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We analyse direct numerical simulations of homogeneous, forced, stably stratified
turbulence to study how the pressure—strain and pressure scrambling terms are modified
as stability is increased from near neutral to strongly stratified conditions. We decompose
the pressure into nonlinear and buoyancy components, and find that the buoyancy part of
the pressure—strain correlation changes sign to promote large-scale anisotropy at strong
stability, unlike the nonlinear component, which always promotes large-scale isotropy.
The buoyancy component of the pressure scrambling term is positive semidefinite
and increases monotonically with stability. As its magnitude becomes greater than the
nonlinear component (which is negative), the overall scrambling term generates buoyancy
flux at very strong stability. We apply quadrant analysis (in the pressure-gradient space)
to these correlations to study how contributions from the four quadrants change with
stability. Furthermore, we derive exact relationships for the volume-averaged buoyancy
components of these correlations which reveal (i) the buoyancy component of the
pressure—strain correlation involves a weighted sum of the vertical buoyancy flux
cospectrum, so counter-gradient buoyancy fluxes contribute to enhanced anisotropy by
transferring vertical kinetic energy into horizontal kinetic energy; (ii) the buoyancy
component of the pressure scrambling term involves a weighted sum of the potential
energy spectrum; (iii) the weighting factor accentuates contributions from layered
motions, which are a prominent feature of strongly stratified flows. These expressions
apply generally to all homogeneous stratified flows independent of forcing and across all
stability conditions, explaining why these effects have been observed for both forced and
sheared stably stratified turbulence simulations.

Key words: stratified flows, turbulent mixing, stratified turbulence

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 1019 A14-1

Check for
updates


https://orcid.org/0000-0002-5563-1040
https://orcid.org/0000-0003-2121-4844
https://orcid.org/0000-0002-6137-8109
mailto:yryi@princeton.edu
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10605&domain=pdf
https://doi.org/10.1017/jfm.2025.10605

https://doi.org/10.1017/jfm.2025.10605 Published online by Cambridge University Press

Y.R. Yi, J.R. Koseff and E.R. Bou-Zeid

1. Introduction

Density stratification is a prominent feature of both atmospheric and oceanic flows,
affecting the vertical exchange of quantities such as mass, momentum and heat. Therefore,
developing a more robust physical understanding of stratified turbulence is of benefit for
a wide range of applications in Earth science. For wind energy, stratification influences
the upstream wind profile and the downstream wake characteristics, affecting both the
individual and collective performance of turbines (Stevens & Meneveau 2017; Porté-Agel
et al. 2020). In high-latitude environments such as the Arctic, stable atmospheric boundary
layers form over ice, reducing the vertical exchange of heat, in particular, and affecting
warming projections (Bintanja, van der Linden & Hazeleger 2012; Audouin et al. 2021;
Allouche et al. 2022; Fogarty & Bou-Zeid 2023). In the surface ocean, submesoscale
flows (with horizontal scales between 0.2 and 20 km) interact with and modify the vertical
stratification (Taylor & Thompson 2023), influencing the exchange of biogeochemical
tracers such as carbon and nutrients across the surface mixed layer and impacting ocean
ecosystems (Lévy et al. 2018). Finally, due to the wide range of spatial and temporal scales
of oceanic flows (Wunsch & Ferrari 2004), global ocean simulations rely on down-gradient
closures to represent subgrid-scale (unresolved) fluxes of momentum, scalars like heat
and salt (e.g. Adcroft et al. 2019; Fox-Kemper et al. 2019), and biogeochemical tracers
(e.g. Henson et al. 2022; Lévy et al. 2024). The resulting vertical tracer and density
distributions, as well as meridional transport, are sensitive to the choice of subgrid-
scale models and how well they capture the impact of stratification (e.g. Bryan 1987;
Gnanadesikan 1999; Jayne 2009; de Lavergne et al. 2016; Mashayek et al. 2017; Cimoli
et al. 2019; Lévy et al. 2001; Resplandy, Lévy & McGillicuddy 2019).

This work examines the impact of density stratification through the lens of this final
application, focusing on modelling of subgrid-scale fluxes in global ocean models (though
the fundamental physics are also applicable to atmospheric flows), particularly the vertical
buoyancy fluxes that are often estimated using an eddy diffusivity model following Osborn
(1980). We provide a non-dimensional form from Salehipour & Peltier (2015),

o ({5 ) =1 () () = TR (1)

D 1—Riy) DN? vN2/ \D
where D7 and D are the turbulent and molecular diffusivities of the stratifying scalar;
Riy is the mixing efficiency (also referred to as the flux Richardson number), which
typically represents the mean fraction of the energy input that is used to irreversibly mix
the stratifying scalar field; I" =Riy/(1 — Riy) is the mixing coefficient (also referred
to as the flux coefficient); €; is the dissipation rate of turbulent kinetic energy; v
is the kinematic viscosity of the fluid; N?=—(g/ po)d;po is the vertical background
stratification; Rep = € /(VN?) is the buoyancy Reynolds number, which quantifies the
intensity of a stratified turbulent flow; and Pr=v/D is the molecular Prandtl number.
Several definitions of the flux Richardson number (and relatedly I") exist in the literature.
Two commonly used forms are the reversible and irreversible definitions (Riy,, = B/ Py
and Riyf =¢€,/(€x + €)), respectively; cf. Venayagamoorthy & Koseff 2016), where B
is the vertical buoyancy flux (equivalent to the rate of conversion of turbulent kinetic
energy into turbulent potential energy associated with the density perturbations when
there is no direct forcing of potential energy), Py the rate of shear production of turbulent
kinetic energy and €, the dissipation rate of turbulent potential energy. When statistical
stationarity and homogeneity hold, the two definitions become equivalent because B =€,
and Py = €, + €, but there are key differences between the two when the turbulent flow
is unsteady and/or inhomogeneous (cf. Ivey & Imberger 1991; Chamecki, Dias & Freire
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2018; Freire et al. 2019). Hereafter, we will primarily refer to and use the irreversible
definition.

Equation (1.1) can be useful for estimating the eddy diffusivity for global ocean
models since the molecular Prandtl number and diffusivity are known and there exists
Re;, estimates from field measurements of €; and N2 via microstructure profilers and
conductivity-temperature-depth (CTD) casts. The only missing part, then, is relating I" to
easily accessible or measurable quantities (see the reviews by Ivey, Winters & Koseff 2008;
Gregg et al. 2018; Caulfield 2020, 2021). Here, we provide brief overviews of two specific
approaches. The first approach involves relating I" to Rep. For example, Monismith,
Koseff & White (2018) analysed a large collection of laboratory experiments, field
measurements and numerical simulations of different types of stably stratified turbulent
flows, and showed that many of the datasets exhibited a constant value of Ri ¢, and thus I",

for Re, < 100 and a scaling Rif ~ Relzl/ 2 for Rep > 100, though some datasets exhibited
this transition at values of Re, much larger than 100. While Re;, attempts to quantify
the turbulence intensity in stably stratified conditions, there is an ambiguity associated
with the parameter because the same value of Re, can be achieved in both weakly and
strongly stratified conditions with appropriate differences in turbulence levels between the
two states. For example, there should be negligible mixing of the background buoyancy
field in near neutral conditions compared with strongly stratified conditions even though
the two flows might be characterised by the same value of Rej,. Nevertheless, this approach
is easier to implement in global ocean models given that parametrisations for ¢; already
exist (e.g. St. Laurent, Simmons & Jayne 2002; Polzin 2009) and, therefore, applying (1.1)
only requires choosing a particular form of I" = f(Re,) (de Lavergne et al. 2016).

An alternative approach involves relating I and the turbulent Froude number (Fry =
€x/(Nk)), where k is the turbulent kinetic energy (TKE). By considering that the buoyancy
Reynolds number can be rewritten as Rep = ReLFr,%, where Re; = k> /(veg) is the large-
eddy Reynolds number, Maffioli, Brethouwer & Lindborg (2016) analysed simulations
of homogeneous, forced, stably stratified turbulence and showed that I" varies strongly
with Fri. However, for weak stability, 1" also decreased with Reynolds number (the Taylor
Reynolds number Re, in particular; see their figures 1 and 3). Relatedly, Bragg & de Bruyn
Kops (2024a) analysed simulations of homogeneous, vortically forced, stably stratified
turbulence. While they confirmed the strong relationship between I' and Fr, they
observed that I" increases with Reynolds number for weak stability (see their figure 4),
in contrast to the findings of Maffioli et al. (2016). This clearly demonstrates an interplay
between how the turbulence is forced (only horizontal forcing and no vertical forcing in
Bragg & de Bruyn Kops (2024a) versus horizontal and vertical forcing in Maffioli et al.
(2016) for most of their simulations) and the relationship between I” and the Reynolds
number. Also, Portwood, de Bruyn Kops & Caulfield (2019) analysed simulations of
homogeneous, sheared, stably stratified turbulence and observed that I” was approximately
constant as Re, was varied across approximately two orders of magnitude due to limited
variations in the Froude number (see their figure 3a and table 1). Other works have also
demonstrated a strong relationship between I" and Fry (e.g. Garanaik & Venayagamoorthy
2019; Howland, Taylor & Caulfield 2020; Issaev et al. 2022; Tu et al. 2022; Yi & Koseff
2022a; Nguyen-Dang et al. 2023), but I" is known to depend also on other physical
effects such as mean shear (e.g. Mater & Venayagamoorthy 2014a,b; Yi & Koseff 2022b),
the presence of a buoyancy-driven component to the forcing (e.g. Howland et al. 2020;
Lewin & Caulfield 2022) and the Prandtl number (e.g. Salehipour, Peltier & Mashayek
2015; Rahmani, Seymour & Lawrence 2016; Legaspi & Waite 2020; Riley, Couchman &
de Bruyn Kops 2023; Petropoulos et al. 2024; Bragg & de Bruyn Kops 2024b).
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To probe this interplay between forcing and the turbulence-mixing relation, here, we
seek to build on the findings of Yi & Koseff (2022a) and Yi & Koseff (2023), where
four different types of homogeneous, forced, stably stratified turbulence were simulated.
The Reynolds stress and buoyancy flux budgets were analysed as a function of increasing
stability from near neutral to strongly stable conditions. Despite the differences in forcing
(unsheared versus three different orientations of shear forcing relative to a background
vertical stratification), all four datasets exhibited strong relationships among the pressure—
strain redistribution term (source/sink in the vertical velocity variance budget), the
pressure scrambling term (pressure—scalar gradient correlation; source/sink in the vertical
buoyancy flux budget) and the mixing coefficient I". This general behaviour likely stems
from the fact that, in all four of these datasets, stable stratification promotes large-scale
anisotropy by damping vertical motions (the largest ones first), and that pressure—strain
correlations act to redistribute the more energetic components of the TKE to the less
energetic ones (recall that TKE comprises the diagonal Reynolds stresses). The physical
picture associated with this description of the pressure—strain correlations is at the heart of
Rotta’s return-to-isotropy model, where Reynolds stress anisotropy decays exponentially
in time in the absence of forcing (Rotta 1951). For passive scalar fluxes, the pressure
scrambling terms usually act as major sinks, decorrelating the velocity and scalar fields
(Hao & Gorlé 2020). For vertical buoyancy fluxes, however, the pressure scrambling terms
were shown to change sign as stability was increased, becoming a major source of vertical
buoyancy flux at very strong stability (Yi & Koseff 20224, 2023).

To better understand the role of pressure fluctuations in stratified turbulence, we study
the pressure—strain correlations and pressure scrambling terms using the DNS dataset
of homogeneous, forced, stably stratified turbulence that was presented by Yi & Koseff
(2022a). Our goals are threefold: (i) study how the nonlinear and buoyancy components of
the pressure correlations change with increasing stability; (ii) develop and provide physical
intuition and interpretation for the nonlinear and buoyancy pressure correlations; and
(iii) connect these changes to irreversible mixing of density quantified by the variation
of the mixing coefficient I" as a function of increasing stability as characterised by Fry.

Our paper is organised as follows. In §2, we explore the relationship between Riy¢
(and relatedly I") and the various governing parameters of stably stratified turbulence
by considering the volume-averaged budgets of the components of TKE and TPE,
highlighting the key role that pressure—strain redistribution plays in setting the mixing
efficiency. In §3, we briefly describe the dataset of homogeneous, forced, stably
stratified turbulence and summarise the key results from Yi & Koseff (2022a), which
motivate the subsequent derivations and analyses in this work. In §4, we decompose
the pressure fluctuations based on the pressure Poisson equation to study the nonlinear
and buoyancy components of pressure—strain and pressure scrambling terms as a function
of increasing stability. We provide physical explanations for the two sets of positive and
negative pressure fluctuations based on their respective Poisson equations, and also derive
analytical expressions for the buoyancy components of the pressure—strain and pressure
scrambling terms, which aid with interpreting their empirically observed behaviour from
DNS with increasing stability. We conclude our paper in § 5.

2. Relationship between pressure-strain redistribution and mixing efficiency

One way to reframe the question of how I varies with Rep, and Fry, is to ask how I" depends
on the ranges of isotropic versus anisotropic scales of stably stratified turbulence. To do so,
we introduce three different length scales: (i) nx = 3 / )4 (Kolmogorov length scale,
an estimate of the size of the smallest turbulent eddies); (ii) [p = (ex/N Y2 (Ozmidov
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Figure 1. An illustration of the range of turbulent scales in stably stratified turbulence. Stratification effects
are weak for Fry > 1 (red), and the range of active turbulent scales are better characterised by Rey,. Scales
between /1, and /o are not relevant (grey) since the size of the most energetic eddies are better described by
Ir. Stratification effects are significant for Fry < 1 (blue). Here, the range of active isotropic scales are better
characterised by Rep, and the range of active anisotropic scales are characterised by Fry. The entire range of
scales (both isotropic and anisotropic) is represented by Rey .

length scale, below which the effects of buoyancy are negligible; Dalaudier & Sidi 1990;
Katul et al. 2014); and (iii) I, = k3/2 /€r (large-eddy or integral length scale). For sheared
stably stratified turbulence, one has to also consider /¢ = (ex/ S3) 172 (Corrsin length scale,
below which the effects of mean shear are negligible), which can be accounted for
either through a non-dimensional shear parameter S, = Sk/€; or the gradient Richardson
number Rig = N 2/S2. For stably stratified turbulence with realistic molecular diffusivities
of heat and salt in the ocean (Pr=v/Dpeq ~7 and Sc =v/Dgy =~ 700), one would
have to consider Iz = (sz/.sk)l/4 = nkPr_l/2 (Batchelor length scale, an estimate of
the scale of the smallest scalar variability) as well. Here, we focus just on the simplest
case where the forcing does not directly impose a mean shear and when the molecular
diffusivities of momentum and the stratifying scalar are equal (Pr=1, implying that
[p = n). Under these assumptions, we can form length-scale ratios and relate them to
Rey, Rep and Fry, where Re; = k*/(ver) = (I /ni)*3, Rep = €1 /(VN?) = (Lo /nx)*/3 and
Fri=¢/(Nk)= (/] 0) 23 (note that any of these ratios can be written as a function of
the other two). For Fr; > 1, the Ozmidov scale is larger than the large-eddy length scale
and, therefore, buoyancy has negligible impact on the dynamics of the active turbulent
scales. Therefore, in that regime, Re; better represents the active range of turbulence
scales than Rep, (see the top half of figure 1 and also Maffioli et al. 2016). For Fry <1,
the Ozmidov scale is smaller than the large-eddy length scale; therefore, Rej, represents
the active range of isotropic scales (assuming there are no other drivers of anisotropy
except buoyancy) that are insignificantly influenced by stratification, while Fry represents
the active range of anisotropic scales, strongly influenced by stratification (see the bottom
half of figure 1). For a similar schematic that incorporates the effect of mean shear, see
figure 2 of Mater & Venayagamoorthy (2014b).

To connect the ideas of the range of isotropic and anisotropic scales to the mixing
efficiency and the turbulent diffusivity in (1.1), we consider a generalised set of volume-
averaged budgets for the three components of TKE (k,, k, and k) and TPE (k) for
homogeneous stably stratified turbulence,

diky = P, + Ry — €y, @.1)
diky = Py + Ry — €y, (2.2)
diky = Py + Ry — B — €, 2.3)
dik, =P, + B —¢,. (2.4)

In (2.1)-(2.4), the subscripts u, v and w indicate terms associated with the x, y and
z directions; P,, P, and P, represent the mechanical production of k,, k, and k,, by
forcing; P, represents the buoyant production or loss of k;, by processes such as radiative
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heating/cooling (e.g. Williamson et al. 2015) or the propagation of internal gravity waves
(e.g. Howland et al. 2020); R,, R, and R,, represent redistribution by pressure—strain
correlations; B is the vertical buoyancy flux representing the exchanges between TKE and
TPE; and €, €,, €, and €, represent the dissipation of k,, k, ky, and k,. Following similar
steps as Bou-Zeid et al. (2018), we seek an alternative expression for the mixing efficiency.
We assume statistical stationarity, introduce a dissipation anisotropy factor c3 = €,, /€ and
re-express the dissipation term in (2.3) as €, = c3€;. Then, we use (2.4) to re-express
the vertical buoyancy flux as B =€, — P,, and use the total energy balance between
production and dissipation (P + P, = €; + €) to re-express the TKE dissipation term.
Finally, we divide by the total mechanical production P, = P, 4+ P, + P, and isolate the
irreversible mixing efficiency Riy = €,/ Py to arrive at

. 1 Py, Ry p
Rif = Twy R “r 2.5
if T (Pk + P 63) + P, (2.5)

where P,/ Py represents the fraction of the mechanical production that occurs in the z-
direction; R,/ Py represents the relative importance of redistribution by pressure—strain
in the z-direction compared with mechanical production; c¢3 is a measure of small-
scale anisotropy (c3 = 1/3 when the finest dissipative scales are isotropic); and P,/ Py
represents the relative importance of buoyancy production or destruction of k; through
some external forcing to mechanical production.

If buoyancy generation is positive (P,/P;>0) and the other terms change
insignificantly, one obtains larger values of Riy relative to a baseline scenario where
Py /P, =0. However, when P,/ Py > 1, resulting in k,, > ky,, the vertical buoyancy flux
can reverse signs leading to B <0 as in buoyancy-driven systems, complicating the
prediction of Riy relative to a baseline scenario of P,/ P, =0. If buoyancy generation is
negative (Pp/ P < 0) and the other terms change insignificantly, this effectively promotes
greater stability and would lead to smaller values of Riy relative to a baseline scenario
where P,/ P, =0.

Next, we set P,/Pr =0 in (2.5), which corresponds to the absence of large-scale
buoyancy generation or destruction, for this allows us to connect more directly to the
majority of studies in the stably stratified turbulence literature. This leads to

1 (P, Ry
Rip= W), 2.6
if (Pk + By c3) (2.6)

which we now use to explore how Ri ¢ can vary for different sets of homogeneous, forced,
stably stratified turbulence simulations. The first class of flows involves P, /Py # 0, but
0 < Py /Py <1, which corresponds to flows where there is non-zero generation of ky,
by forcing but not all of the mechanical production goes to generating w. This includes
the physical-space, linear velocity forcing used by Yi & Koseff (2022a) as well as the
spectral-space, low-wavenumber forcing used by Maffioli et al. (2016). As stability is
increased (e.g. decreasing Fri) while keeping c3 fixed (maintaining the isotropic range of
scales; keeping Re fixed with Re = Re, for Fry > 1 and Re = Rep, for Fry < 1), Py /Py is
expected to decrease since a larger energy input is required in the horizontal directions
to maintain three-dimensional (3-D) turbulence. Furthermore, the vertical component
of TKE becomes smaller than the horizontal components, implying that, on average,
pressure—strain redistribution would take more energy from k, and k, to generate ky
(Ry/ Pr > 0).

The second class of flows involves P,,/P; = 0. This includes a wide range of forcing
schemes that only inject energy to the horizontal velocity fields (e.g. random forcing in
spectral space, Lindborg 2006; vortical forcing in spectral space, Waite & Bartello 2004)
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as well as scenarios that involve wall-bounded flows (specifically away from boundaries
where transport effects are weak) or mean shear such that there is only production of k,
and/or k, (e.g. Shih et al. 2005; Basak & Sarkar 2006; Shah & Bou-Zeid 2014). Because
vertical motions are not forced, these simulations involve large-scale anisotropy even in
the limit of neutral stratification. Therefore, R,/ Px > 0 is required for three-dimensional
turbulence. As stability increases (keeping the small-scale anisotropy factor c¢3 fixed),
changes in Riy could only arise from changes in R,/ Py, which represents the fraction of
the mechanical production that gets used to generate vertical motions via pressure—strain
redistribution.

The third class of flows involves P, /P, =1, where all of the mechanical production
occurs in the vertical velocity field. This is the limiting case of physical scenarios that
might involve vertical motions such as obliquely propagating internal gravity waves and
the interaction of buoyant jets and plumes with a background stratification (e.g. Gayen &
Sarkar 2011; Williamson, Armfield & Lin 2011; Onuki, Joubaud & Dauxois 2021; Lewin &
Caulfield 2022). Since mechanical production only occurs in the vertical direction,
Ry /P <0 is required for three-dimensional turbulence. Therefore, with increasing
stability (keeping the small-scale anisotropy factor c3 fixed), the mixing efficiency Riy
is determined by how effectively energy is redistributed from k,, into k,, and k.

Lastly, in all of these scenarios, simultaneous variations of the range of isotropic
and anisotropic scales (i.e. Rer, Rep and Frp varying simultaneously) would involve
simultaneous variations of P, /Py, R,/ Px and c3. Because we have used the irreversible
definition of the mixing efficiency in (2.6), we can explore how Ri; depends on Py, / Py,
Ry, / P and c3 as these parameters are varied within the following bounds: Py, /Py € [0, 1],
Ry/Pr €[—1, 1], c3 € [0, 1]. We can then further restrict the parameter space by requiring
that Ri; remains realisable (Ris € [0, 1]); we are not considering scenarios with global
TKE backscatter where P, < 0.

We plot the realisable space of Ris values in figure 2 following (2.6) for three different
limiting cases: (a) for P,/ P; = 0, corresponding to scenarios that only force the horizontal
momentum equations; (b) for Py /Py = 1, corresponding to scenarios that only force the
vertical momentum equations; (c) for c3 = 1/3, corresponding to a large Reynolds number
limit where small-scale isotropy is recovered (e.g. in the absence of mean shear, this would
require Rey >> 1 for Fry > 1 or Rep, > 1 for Fry < 1); and (d) for P, /P =1 (blue) and
P,/ P, =0 (orange) with c3 = 1/3. The scenarios that involve 0 < P,/ Py < 1 sit between
the realisable triangular regions in the top left of figure 2(a) and the bottom left of
figure 2(b) in the Ry, /Pr and c3 space. Relatedly, in the large Reynolds number limit,
the entire realisable space of Riy values sit between the two limits of P, /Py =0 and
Py /P =1 (see the realisable diagonal strip of 0 < Riy <1 in figure 2(c), and the space
between the blue and orange lines in figure 2d).

While the bounds on Riy help constrain the theoretically realisable space of (2.6),
Riy and the extent of that space are sensitive to how the flow is forced. Flow forcing
information can thus further restrict the theoretically realisable space of (2.6) to a smaller
space that is empirically observed in measurements or simulations. For example, Yi &
Koseff (2023) found larger values of Ri s for simulations that involved vertical shear (d,u)
compared with lateral shear (dyu) (see their figures 4 and 9b). While these two scenarios
obey the same volume-averaged budgets (2.1)—(2.4), they differ in how the pressure—strain
redistribution of k, to k,, and k,, impacts the dynamics (see their figure 10). More generally,
to estimate Ri s for a set of flows that are described by the same volume-averaged budgets,
we need to know R,/ Py, which quantifies how effectively the pressure—strain correlations
generate or remove k,, relative to the total mechanical production. Connecting this to
the task of parametrising I" in terms of the governing parameters of stably stratified
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Figure 2. (a,b,c) Contour plots and (d) line plot of the irreversible mixing efficiency Rif =€, /(e +€p)
following (2.6) under different limits. Ri¢ for (a) Py /P = 0, no vertical forcing; (b) Py /P = 1, only vertical
forcing; (¢) c3 =1/3, large Reynolds number limit (e.g. in the absence of mean shear, this would require
Rer > 1 for Fry > 1 or Rep, > 1 for Fri < 1); (d) Py/Pr =1 (blue) and P, /Py =0 (orange) with ¢3 =1/3.
The dark contours in the first three panels correspond to Riy = 0.2, 0.4, 0.6 and 0.8.

turbulence, this implies that we need to understand how pressure—strain redistribution
and dissipation anisotropy depend on (i) how the turbulence is forced and (ii) the range
of isotropic and anisotropic scales. In the following sections, we pursue the first goal
by developing a better understanding of how two particular pressure correlations (the
pressure—strain redistribution and the pressure scrambling terms) change as stability is
increased from near neutral to strongly stable conditions and their relationships to I".
We also briefly touch on the second goal by comparing simulations with strong
stability (nominally the same Fry) at two different Reynolds numbers, highlighting the
multiparameter dependence of I” that we have discussed here.

3. Description of DNS dataset

In this section, we introduce the dataset and key findings from Yi & Koseff (20224) to set
the stage for the subsequent analyses of the nonlinear and buoyancy pressure correlations.

3.1. Problem set-up and methodology

We revisit the DNS dataset of homogeneous, forced, stably stratified turbulence studied by
Yi & Koseff (2022a), which is governed by the incompressible, Navier—Stokes equations
under the Boussinesq approximation with linear velocity forcing (Lundgren, T. S. 2003;
Rosales & Meneveau 2005):

dju; =0, 3.1)

1019 A14-8
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1

B4t + U Ittj = ——Dj p — = p8j3 + Vit + A, (3.2)
0 0

00 + UmOmp = —wd;pp + D3y Opmp, (3.3)

where u;, p, p represent the velocity, pressure and density fields, respectively; p is
defined as the perturbation from po + pp(z), with pg being the reference density and
pp(z) being the prescribed, stable, linearly varying background density field (d;p5 <0
and constant); g is the gravitational acceleration; v is the kinematic viscosity of the fluid;
D is the molecular diffusivity of density; and A is the momentum forcing rate. A point to
highlight is that this momentum forcing is active in all three directions and is proportional
to the velocity perturbations in that direction. Imposing a stability that damps w (via
the buoyancy force), hence, also reduces P, = Aw? relative to P, = Au? and P, = Av2,
further damping the vertical component. Tensor indices (1, 2, 3) correspond to spatial
directions (x, y, z) and velocity fields (4, v, w) with gravity acting along the z-axis.
Repeated indices imply summation. Equations (3.1)—(3.3) were solved in a triply periodic,
cubic domain of length L =2 using a Fourier pseudospectral solver with a fourth-order
Runge—Kutta time-stepping scheme. Nonlinear terms were dealiased exactly by zero-
padding (i.e. they are computed using zero-padded arrays of size 3N /2 and retaining the
first N Fourier modes in each dimension). The code has been verified and used in several
studies (Yi & Koseff 2022a,b, 2023).

A key strength of using this dataset rather than the three shear-forced datasets studied
by Yi & Koseff (2023) is that the linear forcing (Au ;) is divergence free, which allows for
the pressure fluctuations to be decomposed into just two components associated with the
non-divergent parts of the nonlinear and buoyancy terms in (3.2), which will be discussed
further in § 4.1.

3.2. Second-moment budgets

Here, we overview the volume-averaged (indicated by overbars) budgets of the turbulent
kinetic energy (TKE, k = (1/2)uju;), turbulent potential energy (TPE, k, = (1/ 2)a’pp),
Reynolds stress (#;u;) and buoyancy flux (B; = (g/po)u;p) associated with (3.1)—(3.3).
Here, o = g/(poN) is a dimensional coefficient used to convert the dimensions of p
to match those of velocity (and thus convert the density variance into potential energy
units). Because the system is axisymmetric about the vertical axis, we simply consider
the horizontal and vertical Reynolds stresses (diagonal entries of u;u;) and the vertical
buoyancy flux (B = (g/po)wp). This reduced set of budgets is given as

g _ —_—
dik = 2Ak — —wp —Vvoyujouu;j =Pr—B—¢€ 34
t ' % 1Y mU jOmU j k ks (3.4
TKE production — TKE dissipation
vertical
buoyancy flux
dik, = pﬁw—p — D0y pdmp =B —¢,. (3.5)
0 —_—
—— TPE dissipation
vertical
buoyancy flux
1 -
diky = 2Aky + —psgH —Vvouugonupg = Py + Ry —€q, (3.6)
——— 0 —_—
horizontal TKE — horizontal TKE
production horizontal dissipation

pressure-strain
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1 g _ I
diky = 2Ak, + —ps33 — —wp —viuwiw=Py,+ Ry — B —¢€y,
—— P0 P0 S —
vertical TKE — — vertical TKE
production vertical vertical dissipation
pressure-strain  buoyancy flux
3.7
4B=  AB APy INZ(kyy — k D) (<) 8,w
tb = + —5DP0zp + (kw — p)_(V+ ) % m WO O
" ~————
vertical buoyancy flux o source/sink due to
production by forcing vertical ky and k vertical buoyancy flux
pressure scrambling dissipation
= Pg + Rp +2N*(ky — k) — 5. 3.8)

Equations (3.4) and (3.5) are the volume-averaged kinetic and potential energy budgets,
where Py is the production rate of TKE by the linear forcing term; B is the vertical
buoyancy flux that here converts TKE to TPE; and €, and €, are the dissipation rates
of TKE and TPE, respectively. Equations (3.6) and (3.7) are the volume-averaged budgets
for the horizontal and vertical components of TKE (kg = (1/2)ugug = (1/2)(1/2uu +
(1/2)vv); ky = (1/2)ww), where adding two times (3.6) with (3.7) results in (3.4) (k=
2ky + ky). The sources and sinks in these equations are as follows: Py = (A/2)(uu + vv)
and P, are the production rates of the horizontal and vertical components of TKE; Ry =
(1/2p0)(Ps11 + ps22) and Ry, are the pressure—strain correlations, which sum to zero (i.e.
2Ry = —Ry,) due to the incompressibility condition (3.1); and ey = (v/2) (0, u10mu1 +
omuz0muz) and €, are the dissipation rates of the horizontal and vertical components
of TKE. Equation (3.8) is the volume-averaged budget for the vertical buoyancy flux,
where Pp is a source term due to forcing (equivalent to production by the mean-velocity
gradient in stratified wall-bounded flows); R is the pressure scrambling term; 2N 2k, is
a source due to k,, (equivalent to production by the mean-density gradient in stratified
wall-bounded flows); —2N2k p 1s a sink due to k, (equivalent to buoyant destruction in
stratified wall-bounded flows); and €p is a ‘dissipation’ term for vertical buoyancy flux
(this term, however, is not sign definite). The transport terms are exactly zero because
our flow is statistically homogeneous in all three spatial directions, which is why only the
volume-averaged sources and sinks remain in (3.4)—(3.8).

3.3. Reynolds stress and buoyancy flux budgets and their relationship with mixing
coefficient

We can visualise the energy exchange in our system under statistically stationary
conditions following (3.5)—(3.7). In figure 3, ingoing arrows indicate sources and outgoing
arrows indicate sinks of each of the three energy buckets. Forcing directly produces
ky and ky (black arrows). There is also intercomponent exchange by pressure—strain
redistribution, which under stable conditions, and with the three-dimensional forcing in
our DNS, will convert kg into k,, to reduce the large-scale anisotropy due to buoyancy
effects (blue arrow). (Note that the conversion would have been from k,, to kg for cases
with P, /P, =1 as discussed in the previous section.) The buoyancy flux converts &, into
kp (orange arrow) and, finally, there are dissipative losses (red arrows).

Before presenting the key results, we first illustrate the parameter space spanned by the
DNS dataset of Yi & Koseff (2022a) by plotting the volume- and time-averaged values
of Rey and Fry from the 42 simulations in this dataset in figure 4 (purple circles). Lines
of constant Rep, = ReLFr% are marked by the diagonal dashed lines (increasing in order
of magnitude from 1 to 10%). The dataset spans roughly three orders of magnitude in Fry,
covering near neutral to very strongly stable conditions. The simulations with Fry > 1 have
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Figure 3. Energy exchange diagrams under the statistically stationary conditions of our DNS set-up,
following (3.5)—(3.7). Ingoing arrows indicate sources and outgoing arrows indicate sinks of the three energy
buckets (horizontal and vertical components of TKE and TPE). Black arrows indicate direct production by the
forcing term, the blue arrow indicates the pressure—strain redistribution term, the orange arrow indicates the
vertical buoyancy flux and red arrows indicate the dissipation terms.

10! =
'?e; <p
= -.._"21‘}2\
. i ""-.“/f_\/0<1
.____.,?eé -
0 ! A
< 00h. -"{?f?/'}«?\
5 I ; L 1?9 -.___4{\103
~ 6
= ~ A
w ‘n.é/‘};
I LS 102
=~ 10t AR
I el Ko < 57
Tons
é\/ *
10721 .
10! 102 103 10*

Rep = k2/(vey)

Figure 4. Volume- and time-averaged values of Re;, and Fry from the DNS dataset of Yi & Koseff (2022a)
(purple circles) and an additional higher Reynolds number simulation at strong stability (purple star).

Re; =~ 100, whereas the simulations with Fr; <1 have Rejp between 10 and 100, where
Rej, decreases for simulations with smaller values of Fry as a wider range of anisotropic
scales are simulated at the expense of isotropic scales. We choose to plot the results as
a function of Fry for simplicity and continuity with how they are originally presented
by Yi & Koseff (2022a), but we should note that Reynolds number variations do affect
the quantities of interest as we have discussed in §2. To illustrate this multiparameter
dependence, we also present the results from a higher Reynolds number simulation with
strong stability (Fry ~ O(1072)) (purple star). Key simulation input and output parameters
are summarised in table 1 with C-series simulations involving a fixed value of the forcing
coefficient A in time, whereas the K-, D- and V-series simulations involve time-varying
values of A to maintain specific values of k, ¢ and k,,, which are reported in the table.
The time-varying forcing approach builds on that of Bassenne et al. (2016), and the details
of how A(¢) is chosen can be found in Appendix B of Yi & Koseff (2022a). A key benefit
of this time-varying forcing scheme is that the simulations more rapidly reach statistically
stationary conditions relative to a constant forcing scheme. We illustrate this benefit further
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Sim. A/N Frk RCL Reb k €f kw Pw/Pk R,,_,/Pk c3 Rif

Cl 0.3750  0.6586 181.91 75.81 7.61 6.74 1.37 0.1804 0.2061 0.2716  0.14646
C2 0.5000  0.8595 97.09 71.32 413 3.57 093  0.2253 0.1779 0.2933  0.15068
C3 0.9300 1.7172 103.36 302.71 5.85 6.73 1.66  0.2829  0.0859 03134 0.07901
C4 1.3578  2.5870 100.96 669.90 6.20 7.68 1.88  0.3028  0.0500  0.3235  0.04463
C5 1.4895  2.8869 107.47 887.94 6.71 8.45 1.99  0.2964  0.0496  0.3228  0.03429
Co6 1.9500  3.8211 106.57 1544.02 6.73 8.58 212 0.3149 0.0276 03270  0.02328
C7 22768  4.4771 109.85 2181.21 6.95 8.89 222 03193 0.0217 0.3304  0.01681
C8 2.6000  5.1262 106.55 2775.85 6.77 8.67 225  0.3325 0.0082  0.3308  0.01451
K1 0.4155  0.7031 135.63 63.28 6.0 5.63 1.17 0.2005 0.1862 0.2767  0.15369
K2 0.5215  0.9010 116.79 91.90 6.0 6.36 132 0.2244 0.1645 0.2929  0.13543
K3 0.6405 1.1267 82.21 101.40 3.0 225 0.71 0.2418 0.1343 0.2911 0.11977
K4 0.6719 1.1936 102.50 143.23 6.0 7.16 148  0.2484 0.1320  0.3026  0.11144
K5 0.8155 1.4824 103.29 222.36 6.0 712 1.59  0.2682 0.1030  0.3082  0.09095
K6 1.2506  2.3540 7717 423.73 3.0 2.35 0.87  0.2919 0.0682  0.3204  0.06936
K7 1.2831 2.4412 99.75 585.89 6.0 7.32 1.81 0.3027 0.0551 0.3245  0.04858
K8 1.6597  3.2197 75.43 772.73 3.0 2.41 0.91 0.3049  0.0384  0.3227  0.03002
D1 0.1500  0.2438 463.70 22.50 6.61 2.00 0.57  0.0903  0.2253 0.1706 0.17831
D2 0.2504  0.4070 234.90 33.75 5.80 3.00 0.78  0.1387 0.2292  0.2307  0.18025
D3 0.3071 0.5071 190.88 45.00 6.10 4.00 093  0.1549 02169  0.2484  0.16786
D4 0.3031 0.5073 245.21 60.00 9.50 7.50 146 0.1555 0.2234  0.2569  0.16267
D5 0.3927  0.6461 131.32 50.63 5.36 4.50 1.07 0.2010 0.1984 0.2748 0.17390
D6 0.4291  0.7308 122.34 60.00 5.17 4.50 1.04  0.2055 0.1908 0.2782  0.15750
D7 0.4455  0.7468 126.11 67.50 6.11 6.00 .30 0.2138 0.1856  0.2870  0.15988
D8 0.4746  0.8056 135.69 84.38 7.08 7.50 1.48 0.2103 0.1760 0.2855 0.14617
D9 0.5179  0.8920 129.84 100.00 6.94 7.50 153 0.2213 0.1638 0.2888  0.13988
D10 0.5322 09196 74.90 60.00 2.35 1.50 0.52  0.2240 0.1610 0.2761 0.14502
D11 0.5690  0.9878 104.78 100.00 4.84 4.50 1.12 0.2318 0.1557 0.2942  0.13430
D12 0.6815 1.1967 66.32 91.88 2.22 1.50 0.56  0.2522 0.1274 0.2943 0.12154
D13 0.6829 1.2121 69.93 100.00 2.28 1.50 0.54  0.2370 0.1359  0.2952  0.11269
D14 0.8448 1.5227 81.29 183.75 3.48 3.00 096  0.2756 0.0977  0.3067  0.09725
D15 0.9639 1.7820 88.65 275.63 4.45 4.50 124  0.2794 0.0841 0.3120 0.07471
D16 1.0709 1.9989 94.36 367.50 5.30 6.00 1.53  0.2889 0.0753 0.3196  0.06601
D17 1.1213 2.1152 104.64 459.38 6.24 7.50 1.77 0.2846 0.0727 0.3182 0.05720
D18 1.5926  3.0912 107.12 1000.02 6.31 7.50 1.93 03067 0.0389  0.3251  0.03220
D19 1.7539 3.4170 87.71 1000.00 4.42 4.50 136 03099  0.0339  0.3264  0.02807
D20 1.8112  3.5333 81.79 1000.00 3.49 3.00 1.08 0.3100 0.0351 0.3276  0.02679
Vi 0.0093  0.0165  35933.73 9.83 29598  49.15 1.30  0.0045 0.1148 0.0409  0.08334
V2_128  0.0146  0.0251 29340.94 18.32 121.39  20.36 1.30  0.0107 0.2389 0.1190 0.14735
V2 0.0180  0.0312 12862.77 12.40 13222 2755 1.30  0.0099 0.1561 0.0662  0.10922
V3 0.0284  0.0484 6201.62 14.06 73.13 17.58 1.30  0.0179 0.1855 0.0882  0.13128
V4 0.0600  0.0997 2044.58 18.65 31.75 1036 1.30  0.0420  0.2266  0.1380  0.15450
V5 0.1030 0.1678 989.35 25.60 19.53 8.00 130 0.0686  0.2445 0.1761 0.17032
Vo6 0.1532  0.2485 609.54 36.11 14.65 722 1.30  0.0900  0.2446  0.2013 0.17261

Table 1. Volume- and time-averaged input and output parameters for the simulations. The C-series simulations
involve a fixed value of A in time, whereas the K-, D- and V-series simulations involve time-varying values of
A to maintain specific values of k, € and k,,, respectively, which are provided in the table. All simulations used
N = 64 Fourier modes in each spatial direction, except for simulation V2_128, which used N = 128 modes.
The C-, K- and D-series simulations all had values of «;,,,n & 2, whereas the lowest value for the V-series
simulations was k. ~ 1.25.

in relation to the growth of energy in large horizontal-scale motions termed ‘shear modes’
in strongly stable, forced turbulence simulations in Appendix A.

Next, we consider the volume-averaged budgets of the horizontal and vertical
components of the TKE (kg and k), and the vertical buoyancy flux (B) as a function
of the turbulent Froude number (Fry) in figure 5(a,b,d). We also connect these budgets
to the relationship between the mixing coefficient (I7) and Fry in figure 5(c). In the
following paragraphs, we denote weak stratification where we observe monotonic increase
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Figure 5. Steady-state, volume- and time-averaged budgets of (a) kxu, (b) ky, and (d) B as a function of the
turbulent Froude number (Fry). The three panels correspond to (3.6)—(3.8). The mixing coefficient I is plotted
in panel (c¢) as a function of Fry with the dissipation anisotropy factor c¢3 = €,,/€x shown in colour. The results
from the higher Reynolds number simulation (V2_128) are denoted by filled stars.

of R,/ Py (relative importance of pressure—strain redistribution of &, to total mechanical
production), moderate stratification where R, /Py plateaus along with I", and strong
stratification where pressure scrambling (source/sink in the vertical buoyancy flux budget)
becomes positive and where I begins to decrease. These choices are made given that the
specific Fry thresholds associated with these dynamical changes in the volume-averaged
budgets will be sensitive to how the turbulence is forced and the Reynolds number.
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In figures 5(a) and 5(b), we plot the steady-state, volume- and time-averaged budgets of
kp and k,, normalised by the total production of TKE (Py). First, we consider the budget
for kg (figure Sa). When stratification is weak (large Froude numbers), the pressure—strain
correlation is weak (blue exes), and there is a balance between production and dissipation
(black and red triangles). As stratification increases (moving from large to small Froude
numbers), production of kg increases in magnitude relative to total production (black
triangles) since kg becomes larger than k,, due to damping by buoyancy and consequent
reduced production of the latter. With this change, the pressure—strain correlation becomes
a sink of kg, and it reaches a plateau around Fry =~ (0.7 before starting to decrease in
magnitude for Fry < 0.1. Dissipation of kg initially becomes smaller until Fry ~ 0.7
before increasing in magnitude for Fry < 0.7.

Next, we consider the budget for k,, (figure 5b). Like with kg, when stratification is
weak (large Froude numbers), the pressure—strain correlations (blue exes) and buoyancy
flux (orange stars) are negligible, and there is a balance between production and
dissipation. As stratification increases (moving from large to small Froude numbers),
vertical motions are damped by buoyancy (k, < kpy) and direct production of ki,
decreases. As large-scale anisotropy becomes important in the system, the pressure—strain
correlation becomes a source of k,,, increasing in magnitude until reaching a plateau
at Fry ~ 0.7 before decreasing for Fry < 0.1. Relatedly, the buoyancy flux increases in
magnitude until Fry &~ 0.7, overtaking dissipation as the main sink of k,,, before sharply
decreasing in magnitude for Fry < 0.1. Dissipation of k,, decreases as stratification is
increased.

In figure 5(d), we plot the steady-state, volume- and time-averaged budget of the vertical
buoyancy flux (B = (g/po)wp) as a function of the turbulent Froude number (Fry). The
terms have been normalised by the sum of all source terms to keep their values in the range
of +1. When stratification is weak (large Froude numbers), the buoyancy flux is generated
primarily by the source due to &, (black triangles) and secondarily by the source due to
forcing (black circles), and it is destroyed primarily by pressure scrambling (blue exes) and
secondarily by dissipation (red triangles). As stratification increases (moving from large
to small Froude numbers), the source due to forcing and the dissipation weaken, and a
dominant balance between three terms arises: generation by source due to k,,, destruction
by pressure scrambling, and sink due to k;, (orange stars). When Fry ~ 0.1, the pressure
scrambling term becomes negligible, and there is a balance between source due to k,, and
sink due to k,. However, as stratification increases further (Fry <0.1), the source due to
ky, weakens, and pressure scrambling switches signs and begins to generate buoyancy flux
to ensure that the buoyancy flux remains positive, which is expected for stably stratified
systems. The emerging dominant balance as one goes to even lower Fry than we simulated
seems to be between the pressure scrambling term correlating vertical velocity and density
to produce buoyancy flux and buoyancy destruction working to reduce the correlation and
flux. This balance also emerged in DNS of stably stratified wall-bounded flow away from
the wall and at high stabilities reported by Shah & Bou-Zeid (2014) (see their figure 204
for Rip =0.968).

Finally, in figure 5(c), we plot the mixing coefficient (I") as a function of Fry
with the dissipation anisotropy factor ¢z = €,,/€; from § 2 shown in colour. Doing so
illustrates how the range of isotropic scales vary simultaneously with Fry, highlighting the
multiparameter variations that occur across the set of simulations (see figure 4). Because
we keep the simulation resolution fixed while varying the stability in the original set
of simulations (circles), an increasing range of anisotropic scales are simulated at the
cost of decreasing range of isotropic scales, which explains why simulations with weak
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stability have values of c3 close to 1/3 (indicating small-scale isotropy), while simulations
with stronger stability have systematically smaller values of c¢3 (indicating departures
from small-scale isotropy). The three rightmost scaling regimes (I” ~Frk_2, r~ Fr,:1
and I & constant) have been theoretically discussed by Garanaik & Venayagamoorthy
(2019), but the leftmost scaling of I" ~ Fr2'4 is an empirical fit to the results of simulations
V1, V2, V3 and V4 (four leftmost circles). The deviation of the higher Reynolds number
simulation (filled star) is discussed in the subsequent paragraph. As stratification increases,
I' increases until it plateaus at a value of I" &~ 0.2 for Fry ~ 0.7. This coincides with when
the pressure—strain redistribution becomes equally important in generating k,, and reaches
a plateau (figure 5b). As stratification increases further, I" ~ 0.2 is maintained until Fry <
0.1 when it begins to decrease. This is connected with a decrease in the pressure—strain
redistribution, which is the main mechanism for generating k,, for Fry <0.1, and there
is an accompanied decrease in the vertical buoyancy flux (figure 5b). As redistribution
from ky to k, weakens, leading to a diminished vertical buoyancy flux, we observe in
the vertical buoyancy flux budget that the source due to k,, term diminishes in magnitude
relative to the sink due to k,, term, and the pressure scrambling term changes sign and
becomes a source of vertical buoyancy flux (figure 5c).

We note that increasing the Reynolds number while keeping stability relatively fixed
(e.g. compare simulations V2 and V2_128, corresponding to Fry ~ 0.031 and Fry ~ 0.025,
respectively; results from simulation V2_128 are denoted by filled stars) results in a
more effective pressure—strain redistribution from ky to k, and weakens the loss of
ky by dissipation (figure 5a). This more effective generation of k,, is accompanied
by greater losses via enhanced conversion of k, into k, by the buoyancy flux and
viscous dissipation (figure 5b). Regarding the larger buoyancy fluxes associated with
increasing Reynolds number, we observe that this change is associated with a relative
strengthening of the source due to k,, compared with pressure scrambling, which is due
to the greater conversion of kg into k,, by more effective pressure—strain redistribution
(figure 5d). These changes result in a greater value of I" as the Reynolds number is
increased (figure Sc¢), which can be explained by considering (2.6). We find that increasing
the Reynolds number while keeping stability relatively fixed results in (i) negligible
changes to the fraction of the TKE production that directly generates k, (P, /Px remains
largely unchanged), (ii) enhanced pressure—strain redistribution into k,, relative to TKE
production (R,,/ Py increases) and (iii) more of the TKE loss occurring via dissipative
losses of k,, (c3 increases). Visually, we can see this by considering figure 2(a) (note
that P,/ Py ~ (’)(10*2) for simulations V2 and V2_128), where simultaneous increases in
Ry, / Py and c3 result in larger values of I = Ri ¢ /(1 — Rif) (i.e. movement towards the top
right corner of the realisable region that is left of the orange vertical line). Regarding the
transition between I" & constant and I" ~ Fr%4, we note that the latter relationship is an
empirical fit that needs to be revisited based on simulations that vary Fr; while keeping
Rep, fixed, which would reveal the relationship between I" and Fry at strong stability for
different values of c3.

Bou-Zeid et al. (2018) in studying the relationship between Riy and the gradient
Richardson number (Ri; =N 2/8%) observed a similar relationship where Ri ¢ first
increases with Ri, (increasing stability), but then reaches a plateau, where the former
regime was referred to as the ‘B-limited regime’, indicating a limitation in the magnitude
of the vertical buoyancy flux due to the background density gradient and its ability to
convert TKE to TPE, and the latter regime was referred to as the ‘R -limited regime’,
indicating a limitation in the magnitude of the vertical buoyancy flux due to the pressure-
redistribution term. These ideas are connected with the left and right flanks of the
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relationship between I" and Ri, as described by Caulfield (2021). The results from the
higher Reynolds number simulation at strong stability highlights the need to explore the
effects of Reynolds number in both the ‘B-limited regime’ and the ‘R -limited regime’
for a more complete physical understanding of mixing associated with stably stratified
turbulence.

In this section, we have summarised the key findings of Yi & Koseff (2022a), connecting
the shape of I" as a function of some measure of dynamic stability (here we have used
Fry) to changes in the generation of k,, by pressure—strain redistribution and the associated
change in the generation of B by the pressure scrambling term for very strong stability. We
also briefly explored the role of the Reynolds number through an additional simulation,
which (when combined with our analysis in § 2) suggests that greater values of I" will
result when Reynolds number is increased while keeping Fry fixed for strong stability.
Given that Yi & Koseff (2023) also reported sign changes of the pressure scrambling
terms at strong stability for three different types of shear-forced, stably stratified
turbulence simulations, we attempt to explain this seemingly more general feature of stably
stratified turbulence in the next section by further studying these two pressure-related
quantities.

4. Analysis of pressure correlations
4.1. Pressure decomposition

To diagnose these pressure effects further, we consider the Poisson equation governing the
pressure fluctuations by taking the divergence of (3.2),

8j3jp=—,003jum8muj—gazp. (4.1)

We then decompose the pressure fluctuations into nonlinear and buoyancy components
(pnr and pp) that separately satisfy the two right-hand side source terms:

00 pNL = — P00 jUm Ol j, 4.2)
0j0jpp =—80:p. (4.3)

As mentioned in § 3, the shear-forced datasets of Yi & Koseff (2023) involve an additional
right-hand side term in (4.1) due to the non-divergence of the shear forcing terms. This
would require solving for a third set of pressure fluctuations associated with the terms
involving the mean shear. The current dataset, however, allows us to study just the
competition between the nonlinear and buoyancy components of the pressure fluctuations.
When running the DNS, we solved the full Poisson equation for the pressure (4.1). Here,
we separately compute pyz and pp offline as a postprocessing step to probe their responses
to increasing stability.

In figure 6(a), we plot the normalised pressure variance as a function of the turbulent
Froude number (Fry). With p = pyr + pp, the volume-averaged pressure variance is

pr= pIZVL + p% + 2pnrps- The total pressure variance (blue exes) has been plotted using
the sum of the three right-hand side terms to verify the offline postprocessing of the
nonlinear and buoyancy components of the pressure fluctuations. The total pressure
variance is dominated by the nonlinear component (purple squares), but the buoyancy
component (blue circles) increases in magnitude with stability. The nonlinear and
buoyancy components are anticorrelated, and this anticorrelation strengthens with stability
(orange triangles).

Next, we consider the normalised pressure—strain correlations (R,,/ Px) in figure 6(b),
which at its peak amounts to ~25 % of the TKE production. Recall that positive values
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Figure 6. Normalised (a) pressure variance, (b) pressure—strain correlation and (c¢) pressure scrambling term
as a function of Fry. The results from the higher Reynolds number simulation (V2_128) are denoted by filled
stars.

indicate transfer of kpy into k, and negative values indicate transfer of k,, into kp.
For weak stratification, the nonlinear component makes up most of the pressure—strain
correlations, but the total contribution of the pressure—strain term to the dynamics is small
since the turbulence is nearly isotropic in these simulations. The buoyancy component
increases with stratification until Fry &~ 0.7, contributing to the redistribution of energy
from kg into ky,, which promotes large-scale return-to-isotropy. For Fry < 0.7, however,
the buoyancy component begins to decrease and eventually changes sign for Fry ~ 0.3,
becoming a sink of k,,. This conversion from vertical to horizontal TKE goes counter to the
return-to-isotropy expectation as it redistributes energy from the less energetic component
ky (that in our simulations still has a source associated with the forcing) to the more
energetic ones ky. We find that the decrease in the total pressure—strain correlation for
Fry < 0.1 is driven by both a weaker exchange of k into k,, by the nonlinear component
and a stronger exchange of k, into ky by the buoyancy component. Interestingly,
when considering the higher Reynolds number simulation with Fry &~ 0.025, we note
that while the buoyancy pressure—strain redistribution maintains a similar magnitude
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as the lower Reynolds simulation with Fry & (0.031, we observe that the net pressure—
strain redistribution increases by approximately 50 % due to a significant increase of the
nonlinear component. We additionally note that this significant change in the correlation
is associated with relatively negligible differences of the pressure variance components
between the lower and higher Reynolds number simulations (figure 6a).

Finally, we consider the normalised pressure scrambling term in figure 6(c). For weak
stratification, the nonlinear component makes up most of the pressure scrambling term
and represents a large negative fraction (approximately —70 %) of the total production
of covariance. Therefore, the total pressure scrambling term acts as a sink of vertical
buoyancy flux. However, as stratification increases, the nonlinear component begins to
weaken, and this is accompanied by a largely monotonic increase of the buoyancy
component. Focusing on very strong stratification (Fry < 0.1), we note that the sign change
of the total pressure scrambling term is due to the compensation between the nonlinear and
buoyancy components, and as the buoyancy component of the pressure scrambling term
starts to dominate, the total pressure scrambling term becomes an increasingly important
means of generating vertical buoyancy flux (see also figure 5d). Comparing the lower and
higher Reynolds number simulations (Fry ~ 0.031 and Fry ~ 0.025), we observe that the
nonlinear component of the pressure scrambling increases slightly in magnitude while the
buoyancy component of the pressure scrambling decreases in magnitude, leading to a 24
% reduction in the net pressure scrambling term.

4.2. Interpreting the nonlinear and buoyancy pressure fluctuations and their correlations

To develop an understanding of the nonlinear and buoyancy pressure fluctuations, we
return to (4.2) and (4.3), which relate the Laplacian of the nonlinear and buoyancy pressure
fluctuations to their respective right-hand side source terms ( fyz(x, 1) = —000 Uy, Optt j
and fp(x,t)=—gd,;p). Because our problem set-up is triply homogeneous, the flow
variables can be represented as a sum of Fourier modes (denoted by the circumflex
symbol), the Fourier coefficients of d;0;p are given by —«2p(k) with K being the
wavenumber vector and «2 being the squared wavenumber magnitude. Therefore, we
can express the Fourier coefficients of the nonlinear and buoyancy components of the
pressure fluctuations as pyz(k, 1) = — fyr/k2 and pp(k, 1) = — fz /2, where fyr(k, 1)
and ﬁ;(lc, t) are the Fourier coefficients of fyr and fp. One additional constraint on the
pressure fields is that their volume-average values are zero, which requires pyz(k =0, t) =
Oand pp(k =0,1)=0.

Relatedly, we can also consider this relationship between the right-hand side terms
of (4.2) and (4.3) and the pressure fluctuations in physical space. By using Green’s
function for the 3-D Poisson equation, we can write the pressure fluctuations as

pNL(x,z):///—fNL(:’t),_fNL(t) dx’, (4.4)

mTlx’ — x|

pB(x,t):// LIS s VIO (4.5)
4 |x’ — x|

which involve convolution integrals of Green’s function —1/(4mwr) (r is the distance
between two points marked by x and x’) and the two right-hand side source terms with
their volume-averaged values subtracted, fyr — fy; and fp — fp, which is necessary
to ensure a zero volume-average for the pressure fields. The pressure fields are defined
using convolution integrals of the right-hand side terms with the Green’s function because
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they are governed by elliptic partial differential equations (PDEs), where the pressure at
some point x depends on the values of the right-hand side terms over the whole domain.
We note that by the convolution theorem, we can also arrive at pyz(k,t) = — f;\lL/Kz
and pg(K,t) =— ﬁg //c2 from (4.4) and (4.5), where the Fourier coefficients of Green’s
function are —1/«2.

Next, we make one final manipulation to fxz, by re-expressing it using the rate-of-strain
and rate-of-rotation tensors so that 9;u,, = Sy, + R;j and 9y,u j = Sjp + R . With these
substitutions, we find

1
ne = _pOajumamuj = _:OO(Sijjm - ijij) =—00 <Sijjm - qua)q)’ (4.6)

where we have simplified two terms by noting that a double contraction of symmetric and
anti-symmetric tensor sums to zero, and rewriting the rate-of-rotation tensor in terms of
the vorticity vector (see a discussion of this decomposition and its relation to the nonlinear
pressure fluctuations by Vlaykov & Wilczek 2019). We also note that

— 1 -
I =ro <§wqwq - Sijjm) =0, @7)

since (1/2)wgwg = (1/2)(0ju;dju;) = S;mSjn for homogeneous turbulence (see the
discussion of pseudo and true dissipation in § 5.3 of Pope 2000).

Here, we briefly summarise the motivation for taking the above-stated steps. We are
seeking to understand the pressure—strain and pressure scrambling terms, which requires
us to first understand what causes the pressure fluctuations in our problem. To do this, we
considered the pressure Poisson equation given in (4.1). If the right-hand side source terms
only involve a single Fourier mode, it is possible to state that the pressure fluctuations scale
proportionally to the right-hand side terms following —d;0; p & p o« — f, but because the
right-hand side source terms consist of contributions from a range of scales for turbulent
flows, this statement cannot be applied generally in physical space. Rather, we have to
resort to the exact relationship between the pressure fields and the right-hand side terms
of (4.1) by considering the Green’s function solution for the pressure fluctuations ((4.2)
and (4.3)), which led to (4.4) and (4.5) that involve convolution integrals of the right-hand
side terms of (4.1) with a weighting factor that drops off as 1/r. Through the convolution
theorem, these non-local products in physical space can be stated as local products in
Fourier space (pa(k, 1) = — fyr./k% and pg(k, t) = — f/x2), where the factor of 1 /x>
indicates that larger scales of the right-hand side terms contribute more significantly to
the pressure fluctuations than smaller scales. Next, we noted that the volume average
of fyr is zero (and so is the volume average of 9,p due to statistical homogeneity of
the density fluctuations in the constant mean density gradient simulations analysed here).
Finally, given that the convolution integrals ((4.4) and (4.5)) filter the integrands such that
the large scales are weighted more favourably (i.e. contribute more to the integral), we can
interpret the positive and negative pressure fluctuations as follows:

(i) nonlinear pressure fluctuations, (a) pyr > 0, regions where large-scale weighted
strain dominates, (b) pyr < 0, regions where large-scale weighted rotation dominates;

(i1) buoyancy pressure fluctuations, (a) pp >0, regions where large-scale weighted
unstable density gradients dominate, (b) pp < 0, regions where large-scale weighted
stable density gradients dominate.
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In the next subsection, these interpretations will prove useful in elucidating the physics
of the quadrant analyses we perform on the vertical pressure—strain term in (3.7) and the
vertical pressure scrambling term in (3.8).

4.3. Quadrant analyses of the buoyancy flux, pressure—strain redistribution and pressure
scrambling dynamics

We now proceed to study the vertical density flux (wp) and the decomposed pressure
correlations that can help clarify the flow physics resulting in TKE redistribution in or
out of the vertical TKE component (pyz0,w, ppd,w) and the generation or destruction
of buoyancy flux (pyr0;0, ppd;p) by applying quadrant analyses (e.g. Wallace 2016).
For the vertical density flux, quadrants 1 and 3 are associated with down-gradient fluxes,
which convert k, to kj, and quadrants 2 and 4 are associated with counter-gradient fluxes,
which convert k), to k. For the two pressure—strain correlations (with kg > ky, for our
simulations), quadrant 1 and 3 events convert kg to k,,, promoting large-scale isotropy,
whereas quadrant 2 and 4 events convert k,, to kg, promoting large-scale anisotropy. For
the two pressure scrambling terms, quadrant 1 and 3 events generate vertical buoyancy
flux, strengthening the conversion of ky, to kj,, whereas quadrant 2 and 4 events destroy
vertical buoyancy flux, weakening the conversion of k,, to k,. We summarise these ideas
and provide brief descriptions of these five sets of correlations in table 2.

In figure 7(a,b,c), we consider the joint probability distribution functions (p.d.f.s) of
the vertical density flux (wp) for three different values of Fry: weakest stability Fry ~
5.13, where B is negligible and pressure scrambling is negative; strong stability Fry ~
0.25, where B is still near its maximum but pressure scrambling is zero; and strongest
stability Fry ~ 0.016, where B has started to diminish and pressure scrambling is positive.
The dark contours correspond to the five p.d.f. values ranging between 10~! and 107,
with one decade spacing in between. The x- and y-axis variables are normalised by the
root-mean-squared (r.m.s.) values from each simulation.

For stably stratified turbulence, the averaged vertical buoyancy flux B = (g/po)wp is
expected to be positive, indicating a net conversion of ky, to k,, (the positive sign can be
rationalised through an analogous argument typically used to explain why the Reynolds
shear stress uw < 0 for sheared flows; see also the orange stars in figure 5b). In line with
this, we observe that the two variables are positively correlated with down-gradient fluxes
(quadrants 1 and 3) occurring more frequently than counter-gradient fluxes (quadrants
2 and 4), as indicated by the larger probability mass contained in the down-gradient
flux quadrants than in the counter-gradient flux quadrants (see the text near the four
corners). As stability increases (left to right), we observe that counter-gradient fluxes
occur more often, and the overall correlation weakens (inner p.d.f. contours become more
circular). Since counter-gradient buoyancy fluxes represent parcels returning towards their
equilibrium elevation (where the mean density is equal to that parcel density), when there
is weak mixing, enhanced counter-gradient fluxes result in weaker correlation between w
and p and implies weaker vertical exchange of buoyancy.

Another way to explain this phenomenon is to consider the turbulent Froude number as
a ratio of two time scales Fry =€/(Nk) ~ tp/tr, where tp ~ 1/N is the buoyancy time
scale characterising the reversible exchange between k,, and k, associated with density
perturbations, and 77 ~ k/€i is the large-eddy time scale associated with the overturning
of large eddies in the system. For Fr; > 1, the large eddies overturn faster than the time
needed for reversible exchange between k,, and k,, allowing irreversible mixing associated
with eddy turnover. For Fry ~ O(1), the large eddies overturn at a comparable rate needed
for reversible exchange between ky, and k. Finally, for Fr; < 1, the large eddies overturn
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Quantity

Vertical density

Quadrant 1

w>0,p>0(wp>0,

Quadrant 2

w<0,p>0(wp <0,

Quadrant 3

w<0,p<0(wp>0,

Quadrant 4

w>0,p<0(wp <0,

flux (wp) converts ky, to kp): converts kj, to ky): converts ky, to kp): converts k), to ky):
positive vertical negative vertical negative vertical positive vertical
velocity fluctuation velocity fluctuation velocity fluctuation velocity fluctuation
with positive density ~ with positive density ~ with negative density ~ with negative density
anomaly anomaly anomaly anomaly
Nonlinear pnL>0,0,w >0 pnL < 0,0, w>0 pnL < 0,0, w <0 pnL>0,0,w <0
pressure—strain (pNLo;w > 0, (pNLo;w < 0, (pNLo;w > 0, (pNLo;w < 0,
(pNLO; W) converts kg to ky): converts ky, to kg ): converts kg to ky,): converts ky, to kg ):
strain-dominated rotation-dominated rotation-dominated strain-dominated
regions with vertical regions with vertical regions with vertical ~ regions with vertical
divergence divergence convergence convergence
Buoyancy pp>0,0,w>0 pp<0,0,w>0 pp<0,0,w<0 p>0,0,w<0
pressure—strain (ppd;w >0, converts (ppd,w <0, converts (ppd,w >0, converts (ppd;w < 0, converts
(ppo,w) kp to ky,): unstable ky to kpr): stable kp to ky): stable ky to kpy): unstable
density gradients with ~ density gradients with  density gradients with  density gradients with
vertical divergence vertical divergence vertical convergence vertical convergence
Nonlinear pnL > 0,00 >0 pnL <0,9.0>0 pnL < 0,00 <0 pnL > 0,90 <0
pressure (pnLozp >0, (pnLO;p <0, destroys  (pnrdzp >0, (pNLO; p < 0, destroys
scrambling generates B): B): generates B): B): strain-dominated
(pNLOzP) strain-dominated rotation-dominated rotation-dominated regions with stable
regions with unstable  regions with unstable  regions with stable density gradients
density gradients density gradients density gradients
Buoyancy pp>0,0;p>0 pp<0,9;0>0 pp<0,9;p<0 pp>0,0;p<0
pressure (ppd;p >0, generates (ppd;p <0, destroys  (ppd,p > 0, generates (ppd,p < 0, destroys
scrambling B): unstable density B): stable density B): stable density B): unstable density
(ppd.p) gradients with gradients with gradients with stable  gradients with stable

unstable density
gradients

unstable density
gradients

density gradients

density gradients

Table 2. Descriptions of the contributions from the four quadrants to the five correlations of interest: (i) vertical
density flux, (ii) nonlinear pressure—strain term, (iii) buoyancy pressure—strain term, (iv) nonlinear pressure
scrambling term and (v) buoyancy pressure scrambling term.

more slowly than the reversible exchange between k, and k,, allowing parcels to return to
their equilibrium position before they can fully mix.

If we recall that Rotta-style return-to-isotropy models take t7 as the time scale
associated with the pressure—strain redistribution, we can also interpret the turbulent
Froude number as a measure of the relative importance of two reversible exchange
processes: (i) reversible exchange between ky and k,, by pressure—strain redistribution
occurring over tz; (ii) reversible exchange between k,, and k, by vertical buoyancy
flux occurring over tp. For Fry > 1, reversible exchange between kpy and k, occurs
more rapidly and thus more effectively than the reversible exchange between k,, and k.
However, there is negligible overall mixing of density because the background density
gradient is negligible, and the turbulence is weakly anisotropic, resulting in negligible
pressure—strain redistribution. For Fry ~ O(1), reversible exchange between ky and ky,
by pressure—strain redistribution, and reversible exchange between k,, and k, by vertical
buoyancy flux occur at comparable rates. The background density gradient is significant
and damps k,, relative to ky, which results in large-scale anisotropy, but pressure—
strain redistribution occurs rapidly enough to sustain k,,, which in turn generates vertical
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Figure 7. (a—c) Joint probability distribution functions (p.d.f.s) and (d—f) covariance integrands of the
normalised vertical density flux (wp/(Wymsprms)) for (a,d) very weak, (b,e) strong and (c,f) very strong
stability. For panels (a—c), the text in each quadrant indicates the probability within each quadrant, whereas
for panels (d—f), the text in each quadrant indicates that quadrant’s contribution towards the overall correlation.

buoyancy flux and sustains the reversible exchange between k,, and k, (see figures 5b
and 5d). For Fry < 1, the reversible exchange of kg and k, occurs more slowly than
the reversible exchange between k,, and k, by vertical buoyancy flux. This results in a
reduced generation of k,, by pressure—strain redistribution, which decreases B because
of a reduction in its primary generation mechanism (i.e. source due to ky,, 2N2%ky,; see
figure 5d). This then limits the conversion of k,, to k,, preventing the complete decay of
vertical perturbations.

Next, we quantify the contributions of the down-gradient and counter-gradient flux
events to the overall flux by plotting the covariance integrand associated with these two
joint p.d.f.s in figure 7(d,e,f). For each bin, the covariance integrand is computed by
taking the values of the two variables and the associated value of the joint p.d.f., and
multiplying them together. It thus represents the contribution of each bin to the overall
flux. Down-gradient fluxes are shown in red and counter-gradient fluxes are shown in
blue. As stability increases (left to right), we note that the down-gradient fluxes become
less positively correlated, whereas the counter-gradient fluxes become more negatively
correlated, resulting in a weaker positive correlation of the overall flux with increasing
stability. Since both variables (w and p) are normalised by their root-mean-squared values,
summing across the four quadrants results in the correlation coefficient rather than the
overall flux, which is important to keep in mind to avoid incorrectly concluding that
the buoyancy flux is stronger for the weakest stability simulation than for the strongest
stability simulation. The correlation coefficient can be interpreted as a transport efficiency
(Li & Bou-Zeid 2011). Therefore, this result indicates that the vertical density flux is
more effective (positively correlated) for weaker stability than for stronger stability, but
we note from figure 5(b) that the buoyancy flux is negligible for the weakest stability case
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Figure 8. (a) Probability mass of down-gradient and counter-gradient events (red and blue triangles,
respectively), (b) correlation of down-gradient and counter-gradient events and the overall flux (orange
triangles), (c) efficiency of the vertical density flux, and (d) normalised vertical buoyancy flux associated with
the down-gradient, counter-gradient and overall flux as a function of Fri. The efficiency is defined as the net
flux (sum over all quadrants) divided by the sum over just the down-gradient fluxes (sum over only quadrants 1
and 3). The orange stars are the net vertical buoyancy flux, and P is the rate of production of TKE. The results
from the higher Reynolds number simulation (V2_128) are denoted by filled stars.

(Fry & 5.13), exhibits its peak value for the strong stability case (Fry =~ 0.25) and weakens
but remains finite for the strongest stability case (Fry ~ 0.016).

To further understand how the contributions from the down-gradient and counter-
gradient fluxes vary with increasing stability, we plot the following quantities as a function
of Fry in figure 8: (a) the probability mass of down-gradient (red triangles) and counter-
gradient events (blue triangles); (b) the correlation of down-gradient and counter-gradient
events (blue triangles) and the correlation of the overall flux (orange stars); (c) the
efficiency of the vertical buoyancy flux defined as the net vertical density flux normalised
by the sum of only the down-gradient contributions; (d) the normalised buoyancy flux
magnitudes associated with the down-gradient and counter-gradient events and the overall
flux. We have chosen to combine the down-gradient and counter-gradient quadrants
together to simplify our plots since the probability mass and correlations for the individual
down-gradient and counter-gradient quadrants were quite similar to one another for all
stability values, as expected given that our simulation set-up is homogeneous in the vertical
direction, and invariant to vertical reflection of the density gradient and gravity force.

In figure 8(a), we see that for weak stratification, down-gradient fluxes occur
approximately 75 % of the time and counter-gradient fluxes occur approximately 25 %
of the time, and as stability is increased, we see that counter-gradient fluxes occur
more frequently, such that the down-gradient and counter-gradient fluxes approach equal
likelihoods. In figure 8(b), we plot the correlation coefficient associated with the down-
gradient, counter-gradient and overall flux (red and blue triangles and orange stars) as
a function of Fry. For weak stability, the down-gradient fluxes are strongly correlated
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with a value near 0.75, and the overall flux has a slightly weaker correlation due to the
weak but finite negative correlations associated with the counter-gradient fluxes. With
increasing stability, the down-gradient fluxes become more weakly correlated, whereas
the counter-gradient fluxes become more strongly correlated, which drives the correlation
of the overall flux towards zero and indicates less effective vertical density exchange. In
figure 8(c), we plot another measure of the efficiency of the vertical density flux defined as
the net flux normalised by the contributions from just the down-gradient fluxes. We note
that for weak stability, the efficiency of the vertical density flux is approximately 0.9, but
it monotonically weakens with increasing stability due to increasing contributions from
counter-gradient fluxes. Lastly, in figure 8(d), we plot the normalised vertical buoyancy
flux magnitudes associated with the down-gradient, counter-gradient and overall fluxes
(red and blue triangles and orange stars). Because the turbulence is statistically stationary
and triply homogeneous, we note that the orange symbols are equivalent to the mixing
coefficient I". When the stratification is weak relative to turbulence (Fr; > 1), we note that
increasing the background stratification results in sharp increases in the down-gradient
fluxes, which are not accompanied by similar increases in the counter-gradient fluxes.
As stratification and turbulence both become important (Fry ~ O(1)), increasing the
background stratification results in further enhancement of the down-gradient fluxes, but
now this is accompanied by increases in the counter-gradient fluxes as well. This indicates
simultaneous exchanges between k,, and &, in both directions (i.e. conversion of ky, into
kp and conversion of k, into k) that are comparable in magnitude but with a net sum
that still results in a net conversion of k,, into k. Lastly, when stratification becomes very
strong (Fry < 0.1), increasing the background stratification results in a weakening of the
down-gradient fluxes (red triangles), but the contributions from the counter-gradient fluxes
remain largely unchanged (blue triangles), which indicates that the transfer from k,, to k,
becomes weaker, but the transfer from &, to k,, remains largely unchanged.

Regarding the greater buoyancy flux magnitudes observed for the higher Reynolds
number simulation (V2_128) (Fry ~0.025), we note that the correlations and the
efficiency values reported in figures 8(b) and 8(c) are similar for this case to those for the
lower Reynolds simulation (Fry & 0.31), which indicates that this change must be driven
by the enhanced pressure—strain redistribution of kg to ky, in the higher Reynolds number
simulation (see figure 5b). We also note that while approaching the limit of Fry < 1 might
lead to down-gradient and counter-gradient contributions becoming increasingly similar,
resulting in a net zero flux, the turbulent flow would still involve exchanges among the
horizontal, vertical and potential energy components, a net downscale cascade of energy,
and dissipation at the viscous and diffusive scales. This is physically very different from
the canonical set-up of adiabatically displacing fluid parcels in a stably stratified fluid that
is initially at rest, which also involves a net zero buoyancy flux (no net exchange between
ky and k) due to exact compensation between down-gradient and counter-gradient fluxes,
but which lacks other physical aspects that are present for three-dimensional, stably
stratified, turbulent flows (e.g. net downscale energy cascade and dissipative losses).

Next, we seek to further understand how the contributions from the four quadrants of
the pressure—strain correlations contribute to the overall redistribution of kg into k,, by
plotting the following quantities as a function of Fry in figure 9: (panels a,b,c) probability
mass of the four quadrants of the pressure-strain correlations (QI, red triangles; Q2,
orange triangles; Q3, blue squares; Q4, purple circles); (panels d,e, f) correlations of the
events that redistribute kg into k,, (red triangles), events that redistribute k,, into kg (blue
triangles) and overall pressure—strain redistribution (black exes); (panels g,h,i) efficiency
of the pressure—strain correlation; (panels j,k,/) normalised pressure—strain correlations
associated with conversion of kg into k,, conversion of k, into kg, and the overall
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Figure 9. (a—c) Probability mass of the four quadrants of the pressure—strain correlations (Q1, red triangles;
Q2, orange triangles; Q3, blue squares; Q4, purple circles); (d—f) correlation of the events that redistribute
kg into k,, (red triangles), events that redistribute k,, into kg (blue triangles) and overall pressure-strain
redistribution (black exes); (g—i) efficiency of the pressure-strain correlation; (j—/) normalised pressure—strain
correlations associated with conversion of kg into k,,, conversion of k,, into kg and the overall redistribution
(same symbols/colors convention as panels d—f). All variables are plotted as a function of Fri. The results from
the higher Reynolds number simulation (V2_128) are denoted by filled stars.

redistribution. The associated contour plots of the joint p.d.f.s and covariance integrands
are shown in figures 13 and 14 in Appendix B.

We note that the peak pressure—strain correlation value is reached at Fry ~ 0.3 (panel d),
which coincides with the maximum probability mass values associated with Q3
redistribution events (kg into ky; blue squares in figure 9a) and minimum values
associated with Q2 and Q4 redistribution events (k,, into kg ; orange triangles and purple
circles in figure 9a). This also coincides with the maximum efficiency of the overall
pressure—strain correlation, shown by the peak in 7,y defined as the net pressure-
strain correlation normalised by the sum over just the Q1 and Q3 redistribution events,
which convert kg into k,, (panel g). Focusing just on the nonlinear component of the
pressure—strain correlations, we note that the peak correlation persists until stronger
stability (Fry &~ 0.1) (panel e), and associatedly, the efficiency of the nonlinear pressure—
strain correlation and normalised net redistribution (R,,/ P) both exhibit weaker declines
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for Fry < 0.1 compared with the total pressure—strain correlation (compare panels / and k
with panels g and j). These differences can be explained by considering the buoyancy
component of the pressure—strain correlations (panels f,i,/). At weak stratification, Q1
and Q3 redistribution events (conversion of kg into k,) dominate over Q2 and Q4
redistribution events (conversion of k,, into ky) (panel c), but the overall correlation
(panel f) and normalised redistribution (panel /) are negligible due to the buoyancy
effects being weak. As stratification increases until Fry ~ 0.7, we note that the probability
masses of the four quadrants change insignificantly, but with stronger buoyancy effects,
the correlation and normalised redistribution values now begin to contribute meaningfully
to the overall redistribution, where, on average, the buoyancy pressure—strain correlation
converts kg into ky,. With further increasing stratification, the probability masses of the
QI and Q3 redistribution events decrease, while the probability masses of the Q2 and
Q4 redistribution events increase. This is related to a strengthening negative correlation
associated with the events that convert k,, into kg (blue triangles; panel f), which drives
the overall correlation to change signs and become increasingly negative (black exes).
Because the overall term changes sign, we compute the efficiency of the buoyancy
pressure—strain correlation in two ways, where the positive values of the overall buoyancy
pressure—strain component are normalised by the sum of the Q1 and Q3 events (red
diamonds), and the negative values of the overall buoyancy pressure-strain component are
normalised by the sum of the Q2 and Q4 events (blue diamonds). The peak efficiency of
~0.4 associated with redistribution from kg into k,, occurs at Fry = 1, whereas the peak
efficiency hovers at approximately 0.25 for redistribution from k,, into kg for Fry <0.1.
Before moving on, we reiterate that unlike the prevailing description of the nonlinear
pressure—strain correlation as promoting large-scale isotropy, which is associated with a
definite sign for the term, the buoyancy pressure—strain correlation exhibits more complex
behaviour that promotes large-scale isotropy for weak to moderate stability, but then begins
to promote large-scale anisotropy for stronger stability. Given that its overall effect is
sensitive to the strength of the background stratification, this hints at similarities with
and connections to the vertical buoyancy flux, which comprises both significant down-
gradient fluxes, converting k,, into k, and counter-gradient fluxes, converting k, into k.
In §4.4, we will mathematically demonstrate the link between the buoyancy pressure—
strain redistribution and vertical buoyancy flux and explain this sign-change behaviour
associated with increasing stability.

Now, we seek to understand how the contributions from the four quadrants of the
pressure scrambling correlations contribute to the generation or destruction of the vertical
buoyancy flux. In figure 10, we plot the following quantities as a function of Fry: (panels
a,b,c) probability mass of the four quadrants of the pressure scrambling correlations (Ql,
red triangles; Q2, orange triangles; Q3, blue squares; Q4, purple circles); (panels d,e, f)
correlations of the events that generate B (red triangles), events that destroy B (blue
triangles) and overall pressure scrambling correlation (black exes); (panels g,h,i) efficiency
of the pressure scrambling correlation; (panels j,k,[) normalised pressure scrambling
correlations associated with generation of B (red), destruction of B (blue) and the net
effect (black). The associated contour plots of the joint p.d.f.s and covariance integrands
are shown in figures 15 and 16 in Appendix B.

Recall that the net pressure scrambling term changes signs at Fry ~ 0.1 as stability
increases from near neutral conditions (cf. figure 10j). This is associated with relatively
small changes in the probability mass associated with Q1 and Q2 events but decreasing
mass associated with Q4 events (destruction of B) and increasing mass associated with
Q3 events (generation of B). These changes are broadly reflected also in the nonlinear and
buoyancy components as well (see figure 10b,c). Connectedly, the overall correlation of
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Figure 10. (a—c) Probability mass of the four quadrants of the pressure scrambling correlations (Q1, red
triangles; Q2, orange triangles; Q3, blue squares; Q4, purple circles); (d—f) correlation of the events that
generate buoyancy flux B (red triangles), events that destroy buoyancy flux (blue triangles) and overall pressure
scrambling term (black exes); (g—i) efficiency of the pressure scrambling term; (j—/) normalised pressure
scrambling term associated with generation of B, destruction of B, net effect on d; B (same symbols/colours
convention as panels d—f). All variables are plotted as a function of Fry. The results from the higher Reynolds
number simulation (V2_128) are denoted by filled stars.

the pressure scrambling term (black exes in figure 10d) also switches signs at Fry ~ 0.1,
and this is due to both an increasing positive correlation of the sum of Q1 and Q3
events, which generate vertical buoyancy flux, and a reduced correlation of the sum of
Q2 and Q4 events, which destroy vertical buoyancy flux. Looking at the correlation of the
nonlinear component of pressure scrambling (panel ), we note that it is always negatively
correlated, but this weakens due to an increasing contribution from positively correlated,
nonlinear pressure scrambling events. The correlation of the buoyancy component of
pressure scrambling is always positive (panel f), and the negatively correlated buoyancy
pressure scrambling events remain negligible until Fry < 0.1.

Next, we consider the efficiencies associated with the three pressure scrambling
correlations (panels g,h,i). For the total pressure scrambling term (figure 10g), we define
the efficiency by normalising the net pressure scrambling correlation by the sum of Q2 and
Q4 events when the correlation is negative (blue diamonds), and by the sum of Q1 and Q3
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events when the correlation is positive (red diamonds). The overall pressure scrambling is
most efficient at neutral stability with an efficiency slightly above 60 %, but after the sign-
change at Fry ~ 0.1, the efficiency generally increases with stability. For the nonlinear
pressure scrambling term (figure 104), we note that the efficiency is largest for weak
stratification, and monotonically decreases with increasing stability. For the buoyancy
pressure scrambling term (figure 10i), the efficiency increases with stability and reaches
a maximum value of approximately 80 % before decreasing for Fry < 0.1. In closing, we
stress that the overall buoyancy pressure scrambling term is sign definite with negligible
contributions from the negatively correlated contributions until stability becomes strong
(Fri <0.1). We will seek to mathematically understand this behaviour in the next section.

4.4. Analytical expressions for the buoyancy component of pressure correlations and
further physical interpretation

In this section, we seek to mathematically explain two particular observations about the
buoyancy pressure correlations. First, as shown in figure 6(b), the buoyancy component of
the pressure—strain correlation changes sign at strong stability and begins to redistribute
ky into kgy. This behaviour is in contrast to the physical picture underlying the Rotta-
type, return-to-isotropy models that are often used to close the Reynolds stress equations
(though non-Rotta models have been proposed for the buoyancy-linked redistribution;
e.g. Hanjali¢ & Launder 2022). Second, the buoyancy component of the pressure
scrambling seems sign definite (see figure 6¢), and it generally increases monotonically
with stratification. This behaviour contrasts with the classic view of pressure scrambling
terms as a sink of passive scalar fluxes, which decorrelate the velocity and scalar fields.

To explain these effects, we return to (4.3) and consider the Fourier coefficients of the
buoyancy component of the pressure fluctuations,

) igk:pK. 1)
patie, ) = FEET (4.8)

where i =+/—1 is the imaginary unit and p(k,t) are the Fourier coefficients
associated with the density field. Next, we define g1(x, ) = (1/00) ppd;w and g2(x, t) =
(g/ pg) pBO;p, which are the unaveraged buoyancy components of the pressure—strain and
pressure scrambling terms, respectively. Taking the forward Fourier transform of g; and
g2 in the three spatial dimensions and applying the Dirac delta function (cf. Appendix D
of Pope 2000) to collapse one of the integrals, we arrive at the following expressions:

g1k, 1) = % / di’ [—%] Al i — k', 1), 4.9)
. g\’ B ATy 29 N I )
2K, 1) = <%> /dlc [—%] o', Hple — k', 1), (4.10)

where w(k, t) are the Fourier coefficients associated with the vertical velocity field.
This derivation involves similar steps as in § 6.4.2 of Pope (2000), where the nonlinear
advection term of the Navier—Stokes equations is expressed in Fourier space. Because
we are interested in the volume-averaged effect of the buoyancy components of the
pressure—strain and pressure scrambling terms, we set k = 0 in (4.9) and (4.10) and find

I\ 2
Ryp=§ k=0, t):%/dlc/ (%) o', HW* (K, 1), (4.11)
g 2 ! 2
Rpp=8(k =0, t)=<%) /dlc’ (K—Z,> ple’, 0p* ', 1), (4.12)
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Figure 11. Weighting factor (k;/k)? = 1/[1 + (kg /k;)*] in (4.11) and (4.12) plotted as a function of () the
horizontal and vertical wavenumbers (kg and «;) and (b) an aspect ratio based on the horizontal and vertical
wavenumbers (kg /k;).

where we have used the conjugate symmetry of Fourier coefficients of real functions to
rewrite w(—k’, 1) =w*(«’, t) and p(—k’', t) = p*(k’, 1).

There are several key aspects of (4.11) and (4.12). First, the volume-averaged buoyancy
component of the pressure—strain correlation (Ry, p) (4.11) involves a weighted integral
of the buoyancy flux cospectrum, where positive values of the integrand are associated
with down-gradient vertical buoyancy fluxes, and negative values of the integrand
are associated with counter-gradient vertical buoyancy fluxes. This reveals that down-
gradient vertical buoyancy fluxes are connected to redistribution of kg into k,, and that
counter-gradient vertical buoyancy fluxes are connected to redistribution of k,, into kp.
Second, the volume-averaged buoyancy component of the pressure scrambling term
(Rp,p) involves a weighted integral of the density variance spectrum (related to TPE).
The integrand is quadratic, implying that the term is positive semidefinite (zero in
the neutral limit). Note that without the wavenumber-dependent weighting factors, the
integrals in (4.11) and (4.12) would be related to wp and pp. Third, the weighting factor
(k;/Kk)?, which appears in both expressions, more strongly weights contributions from

2=y? +K§+KZ2=K[21, + k2 withky = [K2 + K,
which are prominent dynamical features of stratified turbulent flows (e.g. Lin & Pao 1979;
Hopfinger 1987; Riley & Lelong 2000; Billant & Chomaz 2001; Lindborg 2006; Shah &
Bou-Zeid 2014; Caulfield 2021; Kimura & Sullivan 2024). To aid this interpretation,
we plot the weighting factor (k,/x)> as a function of xy and «, in figure 11(a) and
also as a function of an aspect ratio xy/«; in figure 11(b) (or also [;/ly, where Iy
and [/, are the horizontal and vertical length scales associated with the horizontal and
vertical wavenumbers, kg = 27/ly and x, = 2w /[;). This latter plot uses a re-expressed
statement of the weighting factor where the numerator and denominator have been divided
through by KZZ. In both plots, the weighting factor approaches unity when «, > kg (or
equivalently, [, /g < 1). The weighting factors in (4.11) and (4.12) reveal that the effect of
stratification manifests in an anisotropic manner in Fourier space, which would be missed
when only accounting for the wavenumber magnitude. Lastly, we note that (4.11) and (4.12)
apply generally to all homogeneous stratified flows independent of forcing (e.g. decaying,
forced, sheared, etc.) and across all stability conditions (neutral, stable, unstable). This fact

pancake structures (k; >> kg, where «
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helps explain why some relationships between R,,, Rp and I" have been observed across
different types of stratified turbulent flows (e.g. Yi & Koseff 20224, 2023).

With these points in mind, we return to figures 6(b) and 6(c) to interpret the buoyancy
components of the pressure—strain and pressure scrambling terms. First, the buoyancy
component of the pressure—strain correlation begins to decrease at Fry =~ 0.7 and becomes
increasingly negative for Fry < 0.3 (see figure 6b). Since the volume-averaged buoyancy
flux remains positive for all values of Fry (i.e. wp > 0), we note from (4.11) that R, p <0
must result from stronger counter-gradient buoyancy fluxes associated with layered
structures that become more favourably weighted after the multiplication by (k,/k).
This means that, on average, counter-gradient buoyancy fluxes associated with layered
motions contribute to redistribution of k,, into kg, opposing large-scale return-to-isotropy.
Relatedly, we observed more frequent and stronger contributions from counter-gradient
fluxes in figure 8 with increasing stability. Because R, p <0 for Fry < 0.3 is the result
of volume and time averaging, this implies that there are persistent, large-scale, counter-
gradient buoyancy fluxes, a result that was also observed by Almalkie & de Bruyn Kops
(2012) for forced, homogeneous, stably stratified turbulence, and by Kaltenbach, Gerz &
Schumann (1994) for stably stratified, homogeneous shear turbulence simulations for
Rig =0.5 and Pr=1. In the literature, these features have been treated distinctly from
persistent, counter-gradient buoyancy fluxes at small scales (e.g. Holt, Koseff & Ferziger
1992; Kaltenbach et al. 1994; Gerz & Schumann 1996). Second, the buoyancy component
of the pressure scrambling term is positive semidefinite and increases monotonically with
stratification (see figure 6¢). From (4.12), we see that this is due to the integrand of Rp p
being quadratic and vanishing in the limit of neutral stability.

5. Conclusions

In this work, we studied how two specific pressure correlations (i.e. vertical pressure—
strain redistribution and vertical pressure scrambling) changed as a function of increasing
stability, using a DNS dataset of linearly forced, stably stratified turbulence from Yi &
Koseff (2022a). The vertical pressure—strain redistribution term appears in the ky,
budget (3.7), and we highlighted its key role in setting the magnitude of the mixing
efficiency (and therefore I") in § 2. Also, the vertical pressure scrambling term appears
in the vertical buoyancy flux (B) budget (3.8), and while the term acts as a significant
sink of B for neutral and weak stability, it changes sign and begins to correlate w and p,
generating vertical buoyancy flux for strong stability.

To further analyse these two pressure correlations, we decomposed the pressure field
into nonlinear and buoyancy components and studied them separately as a function of
increasing stability. First, we observed that the rise, and plateau, of I" going from neutral
to strong stability (figure Sc¢) is primarily connected to an increase in the nonlinear
pressure—strain redistribution that enhances the exchange of kg into k,, (figure 6b). The
subsequent decline of I" going from strong to very strong stability (figure 5c) is due to
both a weakening of the nonlinear pressure—strain redistribution (reducing the exchange
of ky into ky) and a sign change and strengthening of the buoyancy pressure—strain
redistribution (enhancing the exchange of k,, into kg ) (figure 6b). Relatedly, these changes
are connected with (i) a reduction in the primary generation mechanism of B (i.e. source
due to ky,, 2Nk, ; see figure 5d), and (ii) the associated change in the sign of the pressure
scrambling term needed to ensure that B remains positive, which is expected for stably
stratified flows. We found that this sign change is due to a compensation between the
nonlinear and buoyancy components of pressure scrambling. Furthermore, the buoyancy
pressure scrambling continues to increase in magnitude for very strong stability, while the
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nonlinear pressure scrambling continues to decrease in magnitude such that the overall
term becomes an increasingly important means of generating B (see figure 6c¢).

To better understand these pressure correlations, we first arrived at a set of physical
interpretations for the nonlinear and buoyancy pressure fluctuations, where positive and
negative nonlinear pressure fluctuations are connected to strain-dominated and rotation-
dominated regions, respectively, and positive and negative buoyancy pressure fluctuations
are connected to regions with unstable and stable density gradients, respectively. Then, we
conducted quadrant analyses of the vertical buoyancy flux and the nonlinear and buoyancy
components of the pressure—strain correlation and pressure scrambling terms (see table 2)
to quantify how the four different contributions summed together to bring about the overall
volume-averaged values of these five correlations.

For the buoyancy pressure correlations in particular, we showed mathematically that the
volume-averaged buoyancy pressure—strain component is given by a weighted integral of
the cospectrum of the vertical buoyancy flux (4.11), such that down-gradient buoyancy
fluxes contribute to the conversion of kg into k,, and counter-gradient buoyancy fluxes
contribute to the conversion of k,, into ky. This highlights a key physical concept that
the presence of stable stratification not only modifies the exchange between k,, and k,
but also fundamentally alters the exchange between kg and k,,. In addition, we showed
mathematically that the volume-averaged buoyancy pressure scrambling is given by a
weighted integral of the spectrum of the density variance (4.12), revealing that this term
is positive semidefinite. The weighting factor of (k. /x)? indicates stronger contributions
from layered/pancake structures (k, > kp), which are important dynamical features
of strongly stratified turbulence. Furthermore, these expressions apply generally to all
homogeneous stratified flows independent of forcing (e.g. decaying, forced, sheared, etc.)
and across all stability conditions (neutral, stable, unstable), which helps to explain why
these effects have been observed for both forced and sheared stably stratified turbulence
simulations (e.g. Shah & Bou-Zeid 2014; Yi & Koseff 2022a, 2023).

One avenue for future work is to study how the various generation and exchange
processes associated with kg, ky, and B behave in time-evolving flows (e.g. Riley & de
Bruyn Kops 2003; Hebert & de Bruyn Kops 2006; de Bruyn Kops & Riley 2019) and wall-
bounded flows (e.g. Heinze, Mironov & Raasch 2016; Pearson, Grant & Polton 2019) given
the prominent impact of wall-blockage and shear on pressure—strain and pressure scram-
bling dynamics, and the importance of such flows in various geophysical applications.
Another interesting avenue for future work is to study the interplay of intercomponent
exchange and downscale transfer for stably stratified turbulence (e.g. Johnson 2020, 2021;
Zhang et al. 2022; Bragg & de Bruyn Kops 2024a) and to incorporate information about
scalewise anisotropy as a function of wavenumber magnitude into cospectral models that
are commonly used in large-scale models of the Earth and climate systems (e.g. Ayet
et al. 2020). Finally, building on the comparison between simulations at two different
Reynolds numbers at strong stability (e.g. figure 5), a more comprehensive exploration of
the multiparameter dependence of I" as discussed in § 2 is necessary for a more holistic
understanding of how energy exchange and buoyancy flux generation in stratified turbulent
flows depends on both the ranges of anisotropic and isotropic scales of motion.
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Figure 12. Time series of the volume-averaged horizontal turbulent kinetic energy (kg) normalised by the
volume- and time-averaged turbulent kinetic energy (k) of the V1 simulation as a function of percentage of the
total simulation duration (see also table 1).
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Appendix A. Energy growth of shear modes and statistical convergence

The kinetic energy associated with simulations of triply periodic, forced, strongly stratified
turbulence has been observed to accumulate in large-scale horizontal motions referred to
as ‘shear modes’ (see earlier discussion by Smith & Waleffe 2002 and more recently by
Maffioli 2017; Maffioli, Delache & Godeferd 2020). The energy of these shear modes
can grow over long times even after energy in the remaining modes has begun to exhibit
statistical stationarity (e.g. figures 6a and 6¢ of Maffioli et al. 2020); so in previous studies,
these modes have often been removed to allow for time averaging of the flow statistics. In
our simulations, the combination of time-varying forcing and long integration times allow
for these shear modes (as well as the remaining modes) to reach statistical stationarity.
We demonstrate this in figure 12, which shows the time series of the volume-averaged
horizontal kinetic energy (kgz) normalised by the volume- and time-averaged turbulent
kinetic energy (k) of the V1 simulation (most stable simulation). We note that kg /k
continues to grow for the first 20 % of the simulation duration, but it begins to fluctuate
about its mean value for the latter 80 % of the simulation duration. The remaining V-series
simulations have weaker stability, so their kg values reach statistical stationarity quicker.
The role of shear modes could be explored further by applying a decomposition of the
flow fields (e.g. f(x,t) = f(z,t) + f'(x,t), where f(z, ) represents the shear modes)
and revisiting the energy exchange and flux generation of strongly stratified turbulence
(e.g. (3.4)—(3.8)).

Appendix B. Joint p.d.f. and covariance integrand contour plots of pressure
correlations

Here, we consider the joint p.d.f.s of the pressure—strain correlations (pd,w) in figure 13.
There are nine panels, corresponding to the same three stability conditions as in figure 7
(different columns) and three different sets of pressure—strain correlations (total, nonlinear
and buoyancy) corresponding to the top, middle and bottom rows. The variables are
normalised by the r.m.s. values of the total pressure p and the vertical gradient of the
vertical velocity d,w. The buoyancy pressure component has a smaller magnitude than
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Figure 13. Joint probability distributions for the (a,b,c) total, (d,e, f) nonlinear and (g,h,i) buoyancy pressure—
strain correlations normalised by the r.m.s. values of the total pressure p and the vertical gradient of the vertical
velocity 0, w. The three columns correspond to (a,d,g) very weak, (b,e,h) strong and (c, f,i) very strong stability
(right). The text in the four corners indicates the probability mass contained within each quadrant.

the nonlinear component (see figure 6a), so the plots in the middle and bottom rows for
the nonlinear and buoyancy pressure—strain correlation have modified x-axis limits. When
stability is weak, there is largely a compensation between events in quadrants 1, 4 and
quadrants 2, 3 for the total pressure—strain correlation (panel a), resulting in the overall
pressure—strain correlations being negligible (see also figure 5). As stability increases
(panels b,c), however, we observe that the p.d.f. contours shift such that the two variables
become more strongly positively correlated. The buoyancy component of the pressure—
strain correlations (panels g,h,i) has more events in quadrants 1 and 3 for the weakest
stability (panel g), but the p.d.f. contours become more similar across the four quadrants
as stability increases (panels & and i) for the four quadrants, albeit with more mass in
quadrants 2 and 4, which agrees with the earlier observation that this term on average
converts ky, into ky for Fry < 0.3 (see figure 6b).

Relatedly, we now plot the covariance integrands associated with these nine joint
p.d.f.s in figure 14. The panels are arranged in the same way as in figure 13 with
the three stability conditions corresponding to the different columns and the different
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Figure 14. Covariance integrands for the (a,b,c) total, (d,e,f) nonlinear and (g,h,i) buoyancy pressure—strain
correlations normalised by the r.m.s. values of the total pressure p and the vertical gradient of the vertical
velocity d; w. The three columns correspond to (a,d,g) very weak, (b,e,h) strong and (c, f,i) very strong stability.
The text in the four corners indicates that quadrant’s contribution to the overall correlation.

sets of pressure—strain correlations corresponding to the different rows. Redistribution
from kg into k,, is shown in red (promotes large-scale isotropy), whereas redistribution
from k,, into kg is shown in blue (promotes large-scale anisotropy). We note for weak
stratification that the overall correlation is negligible with contributions from quadrants
1, 4 and quadrants 2, 3 compensating for one another (panel a). While the buoyancy
component of the pressure—strain correlations is positively correlated (panel g), it is
approximastely an order of magnitude smaller than the nonlinear component (panel d).
For the strong stability simulation (panels b,e,h), the overall pressure—strain correlations
exhibit a stronger correlation (panel b), but the buoyancy component largely cancels out.
For the strongest stability simulation (panels c, f,i), the overall correlation is weaker, driven
by both a weaker positive correlation of the nonlinear component and a stronger negative
correlation of the buoyancy component.

Next, we consider the joint p.d.f.s of the pressure scrambling terms (pd; p) in figure 15.
There are nine panels, corresponding to the same three stability conditions as in figures 7
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Figure 15. Joint probability distributions for the (a,b,c) total, (d,e,f) nonlinear and (g,h,i) buoyancy pressure
scrambling terms normalised by the r.m.s. values of the total pressure p and the vertical gradient of density
d;p. The three columns correspond to (a,d,g) very weak, (b,e,h) strong and (c,f,i) very strong stability. The
text in the four corners indicates the probability mass contained within each quadrant.

and 13 (different columns) and three different sets of pressure—strain correlations (total,
nonlinear and buoyancy) corresponding to the top, middle and bottom rows. The variables
are normalised by the r.m.s. values of the total pressure p and the vertical gradient of the
vertical velocity d,p. As before, because the buoyancy pressure component has a smaller
magnitude than the nonlinear component (figure 6a), the plots in the middle and bottom
rows for the nonlinear and buoyancy pressure scrambling terms have modified x-axis
limits. When stability is weak, the p.d.f. contours of the total pressure scrambling terms are
negatively correlated (panel a), but this correlation weakens for strong stability (panel b)
and becomes positive for the strongest stability (panel c¢). The nonlinear component of the
pressure scrambling term always has larger probability mass associated with Q2 and Q4
events (middle row), which destroy buoyancy flux, though this weakens with increasing
stability. The buoyancy component of the pressure scrambling term is always positively
correlated with larger probability masses associated with Q1 and Q3 events (bottom row),
which generate vertical buoyancy flux.
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Figure 16. Covariance integrands for the (a,b,c) total, (d,e,f) nonlinear and (g,r,i) buoyancy pressure
scrambling term normalised by the r.m.s. values of the total pressure p and the vertical gradient of density
9, p. The three columns correspond to (a,d,g) very weak, (b,e,h) strong and (c,f,i) very strong stability. The
text in the four corners indicates that quadrant’s contribution to the overall correlation.

We next consider the associated covariance integrands in figure 16 with the same
panel arrangements as before. Pressure scrambling correlations that generate buoyancy
flux are shown in red, while those that destroy buoyancy flux are shown in blue. For
weak stratification, the overall correlation is negative (panel a), and this is due to the
nonlinear component (panel d) being more significant than the positively correlated
buoyancy component (panel g). For strong stability (panels b,e,h), we note that the overall
correlation is near zero, where the nonlinear and buoyancy components largely cancel out.
For the strongest stability (panels c, f,i), the buoyancy component is more significant than
the nonlinear component, resulting in an overall positive correlation of the total pressure
scrambling term (summing up the four numbers in panel ¢).
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