits in a homotopy commutative
diagram

Z0(Pt)(U)�Z0(Pu)(U) - Zt(U)�Zu(U)
D�D
- Zm�t(U)�Zm�u(U)

Z0(Pt+u)(U)

#U
?

- Zt+u(U)
D

- Zm�t�u(U);
?

�

(4.8.1)

where the left horizontal arrows are the defining projections and where (�) � (�)
denotes the intersection product on cycle spaces.

Proof. See [FL-2;2.7]. 2

5. Duality theorems

In this section, we present various forms of duality relating spaces of algebraic
cocycles and spaces of algebraic cycles. We retain our notational conventions on
X;Y;U;X1; V; Y1, r and t of previous sections.

The following fundamental technical result is a consequence of the ‘Moving
Lemma for Cycles of Bounded Degree’ [FL-3].

PROPOSITION 5.1. Let Er(Y )(U) � Cr+m(X�Y ) be the embedding of monoids
of (1.6.1). If Y and U are both smooth, then this embedding induces a homotopy
equivalence of naı̈ve group completions

D: [Er(Y )(U)]+ ! Zr+m(X � Y ):

Moreover, if Y0 � Y is a closed subvariety of some dimension > n � r and if
Er(Y ;Y0)(U) � Er(Y )(U) is the submonoid of (4.5.3) consisting of cocycles which
meet X � Y0 properly and whose intersections with U � Y0 are equidimensional
over U , then the induced map of naı̈ve group completions

[Er(Y ;Y0)(U)]
+ ! [Er(Y )(U)]

+

is a homotopy equivalence.
Proof. Let

�: Cr+m(X � Y )� Cr+m(X � Y )! Zr+m(X � Y );

�0: Er(Y )(U)� Er(Y )(U)! [Er(Y )(U)]
+;

denote the quotient projection maps, and let

j: Er(Y )(U)! Cr+m(X � Y )
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denote the embedding of (1.6.1). Then the filtration fKeg
1
e=0 of Zr+m(X � Y )

given by setting

Ke � �

8<
:
a

d+d06e

Cr+m;d(X � Y )� Cr+m;d0(X � Y )

9=
;

is a locally compact filtration in the sense of [FL-2;4.1]; namely, any map from
a compact space K to Zr+m(X � Y ) factors through some Ke. Consider the
associated filtration fK 0

eg
1
e=0 of [Er(Y )(U)]+

K 0
e � �0

8<
:
a

d+d06e

Er;d(Y )(U) � Er;d0(Y )(U)

9=
; ;

where Er;d(Y )(U) = Cr+m;d(X � Y ) \ Er(Y )(U). If K is compact and f :K !

[Er(Y )(U)]
+ is continuous, then (j � f)(K) lies in some Ke, so that f(K) lies in

some K 0
e. We conclude that fK 0

eg
1
e=0 is also a locally compact filtration.

Let e be any positive integer> the degrees of fug�Y � X �Y for all u 2 U .
Then [FL-2;3.1], the ‘Moving Lemma for Cycles of Bounded Degree’, implies the
existence of

�e:Ke � I ! Zr+m(X � Y ); �0e:K
0
e � I ! Zr(Y )(U)

satisfying the conditions of a very weak deformation retract in the sense of [FL-
2;4.1]. Namely, �0e covers �e with respect to j; (�e)jKe�f0g

; (�0e)jK0
e�f0g

are the

natural inclusions; and (�e)jKe�ftg
lifts to [Er(Y )(U)]

+ for any t 6= 0. Thus,

D: [Er(Y )(U)]+ ! Zr+m(X � Y ) is easily seen to be a weak homotopy equiv-
alence using the easy technical lemma [FL-2;4.2]. Since these spaces have the
homotopy type of C.W. complexes,D is in fact a homotopy equivalence.

To prove the second assertion, recall that the Moving Lemma enables one to
move s-cycles of degree6 e on Cr+m(X�Y ) so that the resulting cycles intersect
properly (off the singular locus of X � Y ) all effective cycles of degree 6 e and
of dimension > m � s [FL-3;3.2]. We apply this result to move effective cycles
in Cr+m(X � Y ) with respect to the cycles u � Y; u � Y0;u 2 U and the cycle
X � Y0. Thus, the preceding argument applies to prove that

Er(Y ;Y0)(U)! Zr+m(X � Y )

is also a homotopy equivalence. The second assertion now follows. 2

The following duality theorem follows easily from Proposition 5.1.
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THEOREM 5.2. As usual, let U be a quasi-projective variety of dimension m and
let Y be a projective variety of dimension n. If both U and Y are smooth, then the
duality map of (4.1.1)

D:Zr(Y )(U)! Zr+m(U � Y )

is a homotopy equivalence for any r 6 n.
Furthermore, if Y1 � Y is a smooth, closed subvariety with Zariski open

complement V � Y , then the relative duality map of (4.1.2)

D:Zr(Y nY1)(U)! Zr+m(U � V )

is also a homotopy equivalence for any r 6 n.
Specializing to Y = Pt, Y1 = Pt�1, we conclude that the duality map of (4.1.3)

D:Zt(U)! Zm�t(U)

is also a homotopy equivalence for any t > 0 (where

Zm�t(U) � Z0( =�
t�mU); m < t

as in [F-M]).
Proof. We consider the following diagram

Zr+m(X1 � Y ) - [Er(Y )(U)]
+

- Zr(Y )(U)

(5:2:1)

Zr+m(X1 � Y )

=

?

- Zr+m(X � Y )

D

?

- Zr+m(U � Y ):

D

?

Both the rows of (5.2.1) are fibration sequences: the top by Corollary 1.5, the
bottom by [F-G;1.6]. Consequently, the fact that the duality map D is a homotopy
equivalence follows from Proposition 5.1 and an application of the 5-Lemma.

In the relative case, we consider the following diagram

Zr(Y1)(U) - Zr(Y )(U) - Zr(Y nY1)(U)

(5:2:2)

Zr+m(U � Y1)

D

?

- Zr+m(U � Y )

D

?

- Zr+m(U � V ):

D

?

The upper row of (5.2.2) is a fibration sequence by Proposition 2.2, whereas the
lower row is a fibration sequence by [F-G;1.6] once again. Since the left and middle
maps are homotopy equivalences by the first part of our theorem, the 5-Lemma
implies that the relative duality map D is also a homotopy equivalence. 2
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We recall that the homotopy groups of Zt(U) and Zr(U) are called ‘mor-
phic cohomology groups’ and ‘Lawson homology groups’ respectively. These are
indexed as follows

LtHk(U)
def
== �2t�k(Z

t(U)); LrHk(U)
def
== �k�2r(Zr(U)):

Using this notation, we re-state the relative case of Theorem 5.2 (with Y =
Pt; Y1 = Pt�1).

COROLLARY 5.3. Let U be a smooth variety of dimension m and let 0 6 k 6
2t; 2m. Then the duality map D:Zt(U) ! Zm�t(U) of (4.1.3) induces isomor-
phisms

LtHk(U) ' Lm�tH2m�k(U):

Applying the Mayer–Vietoris sequence of Proposition 3.8, we obtain the fol-
lowing mild generalization of Theorem 5.2.

COROLLARY 5.4. Let Y1; : : : ; Yk be smooth projective varieties and assume that
each multiple intersection Yi1 \ � � � \ Yij is also smooth. Let Y denote the union of
the Yi’s, Y = Y1 [ � � � [ Yk. If U is a smooth quasi-projective variety, then

D:Zr(Y )(U)! Zr+m(U � Y )

is a homotopy equivalence.
Proof. We proceed by induction on k, the case k = 1 provided by Theorem 5.2.

Let Y 0 = Y1 [ � � � [ Yk�1 and let Y 00 = Y 0 \ Yk. We consider the commutative
diagram

Zr(Y
00)(U) - Zr(Y

0)(U)�Zr(Yk)(U) - Zr(Y )(U)

Zr+m(U � Y 00)

D
?

- Zr+m(U � Y 0)�Zr+m(U � Yk)

D�D
?

- Zr+m(U � Y )

D

?

By Proposition 3.8, both rows are fibration sequences. Thus, induction and the 5-
Lemma imply that D:Zr(Y )(U)! Zr+m(U � Y ) is a homotopy equivalence.2

We recall that Hironaka’s resolution of singularities asserts that any smooth
quasi-projective variety V admits a smooth projective closure Y with the property
that Y � V = Y1 is a divisor with normal crossings [H-1]. In particular, such a
‘complement at infinity’ satisfies the conditions on Y of Theorem 5.4.
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COROLLARY 5.5. Let Y1 � Y be a closed immersion of projective varieties both
of which can be written as a union of smooth closed subvarieties whose multiple
intersections are also smooth (e.g., Y1 might be a divisor with normal crossings
in a smooth projective variety Y ). Then the relative duality map (4.1.2)

D:Zr(Y nY1)(U)! Zr+m(U � V )

is a homotopy equivalence.
In particular, the homotopy type of Zr(Y nY1)(U) depends only upon U and

V and not their projective closures U � X and V � Y .
Proof. We consider the following commutative diagram

Zr(Y1)(U) - Zr(Y )(U) - Zr(Y nY1)(U)

Zr+m(U � Y1)

D

?

- Zr+m(U � Y )

D

?

- Zr+m(U � V ):

D

?

By Proposition 2.2, the upper row is a fibration sequence; by [LF-2] or [F-G], the
lower row is also a fibration sequence. Thus, the corollary follows from Corol-
lary 5.4 and the 5-Lemma. 2

6. First consequences

Using Theorem 5.4, we define a Gysin map for cocycle spaces compatible with the
duality map. We can view this next proposition as a supplement to Propositions 4.2
and 4.3.

PROPOSITION 6.1. As in Theorem 5.4, let Y be a union of smooth projective vari-
eties whose multiple intersections are also smooth. Consider a closed embedding
i:U0 � U of smooth quasi-projective varieties of codimension c with Zariski open
complement U 0 � U . Then there exists a homotopy class of maps (i.e., a Gysin
map)

i!:Zr+c(Y )(U0)! Zr(Y )(U); (6.1.1)

which fits in the following map of fibration sequences

Zr+c(Y )(U0)
i!
- Zr(Y )(U)

j�
- Zr(Y )(U

0)

(6:1:2)

Zr+m(U0 � Y )

D

?

i�
- Zr+m(U � Y )

D

?

j�
- Zr+m(U

0 � Y ):

D
?

Moreover, if Y1 � Y is also a union of smooth projective varieties whose
multiple intersections are also smooth, then there exists a homotopy class of maps

i!:Zr+c(Y nY1)(U0)! Zr(Y nY1)(U); (6.1.3)
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which fits in the following map of fibration sequences

Zr+c(Y nY1)(U0)
i!
- Zr(Y nY1)(U)

j�
- Zr(Y )nY1)(U 0)

(6:1:4)

Zr+m(U0 � Y )

D

?

i�
- Zr+m(U � Y )

D

?

j�
- Zr+m(U

0 � Y ):

D
?

Proof. Using Theorem 5.2, we define i! for (6.1.1) and (6.1.3) by

i!
def
== D�1 � i� � D: (6.1.5)

So defined, i! fits in homotopy commutative diagrams (6.1.2) and (6.1.4). Since the
vertical maps are homotopy equivalences, the fact that the bottom rows of these
diagrams constitute fibration sequences implies that the top rows are as well. 2

We restate Proposition 6.1 in terms of the notation used in Corollary 5.3.

COROLLARY 6.2. Let i:U0 � U be a Zariski closed immersion of smooth subva-
rieties of pure codimension c and let j:U 0 � U denote the Zariski open complement.
Then the duality map determines an isomorphism of long exact sequences

� � � - L
s�c

H
k�2c(U0)

i !
- L

s
H
k(U)

j�
- L

s
H
k(U 0) - � � �

� � � - Lm�sH2m�k(U0)

D

?

i�
- Lm�sH2m�k(U)

D

?

j�
- Lm�sH2m�k(U

0)

D

?

- � � � :

Observe that Theorem 5.2 implies that

�j(Z
m(U))

D
- �j(Z0(U)) ' HBM

j (U)

is an isomorphism, where HBM
� denotes Borel–Moore homology. This suggests,

but does not imply, that the map ��:�j(Zm(U)) ! H2m�j(U) of (3.4.1) is an
isomorphism. For U = X projective, the map �� is an isomorphism thanks to the
compatibility of the duality map with the Poincaré duality map demonstrated in
[FL-2;4.4].

The duality isomorphism permits us to extend the homotopy invariance property
proved in Proposition 3.5 to arbitrary affine torsors over a smooth base U .

PROPOSITION 6.3. Let �:E ! U be an affine torsor for some smooth quasi-
projective variety U . Then

��:Zt(U)! Zt(E)

is a homotopy equivalence.
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Proof. Since �:E ! U is locally for the Zariski topology on U a product
projection U �Ae ! U , we conclude as in [F-G;2.3] that ��:Zr(U)! Zr+e(E)
is a homotopy equivalence, where e denotes the fibre dimension of �. The assertion
now follows from Theorem 5.2 and the commutative diagram (4.3.1). 2

REMARK 6.4. As realized by Blaine Lawson and the author, Proposition 6.3
permits one to extend the Chern classes defined in [FL-1] for vector bundles
generated by their global sections to all vector bundles on a smooth, quasi-projective
variety. Namely, given any suchU , ‘Jouanolou’s device’ (cf. [Q]) provides an affine
torsor

pJ :JU ! U;

with JU an affine variety. Then, given any algebraic vector bundle E ! U , we
consider p�J(E) ! JU which is a vector bundle generated by its global sections.
Thus, p�J(E) is associated to some morphism fE :JU ! Grasse(PN ). Embed-
ding Grasse(PN ) in CN�e(PN ), we conclude that fE determines a element in
CN�e(PN )(JU ). Proposition 6.3 enables us to associate to this map an element

hfEi 2 �0(Z0(Pe)(JU )) = �0(Z0(Pe)(U)):

Finally, the splitting construction of [FL-1] enables one to obtain from hfEi
elements

hfEit 2 LtH2t(U); 0 6 t 6 e:
2

In [F-G;2.5], a projective bundle theorem was proved in the following form. Let
E be a rank e+1 algebraic vector bundle over a smooth quasi-projective varietyU
and let p: P(E)! U denote Proj(SymOX

E�) overU . Let c1(OP(E)(1)) denote the
‘first Chern class operator for the canonical line bundle’ OP(E)(1) on P(E) defined
in terms of intersection with a global section. Then the following is a homotopy
equivalence

P
def
==

X
06j6e

c1(OP(E)(1))
j � p�:

Y
06j6e

Zt+j(U)! Zt+e(P(E)): (6.5.1)

This result is the key to the construction of further Chern classes in Lawson
homology introduced by O. Gabber and the author in [F-G].

Theorem 5.2 immediately gives us the following cocycle version of (6.5.1).

PROPOSITION 6.5. Assume that U is smooth. With notation as above,

D�1 � P � D:
Y

06j6e

Zm�t�j(U)! Zm�t(P(E))

is a homotopy equivalence, whereD�1 is a homotopy inverse of D.
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REMARK 6.6. As presented in [F-G], the construction of Chern classes requires
the smoothness of U . If one could find a direct proof of Proposition 6.5 which did
not use duality and therefore did not require the smoothness of U , then one should
be able to extend that construction to algebraic vector bundles on normal varieties
which are not smooth.

7. Examples

In this final section, we show how known computations of Lawson homology (i.e.,
homotopy groups of cycle spaces) permit computations of homotopy groups of
cocycle spaces. Such computations appear highly non-trivial if one views (using
Prop. 1.9) these cocycle spaces as the naïve group completions of Mor(U;Cr(Y )),
the topological monoid of morphisms from U to the Chow monoid Cr(Y ).

We introduce the following alternate notation for cocycle spaces

Mor(U;Zr(Y )) � [Mor(U;Cr(Y )]
+ = Zr(Y )(U);

in order to emphasize this mapping complex point of view and to compare more
easily with the computations of [FL-2].

We begin by recalling that the homotopy groups of Mor(U;Zr(Y )) are merely
the stabilized homotopy groups of Mor(U;Cr(Y )).

PROPOSITION 7.1. Assume that U is normal and let Mor(U;Cr(Y )) denote the
topological abelian monoid of morphisms from U to Cr(Y ) with the topology that
of convergence of bounded degree (as in Prop. 1.7). Then

�0 Mor(U;Zr(Y )) = [�]+; �
def
== �0 Mor(U;Cr(Y )):

For each connected component� 2 �, letCr;�(Y )(U) denote the corresponding
connected component of Cr(Y )(U) and choose some Z� 2 Cr;�(Y )(U). Let f�ng
denote a sequence in which each element of a generating set of � occurs infinitely
often among the �n’s and set �0 equal to the 0-component. Then for any i > 0,
�iMor(U;Zr(Y )) equals the direct limit of the sequence given by translation
by Z�n

! �iMor

�
U;Cr;�j<n�j

(Y )
�

(Z�n+)�
- �iMor

�
U;Cr;�j6n�j

(Y )
� (Z�n+1+)�

- � � � :

Proof. By Proposition 1.2, it suffices to identify the homotopy groups of
the homotopy-theoretic group completion 
B[Cr(Y )(U)]. The computation of
��(
B[Cr(Y )(U)]) as the indicated direct limit is given in [F;2.6]. 2
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EXAMPLE 7.2. As a first, relatively trivial example, we considerMor(Am;Zr(Y )).
Then the homotopy invariance of Proposition 3.4 enables us to conclude that eval-
uation at 0 2 Am determines a homotopy equivalence

Mor(Am;Zr(Y ))! Zr(Y ):

In particular, setting r = 0, we conclude the homotopy equivalence

Mor(Am;Z0(Y )) '
Y

K(Hi(Y ); i)

by the Dold–Thom theorem. 2

EXAMPLE 7.3. We next consider the example of Mor(Am � f0g;Zr(Y )). By
Proposition 6.1, we have the following map of fibration sequences

Mor(f0g;Zr+m(Y )) - Mor(Am;Zr(Y )) - Mor(Am � f0g;Zr(Y ))

Zr+m(Y )

=

?

- Zr+m(Y � Am)

D

?

j�
- Zr+m(Y � (Am � f0g)):

?

D

We observe that the map on homotopy groups induced by j� admits a section, for
the inverse of algebraic suspension =�m:Zr(Y )! Zr+m(Y �Am) is given by the
Gysin map associated to the regular immersion f1g � Am which factors through
Am � f0g. Thus, we conclude that

�iMor(Am � f0g;Zr(Y )) ' �iZr(Y )� �i�1Zr+m(Y ):

In particular, we conclude using Proposition 7.1 the existence of interesting
elements in the homotopy of Cr(Y )(Am � f0g) =Mor(Am � f0g;Cr(Y )) which
reflect the structure of Zr+m(Y ). 2

EXAMPLE 7.4. By work of Lima–Filho [LF-1], any generalized flag manifold
Y (or more generally, any projective variety Y with a ‘cell decomposition’) has
the property that �iZr(Y ) is naturally isomorphic to Hi+2r(Y ). Since the product
of varieties with a cell decomposition again has such a decomposition, we can
make explicit computations of homotopy groups of cocycle spaces as follows. Let
X1 � X be a closed immersion of projective varieties with a cell decomposition
(e.g., a projective embedding of a generalized flag manifold X1 in a projective
space X = Pm) and let Y also be a projective variety with a cell decomposition.
Set U = X �X1. Then we conclude that Mor(U;Zr(Y )) has the homotopy type
of Zr+m(U � Y ). Thus,

�iMor(U;Zr(Y )) = H2r+2m+i(X � Y;X1 � Y ):

Once again, by applying Proposition 7.1, we conclude the existence of interesting
elements in the homotopy of Mor(U;Cr(Y )). 2
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