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ABSTRACT

Let p be a prime number and let F' be a field of characteristic different from p. We
prove that there exist a field extension L/F and a,b,c,d in L* such that (a,b)=
(b,c¢) =(c,d) =0 in Br(L)[p] but the mod p Massey product (a,b, c,d) is not defined
over L. Thus, the strong Massey vanishing conjecture at the prime p fails for L, and
the cochain differential graded ring C*(I'z, Z/pZ) of the absolute Galois group I'y, of
L is not formal. This answers a question of Positselski. As our main tool, we define a
secondary obstruction that detects non-triviality of unramified torsors under tori, and
which is of independent interest.

1. Introduction

Let p be a prime number, let F' be a field of characteristic different from p and containing
a primitive pth root of unity {, and let I'r be the absolute Galois group of F. The norm-
residue isomorphism theorem of Voevodsky and Rost [HW19] gives an explicit presentation by
generators and relations of the cohomology ring H*(F,Z/pZ) = H*(I'r, Z/pZ). In view of this
complete description of the cup product, the research on H*(F,Z/pZ) shifted in recent years
to external operations, defined in terms of the differential graded ring of continuous cochains
C*(Tp,Z/pZ).

Hopkins and Wickelgren [HW15] asked whether C*(I'p, Z/pZ) is formal for every field F'
and every prime p. Loosely speaking, this amounts to saying that no essential information is
lost when passing from C*(I'r, Z/pZ) to H*(F,7Z/pZ). The authors of [HW15] were unaware of
earlier work of Positselski, who had already shown in [Posll, Section 9.11] that C*(I'r, Z/pZ)
is not formal for some finite extensions F of Q; and Fy((z)), where ¢ # p. Positselski then wrote
a detailed exposition of his counterexamples in [Pos17].

For Positselski’s method to work, it seemed important that F' did not contain all the roots
of unity of p-power order. This motivated the following question; see [Pos17, p. 226].

Question 1.1 (Positselski). Does there exist a field F' containing all roots of unity of p-power
order such that C*(I'p, Z/pZ) is not formal?
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We showed in [MS22, Theorem 1.6] that Question 1.1 has a positive answer when p=2. In
the present work, we provide examples showing that the answer to Question 1.1 is affirmative
for all primes p.

THEOREM 1.2. Let p be a prime number and let F' be a field of characteristic different from p.
There exists a field L containing F' such that the differential graded ring C*(I'r,,Z/pZ) is not
formal.

To detect non-formality of the cochain differential graded ring, we use Massey products.
For any n>2 and all x1, ..., xn € H(F,Z/pZ), the Massey product of x1,...,Xn is a certain
subset (X1, - - -, xn) C H2(F,Z/pZ); see Section 2.2 for the definition. We say that (x1, ..., xn) is
defined if it is not empty, and that it vanishes if it contains 0. When char(F') # p and F' contains
a primitive pth root of unity ¢, Kummer theory gives an identification H'(F,Z/pZ) = F* |F*P,

and we may thus consider Massey products (ay, ..., ay), where a; € F* for 1 <i<n.
Let n >3 be an integer, let x1, ..., xn € H'(F,Z/pZ) and consider the following assertions.
The Massey product (x1, ..., Xn) vanishes. (1.1)
The Massey product (x1,...,Xxn) is defined. (1.2)
We have y; U x;+1 =0 for all 1 <i<n-—1. (1.3)

We have that (1.1) implies (1.2), and that (1.2) implies (1.3). The Massey vanishing conjecture,
due to Mina¢ and Tan [MT17b] and inspired by the earlier work of Hopkins and Wickelgren
[HW15], predicts that (1.2) implies (1.1). This conjecture has sparked a lot of activity in recent
years. When F'is an arbitrary field, the conjecture was shown when either n = 3 and p is arbitrary,
by Efrat and Matzri and Mind¢ and Tan [Mat18, EM17, MT16], or when n=4 and p=2, by
[MS23]. When F' is a number field, the conjecture was proved for all n >3 and all primes p by
Harpaz and Wittenberg [HW23].

When n =3, it is a direct consequence of the definition of the Massey product that (1.3)
implies (1.2). Thus, (1.1), (1.2) and (1.3) are equivalent when n = 3.

In [MT17a, Question 4.2], Min4¢ and Téan asked whether (1.3) implies (1.1). This became
known as the strong Massey vanishing conjecture (see, e.g., [PS18]). If F is a field, p is a prime
number and n >3 is an integer, then, for all characters xi,...,xn € H'(F,Z/pZ) such that
XiUxit1 =0 for all 1 <i<mn—1, the Massey product (x1,...,Xn) vanishes.

The strong Massey vanishing conjecture implies the Massey vanishing conjecture. However,
Harpaz and Wittenberg produced a counterexample to the strong Massey vanishing conjecture,
forn=4,p=2and F =Q; see [GMT18, Example A.15]. More precisely, if we let b=2, ¢ =17 and
a=d=bc=34, then (a,b) = (b,c) =(c¢,d) =0 in Br(Q) but (a, b, ¢, d) is not defined over Q. In
this example, the classes of a, b, ¢, d in F*/F*? are not Fa-linearly independent modulo squares.
In fact, by a theorem of Guillot, Min&¢, Topaz and Wittenberg [GMT18], if F' is a number field
and a, b, c,d are independent in F*/F*? and satisfy (a,b)= (b,c)=(c,d) =0 in Br(F), then
(a, b, ¢, d) vanishes.

If F' is a field for which the strong Massey vanishing conjecture fails, for some n > 3 and some
prime p, then C*(I'p, Z/pZ) is not formal; see Lemma 2.3. Therefore, Theorem 1.2 follows from
the next more precise result.

THEOREM 1.3. Let p be a prime number and let F' be a field of characteristic differ-
ent from p. There exist a field L containing F and X1, X2, X3, X4 € H'(L,Z/pZ) such that
xtUxe=x2Ux3=x3Uxs=0 in H?(L,Z/pZ) but (x1, X2, X3, X4) is not defined. Thus, the
strong Massey vanishing conjecture at n =4 and the prime p fails for L, and C*(I'y,Z/pZ) is
not formal.
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This gives the first counterexamples to the strong Massey vanishing conjecture for all odd
primes p. We easily deduce that (1.3) does not imply (1.2) for all n >4 in general: indeed, if
the fourfold Massey product (x1, X2, X3, X4) is not defined, neither is the n-fold Massey product
(X1, X2y X3, X4, 0, ..., 0). Theorem 1.3 was proved in [MS22, Theorem 1.6] when p=2, and is
new when p is odd. Our proof of Theorem 1.3 is uniform in p.

We now describe the main ideas that go into the proof of Theorem 1.3. We may assume,
without loss of generality, that F' contains a primitive pth root of unity. In §2, we collect
preliminaries on formality, Massey products and Galois algebras. In particular, we recall Dwyer’s
theorem (see Theorem 2.4): a Massey product (x1, . . ., xn) C H?(F, Z/pZ) vanishes (respectively,
is defined) if and only if the homomorphism (x1i,...,xn): I'r — (Z/pZ)" lifts to the group
Up+1 of upper unitriangular matrices in GL,+1(F,) (respectively, to the group U,+1 of upper
unitriangular matrices in GLjy11(F,) with top-right corner removed). As for [MS22, Theorem
1.6], our approach is based on Corollary 2.5, which is a restatement of Theorem 2.4 in terms of
Galois algebras.

In §3, we show that a fourfold Massey product (a,b,c,d) is defined over F' if and only
if a certain system of equations admits a solution over F. Moreover, the variety defined by
these equations is a torsor under a torus; see Proposition 3.7. This equivalence is proved by
using Dwyer’s Theorem 2.4 to rephrase the property that (a, b, c,d) is defined in terms of Us-
Galois algebras, and then by a detailed study of Galois G-algebras, for G =Us, Uy, Uy, Us. As
a consequence, we also obtain an alternative proof of the Massey vanishing conjecture for n =3
and any prime p; see Proposition 3.6.

In §4, we use the work of § 3.4 to construct a ‘generic variety’ for the property that (a, b, ¢, d)
is defined. More precisely, under the assumption that (a, b) = (¢, d) =0 in Br(F') and letting X be
the Severi-Brauer variety of (b, ¢), we construct an F-torus T and a T'r(x)-torsor E,, such that,
if E,, is non-trivial, then (a, b, ¢, d) is not defined over F'(X); see Corollary 4.5. The definition
of Ey, depends on a rational function w € F(X)*, which we construct in Lemma 4.1(3).

Since (a,b) = (b, ¢) = (¢,d) =0 in Br(F(X)), the proof of Theorem 1.3 will be complete once
we give an example of a, b, ¢, d for which the corresponding torsor F,, is non-trivial. Here, we
consider the generic quadruple a, b, ¢, d such that (a,b) and (c,d) are trivial. More precisely,
we let x,y be two independent variables over F', and replace F' by E:= F(z,y). We then set
a:=1—z,b:=x, c:=y and d:=1—y over E. We have (a,b) = (¢,d) =0 in Br(E). The class
(b, ¢) is not zero in Br(E), so the Severi-Brauer variety X/FE of (b, ¢) is non-trivial, but (b,c) =0
over L:=E(X).

It is natural to attempt to prove that FE,, is non-trivial over L by performing residue cal-
culations to deduce that this torsor is ramified. However, the torsor E,, is in fact unramified.
We are thus led to consider a finer obstruction to the triviality of F,,. This ‘secondary obstruc-
tion’ is only defined for unramified torsors. We describe the necessary homological algebra in
Appendix A, and we define the obstruction and give a method to compute it in Appendix B.
In §5, an explicit calculation shows that the obstruction is non-zero on FE,,, and hence FE,, is
non-trivial, as desired.

1.1 Notation

Let F be a field, let Fs be a separable closure of F' and denote by I'p := Gal(Fs/F') the absolute
Galois group of F.

If £ is an F-algebra, we let H'(E, —) be the étale cohomology of Spec(E) (possibly non-
abelian if 4 <1). If E is a field, H(F, —) may be identified with the continuous cohomology
of FE
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We fix a prime p, and we suppose that char(F) # p. If F is an F-algebra and aq, ..., a, € E*,
we define the étale E-algebra Eg,, 4. by

Eay .0, i=Elz1,..., 2]/ (a2} —a1,..., 20 —ay),

and we set (a;)'/P:=x;. More generally, for all integers d, we set (a;)¥?:=xf. We denote
by Rq,.. a,(—) the functor of Weil restriction along Fy, . o, /F. In particular, R,, 4, (Gm)
is the quasi-trivial torus associated to Fy, . .. /F, and we denote by Rgll)a (G ) the norm-one
subtorus of Rg, . 4,(Gm). We denote by Ny, . 4, the norm map from Fy, _,, to F.

We write Br(F') for the Brauer group of F'. If char(F)# p and F' contains a primitive pth
root of unity, for all a, b€ F* we denote by (a, b) the corresponding degree-p cyclic algebra and
also its class in Br(F); see §2.1. We denote by Ny, . 4, : Br(Fg,,. . a,.) — Br(F) the corestriction
map along Fy, o /F.

An F-variety is a separated integral F-scheme of finite type. If X is an F-variety, we let
F(X) be the function field of X, and we write X (! for the collection of all points of codimension
1in X. We set X;:=X xp F,. If K is an étale algebra over F', we write Xg for X xp K. For
all ai,...,ay, € F*, we write X,, . g, for XFQ1 o When X = IP’jlm is a d-dimensional projective

space, we denote by Pgh_._ _ the base change of IP)% to Fa,...au-

,a

2. Preliminaries

2.1 Galois algebras and Kummer theory

Let F be a field and let G be a finite group. A G-algebra is an étale F-algebra L on which G
acts via F-algebra automorphisms. The G-algebra L is Galois if |G|=dimp(L) and LE = F;
see [KMRT98, Definitions (18.15)]. A G-algebra L/F is Galois if and only if the morphism of
schemes Spec(L) — Spec(F') is an étale G-torsor. If L/F' is a Galois G-algebra, then the group
algebra Z[G] acts on the multiplicative group L*: an element Y ;. _,m;g; € Z[G], where m; € Z
and g; € G, sends x € L™ to [[;_,gi(x)™.

By [KMRT98, Example (28.15)], we have a canonical bijection

Homeont (T g, G)/~ = {Isomorphism classes of Galois G-algebras over F'}, (2.1)

where, if f1, fo: I'r — G are continuous group homomorphisms, we say that fi; ~ fs if there exists
g € G such that gfi(0)g~ ! = fo(o) for all 0 € T'p.

Let H be a normal subgroup of G. Under the correspondence (2.1), the map
Homeont(T'r, G)/~ — Homeont (', G/H)/~. sends the class of a Galois G-algebra L to the class
of the Galois G/H-algebra LY.

LEMMA 2.1. Let G be a finite group, and let H, H', S be normal subgroups of G such that
HC S, H CS, and the following square is cartesian.

G—— G/H

i J (2.2)

G/H —— G/S

(1) Let L be a Galois G-algebra. Then L @ys L' has a Galois G-algebra structure given
by gz @) :=g(x) ® g(a') for all x€ L¥ and 2’ € L*', and the inclusions L — L and
L — L induce an isomorphism of Galois G-algebras L @ps L' — L.
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(2) Conversely, let K be a Galois G/H-algebra, let K' be a Galois G/H'-algebra and let E
be a Galois G/S-algebra. Suppose we are given G-equivariant algebra homomorphisms
E— K and E— K'. Endow the tensor product L:= K ®@p K’ with the structure of a
G-algebra given by g(x ® 2'):=g(z) ® g(2') for all x € K and x’ € K'. Then L is a Galois
G-algebra such that L' ~ K as G/H-algebras and L' ~ K' as G /H'-algebras.

The condition that (2.2) is cartesian is equivalent to HNH' = {1} and S=HH'.

Proof. (1) Tt is clear that the formula g(x ® 2') := g(z) ® g(2') makes LY ®rs LH into a G-
algebra. Consider the following commutative square of F-schemes.

Spec(L) — Spec(L)/H’

| |

Spec(L)/H —— Spec(L)/S

After base change to a separable closure of F', this square becomes the cartesian square (2.2),
and therefore it is cartesian. Passing to coordinate rings, we deduce that the homomorphism
L¥ @rs L' — L is an isomorphism of G-algebras. In particular, since L is a Galois G-algebra,
sois LH @ps LH'.

(2) We have the following G-equivariant cartesian diagram.

Spec(L) —— Spec(K”)

l l

Spec(K) —— Spec(E)

Every G-equivariant morphism between G/H and G/S is isomorphic to the projection map
G/H — G/S. Therefore, the base change of Spec(K)— Spec(E) to Fy is G-equivariantly iso-
morphic to the projection G/H — G/S. Similarly for Spec(K’) — Spec(E). Therefore, the base
change of Spec(L) — Spec(F) over Fy is G-equivariantly isomorphic to (G/H) x¢/s (G/H') ~ G,
that is, the morphism Spec(L) — Spec(F’) is an étale G-torsor. O

Suppose that char(F') # p and that F' contains a primitive pth root of unity. We fix a primitive
pth root of unity ¢ € F*. This determines an isomorphism of Galois modules Z/pZ ~ 1, given
by 1+ (, and so the Kummer sequence yields an isomorphism

Homeont(I'r, Z/pZ) = H'(F, Z/pZ) ~ H(F, ju,) ~ F* | F*?. (2:3)

For every a € F*, we let xo: I'r — Z/pZ be the homomorphism corresponding to the coset
aF>P under (2.3). Explicitly, letting o’ € F* be such that (a/)? = a, we have g(a') = (X=(9)q/ for
all g € I'p. This definition does not depend on the choice of a’.

Now let n > 1 be an integer. For all i=1,...,n, let o; be the canonical generator of the ith
factor Z/pZ of (Z/pZ)". By (2.3), all Galois (Z/pZ)"-algebras over F are of the form Fy, .,

where aq,...,a, € F* and the Galois (Z/pZ)"-algebra structure is defined by (o; — 1)a;/p =(
for all ¢ and by (o; — l)ajl-/p =1 for all j #1.

We write (a,b) for the cyclic degree-p central simple algebra over F generated, as an
F-algebra, by F, and an element y such that

yP=b, ty=yo.(t) foralltekF,.
835
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We also write (a,b) for the class of (a,b) in Br(F). The Kummer sequence yields a group
isomorphism

v: HX(F,Z/pZ) = Br(F)[p].
For all a,be F*, we have t(xq U xp) = (a, b) in Br(F); see [Ser79, Chapter XIV, Proposition 5].

LEMMA 2.2. Let p be a prime, and let ' be a field of characteristic different from p and
containing a primitive pth root of unity (. The following are equivalent.

(i) We have (a,b) =0 in Br(F).
(ii) There exists o € F)* such that b= Ny(«).
(iii) There exists B € F, such that a = Ny(3).

Proof. See [Ser79, Chapter XIV, Proposition 4(iii)]. O

2.2 Formality and Massey products

Let (A, ) be a differential graded ring, that is, A =®;>¢A" is a non-negatively graded abelian
group with an associative multiplication which respects the grading, and 0: A — A is a group
homomorphism of degree 1 such that @ o @ =0 and 9(ab) = d(a)b+ (—1)%ad(b) for alli >0, a € A
and b € A. We denote by H*(A) :=Ker(9)/Im(9) the cohomology of (A, d), and we write U for
the multiplication (cup product) on H*(A).

We say that A is formal if it is quasi-isomorphic, as a differential graded ring, to H*(A) with
the zero differential.

Let n>2 be an integer and let ay,...,a, € H'(A). A defining system for the nth order
Massey product (ai,...,a,) is a collection M of elements a;; € Al where 1<i<j<n+1,
(¢,7) # (1,n + 1), such that:

(1) 9(aii+1) =0 and a; 41 represents a; in H'(A); and
(2) 8(aij) = —Z{;il_’_lailalj for all 7 <j—1

It follows from (2) that —>;" sa1;a;n41 is a 2-cocycle: we write (a1, . . ., an)u for its cohomology
class in H%(A), called the value of (a1, ...,a,) corresponding to M. By definition, the Massey
product of a1, . .., ay is the subset (a1, ..., a,) of H?(A) consisting of the values (a1, ..., a,)as of
all defining systems M. We say that the Massey product (aq, ..., ay) is defined if it is non-empty,
and that it vanishes if 0 € (a1, ..., an).

LEMMA 2.3. Let (A, 0) be a differential graded ring, let n > 3 be an integer and let o, . . ., o, be
elements of H'(A) satisfying a; Ucy 1 =0 for all 1 <i<n— 1. If A is formal, then (a1, ..., o)
vanishes.

Proof. See [PQ22, Theorem 3.8]. O

2.3 Dwyer’s theorem

Let p be a prime, and let Uy, 11 C GLy41(F,) be the subgroup of (n 4+ 1) X (n + 1) upper unitrian-
gular matrices. For all 1 < < j <n+ 1, we denote by e;; € U,41 the matrix whose non-diagonal
entries are all zero except for the entry (4,7), which is equal to 1. We set o; :=¢€; ;41 for all
1 <i<n. By [BDO01, Theorem 1], the group U,+1 admits a presentation with generators the o;
and the following relations:

ol =1 forall1<i<n, (2.4)
[i,0j]=1 forall 1<i<j—2<n-2, (2.5)
836
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[Ui, [O’i, Uz‘—i—l“ = [Uz‘+1, [Oi, Ji+1]] =1 foralll S 1 S n— 2, (2.6)
[[Oi, O—i—&-l], [02‘4_1, O'i+2]] =1 foralll S 1 S n— 3. (27)

The following relations holds in U,41:
leij, ejx] =€, forall 1<i<j<k<n+l1.
By induction, we deduce that
e1n+1 =01, (02, ..., [on-2, [On-1,00]] .. ]].

The center Z,,11 of U,41 is the subgroup generated by e ,41. The factor group Upi1:=
Un+1/Zn+1 may be identified with the group of all (n + 1) x (n + 1) upper unitriangular matrices
with entry (1,n+ 1) omitted. For all 1 <i<j<n+1, let €; be the coset of e;; in Uy+1, and
set 0;:=€; ;41 for all 1 <7 <mn. Then U,+1 is generated by all the &; modulo the relations

o’=1 forall1<i<n, (2.8)

[Gi,5j]=1 forall1<i<j—2<n-2, (2.9)

(G4, [0i, Tix1] = [Tit+1, [0i, 0it1]] =1 forall 1<i<n-—2, (2.10)
([Gi Tit1], [Tit1,0i42]] =1 forall 1 <i<n-—3, (2.11)
[G1,[02, .., [On-2, [On-1,00]] .. .]]=1. (2.12)

We write w;;: Uy41 — Z/pZ for the (i, j)th coordinate function on U, 1. Note that u;; is not
a group homomorphism unless j =i+ 1. We have a commutative diagram

1 Znpt1 Un+1 Upyr —— 1

\ | (2.13)
(

Z/pZ)"

where the row is a central exact sequence and the homomorphism U,,11 — (Z/pZ)" is given by
(w12, u23, - - ., Uppnt1). We also let

Quit i=Ket[Uns1 = (Z/p2)"),  Qpyr = Ker[Tns1 = (Z/pZ)"] = Quit [ Zns1.
Note that Z,11 C Qnt1, with equality when n =2.

Let G be a profinite group. The complex (C*(G,Z/pZ),0) of mod p non-homogeneous
continuous cochains of G with the standard cup product is a differential graded ring.
Therefore, H*(G, Z/pZ) = H*(C* (G, Z/pZ), 0) is endowed with Massey products. The following
theorem is due to Dwyer [Dwy75].

THEOREM 2.4 (Dwyer). Let p be a prime number, let G be a profinite group, let x1,...,Xn €
HY(G,Z/pZ) and write x: G — (Z/pZ)™ for the continuous homomorphism with components
(X1, ..., Xn)- Consider diagram (2.13).

(1) The Massey product (xi,...,Xn) Is defined if and only if x lifts to a continuous
homomorphism G — U 1.
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(2) The Massey product (x1,...,Xxn) vanishes if and only if x lifts to a continuous homomor-
phism G — Up,41.

Proof. See [Dwy75] for Dwyer’s original proof in the setting of abstract groups, and see [Efr14]
or [HW23, Proposition 2.2] for the statement in the case of profinite groups. O

Theorem 2.4 may be rephrased as follows.

COROLLARY 2.5. Let p be a prime, let ' be a field of characteristic different from p and
containing a primitive pth root of unity ¢, and let ai,...,a, € F*. The Massey product
{a1,...,an) C HX(F,Z/pZ) is defined (respectively, vanishes) if and only if there exists a
Galois U, 1-algebra K/ F (respectively, a Galois U, 1-algebra L/F) such that K@+ ~ Fo.. . a,
(respectively, L9+ ~ F, . ) as (Z/pZ)"-algebras.

Proof. This follows from Theorem 2.4 and (2.1). O

We will apply Lemma 2.1 to the cartesian square of groups

7T Pn+1
Un+l ? Un

l*’,nﬂ l‘ﬂ; (2'14>
Up —2 U,y

where ¢, 1 (respectively, o), ) is the restriction homomorphism from U,;1 or from Upny1 to
the top-left (respectively, bottom-right) n x n subsquare Uy, in Uy,41.

The fact that the square (2.14) is cartesian is proved in [MS22, Proposition 2.7] when p = 2.
The proof extends to odd p without change.

Remark 2.6. The presentations of U, and U, of [BD01] given above will allow us to avoid
lengthy calculations in § 3, but they are not essential for our arguments. One could instead use
the following classical presentations of U,+1 and U1, which are reminiscent of the Steinberg
relations for the Steinberg group of a ring in algebraic K-theory.
The group U,41 admits a presentation with generators {e;;:1<i<j<n-+1} and the
following relations:
eszl forall1<i<j<n+1,
[eij,ejk] =e;, for all 1<i<j<k<n+1,
leije) =1 forall1<i<j<n+1,1<k<i<n+1,i#l j#k.

This is a particular case of [AB08, Proposition 7.108], where we choose w to be the longest
element of the Weyl group of GL;, 41 over F,. One obtains a presentation of U1 with generating
set {€;;:1<i<j<n+1}, modulo the relations induced by the above relations for the e;;,
together with the relation €y ,41 =1.

3. Massey products and Galois algebras

In this section, we let p be a prime number and we let F' be a field. With the exception of
Proposition 3.6, we assume that char(F') # p and that F' contains a primitive pth root of unity (.

3.1 Galois Us-algebras

Let a,be F*, and suppose that (a,b) =0 in Br(F'). By Lemma 2.2, we may fix o € F* and
€ F; such that No(a) =b and Ny(8) = a.
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We write (Z/pZ)* = (04, 0p), and we view F,; as a Galois (Z/pZ)*-algebra as in §2.1. The
projection Us — Us = (Z/pZ)? sends ej2 + o, and ea3 + 0. We define the following elements
of Ug:

Oq:=€l2, Op:=€23, T:=e€13=][0q,0p|

Suppose we are given x € F* such that

b
(0o — 1= " (3.1)
The étale F-algebra K :=(F, ), has the structure of a Galois Us-algebra, such that the Galois
(Z/pZ)?-algebra K% is equal to F,; and

pl/p
(0o —Dz'P="— (op—1)z'/P=1, (r—1)z'/P=¢"" (3.2)
oY
Similarly, suppose we are given y € F,* such that
a
(op— 1)y = I (3.3)

The étale F-algebra K :=(F,;), has the structure of a Galois Us-algebra, such that the Galois
(Z/pZ)*-algebra K% is equal to F,} and
1/p
(Ua - 1)y1/p = 17 (Ub - 1)y1/p = %a (T - 1)y1/p = C (34)

In (3.2) and (3.4), the relations involving 7 follows from the first two.
If x € F;* satisfies (3.1), then so does az. We may thus apply (3.2) to (Fyp)az. Therefore,
(Fap)az has the structure of a Galois Us-algebra, where Uz acts via Uz = Gal(Fp/F) on Fyp

and Up
(00~ D(ar) P =2 (o= (@) =1, (7~ 1)(ar) P =

Similarly, if y € F, satisfies (3.3), we may apply (3.4) to (Fp)py. Therefore, (F,p)p, admits a
Galois Us-algebra structure, where Us acts via Us = Gal(F,/F) on F,; and

al/P
(@0 = D)7 =1, (o= )b P =", (= 1)) =C.

LEMMA 3.1.

(1) Let x € F satisfy (3.1), and consider the Galois Us-algebras (Fyp), and (Fyp)ar as in
(3.2). Then (Fyp)z >~ (Fop)az as Galois Us-algebras.
2) Lety e F* satisfy (3.3), and consider the Galois Uz-algebras (Fy ), and (Fy )y, as in (3.4).
b 0y ,0/0y
Then (Fop)y >~ (Fop)sy as Galois Us-algebras.

Proof. (1) The automorphism oy: F,;, — Fyp extends to an isomorphism of étale algebras
£+ (Fap)az — (Fap)z by sending (ax)'/P to a'/Pz'/P. The map f is well defined because
f((az)/P)? = (a}/Px!/P)P = az. We now show that f is Us-equivariant. The restriction of f to
F,p is Uz-equivariant because 0,03 = 0,0, on Fy, ;. We have

pl/p Cal/Ppl/pyt/p
1/py — 1/py . Upy_—p. . e 2 p 5% "V %
Tl f((a2) 7)) = gul@!/?) - ra(@!/1) = ¢ a2 ;
and
pl/p Cal/Ppt/pyt/p
1/py\y — 1/p . py .2 A/p A/p_ 5% Y "
floa((an)'/7) = (/7 /a) - (@) /7) = ¢~ = al/? T
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Thus, f is (0,)-equivariant. We also have
op(f((az)/P)) = oy (a'/?) - oy (a'/P) = ' /P /P
and
fov((ax)'/7)) = f((ax)/P) = a' /P 2P,

Thus, f is (op)-equivariant. Since o, and o}, generate Us, we conclude that f is Us-equivariant,
as desired.
(2) The proof is similar to that of (1). O

PROPOSITION 3.2. Let a,be F* be such that (a,b) =0 in Br(F), and fix a € F and 8 € F;*
such that Ny(a) =0 and Ny(B) = a.

(1) Every Galois Us-algebra K over F such that K% ~ F,;, as (Z/pZ)?-algebras is of the form
(Fyp)a for some x € FS as in (3.1), with Us-action given by (3.2).

(2) Every Galois Us-algebra K over F such that K9 ~F,; as (Z/pZ)*-algebras is of the form
(Fap)y for some y € F)* as in (3.3), with Us-action given by (3.4).

(3) Let (Fop)s and (Fgp), be Galois Us-algebras as in (3.2) and (3.4), respectively. The Galois
Us-algebras (F,p). and (F,p), are isomorphic if and only if there exists w € F,, such

that
wl =zy, (0q—1)(op —Hw=(.

Proof. (1) Since Q3 = (1) ~Z/pZ and K9 ~ F,;, as (Z/pZ)?-algebras, we have an isomorphism
of étale F, p-algebras K ~ (F, ;). for some z € F, such that (7 — 1)21/7’ =(~'. We may suppose
that K = (F,).. As 7 commutes with oy,

(T — 1)(Ub — l)zl/p = (Ub — 1)(7 _ 1)21/17 — (Ub N 1)C_1 —1,

and hence (03, — 1)2/? € F¥,. By Hilbert’s Theorem 90 for the extension F, ,/F,, there is t € F.*,
such that (o3 — 1)2'/? = (03, — 1)t. Replacing z by zt P, we may thus assume that (o3, — 1)21/? =1.
In particular, z € FX. Since (7 —1)2Y/? = (=1, we have 0y,0,(2/P) = Coq04(2/P). Thus,

(0 = )(0a = 1)z = (0400 — 000y + (00 = 1) (0 = 1))2/P = (00 — 1) (0, — 1)/ =,

and hence (o — 1)2/P =b'/?/o/ for some o' € FX. Moreover, N,(o//a)=b/b=1, and so by
Hilbert’s Theorem 90 there exists 6 € F* such that o/ /a = (0, — 1)0. We define x := 260P € F*,
and we set z'/? :=21/P9 € (F,;)%. Then K = (F, ), where

(0a—1)a'/P = (04, —1)2P - (0, —1)0 = —=

and (o, — 1)z'/? =1, as desired.
(2) The proof is analogous to that of (1).
(3) Suppose we are given an isomorphism of Galois Us-algebras between (F, ), and (Fgp)y-
Let t € (Fyp), be the image of y/P under the isomorphism and set
w' =z'Pte (Fap)a-

Set ¢ :=tP. We have (1 —1)w'=("'- (=1, and hence w' € F.,. We have (w’)? =zy’. Since
Fy, coincides with the (og, 7)-invariant subalgebra of (Fp), and (F,p)y, the isomorphism
(Fap)y = (Fop)z restricts to an isomorphism of Galois Z/pZ-algebras F, — Fp,. Since the
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automorphism group of Fy, as a Galois (Z/pZ)-algebra is Z/pZ, generated by o}, this isomorphism
F, — F}, is equal to o for some integer i > 0. Thus, y' = o} (y). Define

i
w:=w'a""P H oy (B) € F .y,
=0

We have (1 — o)y = P/a, and hence

u—ﬁwz(i;iu—woyzﬁiﬁwﬁydzwwww.

Therefore,

w? = (WP (1~ ap)y = 2oy (y)(1 - oy )y = zy. (3.5)
We have (o, — 1)2'/? =1 and

(00— 1)(op — V)t = (04 — 1)(0 — D)y"/? = (04 — 1)(a'?/B) = C.

Therefore,

(0o —1)(op — V' = (04— 1)(0p — 1)t =(.
Since (o, —1)(op — 1)a*/P =1 and (o, — 1)(0p — 1)3 =1, we conclude that

(00— 1)(0 — 1w = (00 — 1)(o — D’ =C. (3.6)

Putting (3.5) and (3.6) together, we see that w satisfies the conditions of (3). Conversely, suppose
we are given w’ € F such that

zy= W), (0a—1)(op— 1w =C.

CraIM 3.3. There exists w € F, such that

pl/p al/p
zy=wP, (0,—Nw= C_ZT’ (op—1w= C_J7»

for some integers i and j.

Proof of Claim 3.3. First, we find n, € F,* such that

/ —1 bl/p
775:17 (Ua_ 1)(w /na):C 7 (3'7)
We have
b
/ — — e
(0 —1)(w')P = (0, — 1)z = 1
Let

— -1
Ca=(0a—1w -a-b /pEFafb.

We have ¢} = 1. Moreover, (o, —1){, =(-1-¢~1 =1, that is, {, belongs to F.. If F, is a field,
this implies that ¢, = (~* for some integer 4, and (3.7) holds for n, = 1.

Suppose that F, is not a field. Then F, ~ FP where o, acts on FP by cyclically permuting
the coordinates, that is,

oa(z1, 22, ..., 2p) = (T2,...,Tp, 21).

We have ¢, =((1,...,(p) in F, =FP, where (; € F* is a pth root of unity for all ;. We have
No(Ca) = Ng(a)/b=1, and so (;---(p=1. Inductively, define n;:=1 and 741 :=(;n; for all
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t=1,...,p—1. Then

m/mp=(m/n2) - (2/n3) -+ (p—r/mp) = G G- G = G
Therefore, the element 7, := (91, ...,n,) € FP = F, satisfies 7, =1 and

(00— 1)na=(n2/m; - .. a77p/77p—17 771/7717) =(C1,- - » Cp—1, Cp) =(a-

Thus,
pl/p
ngla (Ua_1)(w//77a):(0a_1)w/'C¢:1:77

«

All in all, independent of whether Fj, is a field or not, we have found 7, satisfying (3.7).
Similarly, we construct 7, € F, such that

» , al/p
m=1, (op—1)(w'/m)=C" R (3.8)
for some integer j. Set w:=w'/(n,m) € F ,- Putting together (3.7) and (3.8), we deduce that w
satisfies the conclusion of Claim 3.3. O

Let we FX be as in Claim 3.3. By Lemma 3.1(1), applied ¢ times, the Galois Us-algebra
(Fup)a is 1som0rphlc to (Fup)aiz, where

. 1/p .
(00~ Dla'e) =" (o~ 1)(an) P =1

By Lemma 3.1(2), applied j times, the Galois Us-algebra (Fj ), is isomorphic to (Fyp)psy, where

. ) 1/p
(00— D)BIYYP =1, (05— 1)(bTy) /P ="~

Thus, it suffices to construct an isomorphism of Usz-algebras (F,p)aiz ~ (Fap)piy- Let
Ty "
W= wa'/PHi/P ¢ T

so that

Let f: (Fup)aiz — (Fap)psiy be the isomorphism of étale algebras which is the identity on F
and sends (a‘z)'/? to w/(b7y)'/P. Note that f is well defined because

(0)P =wa'b?! = (a'z)(b7y).

Moreover,
. 1/p .
(00 = 1)(@/(b7y)"/?) = ki (00 — D)(a'a)"/?,
o
~ 1(nian1/ a'/? g i,\1/
(op — 1)(w/(b7y) p)ZT'mzlz(%—l)(aI‘) b,
and hence f is Us-equivariant. O

3.2 Galois U4-algebras

Let a,b,c€ F* be such that (a,b)

=(b,c)=0 in Br(F). By Lemma 2.2, we may fix a € F*
and v € F* such that N,(a) = N.(y)=b.

We have Gal(F,p./F)=(Z/pZ)? = (04, 0p, o). The
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projection map Uy — (Z/pZ)? is given by €12 — 04, €23+ 0p, €34 0. Its kernel @47C Uy, is
isomorphic to (Z/pZ)?, generated by €13 and e24. We define the following elements of U :
Oq'=€l2, Op:=€23, Oci=€34, Tap'=E€13, The'= €24.
Let x € F and 2’ € F* be such that
b b
(0 — 1)z = 1 (oo — 1)’ = ot (3.9)

and consider the Galois Uj-algebra K := (Fab,c)a,a, where U, acts on F,p,c via the surjection
onto Gal(Fgp.c/F), and

/
(04— 1)at/P = b;p (op—1)z'P =1, (0,—1)z'/P =1, (3.10)
(rap = Dz'P=¢71, (e — D2 P =1, (3.11)

/
(0a—D)(@)'P=1, (o —1)(@)"=1, (0.—1)(a")"/P = b;p (3.12)
(Tab - 1)(33/)1/13 =1, (Tbc - 1)(x’)1/p = C (313)

Note that (3.11) follows from (3.10) and (3.13) follows from (3.12). We leave to the reader to
check that the relations (2.8)—(2.12) are satisfied.

PROPOSITION 3.4. Let a,b,c€ F* be such that (a,b) = (b,c)=0 in Br(F). Fix a € F and
v € FX such that N,(a)=N.(y)=b. Let K be a Galois Ujs-algebra such that K% ~F,, . as
(Z/pZ)3-algebras. Then there exist z € F,* and ' € F)* such that K~ (F,p.)s. as Galois
U s-algebras, where Uy acts on (Fypc)ze by (3.10)-(3.13).

Proof. Let H (respectively, H') be the subgroup of U, generated by o. and 7. (respectively, o,
and 7,3), and let S be the subgroup of U, generated by H and H'. Note that K is a Galois Us-
algebra over F such that (K1) ~F,, as (Z/pZ)?-algebras and K*® ~ F}, as (Z/pZ)-algebras.
Thus, by Proposition 3.2(1), there exists z € F,* such that K ~ (F,}), as Galois Us-algebras.
Similarly, by Proposition 3.2(2), there exists 2’ € F* such that K# ~ (F}.), as Galois Us-
algebras. Therefore, x satisfies (3.10) and 2’ satisfies (3.12). We apply Lemma 2.1(2) to (2.14).
We obtain the isomorphisms of U 4-algebras

K~ KH QKs KH/ =~ Fa,b,c)a:,x’a
where (Fy )z, is the Ug-algebra determined by (3.10) and (3.12). O

3.3 Galois U,-algebras

Let a,b,c€ F*, and suppose that (a,b) = (b,c) =0 in Br(F). We write (Z/pZ)3 = (04, 0, 0¢)
and view Fy ;. as a Galois (Z/pZ)3-algebra over F, as in §2.1. The quotient map Uy — (Z/pZ)?
is given by e1o — 04, €23+ 0 and egq — o.. The kernel Q4 of this homomorphism is generated
by e13, e24 and e14 and is isomorphic to (Z/pZ)3. We define the following elements of Uy:

Oq = €12, 0Op:=€23, Oci= €34,

Tab - = €13 = [Uaa Jb], The = €24 = [o—ba O_C]a pPi=€14 = [0—(17 Tbc] = [Taba Uc]-
843
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PROPOSITION 3.5. Let a,b, c € F* be such that (a,b) = (b,c) =0 in Br(F). Let « € F,* and 7y €
F be such that Ny(a) =b and N.(vy)=b. Let K be a Galois Uj-algebra such that K% ~F, .
as (Z/pZ)3-algebras.

There exists a Galois Uy-algebra L over F such that L% ~ K as Us-algebras if and only if

there exist u,u' € F,;, such that
a-(og—Du=r-(o,— 1)

and such that K is 1somorph1€ to the Galois U s-algebra (Fy )z, determined by (3.10)—(3.13),
where x = N.(u) € F and 2/ = Ny(u') € .

Proof. Suppose that K = (Fyp¢)zq, with Ug-action determined by (3.10)-(3.13). Let L be a
Galois Uy-algebra over F such that L% = K, and let y € K* be such that L = K,.
We have Gal(L/F,p.) = Q4= (Tap, Toe, p) ~ (Z/pZ)3, and hence one may choose y in Fl.
and such that
(Tab - 1)y1/p =1, (Tbc - 1)y1/p =1, (p - 1)y1/p = C_l'
The element o, commutes with 74, 7. and p. Hence,

(o — 1) (y?) = (0, — D7ap(y'/?) = (00 — 1) (y"/7).

Similarly,
Te(oy — 1)(y"?) = (o — 1)(y'/?)

and

p(op = D(y"?) = (o5, = 1)(C - y"/?) = (o — D) ('7).
It follows that (op — 1)(y1/p) € F, .. By Hilbert’s Theorem 90, applied to Fy 4o/ Fy.c, there is g €
Fax’l%C such that (o — 1)(y'/?) = (0, — 1)q. Replacing y by y/¢?, we may assume that oy, (y/?) =
y/P. In particular, y € F.. We have

ploa = D)(E?) = (0 = Dp(y"'") = (0. = (- y/7) = (00 = D) (y'/7),
ob(0a = D)(y"/?) = (Gaosmar " = 03)(y"?) = (02— 1)(y"/7),
Tab(00 = D)(y"/?) = (00 = D7an(y"") = (02 = 1)(y"/7),
Toe(0a = D(y'"") = (0700 = Dme(y'?) = (0up™" = D(y"") = (- (0. = D(y"7).
y (3.12)(3.13), analogous identities are satisfied by (2/)'/?, that is,
(0= DE)YP = (03— @) = (rap = D@V =1, (mpe— 1)) P =.
Therefore,
(s~ 1) = T

for some v’ € F,*.. In particular, ' = N,(u’). A similar computation shows that

21/P

(0c— 1)(y1/p> = T

for some u € F.. In particular, x = N¢(u). In addition,

1/p

P2 (ou = @) = (o0~ Dlu- (00— 167
pl/p 1y , "
== (@) ) = e = Dl (0 =D )]
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Therefore,
a (o —Du=r-(o.—1)u.
Conversely, suppose we are given u, u’ € Fafc such that

a-(og—NDu=~-(o.—1u';, z=N.(u), z'=DN,(u).

Then
(o _ Chu=nN(T) =l
(00 — 1)z = (04 — 1)Nu(u) = No(o4 l)u—Nc(a)_ap,
N n_ v (X _ b
(00 — )2’ = (0 — 1) N (') = Ny (o0 l)u—Na<’y>_7p.
We have
v\  Ne(xr) af
Ne(p) = No(p) o

(aa—l)(m) b b _(08—1)<<w,).

w)  ar- (0q — 1)uP - VP - (0. — 1) (u/)P
By Hilbert’s Theorem 90 applied to Fy, ./F', there is y € F. such that

()r

We consider the étale F-algebra L := K, and make it into a Galois Uy-algebra such that L% =K.
It suffices to describe the U-action on y*/?. We set

and (0. —1)y= L.

(0a—1)y= uP

:,U/ l/p ml/p

a0 = EL (o1 =1, (o1 =T
One can check that this definition is compatible with relations (2.4)-(2.7), and hence that it
makes L into a Galois Uy-algebra such that L% = K. O

We use Proposition 3.5 to give an alternative proof for the Massey vanishing conjecture for
n =3 and arbitrary p.

PROPOSITION 3.6. Let p be a prime, let F' be a field and let x1, X2, x3 € H'(F,Z/pZ). The
following are equivalent.

(1) We have x1 U x2 =x2Ux3=0 in H>(F,Z/pZ).

(2) The Massey product (x1, X2, x3) C H*(F,Z/pZ) is defined.

(3) The Massey product (x1, x2, x3) C H*(F,Z/pZ) vanishes.

Proof. Tt is clear that (3) implies (2) and that (2) implies (1). We now prove that (1) implies
(3). The first part of the proof is a reduction to the case when char(F')#p and F contains a

primitive pth root of unity, and it follows [MT16, Proposition 4.14].
Consider the short exact sequence

1= Qq—Uy— (Z/pZ)> —1, (3.14)
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where the map Uy — (Z/pZ)® comes from (2.13). Recall from the paragraph preced-
ing Proposition 3.5 that the group @4 is abelian. Therefore, the group homomorphism
X :=(x1, X2, x3): ['r — (Z/pZ)? induces a pullback map

H%((Z/pZ)3, Q4) — H?(F, Q).

We let A€ H?(F,Q4) be the image of the class of (3.14) under this map. By Theorem 2.4, for
every finite extension F’/F the Massey product (X1, x2, x3) vanishes over F” if and only if the
restriction of x to I lifts to Uy, and this happens if and only if A restricts to zero in H2(F’, Q4).

When char(F)=p, we have cd,(F)<1 by [Ser97, §2.2, Proposition 3]. Therefore,
H?(F,Q4) =0 and hence A=0. Thus, (1) implies (3) when char(F) = p.

Suppose that char(F) # p. There exists an extension F’/F of prime-to-p degree such that F’
contains a primitive pth root of 1. If (1) implies (3) for F, then A restricts to zero in H?(F’, Q).
By a restriction-corestriction argument, we deduce that A vanishes, that is, (1) implies (3) for
F'. Thus, we may assume that I’ contains a primitive pth root of unity (.

Let a,b,c€ F* be such that x, =x1, Xo = X2 and x.=x3 in H'(F,Z/pZ). Since (a,b) =
(b,c)=0 in Br(F), there exists aw€ F,* and y€ F such that N,(a)= N.(y)=>. Since
Nac(v/a) = Ne(7)/No(a) =1 in E, by Hilbert’s Theorem 90 there exists ¢t € F°, such that

ac’ a,c

v/ = (040, — 1)t. Define u, v’ € F, by u:=0.(t) and v’ :=t"'. Then
a-(0s—Du=a- (0,0 —0o)t=a (0400 — Dt (0, — Dt =~ (0. — 1)

Let x:= N.(u) € F,* and 2’ := N,(u') € FX. Since 0,0. = 0.0, on F;*,,
(00 = 1)z = Ne((00 — 1)u) = Ne((oc — Du' - (v/a)) = Ne(7)/Ne(o) = b/a?.

Similarly, (o, — 1)a’ = b/~P. Therefore, z, z’ satisfy (3.9). Let K := (F )z be the Galois Uy-
algebra over F', with the Ug-action given by (3.10)—(3.13). By Proposition 3.5, there exists a
Galois Uy-algebra L over F' such that L%~ (Fape)aa as U 4-algebras. In particular, LQi ~ Fope
as (Z/pZ)3-algebras. By Corollary 2.5, we conclude that {(a, b, c¢) vanishes. O

3.4 Galois Ug-algebras

Let a,b,c,d € F*. We write (Z/pZ)* = (04, 0, 0c, 04) and regard F,p.q as a Galois (Z/pZ)*-

algebra over F' as in §2.1.

PROPOSITION 3.7. Let a,b,c,de€ F* be such that (a,b)=(b,c)=(c,d)=0 in Br(F). The
X

Massey product (a,b,c,d) is defined if and only if there exist u € F, ., v € F,; and w € F',
such that

No(u) - Ng(v) =wP, (op —1)(0. — Dw=C.

Proof. Denote by U,” and U, the top-left and bottom-right 4 x 4 corners of Us, respectively,
and let S:=U, I NU, be the middle subgroup Us. Let QI and @, be the kernels of the maps
U — (Z/pZ)? and Uy — (Z/pZ)3, respectively, and let P;” and P; be the kernels of the maps
Uj — Uz and U, — Us, respectively.

Suppose (a, b, ¢, d) is defined. By Corollary 2.5, there exists a Us-algebra L such that L9 ~
Fupea as (Z/pZ)*-algebras. Using Lemma 2.2, we fix o € F* and v € F* such that N,(a) =10
and N.(v) =b. By Proposition 3.5, there exist u,u’ € F, such that, letting 2’ := N.(u) and

a,c
x = Ny(u), the Uz-algebra K induced by L is isomorphic to the Ui—algebra (Fapc)atx, Where
UI acts via (3.10)—(3.13), and where the roles of z and 2’ have been switched.
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Similarly, there exist v, v’ € bed such that, letting 2 := Ny(v) and 2’ := Ny(v'), the U, -algebra
K5 induced by L is isomorphic to (Fj ¢ q4)-,. . Since the Us-algebras (Kl)P4+ and (K3)™ are equal,
by Proposition 3.2(3) there exists w € Fy’, such that

Ny(u) - Ng(v)=zz=wP, (op—1)(c.—1)w=C(.
Conversely, let u € I, v e bed, and w € bec be such that
Ng(u) - Ng(v) =wP, (op —1)(0. — Dw=C.
By Lemma 2.2, there exist o € F, and ¢ € F* such that N,(a) =b and N4(0) = c¢. We may write
(op — )w = Clﬁ/p, (0c—Dw= blfy/p,
for some (€ F,* and v € F.*. We have
Na((oc = Du- (v/a)) = (0c = 1)Na(u) - No(v/) = (0 = Dw? - (47 /b) = 1.
By Hilbert’s Theorem 90, there is v’ € F\. such that
a- (o, —Du' =~ (0. —1)u.

By Proposition 3.5, we obtain a Galois UI -algebra K over F' with the property that (K 1)QI ~
Fopcas(Z/ pZ)3-algebras. Similarly, we get a Galois U , -algebra over F' such that (K 9)@4 ~ Fyca
as (Z/pZ)3-algebras. Since N,(u)- Ng(v) =wP and (o3, — 1)(0. — 1)w = ¢, by Proposition 3.2(3)
the Us-algebras (K1)F" and (K3)Pi are isomorphic. Now Lemma 2.1 applied to the cartesian
square (2.14) for n =4 yields a Us-Galois algebra L such that L% ~ I, , . 4 as (Z/pZ)*-algebras.
By Corollary 2.5, this implies that (a, b, ¢, d) is defined. O

LEMMA 3.8. Let b,c€ F* and w € F;,. We have (0 — 1)(0. — 1)w =1 if and only if there exist
wy € Fy and w € F) such that w=wyw, in F,,.

Proof. We have (o3, — 1)(0c — 1)(wpwe) = (05 — 1)we =1 for all wp € F, and w, € F.*. Conversely,
if weFy, satisfies (05 —1)(0c —1)w=1, then (0.—1)we F} and N.((o.—1)w)=1, and
hence by Hilbert’s Theorem 90 there exists w, € F such that (0. — 1)w, = (0, — 1)w. Letting
wp == w/w. € Fy',, we have

(0c— Dwp= (0. — 1)(w/we) =1,
that is, wy, € F*. O

From Proposition 3.7, we derive the following necessary condition for a fourfold Massey
product to be defined.

ProposiTIiON 3.9. Let p be a prime, let F' be a field of characteristic different from p and
containing a primitive pth root of unity (, let a,b,c,d € F*, and suppose that (a,b,c,d) is
defined over F. For every w € bec such that (op —1)(0c — 1)w=(, there exist u € F.. and
v e F), such that Ng(u)Ng(v) =wP.

Proof. By Proposition 3.7, there exist ug € F,\., vo € F}; and wg € F,, such that

Nq(uo) - Ng(vo) =wp,  (0p — 1)(0c — 1)wo =C.

We have (o, —1)(0c — 1)(wo/w) =1. By Lemma 3.8, this implies that wy = wwyw,., where wy, €
F,) and we € F. If we define u = upw, and v =vowy, then

No(u)Ng(v) = Ng(uo) Na(we) Ng(vo) Na(wp) = whwEwy = wP. O
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4. A generic variety

In this section, we let p be a prime number, and we let F' be a field of characteristic different
from p and containing a primitive pth root of unity (.

Let b,c€ F*, and let X be the Severi-Brauer variety associated to (b, ¢) over F; see [GS17,
Chapter 5]. For every étale F-algebra K, we have (b,c¢) =0 in Br(K) if and only if Xx ~ ]P”I?(_1
over K. In particular, X, ~P?~" over Fj. (Recall that we write (PY™" for P’}:l.) By [GS17,
Theorem 5.4.1], the central simple algebra (b, ¢) is split over F'(X).

We define the degree map deg: Pic(X) — Z as the composite of the pullback map Pic(X) —
Pic(Xp) ~ Pic(]P’f_l) and the degree isomorphism Pic(P‘Z_l) — Z. This does not depend on the

choice of isomorphism Xj, ~ Pﬁ’*l.

LEMMA 4.1. Let b,c € F*, let G := Gal(F,/F) and let X be the Severi—Brauer variety of (b, c)
over F'. Let s1,...,s, be homogeneous coordinates on IP’%_I.

(1) There exists a Gy-equivariant isomorphism Xj = IP’Ig_l, where Gy, acts on X, via its action

on Fy, and on IP"Z_l by

op(s1)=csp, op(si)=si-1 (1=2,...,p).
(2) If (b,c)#0 in Br(F'), the image of deg: Pic(X) — Z is equal to pZ.
(3) There exists a rational function w € Fy, .(X)* such that
(op—1)(oc—Nw=C(
and
diviw)=2 —y in Div(Xp,),

where ,y € (Xp,.)1) satisfy deg(z) =deg(y) =1, op(z) == and o.(y) =vy.

Proof. (1) Consider the 1-cocycle z: Gy = PGL,(F}) given by

0 0 0 ¢
10 00
S 00
0 0 ... 1 0]

By [GS17, Construction 2.5.1], the class [2] € H(Gy, PGL,(F})) coincides with the class of the
degree-p central simple algebra over F' with Brauer class (b, c), and hence with the class of
the associated Severi—Brauer variety X. It follows that we have a Gj-equivariant isomorphism
Xb:IP’g_l, where (G, acts on X; via its action on Fj, and on ]P”g_1 via the cocycle z. This
proves (1).

(2) By a theorem of Lichtenbaum [GS17, Theorem 5.4.10], we have an exact sequence

Pic(X) 2% 7. % Br(F),

where §(1) = (b, ¢). Since (b, ¢) has exponent p, we conclude that the image of deg is equal to pZ.
(3) Let Gic:=Gal(Fp./F)=(0p,0c). By (1), there is a Gy -equivariant isomorphism
f: szl — Xp¢, where Gy . acts on X, . via its action on F, ., the action of o, on Pﬁ;l is trivial

and the action of o3 on IP’ZZEI is determined by

oy(s1)=csp, op(si)=si-1 (i=2,...,p).
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Consider the linear form 1:=3"" ,¢/?-s; on szl and set w':=1/s, € [}, .(PP~1)*. We have
o; (1) =c/? -1, and hence (o, — 1)w' = c'/? - (s,/s,-1). It follows that (. — 1)(cp — 1)w’ =¢&. Let
2,y EDiV(IPIZ;l) be the classes of the linear subspaces of Pf;l given by =0 and s, =0,
respectively. Then

diviw)=2" -y, op(a')=2", o.(y)=1.
Define
wi=w'o f[TLER(X)*, a'i=fu@) € (X)W, o= fuly) € (X)),
Then w, z, y satisfy the conclusion of (3). O

LEMMA 4.2. Let a,b,c,d € F*. The complex of tori

Ra,c(Gm) X Rb,d(Gm) £> Rb,c(Gm) ﬂ Rb,c(Gm)a

where p(u,v) := Ng(u)Ng(v) and (z)=(op — 1)(0. — 1)z, is exact. Furthermore, the torus
Im(p) = Ker(v)) has dimension 2p — 1.

Proof. By Lemma 3.8, we have an exact sequence

Rc(Gm) X Rb(Gm) il) Rb,c(Gm) ﬂ Rb,c(Gm)y
where ¢'(z,y) = xy. The homomorphism ¢ factors as

Rao(Gm) X Rya(Cm) 22N R (Gn) X Ry(Gm) £ Ry o(Gon).-

Since the homomorphisms N, and Ny are surjective, so is N, X Ng. We conclude that Im(yp) =
Im(¢") = Ker(v)), as desired. Finally, it is immediate to see that Ker(¢') = Gy,, embedded anti-
diagonally in R.(Gm) X Ry(Gp). Thus,

dim(Im(¢)) = dim(Im(¢")) = 2p — dim(Ker(¢")) = 2p — 1. 0

Let a,b,c,d € F*, and consider the complex of tori of Lemma 4.2. We define the following
groups of multiplicative type over F:

P:=R,c(Gm) X Rpq(Gm), S:=Ker(y)) =Im(yp), T :=Ker(p)CP.
By Lemma 4.2, we get a short exact sequence
1-THP5LS—1, (4.1)
where ¢ is the inclusion map and 7 is induced by .
LEMMA 4.3. The groups of multiplicative type T', P and S are tori.

Proof. 1t is clear that P and .S are tori. We now prove that T is a torus. Consider the subgroup
Q C Rq,(Gw), which makes the following commutative square cartesian.

Q — Ra7c(Gm)

l |~ (4.2)
G

Gm — R.(Gn)

Here the bottom horizontal map is the obvious inclusion. It follows that @ is an R.( 1(11) (Gw))-
torsor over Gy, and hence it is smooth and connected. Therefore, @) is a torus.
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The image of the projection T’ 4P R,¢(Gy,) is contained in the torus ). Moreover, the

kernel U of the projection is Rb(R( b)d IR, (Gm)), and hence it is also a torus. We have an exact
sequence

1-U->T-—0Q.

We have dim(U) = p(p — 1), and we see from the cartesian square (4.2) that dim(Q) =p? —p + 1.
By Lemma 4.2, we have dim(S) =2p — 1. From (4.1), we deduce that

dim(T) = dim(P) — dim(S) = 2p* — (2p — 1) =2p* — 2p + 1.
Therefore, dim(7T") = dim(U) + dim(Q), and so the sequence
1-U->T—-Q—1
is exact. As U and @ are tori, so is 7. O

PROPOSITION 4.4. Let p be a prime, let F' be a field of characteristic different from p and
containing a primitive pth root of unity ¢, and let a,b,c,d € F*. Suppose that (a,b) = (b,c) =
(¢,d)=0 in Br(F), and let w € FX be such that (o, — 1)(0. — 1)w = (. Let T and P be the tori
appearing in (4.1), and let E,, CP be the T-torsor given by the equation Ng(u)Ngi(v)=wP.
Then the mod p Massey product {(a, b, c,d) is defined over F' if and only if E,, is trivial.

The construction of E,, is functorial in F. Therefore, for every field extension K/F,
the mod p Massey product (a,b,c,d) is defined over K if and only if FE, is split by K
We may thus call E, a generic variety for the property ‘the Massey product (a,b,c,d) is
defined’.

Proof. Suppose that the Massey product (a, b, ¢, d) is defined over F. By Proposition 3.9, there
exist u € F)., v € Fy, ba Such that Ng(u)Ng(v) =wP. This means precisely that £y, C P has the
F-point (u, v) Thus, the T-torsor E,, is trivial.

Conversely, suppose that the T-torsor E,, is trivial and let (u, v) be an F-point of E,,. Then we
have N, (u)Ng(v) =wP and, by assumption, we also have (o, — 1)(0. — 1)w = (. Proposition 3.7
now implies that the Massey product (a, b, ¢, d) is defined over F'. O

COROLLARY 4.5. Let p be a prime, let F' be a field of characteristic different from p and
containing a primitive pth root of unity ¢, and let a, b, ¢,d € F* be such that (a,b) = (¢,d)=0
in Br(F'). Let X be the Severi-Brauer variety of (b,c) over F, fix w € F}, .(X)* as in Lemma
4.1(3) and let E, C Pp(xy be the Tp(x)-torsor given by the equation N,(u)Ng(v) = wP.

The Massey product (a, b, c,d) is defined over F(X) if and only if E,, is trivial over F(X).

Proof. This is a special case of Proposition 4.4, applied over the ground field F'(X). O

5. Proof of Theorem 1.3

Let p be a prime and let F' be a field of characteristic different from p and containing a primitive
pth root of unity ¢. Let a,b,c,d€ F* be such that their cosets in F*/F*P are F)-linearly
independent. Consider the field K :=F,p 4, and write G = Gal(K/F) = (04, 0p, 0¢, 04) as in
§2.1. We set N, := Zp ,Oaa € Z|G]. For every subgroup H of G, we also write N, for the image
of N, € Z|G] under the canonical map Z[G| — Z|G/H]. We define N, N. and Ny in a similar
way.

Let

1-T5P5 851
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be the short exact sequence of F-tori (4.1). It induces a short exact sequence of cocharacter
G-lattices

0T, P, 158, —1.
By definition of P and S,
P, = Z[G/<0ba Jd)] @Z[G/<0aa UC>]7 Si= <Nba N6> C Z[G/<0aa Ud)]-

Let X be the Severi-Brauer variety associated to (b, c¢) € Br(F'). Since Xg :IP”;{_I, the degree
map Pic(Xg)—Z is an isomorphism, and so the map Div(Xx) — Pic(Xk) is identified with
the degree map deg: Div(Xg)— Z. Thus, the sequence (B.2) for the torus T takes the form

15 T(K) = T(K(X)) 2% Div(Xx) @ T, 25 T, — 0, (5.1)
where T, denotes the cocharacter lattice of T'.
LEMMA 5.1.
(1) We have (T.)% =Z-n, where t.(n) = (NuN¢, —NyNg) in (P,)C.
(2) If (b,c)#0 in Br(F), the image of deg: (Div(X,.) ® Tx)¢ — (T%)¢ is equal to p(T.)C.
Proof. (1) The free Z-module (P,)“ has a basis consisting of the elements (N,N,,0) and
(0, NyNg). The map m,: Py — Sy CZ[G/(04,04)] takes (1,0) to Ny and (0,1) to N,. It follows
that Ker(m,)® is generated by (N,N., —N,Ng).

(2) By Lemma 4.1(2), the image of the composition
Div(X) ® T = (Div(X) @ T.)¢ = (Div(Xpe) @ To)¢ <5 (T,)¢

is equal to p(T%)“. Thus, the image of the degree map contains p(7%)".

We now show that the image of the degree map is contained in p(T%)C.

For every = € X1, pick 2/ € (X)) lying over x, and write H, for the G-stabilizer of .
The injective homomorphisms of G-modules

jo: ZIG/H,) = Div(Xpe), gH, s g(z'),
yield an isomorphism of G-modules
Prexwiz: Dpexw Z[G/Hx] = DiV(Xb’C).

To conclude, it suffices to show that the image of
(T = (Z[G/H,) ® T,)¢ = (Div(Xy) ® T,)¢ 25 (T,)¢ (5.2)

is contained in p(T,)¢ for all x € X, Set H := H,.
The composition (5.2) takes a cocharacter ¢ € (T%)H to

deg( > g ®gq> =deg(2) - Ng/u(q)-

gHeG/H

Thus, (5.2) coincides with the norm map Ng /g times the degree of x'.

Suppose that G = H. Then deg(x’) = deg(x) and, since (b, ¢) # 0, the degree of x is divisible
by p by Lemma 4.1(2).

Suppose that G # H. Then either (o4, 0.) or {0y, 04) is not contained in H. Suppose that
(0, 04) is not contained in H and let N be the subgroup generated by H, oy, 04. Note that H
is a proper subgroup of N.
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The norm map Ng/p : (T.)" — (T,)% is the composition of the two norm maps

(T 20y ()N 29 (7,6,

Since Z[G/{oy, 0a)) =7Z|G /{0y, 04)]", the norm map (Ti)7 — (T,)N is multiplication by
[N:H]€pZ on the first component of T, with respect to the inclusion ¢, of T, into
P, =Z[G/(ov, 0a)] ® L|G/(0a, 0c)].

By Lemma 5.1(1), (T.)% =Z -7, where t.(n) = (NyN¢, —NyNg) in (P,)%. Since N,N. is not
divisible by p in Z[G /{0y, 04)], the image of (5.2) is contained in pZ - n = p(T,)%, as desired. The
proof in the case when (o,, 0.) is not contained in H is entirely analogous. Il

We write
7 € Coker[(Div(X,.0) ® T.)¢ <% (7,)9)
for the coset of the generator 1 € (T,)¢ appearing in Lemma 5.1(1). If (b, ¢) # 0, then we have
71# 0 by Lemma 5.1(2). We consider the subgroup of unramified torsors

div

HY G, T(K (X)) :=Ker[HY(G, T(K(X))) =5 HY(G, Div(Xx @ T%))]

and the homomorphism
0: H'(G, T(K (X)) — Coker[(Div(Xx) ® T)¢ <% (T,),
which are defined in (B.3).

LEMMA 5.2. Let b,c € F* be such that (b, c)#0 in Br(F) and let w € F, .(X)* be such that
(op —1)(0c — 1)w = and div(w) =z — y, where deg(xz) =deg(y) =1 and op(x) =z and o.(y) =
y. Let Ey, C Pr(x) be the Tp(x)-torsor given by the equation Ny(u)Ng(v) =wP, and write [Ey]
for the class of E,, in HY(G, T(K(X))).

(1) We have [E,) € H'(G, T(K(X)))n-
(2) Let 6 be the homomorphism of (B.3). We have 0([E,]) = —7 #0.
Proof. The F-tori T', P and S of (4.1) are split by K = Fgp 4. Therefore, we may consider

diagram (B.6) for the short exact sequence (4.1), the splitting field K/F and the Severi-Brauer
variety X of (b, c) over F.

(Div(Xx) ® T.)¢ —=5 5 (T,)6

P(F(X)) —I  (Div(Xg)® P)¢ —2% . (p,)G

S(F(X)) — s (Div(Xg) ® 8.)9 — 5 (5.)9
o la

H'(G,T(K(X))) > H'(G,Div(Xg) © T.)
Since (op — 1)(0. — 1)wP =1, we have w? € S(F(X)). The image of wP under 0 is equal to

[Ew] € H (G, T(K(X))).
Let H C G be the subgroup generated by o, and o4. The canonical isomorphism

Div(Xy.) = Div(Xx)H = (Div(Xx) ® Z[G/H])®
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sends the divisor div(w) =z —y to f’;io Ugaj(x —Y)® aéacj. Therefore, the element div(wP)
in (Div(Xg) ® S,)¢  (Div(Xk) ® Z[G/H])® is equal to
p—1 p—1 p—1
ei=p Y (ojol(x—y)@ojol)=p) (0lx®aiNy)—p)Y (ohy@ayNe).
i,j=0 j=0 =0

Since S, is the G-sublattice of Z|G/ (04, 04)] generated by N, and N, this implies that e belongs
to (Div(Xg) ® S,)¢. Then e = m,(f), where

p—1 p—1
f=) (clz©@0lNa) = (ohy ® ojNg) € (Div(Xg) @ P.)°.
j=0 i=0

It follows that div([Ey]) = d(e) = d(m«(f)) =0, which proves (1).
Moreover, since deg(x) = deg(y) =1, we have

deg(f) = (NgNe, —NyNy) = t.(n) in (P,)C.

In view of (B.7), this implies that 0([E,]) = —7. We know from Lemma 5.1(2) that 77# 0. This
completes the proof of (2). 0

Proof of Theorem 1.3. Replacing F' by a finite extension, if necessary, we may suppose that
F contains a primitive pth root of unity (. Let E:= F(x,y), where x and y are independent
variables over F', let X be the Severi—Brauer variety of the degree-p cyclic algebra (z, y) over E
and let L:= FE(X). Consider the following elements of E*:

a=1—z, b=z, c=y, d:=1-—y.

We have (a,b)=(c,d)=0 in Br(E) by the Steinberg relations [Ser79, Chapter XIV,
Proposition 4(iv)], and hence (a,b) = (b,c¢) =0 in Br(L). Moreover, (b,c)# 0 in Br(F) because
the residue of (b, ¢) along = = 0 is non-zero, whereas (b, ¢) =0 in Br(L) by [GS17, Theorem 5.4.1].
Thus, (a,b) = (b,¢) =(c,d) =0 in Br(L).

Consider the sequence of tori (4.1) over the ground field E associated to the scalars a, b, ¢, d €

E* chosen above:
1-T—-P—S—1.

Let w € Ly o(X) be as in Lemma 4.1(3), and let E,, C Pr, be the T -torsor given by the equation
No(u)Ng(v) =wP. By Lemma 5.2(2), the torsor E,, is non-trivial over L. Now Corollary 4.5
implies that the Massey product (a, b, ¢, d) is not defined over L. In particular, by Lemma 2.3,
the differential graded ring C*(I'r,, Z/pZ) is not formal. O

Appendix A. Homological algebra

Let G be a profinite group, and let
0—Ag 2% A3 25 Ay 2 A3 -0 (A1)
be an exact sequence of discrete G-modules. We break (A.1) into two short exact sequences
0— Ag 2% A > A—0,
0—A— Ay 2 A3 0.
We obtain a homomorphism
0: Ker[HY(G, A1) =5 HY(G, Ay)] — Coker[AS 22 AT, (A.2)
which is defined as the composition of the map

Ker[HY(G, A1) 2% HY(G, A)] — Ker[HY (G, A) — H'(G, As)],
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and the inverse of the isomorphism

Coker[AS 22 AS] & Ker[HY(G, A) — HY(G, Ay)),

which is induced by the connecting homomorphism AS — H'(G, A).

LEMMA A.1. We have an exact sequence

HY(G, Ag) 2% Ker[H (G, A1) 25 HY(G, A3)] L Coker[AS — AS] — H2(G, Ay),

where the last map is defined as the composition of (A.3) and the connecting homomorphism

HY(G, A) — H?(G, Ay).

Proof. The proof follows from the definition of # and the exactness of (A.1). O

Consider a commutative diagram of discrete G-modules with exact rows and columns.

@0

Ay A — Ay A
Lo L1 L2 L3
BE[O % é[l L B£ 2 B£ (A4)
bbb b
Co 2= Cy — Oy — L% Oy

It yields a commutative diagram of abelian groups where the columns are exact and the rows

are complexes.

A e A —2 5 AS
[ [+ ]
BS b BS — > ., g
I s =
cf - cf —2— cf
HY(G, A)) —2 H'Y(G, As)

Suppose that the connecting homomorphism 0 : C’lG — HY(G, A;) is surjective. We define a
function

0': Ker[H' (G, A)) <5 HY(G, Ay)] — Coker(AS 22 AS)

as follows. Let z € H'(G, A;) such that a;(2) =0 in H'(G, A3). By assumption, there exists
c € ClG such that 0;(c1) = z. By the exactness of the second column, there exists by € BQG such
that ma(b2) =1(c1). By the exactness of the third column and the injectivity of ¢3, there exists
a unique element agz € Ag such that [a(b2) = t3(as3). We set

0'(z) := az + az(AS).
A diagram chase shows that 6 is a well-defined homomorphism.

LEMMA A.2. Let G be a profinite group, and suppose that we are given an exact sequence (A.1)
and a commutative diagram (A.4) such that the connecting homomorphism 9y : C& — H'(G, A)
is surjective. Then 6 = —0'.

Proof. Let z€ HY(G, A;) be such that a;(z)=0 in H'(G, Ay). Since the map 0;: CF —
H'(G, A1) is surjective, there exists c¢; 601G such that 9y(c1) =z. Let by € By be such that
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m1(b1) = c1, and, for all g € G, let a4 be the unique element of A; such that ¢1(a14) = gbi — b1.
Then 01 (c1) is represented by the 1-cocycle {a14}

Define by := 51(b1) and co :=1(c1), so that my é]bg) = ¢9. Since a1 (z) =0 is represented by the
cocycle {1 (a1g)},cq, we deduce that there exists az € Az such that oy (aig) = gaz — a for all
g€ G. It follows that gbe — by =12(gas — az) for all g € G, that is, by — 12(az) belongs to BQC".
Moreover,

Ta(b2 — t2(az)) = ma(b2) =1 (c1).
Finally,

Ba(b2 — ta(az)) = B2(B1(b1)) — t3(az(az)) = t3(—aa(az)).

By definition, ¢(2) = —aa(as) + az(AY). Observe that as(ag) belongs to AS because, for every

g€, g02(a2) — a3(az) = aa(gaz — az) = an(on (a1g)) =0.

For all g € G, let a4 € A be the image of aj4. The homomorphism
Ker[HY(G, A1) 2% HY(G, A)] — Ker[H (G, A) — H'(G, As)],

induced by the map A; — A, sends the class of {a14} . to the class of {ag} -

The element ap € A is a lift of as(az). As gag — as = aq(ayy) for all g € G, the injective map
A — Aj sends a4 to gag — as for all g € G. Therefore, the connecting map Ag — HY(G, A) sends
az(az) to the class of {ag} - It follows that the isomorphism

Coker[AY 22 AS] & Ker[HY(G, A) — HY(G, Ay)),
induced by A§ — H(G, A), sends as(as) + az(AF) to the class of {ag},cq- By the definition of
6, we conclude that 6(z) = az(az) + az(AS) = —0'(2). O

Appendix B. Unramified torsors under tori

Let F be a field, let X be a smooth projective geometrically connected F-variety, let K be a
Galois extension of F' (possibly of infinite degree over F') and let G := Gal(K/F'). We have an
exact sequence of discrete G-modules

1— KX — K(X)* 9% Div(Xg) 2 Pic(Xg) =0, (B.1)
where div takes a non-zero rational function f € K(X)* to its divisor and A takes a divisor on
Xk to its class in Pic(Xg).

Let T be an F-torus split by K. Write T, for the cocharacter lattice of T: it is a
finitely generated Z-free G-module. Tensoring (B.1) with T, we obtain an exact sequence of

G-modules

1 T(K) = T(K(X)) 2% Div(Xk) ® Th 2 Pie(Xx) @ Th — 0, (B.2)

where we have used the fact that K* @ T, = T(K).
We define the subgroup of unramified torsors
HYG, T(K(X)))nr := Ker[HY(G, T(K(X))) L% HY(G, Div(Xk ® T.))]-
The sequence (B.1) is a special case of (A.1). In this case, the map 0 of (A.1) takes the form

0: HY(G, T(K(X)))ur — Coker[(Div(Xx) @ T,)% 2 (Pic(Xg) ® T,)C]. (B.3)
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ProprosiTION B.1. We have an exact sequence
HY(G, T(K)) = HY(G, T(K(X)))nr = Coker[(Div(Xx) @ T.)¢ 2 (Pic(Xx) ® T.)]
— H*(G,T(K)),
where the first map and the last map are induced by (B.2).

Proof. This is a special case of Lemma A.1. O

By Lemma A.2, the map 6 may be computed as follows. Let

1-T5P5LS—1 (B.4)

be a short exact sequence of F-tori split by K such that P is a quasi-trivial torus. Passing to
cocharacter lattices, we obtain a short exact sequence of G-modules

0T, P, ™8, —0. (B.5)

We tensor (B.1) with Ty, P, and S, respectively, and pass to group cohomology to obtain
the following commutative diagram, where the columns are exact and the rows are complexes.

(Div(Xg) ® T,.)¢ —2— (Pic(Xk) @ T3)¢

[

P)¢ —2  (Pic(Xk) ® P,)¢
(B.6)

™

P(F(X)) —%  (Div(Xg) ®
S(F(X)) —& & (Div(Xk) ® 5,)¢ —2— (Pic(Xg) ® S,)C
lo
(X

HY (G, T(K(X))) - HY(G,Div(Xg) ® T,)

Note that Gal(K(X)/F(X))=G. Therefore, H'(G,P(K(X))) is trivial, and hence
0: S(F(X))— HY(G,T(K(X))) is surjective.

Let 7€ HY(G,T(K(X)))u and choose o€ S(F(X)) such that d(c)=7. Then pick p€
(Div(Xg) ® P,)% such that m,(p) = div(c), and let ¢ be the unique element in (Pic(Xg) ® T:)“
such that A(p) = t4(t). Lemma A.2 implies that

0(1)=—t. (B.7)

Finally, suppose that K = F is a separable closure of F', so that G =I'g, and write X for
X xp Fs. The exact sequence (B.2) for K = F takes the form

1= T(F,) = T(Fs(X)) 2% Div(X,) ® T, 2 Pic(X,) ® T, — 0. (B.8)

We have the inflation-restriction sequence

Inf

M Y F(X), T) 2

0— HY(F, T(Fy(X))) =5 HY(F(X),T).

Since T is defined over F', it is split by Fs, and hence by Hilbert’s Theorem 90 we have
HY(F4(X),T)=0. Thus, the inflation map H'(F, T(Fs(X))) — H'(F(X), T) is an isomorphism.
We identify H(F, T(Fs(X))) with HY(F(X),T) via the inflation map. If we define

div

HYF(X),T)n :=Ker[H (F(X),T) = HY(F, Div(X,) ® T}.)],
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the map 6 of (A.2) takes the form
0: HY(F(X), T)u — Coker[(Div(X,) ® T:) 7 — (Pic(X,) @ T.)F].

COROLLARY B.2. We have an exact sequence

HY(F,T) = HY(F(X), T)nr & Coker[(Div(X,) ® T.)' 2 (Pic(X,) ® T,)'*] — H(F,T),
where the first and last map are induced by (B.8).
Proof. This is a special case of Proposition B.1. O
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