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Abstract

Let p be a prime number and let F be a field of characteristic different from p. We
prove that there exist a field extension L/F and a, b, c, d in L× such that (a, b) =
(b, c) = (c, d) = 0 in Br(L)[p] but the mod p Massey product 〈a, b, c, d〉 is not defined
over L. Thus, the strong Massey vanishing conjecture at the prime p fails for L, and
the cochain differential graded ring C∗(ΓL,Z/pZ) of the absolute Galois group ΓL of
L is not formal. This answers a question of Positselski. As our main tool, we define a
secondary obstruction that detects non-triviality of unramified torsors under tori, and
which is of independent interest.

1. Introduction

Let p be a prime number, let F be a field of characteristic different from p and containing
a primitive pth root of unity ζ, and let ΓF be the absolute Galois group of F . The norm-
residue isomorphism theorem of Voevodsky and Rost [HW19] gives an explicit presentation by
generators and relations of the cohomology ring H∗(F,Z/pZ) =H∗(ΓF ,Z/pZ). In view of this
complete description of the cup product, the research on H∗(F,Z/pZ) shifted in recent years
to external operations, defined in terms of the differential graded ring of continuous cochains
C∗(ΓF ,Z/pZ).

Hopkins and Wickelgren [HW15] asked whether C∗(ΓF ,Z/pZ) is formal for every field F
and every prime p. Loosely speaking, this amounts to saying that no essential information is
lost when passing from C∗(ΓF ,Z/pZ) to H∗(F,Z/pZ). The authors of [HW15] were unaware of
earlier work of Positselski, who had already shown in [Pos11, Section 9.11] that C∗(ΓF ,Z/pZ)
is not formal for some finite extensions F of Q� and F�((z)), where � �= p. Positselski then wrote
a detailed exposition of his counterexamples in [Pos17].

For Positselski’s method to work, it seemed important that F did not contain all the roots
of unity of p-power order. This motivated the following question; see [Pos17, p. 226].

Question 1.1 (Positselski). Does there exist a field F containing all roots of unity of p-power
order such that C∗(ΓF ,Z/pZ) is not formal?
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We showed in [MS22, Theorem 1.6] that Question 1.1 has a positive answer when p= 2. In
the present work, we provide examples showing that the answer to Question 1.1 is affirmative
for all primes p.

Theorem 1.2. Let p be a prime number and let F be a field of characteristic different from p.
There exists a field L containing F such that the differential graded ring C∗(ΓL,Z/pZ) is not
formal.

To detect non-formality of the cochain differential graded ring, we use Massey products.
For any n≥ 2 and all χ1, . . . , χn ∈H1(F,Z/pZ), the Massey product of χ1, . . . , χn is a certain
subset 〈χ1, . . . , χn〉 ⊂H2(F,Z/pZ); see Section 2.2 for the definition. We say that 〈χ1, . . . , χn〉 is
defined if it is not empty, and that it vanishes if it contains 0. When char(F ) �= p and F contains
a primitive pth root of unity ζ, Kummer theory gives an identification H1(F,Z/pZ) = F×/F×p,
and we may thus consider Massey products 〈a1, . . . , an〉, where ai ∈ F× for 1≤ i≤ n.

Let n≥ 3 be an integer, let χ1, . . . , χn ∈H1(F,Z/pZ) and consider the following assertions.

The Massey product 〈χ1, . . . , χn〉 vanishes. (1.1)

The Massey product 〈χ1, . . . , χn〉 is defined. (1.2)

We have χi ∪ χi+1 = 0 for all 1≤ i≤ n− 1. (1.3)

We have that (1.1) implies (1.2), and that (1.2) implies (1.3). The Massey vanishing conjecture,
due to Mináč and Tân [MT17b] and inspired by the earlier work of Hopkins and Wickelgren
[HW15], predicts that (1.2) implies (1.1). This conjecture has sparked a lot of activity in recent
years. When F is an arbitrary field, the conjecture was shown when either n= 3 and p is arbitrary,
by Efrat and Matzri and Mináč and Tân [Mat18, EM17, MT16], or when n= 4 and p= 2, by
[MS23]. When F is a number field, the conjecture was proved for all n≥ 3 and all primes p by
Harpaz and Wittenberg [HW23].

When n= 3, it is a direct consequence of the definition of the Massey product that (1.3)
implies (1.2). Thus, (1.1), (1.2) and (1.3) are equivalent when n= 3.

In [MT17a, Question 4.2], Mináč and Tân asked whether (1.3) implies (1.1). This became
known as the strong Massey vanishing conjecture (see, e.g., [PS18]). If F is a field, p is a prime
number and n≥ 3 is an integer, then, for all characters χ1, . . . , χn ∈H1(F,Z/pZ) such that
χi ∪ χi+1 = 0 for all 1≤ i≤ n− 1, the Massey product 〈χ1, . . . , χn〉 vanishes.

The strong Massey vanishing conjecture implies the Massey vanishing conjecture. However,
Harpaz and Wittenberg produced a counterexample to the strong Massey vanishing conjecture,
for n= 4, p= 2 and F =Q; see [GMT18, Example A.15]. More precisely, if we let b= 2, c= 17 and
a= d= bc= 34, then (a, b) = (b, c) = (c, d) = 0 in Br(Q) but 〈a, b, c, d〉 is not defined over Q. In
this example, the classes of a, b, c, d in F×/F×2 are not F2-linearly independent modulo squares.
In fact, by a theorem of Guillot, Mináč, Topaz and Wittenberg [GMT18], if F is a number field
and a, b, c, d are independent in F×/F×2 and satisfy (a, b) = (b, c) = (c, d) = 0 in Br(F ), then
〈a, b, c, d〉 vanishes.

If F is a field for which the strong Massey vanishing conjecture fails, for some n≥ 3 and some
prime p, then C∗(ΓF ,Z/pZ) is not formal; see Lemma 2.3. Therefore, Theorem 1.2 follows from
the next more precise result.

Theorem 1.3. Let p be a prime number and let F be a field of characteristic differ-
ent from p. There exist a field L containing F and χ1, χ2, χ3, χ4 ∈H1(L,Z/pZ) such that
χ1 ∪ χ2 = χ2 ∪ χ3 = χ3 ∪ χ4 = 0 in H2(L,Z/pZ) but 〈χ1, χ2, χ3, χ4〉 is not defined. Thus, the
strong Massey vanishing conjecture at n= 4 and the prime p fails for L, and C∗(ΓL,Z/pZ) is
not formal.
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This gives the first counterexamples to the strong Massey vanishing conjecture for all odd
primes p. We easily deduce that (1.3) does not imply (1.2) for all n≥ 4 in general: indeed, if
the fourfold Massey product 〈χ1, χ2, χ3, χ4〉 is not defined, neither is the n-fold Massey product
〈χ1, χ2, χ3, χ4, 0, . . . , 0〉. Theorem 1.3 was proved in [MS22, Theorem 1.6] when p= 2, and is
new when p is odd. Our proof of Theorem 1.3 is uniform in p.

We now describe the main ideas that go into the proof of Theorem 1.3. We may assume,
without loss of generality, that F contains a primitive pth root of unity. In § 2, we collect
preliminaries on formality, Massey products and Galois algebras. In particular, we recall Dwyer’s
theorem (see Theorem 2.4): a Massey product 〈χ1, . . . , χn〉 ⊂H2(F,Z/pZ) vanishes (respectively,
is defined) if and only if the homomorphism (χ1, . . . , χn) : ΓF → (Z/pZ)n lifts to the group
Un+1 of upper unitriangular matrices in GLn+1(Fp) (respectively, to the group Un+1 of upper
unitriangular matrices in GLn+1(Fp) with top-right corner removed). As for [MS22, Theorem
1.6], our approach is based on Corollary 2.5, which is a restatement of Theorem 2.4 in terms of
Galois algebras.

In § 3, we show that a fourfold Massey product 〈a, b, c, d〉 is defined over F if and only
if a certain system of equations admits a solution over F . Moreover, the variety defined by
these equations is a torsor under a torus; see Proposition 3.7. This equivalence is proved by
using Dwyer’s Theorem 2.4 to rephrase the property that 〈a, b, c, d〉 is defined in terms of U5-
Galois algebras, and then by a detailed study of Galois G-algebras, for G=U3, U4, U4, U5. As
a consequence, we also obtain an alternative proof of the Massey vanishing conjecture for n= 3
and any prime p; see Proposition 3.6.

In § 4, we use the work of § 3.4 to construct a ‘generic variety’ for the property that 〈a, b, c, d〉
is defined. More precisely, under the assumption that (a, b) = (c, d) = 0 in Br(F ) and letting X be
the Severi–Brauer variety of (b, c), we construct an F -torus T and a TF (X)-torsor Ew such that,
if Ew is non-trivial, then 〈a, b, c, d〉 is not defined over F (X); see Corollary 4.5. The definition
of Ew depends on a rational function w ∈ F (X)×, which we construct in Lemma 4.1(3).

Since (a, b) = (b, c) = (c, d) = 0 in Br(F (X)), the proof of Theorem 1.3 will be complete once
we give an example of a, b, c, d for which the corresponding torsor Ew is non-trivial. Here, we
consider the generic quadruple a, b, c, d such that (a, b) and (c, d) are trivial. More precisely,
we let x, y be two independent variables over F , and replace F by E := F (x, y). We then set
a := 1− x, b := x, c := y and d := 1− y over E. We have (a, b) = (c, d) = 0 in Br(E). The class
(b, c) is not zero in Br(E), so the Severi–Brauer variety X/E of (b, c) is non-trivial, but (b, c) = 0
over L :=E(X).

It is natural to attempt to prove that Ew is non-trivial over L by performing residue cal-
culations to deduce that this torsor is ramified. However, the torsor Ew is in fact unramified.
We are thus led to consider a finer obstruction to the triviality of Ew. This ‘secondary obstruc-
tion’ is only defined for unramified torsors. We describe the necessary homological algebra in
Appendix A, and we define the obstruction and give a method to compute it in Appendix B.
In § 5, an explicit calculation shows that the obstruction is non-zero on Ew, and hence Ew is
non-trivial, as desired.

1.1 Notation

Let F be a field, let Fs be a separable closure of F and denote by ΓF :=Gal(Fs/F ) the absolute
Galois group of F .

If E is an F -algebra, we let H i(E,−) be the étale cohomology of Spec(E) (possibly non-
abelian if i≤ 1). If E is a field, H i(E,−) may be identified with the continuous cohomology
of ΓE .
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We fix a prime p, and we suppose that char(F ) �= p. If E is an F -algebra and a1, . . . , an ∈E×,
we define the étale E-algebra Ea1,...,an

by

Ea1,...,an
:=E[x1, . . . , xn]/(x

p
1 − a1, . . . , x

p
n − an),

and we set (ai)
1/p := xi. More generally, for all integers d, we set (ai)

d/p := xdi . We denote
by Ra1,...,an

(−) the functor of Weil restriction along Fa1,...,an
/F . In particular, Ra1,...,an

(Gm)

is the quasi-trivial torus associated to Fa1,...,an
/F , and we denote by R

(1)
a1,...,an(Gm) the norm-one

subtorus of Ra1,...,an
(Gm). We denote by Na1,...,an

the norm map from Fa1,...,an
to F .

We write Br(F ) for the Brauer group of F . If char(F ) �= p and F contains a primitive pth
root of unity, for all a, b∈ F× we denote by (a, b) the corresponding degree-p cyclic algebra and
also its class in Br(F ); see § 2.1. We denote by Na1,...,an

: Br(Fa1,...,an
)→Br(F ) the corestriction

map along Fa1,...,an
/F .

An F -variety is a separated integral F -scheme of finite type. If X is an F -variety, we let
F (X) be the function field of X, and we write X(1) for the collection of all points of codimension
1 in X. We set Xs :=X ×F Fs. If K is an étale algebra over F , we write XK for X ×F K. For
all a1, . . . , an ∈ F×, we write Xa1,...,an

for XFa1,...,an
. When X = PdF is a d-dimensional projective

space, we denote by Pda1,...,an
the base change of PdF to Fa1,...,ad

.

2. Preliminaries

2.1 Galois algebras and Kummer theory

Let F be a field and let G be a finite group. A G-algebra is an étale F -algebra L on which G
acts via F -algebra automorphisms. The G-algebra L is Galois if |G|=dimF (L) and LG = F ;
see [KMRT98, Definitions (18.15)]. A G-algebra L/F is Galois if and only if the morphism of
schemes Spec(L)→ Spec(F ) is an étale G-torsor. If L/F is a Galois G-algebra, then the group
algebra Z[G] acts on the multiplicative group L×: an element

∑r
i=1migi ∈Z[G], where mi ∈Z

and gi ∈G, sends x∈L× to
∏r
i=1gi(x)

mi .
By [KMRT98, Example (28.15)], we have a canonical bijection

Homcont(ΓF , G)/∼
∼−→{Isomorphism classes of Galois G-algebras over F} , (2.1)

where, if f1, f2 : ΓF →G are continuous group homomorphisms, we say that f1 ∼ f2 if there exists
g ∈G such that gf1(σ)g

−1 = f2(σ) for all σ ∈ ΓF .
Let H be a normal subgroup of G. Under the correspondence (2.1), the map

Homcont(ΓF , G)/∼ →Homcont(ΓF , G/H)/∼ sends the class of a Galois G-algebra L to the class
of the Galois G/H-algebra LH .

Lemma 2.1. Let G be a finite group, and let H,H ′, S be normal subgroups of G such that
H ⊂ S, H ′ ⊂ S, and the following square is cartesian.

G G/H

G/H ′ G/S

(2.2)

(1) Let L be a Galois G-algebra. Then LH ⊗LS LH
′
has a Galois G-algebra structure given

by g(x⊗ x′) := g(x)⊗ g(x′) for all x∈LH and x′ ∈LH′
, and the inclusions LH →L and

LH
′ →L induce an isomorphism of Galois G-algebras LH ⊗LS LH

′ →L.

834

https://doi.org/10.1112/S0010437X25007018 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007018


Non-formality of Galois cohomology modulo all primes

(2) Conversely, let K be a Galois G/H-algebra, let K ′ be a Galois G/H ′-algebra and let E
be a Galois G/S-algebra. Suppose we are given G-equivariant algebra homomorphisms
E→K and E→K ′. Endow the tensor product L :=K ⊗E K

′ with the structure of a
G-algebra given by g(x⊗ x′) := g(x)⊗ g(x′) for all x∈K and x′ ∈K ′. Then L is a Galois
G-algebra such that LH 
K as G/H-algebras and LH

′ 
K ′ as G/H ′-algebras.

The condition that (2.2) is cartesian is equivalent to H ∩H ′ = {1} and S =HH ′.

Proof. (1) It is clear that the formula g(x⊗ x′) := g(x)⊗ g(x′) makes LH ⊗LS LH
′
into a G-

algebra. Consider the following commutative square of F -schemes.

Spec(L) Spec(L)/H ′

Spec(L)/H Spec(L)/S

After base change to a separable closure of F , this square becomes the cartesian square (2.2),
and therefore it is cartesian. Passing to coordinate rings, we deduce that the homomorphism
LH ⊗LS LH

′ →L is an isomorphism of G-algebras. In particular, since L is a Galois G-algebra,
so is LH ⊗LS LH

′
.

(2) We have the following G-equivariant cartesian diagram.

Spec(L) Spec(K ′)

Spec(K) Spec(E)

Every G-equivariant morphism between G/H and G/S is isomorphic to the projection map
G/H→G/S. Therefore, the base change of Spec(K)→ Spec(E) to Fs is G-equivariantly iso-
morphic to the projection G/H→G/S. Similarly for Spec(K ′)→ Spec(E). Therefore, the base
change of Spec(L)→ Spec(F ) over Fs is G-equivariantly isomorphic to (G/H)×G/S (G/H ′)
G,
that is, the morphism Spec(L)→ Spec(F ) is an étale G-torsor. �

Suppose that char(F ) �= p and that F contains a primitive pth root of unity. We fix a primitive
pth root of unity ζ ∈ F×. This determines an isomorphism of Galois modules Z/pZ
 μp, given
by 1 �→ ζ, and so the Kummer sequence yields an isomorphism

Homcont(ΓF ,Z/pZ) =H1(F,Z/pZ)
H1(F, μp)
 F×/F×p. (2.3)

For every a∈ F×, we let χa : ΓF →Z/pZ be the homomorphism corresponding to the coset
aF×p under (2.3). Explicitly, letting a′ ∈ F×

s be such that (a′)p = a, we have g(a′) = ζχa(g)a′ for
all g ∈ ΓF . This definition does not depend on the choice of a′.

Now let n≥ 1 be an integer. For all i= 1, . . . , n, let σi be the canonical generator of the ith
factor Z/pZ of (Z/pZ)n. By (2.3), all Galois (Z/pZ)n-algebras over F are of the form Fa1,...,an

,

where a1, . . . , an ∈ F× and the Galois (Z/pZ)n-algebra structure is defined by (σi − 1)a
1/p
i = ζ

for all i and by (σi − 1)a
1/p
j = 1 for all j �= i.

We write (a, b) for the cyclic degree-p central simple algebra over F generated, as an
F -algebra, by Fa and an element y such that

yp = b, ty= yσa(t) for all t∈ Fa.
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We also write (a, b) for the class of (a, b) in Br(F ). The Kummer sequence yields a group
isomorphism

ι : H2(F,Z/pZ)
∼−→Br(F )[p].

For all a, b∈ F×, we have ι(χa ∪ χb) = (a, b) in Br(F ); see [Ser79, Chapter XIV, Proposition 5].

Lemma 2.2. Let p be a prime, and let F be a field of characteristic different from p and
containing a primitive pth root of unity ζ. The following are equivalent.

(i) We have (a, b) = 0 in Br(F ).

(ii) There exists α∈ F×
a such that b=Na(α).

(iii) There exists β ∈ F×
b such that a=Nb(β).

Proof. See [Ser79, Chapter XIV, Proposition 4(iii)]. �

2.2 Formality and Massey products

Let (A, ∂) be a differential graded ring, that is, A=⊕i≥0A
i is a non-negatively graded abelian

group with an associative multiplication which respects the grading, and ∂ : A→A is a group
homomorphism of degree 1 such that ∂ ◦ ∂ = 0 and ∂(ab) = ∂(a)b+ (−1)ia∂(b) for all i≥ 0, a∈Ai
and b∈A. We denote by H∗(A) :=Ker(∂)/ Im(∂) the cohomology of (A, ∂), and we write ∪ for
the multiplication (cup product) on H∗(A).

We say that A is formal if it is quasi-isomorphic, as a differential graded ring, to H∗(A) with
the zero differential.

Let n≥ 2 be an integer and let a1, . . . , an ∈H1(A). A defining system for the nth order
Massey product 〈a1, . . . , an〉 is a collection M of elements aij ∈A1, where 1≤ i < j ≤ n+ 1,
(i, j) �= (1, n+ 1), such that:

(1) ∂(ai,i+1) = 0 and ai,i+1 represents ai in H
1(A); and

(2) ∂(aij) =−∑j−1
l=i+1ailalj for all i < j − 1.

It follows from (2) that −∑n
l=2a1lal,n+1 is a 2-cocycle: we write 〈a1, . . . , an〉M for its cohomology

class in H2(A), called the value of 〈a1, . . . , an〉 corresponding to M . By definition, the Massey
product of a1, . . . , an is the subset 〈a1, . . . , an〉 of H2(A) consisting of the values 〈a1, . . . , an〉M of
all defining systemsM . We say that the Massey product 〈a1, . . . , an〉 is defined if it is non-empty,
and that it vanishes if 0∈ 〈a1, . . . , an〉.
Lemma 2.3. Let (A, ∂) be a differential graded ring, let n≥ 3 be an integer and let α1, . . . , αn be
elements of H1(A) satisfying αi ∪ αi+1 = 0 for all 1≤ i≤ n− 1. If A is formal, then 〈α1, . . . , αn〉
vanishes.

Proof. See [PQ22, Theorem 3.8]. �

2.3 Dwyer’s theorem

Let p be a prime, and let Un+1 ⊂GLn+1(Fp) be the subgroup of (n+ 1)× (n+ 1) upper unitrian-
gular matrices. For all 1≤ i < j ≤ n+ 1, we denote by eij ∈Un+1 the matrix whose non-diagonal
entries are all zero except for the entry (i, j), which is equal to 1. We set σi := ei,i+1 for all
1≤ i≤ n. By [BD01, Theorem 1], the group Un+1 admits a presentation with generators the σi
and the following relations:

σpi = 1 for all 1≤ i≤ n, (2.4)

[σi, σj ] = 1 for all 1≤ i≤ j − 2≤ n− 2, (2.5)
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[σi, [σi, σi+1]] = [σi+1, [σi, σi+1]] = 1 for all 1≤ i≤ n− 2, (2.6)

[[σi, σi+1], [σi+1, σi+2]] = 1 for all 1≤ i≤ n− 3. (2.7)

The following relations holds in Un+1:

[eij , ejk] = eik for all 1≤ i < j < k≤ n+ 1.

By induction, we deduce that

e1,n+1 = [σ1, [σ2, . . . , [σn−2, [σn−1, σn]] . . .]].

The center Zn+1 of Un+1 is the subgroup generated by e1,n+1. The factor group Un+1 :=
Un+1/Zn+1 may be identified with the group of all (n+ 1)× (n+ 1) upper unitriangular matrices
with entry (1, n+ 1) omitted. For all 1≤ i < j ≤ n+ 1, let eij be the coset of eij in Un+1, and
set σi := ei,i+1 for all 1≤ i≤ n. Then Un+1 is generated by all the σi modulo the relations

σpi = 1 for all 1≤ i≤ n, (2.8)

[σi, σj ] = 1 for all 1≤ i≤ j − 2≤ n− 2, (2.9)

[σi, [σi, σi+1] = [σi+1, [σi, σi+1]] = 1 for all 1≤ i≤ n− 2, (2.10)

[[σi, σi+1], [σi+1, σi+2]] = 1 for all 1≤ i≤ n− 3, (2.11)

[σ1, [σ2, . . . , [σn−2, [σn−1, σn]] . . .]] = 1. (2.12)

We write uij : Un+1 →Z/pZ for the (i, j)th coordinate function on Un+1. Note that uij is not
a group homomorphism unless j = i+ 1. We have a commutative diagram

1 Zn+1 Un+1 Un+1 1

(Z/pZ)n

(2.13)

where the row is a central exact sequence and the homomorphism Un+1 → (Z/pZ)n is given by
(u12, u23, . . . , un,n+1). We also let

Qn+1 :=Ker[Un+1 → (Z/pZ)n], Qn+1 :=Ker[Un+1 → (Z/pZ)n] =Qn+1/Zn+1.

Note that Zn+1 ⊂Qn+1, with equality when n= 2.
Let G be a profinite group. The complex (C∗(G,Z/pZ), ∂) of mod p non-homogeneous

continuous cochains of G with the standard cup product is a differential graded ring.
Therefore, H∗(G,Z/pZ) =H∗(C∗(G,Z/pZ), ∂) is endowed with Massey products. The following
theorem is due to Dwyer [Dwy75].

Theorem 2.4 (Dwyer). Let p be a prime number, let G be a profinite group, let χ1, . . . , χn ∈
H1(G,Z/pZ) and write χ : G→ (Z/pZ)n for the continuous homomorphism with components
(χ1, . . . , χn). Consider diagram (2.13).

(1) The Massey product 〈χ1, . . . , χn〉 is defined if and only if χ lifts to a continuous
homomorphism G→Un+1.
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(2) The Massey product 〈χ1, . . . , χn〉 vanishes if and only if χ lifts to a continuous homomor-
phism G→Un+1.

Proof. See [Dwy75] for Dwyer’s original proof in the setting of abstract groups, and see [Efr14]
or [HW23, Proposition 2.2] for the statement in the case of profinite groups. �

Theorem 2.4 may be rephrased as follows.

Corollary 2.5. Let p be a prime, let F be a field of characteristic different from p and
containing a primitive pth root of unity ζ, and let a1, . . . , an ∈ F×. The Massey product
〈a1, . . . , an〉 ⊂H2(F,Z/pZ) is defined (respectively, vanishes) if and only if there exists a

Galois Un+1-algebra K/F (respectively, a Galois Un+1-algebra L/F ) such that KQn+1 
 Fa1,...,an

(respectively, LQn+1 
 Fa1,...,an
) as (Z/pZ)n-algebras.

Proof. This follows from Theorem 2.4 and (2.1). �

We will apply Lemma 2.1 to the cartesian square of groups

Un+1 Un

Un Un−1

ϕ′
n+1

ϕn+1

ϕ′
n

ϕn

(2.14)

where ϕn+1 (respectively, ϕ′
n+1) is the restriction homomorphism from Un+1 or from Un+1 to

the top-left (respectively, bottom-right) n× n subsquare Un in Un+1.
The fact that the square (2.14) is cartesian is proved in [MS22, Proposition 2.7] when p= 2.

The proof extends to odd p without change.

Remark 2.6. The presentations of Un+1 and Un+1 of [BD01] given above will allow us to avoid
lengthy calculations in § 3, but they are not essential for our arguments. One could instead use
the following classical presentations of Un+1 and Un+1, which are reminiscent of the Steinberg
relations for the Steinberg group of a ring in algebraic K-theory.

The group Un+1 admits a presentation with generators {eij : 1≤ i < j ≤ n+ 1} and the
following relations:

epij = 1 for all 1≤ i < j ≤ n+ 1,

[eij , ejk] = eik for all 1≤ i < j < k≤ n+ 1,

[eij , ekl] = 1 for all 1≤ i < j ≤ n+ 1, 1≤ k < l≤ n+ 1, i �= l, j �= k.

This is a particular case of [AB08, Proposition 7.108], where we choose w to be the longest
element of the Weyl group of GLn+1 over Fp. One obtains a presentation of Un+1 with generating
set {eij : 1≤ i < j ≤ n+ 1}, modulo the relations induced by the above relations for the eij ,
together with the relation e1,n+1 = 1.

3. Massey products and Galois algebras

In this section, we let p be a prime number and we let F be a field. With the exception of
Proposition 3.6, we assume that char(F ) �= p and that F contains a primitive pth root of unity ζ.

3.1 Galois U3-algebras

Let a, b∈ F×, and suppose that (a, b) = 0 in Br(F ). By Lemma 2.2, we may fix α∈ F×
a and

β ∈ F×
b such that Na(α) = b and Nb(β) = a.
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We write (Z/pZ)2 = 〈σa, σb〉, and we view Fa,b as a Galois (Z/pZ)2-algebra as in § 2.1. The
projection U3 →U3 = (Z/pZ)2 sends e12 �→ σa and e23 �→ σb. We define the following elements
of U3:

σa := e12, σb := e23, τ := e13 = [σa, σb].

Suppose we are given x∈ F×
a such that

(σa − 1)x=
b

αp
. (3.1)

The étale F -algebra K := (Fa,b)x has the structure of a Galois U3-algebra, such that the Galois
(Z/pZ)2-algebra KQ3 is equal to Fa,b and

(σa − 1)x1/p =
b1/p

α
, (σb − 1)x1/p = 1, (τ − 1)x1/p = ζ−1. (3.2)

Similarly, suppose we are given y ∈ F×
b such that

(σb − 1)y=
a

βp
. (3.3)

The étale F -algebra K := (Fa,b)y has the structure of a Galois U3-algebra, such that the Galois
(Z/pZ)2-algebra KQ3 is equal to Fa,b and

(σa − 1)y1/p = 1, (σb − 1)y1/p =
a1/p

β
, (τ − 1)y1/p = ζ. (3.4)

In (3.2) and (3.4), the relations involving τ follows from the first two.
If x∈ F×

a satisfies (3.1), then so does ax. We may thus apply (3.2) to (Fa,b)ax. Therefore,
(Fa,b)ax has the structure of a Galois U3-algebra, where U3 acts via U3 =Gal(Fa,b/F ) on Fa,b
and

(σa − 1)(ax)1/p =
b1/p

α
, (σb − 1)(ax)1/p = 1, (τ − 1)(ax)1/p = ζ−1.

Similarly, if y ∈ F×
b satisfies (3.3), we may apply (3.4) to (Fa,b)by. Therefore, (Fa,b)by admits a

Galois U3-algebra structure, where U3 acts via U3 =Gal(Fa,b/F ) on Fa,b and

(σa − 1)(by)1/p = 1, (σb − 1)(by)1/p =
a1/p

β
, (τ − 1)(by)1/p = ζ.

Lemma 3.1.

(1) Let x∈ F×
a satisfy (3.1), and consider the Galois U3-algebras (Fa,b)x and (Fa,b)ax as in

(3.2). Then (Fa,b)x 
 (Fa,b)ax as Galois U3-algebras.

(2) Let y ∈ F×
b satisfy (3.3), and consider the Galois U3-algebras (Fa,b)y and (Fa,b)by as in (3.4).

Then (Fa,b)y 
 (Fa,b)by as Galois U3-algebras.

Proof. (1) The automorphism σb : Fa,b→ Fa,b extends to an isomorphism of étale algebras
f : (Fa,b)ax→ (Fa,b)x by sending (ax)1/p to a1/px1/p. The map f is well defined because
f((ax)1/p)p = (a1/px1/p)p = ax. We now show that f is U3-equivariant. The restriction of f to
Fa,b is U3-equivariant because σaσb = σbσa on Fa,b. We have

σa(f((ax)
1/p)) = σa(a

1/p) · σa(x1/p) = ζ · a1/p · b
1/p

α
· x1/p = ζa1/pb1/px1/p

α

and

f(σa((ax)
1/p)) = f((b1/p/α) · (ax)1/p) = ζ · b

1/p

α
· a1/p · x1/p = ζa1/pb1/px1/p

α
.

839

https://doi.org/10.1112/S0010437X25007018 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007018


A. Merkurjev and F. Scavia

Thus, f is 〈σa〉-equivariant. We also have

σb(f((ax)
1/p)) = σb(a

1/p) · σb(x1/p) = a1/p · x1/p

and

f(σb((ax)
1/p)) = f((ax)1/p) = a1/p · x1/p.

Thus, f is 〈σb〉-equivariant. Since σa and σb generate U3, we conclude that f is U3-equivariant,
as desired.

(2) The proof is similar to that of (1). �

Proposition 3.2. Let a, b∈ F× be such that (a, b) = 0 in Br(F ), and fix α∈ F×
a and β ∈ F×

b
such that Na(α) = b and Nb(β) = a.

(1) Every Galois U3-algebra K over F such that KQ3 
 Fa,b as (Z/pZ)
2-algebras is of the form

(Fa,b)x for some x∈ F×
a as in (3.1), with U3-action given by (3.2).

(2) Every Galois U3-algebra K over F such that KQ3 
 Fa,b as (Z/pZ)
2-algebras is of the form

(Fa,b)y for some y ∈ F×
b as in (3.3), with U3-action given by (3.4).

(3) Let (Fa,b)x and (Fa,b)y be Galois U3-algebras as in (3.2) and (3.4), respectively. The Galois
U3-algebras (Fa,b)x and (Fa,b)y are isomorphic if and only if there exists w ∈ F×

a,b such
that

wp = xy, (σa − 1)(σb − 1)w= ζ.

Proof. (1) Since Q3 = 〈τ〉 
Z/pZ and KQ3 
 Fa,b as (Z/pZ)
2-algebras, we have an isomorphism

of étale Fa,b-algebras K 
 (Fa,b)z for some z ∈ F×
a,b such that (τ − 1)z1/p = ζ−1. We may suppose

that K = (Fa,b)z. As τ commutes with σb,

(τ − 1)(σb − 1)z1/p = (σb − 1)(τ − 1)z1/p = (σb − 1)ζ−1 = 1,

and hence (σb − 1)z1/p ∈ F×
a,b. By Hilbert’s Theorem 90 for the extension Fa,b/Fa, there is t∈ F×

a,b

such that (σb − 1)z1/p = (σb − 1)t. Replacing z by zt−p, we may thus assume that (σb − 1)z1/p = 1.
In particular, z ∈ F×

a . Since (τ − 1)z1/p = ζ−1, we have σbσa(z
1/p) = ζσaσb(z

1/p). Thus,

(σb − 1)(σa − 1)z1/p = (σbσa − σaσb + (σa − 1)(σb − 1))z1/p = ζ(σa − 1)(σb − 1)z1/p = ζ,

and hence (σa − 1)z1/p = b1/p/α′ for some α′ ∈ F×
a . Moreover, Na(α

′/α) = b/b= 1, and so by
Hilbert’s Theorem 90 there exists θ ∈ F×

a such that α′/α= (σa − 1)θ. We define x := zθp ∈ F×
a ,

and we set x1/p := z1/pθ ∈ (Fa,b)
×
z . Then K = (Fa,b)x, where

(σa − 1)x1/p = (σa − 1)z1/p · (σa − 1)θ=
b1/p

α′ · α
′

α
=
b1/p

α
,

and (σb − 1)x1/p = 1, as desired.
(2) The proof is analogous to that of (1).
(3) Suppose we are given an isomorphism of Galois U3-algebras between (Fa,b)x and (Fa,b)y.

Let t∈ (Fa,b)x be the image of y1/p under the isomorphism and set

w′ := x1/pt∈ (Fa,b)x.

Set y′ := tp. We have (τ − 1)w′ = ζ−1 · ζ = 1, and hence w′ ∈ F×
a,b. We have (w′)p = xy′. Since

Fb coincides with the 〈σa, τ〉-invariant subalgebra of (Fa,b)x and (Fa,b)y, the isomorphism
(Fa,b)y → (Fa,b)x restricts to an isomorphism of Galois Z/pZ-algebras Fb→ Fb. Since the
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automorphism group of Fb as a Galois (Z/pZ)-algebra is Z/pZ, generated by σb, this isomorphism
Fb→ Fb is equal to σ

i
b for some integer i≥ 0. Thus, y′ = σib(y). Define

w :=w′a−i/p
i∏

j=0

σ jb (β)∈ F×
a,b.

We have (1− σb)y= βp/a, and hence

(1− σib)y=

( i−1∑
j=0

σ jb (1− σb)

)
y=

( i∏
j=0

σ jb (β
p)

)
/ai =wp/(w′)p.

Therefore,

wp = (w′)p(1− σib)y= xσib(y)(1− σib)y= xy. (3.5)

We have (σb − 1)x1/p = 1 and

(σa − 1)(σb − 1)t= (σa − 1)(σb − 1)y1/p = (σa − 1)(a1/p/β) = ζ.

Therefore,

(σa − 1)(σb − 1)w′ = (σa − 1)(σb − 1)t= ζ.

Since (σa − 1)(σb − 1)a1/p = 1 and (σa − 1)(σb − 1)β = 1, we conclude that

(σa − 1)(σb − 1)w= (σa − 1)(σb − 1)w′ = ζ. (3.6)

Putting (3.5) and (3.6) together, we see that w satisfies the conditions of (3). Conversely, suppose
we are given w′ ∈ F×

a,b such that

xy= (w′)p, (σa − 1)(σb − 1)w′ = ζ.

Claim 3.3. There exists w ∈ F×
a,b such that

xy=wp, (σa − 1)w= ζ−i
b1/p

α
, (σb − 1)w= ζ−j

a1/p

β
,

for some integers i and j.

Proof of Claim 3.3. First, we find ηa ∈ F×
a such that

ηpa = 1, (σa − 1)(w′/ηa) = ζ−i
b1/p

α
. (3.7)

We have

(σa − 1)(w′)p = (σa − 1)x=
b

αp
.

Let

ζa := (σa − 1)w′ · α · b−1/p ∈ F×
a,b.

We have ζpa = 1. Moreover, (σb − 1)ζa = ζ · 1 · ζ−1 = 1, that is, ζa belongs to F×
a . If Fa is a field,

this implies that ζa = ζ−i for some integer i, and (3.7) holds for ηa = 1.
Suppose that Fa is not a field. Then Fa 
 F p, where σa acts on Fp by cyclically permuting

the coordinates, that is,

σa(x1, x2, . . . , xp) = (x2, . . . , xp, x1).

We have ζa = (ζ1, . . . , ζp) in Fa = F p, where ζi ∈ F× is a pth root of unity for all i. We have
Na(ζa) =Na(α)/b= 1, and so ζ1 · · · ζp = 1. Inductively, define η1 := 1 and ηi+1 := ζiηi for all
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i= 1, . . . , p− 1. Then

η1/ηp = (η1/η2) · (η2/η3) · · · (ηp−1/ηp) = ζ−1
1 ζ−1

2 · · · ζ−1
p−1 = ζp.

Therefore, the element ηa := (η1, . . . , ηp)∈ F p = Fa satisfies ηpa = 1 and

(σa − 1)ηa = (η2/η1, . . . , ηp/ηp−1, η1/ηp) = (ζ1, . . . , ζp−1, ζp) = ζa.

Thus,

ηpa = 1, (σa − 1)(w′/ηa) = (σa − 1)w′ · ζ−1
a =

b1/p

α
,

All in all, independent of whether Fa is a field or not, we have found ηa satisfying (3.7).
Similarly, we construct ηb ∈ F×

b such that

ηpb = 1, (σb − 1)(w′/ηb) = ζ−j
a1/p

β
, (3.8)

for some integer j. Set w :=w′/(ηaηb)∈ F×
a,b. Putting together (3.7) and (3.8), we deduce that w

satisfies the conclusion of Claim 3.3. �

Let w ∈ F×
a,b be as in Claim 3.3. By Lemma 3.1(1), applied i times, the Galois U3-algebra

(Fa,b)x is isomorphic to (Fa,b)aix, where

(σa − 1)(aix)1/p =
b1/p

α
, (σb − 1)(aix)1/p = 1.

By Lemma 3.1(2), applied j times, the Galois U3-algebra (Fa,b)y is isomorphic to (Fa,b)b jy, where

(σa − 1)(b jy)1/p = 1, (σb − 1)(b jy)1/p =
a1/p

β
.

Thus, it suffices to construct an isomorphism of U3-algebras (Fa,b)aix 
 (Fa,b)b jy. Let

w̃ :=wai/pb j/p ∈ F×
a,b,

so that

(σa − 1)w̃=
b1/p

α
, (σb − 1)w̃=

a1/p

β
.

Let f : (Fa,b)aix→ (Fa,b)b jy be the isomorphism of étale algebras which is the identity on Fa,b
and sends (aix)1/p to w̃/(b jy)1/p. Note that f is well defined because

(w̃)p =waib j = (aix)(b jy).

Moreover,

(σa − 1)(w̃/(b jy)1/p) =
b1/p

α
= (σa − 1)(aix)1/p,

(σb − 1)(w̃/(b jy)1/p) =
a1/p

β
· β

a1/p
= 1= (σb − 1)(aix)1/p,

and hence f is U3-equivariant. �

3.2 Galois U4-algebras

Let a, b, c∈ F× be such that (a, b) = (b, c) = 0 in Br(F ). By Lemma 2.2, we may fix α∈ F×
a

and γ ∈ F×
c such that Na(α) =Nc(γ) = b. We have Gal(Fa,b,c/F ) = (Z/pZ)3 = 〈σa, σb, σc〉. The
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projection map U4 → (Z/pZ)3 is given by e12 �→ σa, e23 �→ σb, e34 �→ σc. Its kernel Q4 ⊂U4 is
isomorphic to (Z/pZ)2, generated by e13 and e24. We define the following elements of U4:

σa := e12, σb := e23, σc := e34, τab := e13, τbc := e24.

Let x∈ F×
a and x′ ∈ F×

c be such that

(σa − 1)x=
b

αp
, (σc − 1)x′ =

b

γp
, (3.9)

and consider the Galois U4-algebra K := (Fa,b,c)x,x′ , where U4 acts on Fa,b,c via the surjection
onto Gal(Fa,b,c/F ), and

(σa − 1)x1/p =
b1/p

α
, (σb − 1)x1/p = 1, (σc − 1)x1/p = 1, (3.10)

(τab − 1)x1/p = ζ−1, (τbc − 1)x1/p = 1, (3.11)

(σa − 1)(x′)1/p = 1, (σb − 1)(x′)1/p = 1, (σc − 1)(x′)1/p =
b1/p

γ
, (3.12)

(τab − 1)(x′)1/p = 1, (τbc − 1)(x′)1/p = ζ. (3.13)

Note that (3.11) follows from (3.10) and (3.13) follows from (3.12). We leave to the reader to
check that the relations (2.8)–(2.12) are satisfied.

Proposition 3.4. Let a, b, c∈ F× be such that (a, b) = (b, c) = 0 in Br(F ). Fix α∈ F×
a and

γ ∈ F×
c such that Na(α) =Nc(γ) = b. Let K be a Galois U4-algebra such that KQ4 
 Fa,b,c as

(Z/pZ)3-algebras. Then there exist x∈ F×
a and x′ ∈ F×

c such that K 
 (Fa,b,c)x,x′ as Galois
U4-algebras, where U4 acts on (Fa,b,c)x,x′ by (3.10)–(3.13).

Proof. Let H (respectively, H ′) be the subgroup of U4 generated by σc and τbc (respectively, σa
and τab), and let S be the subgroup of U4 generated by H and H ′. Note that KH is a Galois U3-
algebra over F such that (KH)Q3 
 Fa,b as (Z/pZ)2-algebras and KS 
 Fb as (Z/pZ)-algebras.
Thus, by Proposition 3.2(1), there exists x∈ F×

a such that KH 
 (Fa,b)x as Galois U3-algebras.
Similarly, by Proposition 3.2(2), there exists x′ ∈ F×

c such that KH′ 
 (Fb,c)x′ as Galois U3-
algebras. Therefore, x satisfies (3.10) and x′ satisfies (3.12). We apply Lemma 2.1(2) to (2.14).
We obtain the isomorphisms of U4-algebras

K 
KH ⊗KS KH′ 
 (Fa,b,c)x,x′ ,

where (Fa,b,c)x,x′ is the U4-algebra determined by (3.10) and (3.12). �

3.3 Galois U4-algebras

Let a, b, c∈ F×, and suppose that (a, b) = (b, c) = 0 in Br(F ). We write (Z/pZ)3 = 〈σa, σb, σc〉
and view Fa,b,c as a Galois (Z/pZ)3-algebra over F , as in § 2.1. The quotient map U4 → (Z/pZ)3

is given by e12 �→ σa, e23 �→ σb and e34 �→ σc. The kernel Q4 of this homomorphism is generated
by e13, e24 and e14 and is isomorphic to (Z/pZ)3. We define the following elements of U4:

σa := e12, σb := e23, σc := e34,

τab := e13 = [σa, σb], τbc := e24 = [σb, σc], ρ := e14 = [σa, τbc] = [τab, σc].
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Proposition 3.5. Let a, b, c∈ F× be such that (a, b) = (b, c) = 0 in Br(F ). Let α∈ F×
a and γ ∈

F×
c be such that Na(α) = b and Nc(γ) = b. Let K be a Galois U4-algebra such that KQ4 
 Fa,b,c

as (Z/pZ)3-algebras.
There exists a Galois U4-algebra L over F such that LZ4 
K as U4-algebras if and only if

there exist u, u′ ∈ F×
a,c such that

α · (σa − 1)u= γ · (σc − 1)u′

and such that K is isomorphic to the Galois U4-algebra (Fa,b,c)x,x′ determined by (3.10)–(3.13),
where x=Nc(u)∈ F×

a and x′ =Na(u
′)∈ F×

c .

Proof. Suppose that K = (Fa,b,c)x,x′ , with U4-action determined by (3.10)–(3.13). Let L be a
Galois U4-algebra over F such that LZ4 =K, and let y ∈K× be such that L=Ky.

We have Gal(L/Fa,b,c) =Q4 = 〈τab, τbc, ρ〉 
 (Z/pZ)3, and hence one may choose y in F×
a,b,c

and such that

(τab − 1)y1/p = 1, (τbc − 1)y1/p = 1, (ρ− 1)y1/p = ζ−1.

The element σb commutes with τab, τbc and ρ. Hence,

τab(σb − 1)(y1/p) = (σb − 1)τab(y
1/p) = (σb − 1)(y1/p).

Similarly,
τbc(σb − 1)(y1/p) = (σb − 1)(y1/p)

and

ρ(σb − 1)(y1/p) = (σb − 1)(ζ · y1/p) = (σb − 1)(y1/p).

It follows that (σb − 1)(y1/p)∈ F×
a,b,c. By Hilbert’s Theorem 90, applied to Fa,b,c/Fa,c, there is q ∈

F×
a,b,c such that (σb − 1)(y1/p) = (σb − 1)q. Replacing y by y/qp, we may assume that σb(y

1/p) =

y1/p. In particular, y ∈ F×
a,c. We have

ρ(σa − 1)(y1/p) = (σa − 1)ρ(y1/p) = (σa − 1)(ζ−1 · y1/p) = (σa − 1)(y1/p),

σb(σa − 1)(y1/p) = (σaσbτab
−1 − σb)(y

1/p) = (σa − 1)(y1/p),

τab(σa − 1)(y1/p) = (σa − 1)τab(y
1/p) = (σa − 1)(y1/p),

τbc(σa − 1)(y1/p) = (ρ−1σa − 1)τbc(y
1/p) = (σaρ

−1 − 1)(y1/p) = ζ · (σa − 1)(y1/p).

By (3.12)–(3.13), analogous identities are satisfied by (x′)1/p, that is,

(ρ− 1)(x′)1/p = (σb − 1)(x′)1/p = (τab − 1)(x′)1/p = 1, (τbc − 1)(x′)1/p = ζ.

Therefore,

(σa − 1)(y1/p) =
(x′)1/p

u′
,

for some u′ ∈ F×
a,c. In particular, x′ =Na(u

′). A similar computation shows that

(σc − 1)(y1/p) =
x1/p

u
,

for some u∈ F×
a,c. In particular, x=Nc(u). In addition,

b1/p

α
= (σa − 1)(x1/p) = (σa − 1)[u · (σc − 1)(y1/p)],

b1/p

γ
= (σc − 1)((x′)1/p) = (σc − 1)[u′ · (σa − 1)(y1/p)].
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Therefore,

α · (σa − 1)u= γ · (σc − 1)u′.

Conversely, suppose we are given u, u′ ∈ F×
a,c such that

α · (σa − 1)u= γ · (σc − 1)u′, x=Nc(u), x′ =Na(u
′).

Then

(σa − 1)x= (σa − 1)Nc(u) =Nc(σa − 1)u=Nc

(γ
α

)
=

b

αp
,

(σc − 1)x′ = (σc − 1)Na(u
′) =Na(σc − 1)u′ =Na

(α
γ

)
=

b

γp
.

We have

Nc

( x
up

)
=
Nc(x)

Nc(up)
=
xp

xp
= 1,

Na

( x′

(u′)p
)
=

Na(x
′)

Na((u′)p)
=

(x′)p

(x′)p
= 1,

(σa − 1)
( x
up

)
=

b

αp · (σa − 1)up
=

b

γp · (σc − 1)(u′)p
= (σc − 1)

( x′

(u′)p
)
.

By Hilbert’s Theorem 90 applied to Fa,c/F , there is y ∈ F×
a,c such that

(σa − 1)y=
x′

(u′)p
and (σc − 1)y=

x

up
.

We consider the étale F -algebra L :=Ky and make it into a Galois U4-algebra such that LZ4 =K.
It suffices to describe the U4-action on y1/p. We set

(σa − 1)(y1/p) =
(x′)1/p

u′
, (σb − 1)(y1/p) = 1, (σc − 1)(y1/p) =

x1/p

u
.

One can check that this definition is compatible with relations (2.4)–(2.7), and hence that it
makes L into a Galois U4-algebra such that LZ4 =K. �

We use Proposition 3.5 to give an alternative proof for the Massey vanishing conjecture for
n= 3 and arbitrary p.

Proposition 3.6. Let p be a prime, let F be a field and let χ1, χ2, χ3 ∈H1(F,Z/pZ). The
following are equivalent.

(1) We have χ1 ∪ χ2 = χ2 ∪ χ3 = 0 in H2(F,Z/pZ).

(2) The Massey product 〈χ1, χ2, χ3〉 ⊂H2(F,Z/pZ) is defined.

(3) The Massey product 〈χ1, χ2, χ3〉 ⊂H2(F,Z/pZ) vanishes.

Proof. It is clear that (3) implies (2) and that (2) implies (1). We now prove that (1) implies
(3). The first part of the proof is a reduction to the case when char(F ) �= p and F contains a
primitive pth root of unity, and it follows [MT16, Proposition 4.14].

Consider the short exact sequence

1→Q4 →U4 → (Z/pZ)3 → 1, (3.14)
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where the map U4 → (Z/pZ)3 comes from (2.13). Recall from the paragraph preced-
ing Proposition 3.5 that the group Q4 is abelian. Therefore, the group homomorphism
χ := (χ1, χ2, χ3) : ΓF → (Z/pZ)3 induces a pullback map

H2((Z/pZ)3, Q4)→H2(F, Q4).

We let A∈H2(F, Q4) be the image of the class of (3.14) under this map. By Theorem 2.4, for
every finite extension F ′/F the Massey product 〈χ1, χ2, χ3〉 vanishes over F ′ if and only if the
restriction of χ to ΓF ′ lifts to U4, and this happens if and only if A restricts to zero in H2(F ′, Q4).

When char(F ) = p, we have cdp(F )≤ 1 by [Ser97, § 2.2, Proposition 3]. Therefore,
H2(F, Q4) = 0 and hence A= 0. Thus, (1) implies (3) when char(F ) = p.

Suppose that char(F ) �= p. There exists an extension F ′/F of prime-to-p degree such that F ′

contains a primitive pth root of 1. If (1) implies (3) for F ′, then A restricts to zero in H2(F ′, Q4).
By a restriction-corestriction argument, we deduce that A vanishes, that is, (1) implies (3) for
F . Thus, we may assume that F contains a primitive pth root of unity ζ.

Let a, b, c∈ F× be such that χa = χ1, χb = χ2 and χc = χ3 in H1(F,Z/pZ). Since (a, b) =
(b, c) = 0 in Br(F ), there exists α∈ F×

a and γ ∈ F×
c such that Na(α) =Nc(γ) = b. Since

Nac(γ/α) =Nc(γ)/Na(α) = 1 in F×
ac, by Hilbert’s Theorem 90 there exists t∈ F×

a,c such that
γ/α= (σaσc − 1)t. Define u, u′ ∈ F×

a,c by u := σc(t) and u
′ := t−1. Then

α · (σa − 1)u= α · (σaσc − σc)t= α · (σaσc − 1)t · (σc − 1)t−1 = γ · (σc − 1)u′.

Let x :=Nc(u)∈ F×
a and x′ :=Na(u

′)∈ F×
c . Since σaσc = σcσa on F×

a,c,

(σa − 1)x=Nc((σa − 1)u) =Nc((σc − 1)u′ · (γ/α)) =Nc(γ)/Nc(α) = b/αp.

Similarly, (σc − 1)x′ = b/γp. Therefore, x, x′ satisfy (3.9). Let K := (Fa,b,c)x,x′ be the Galois U4-
algebra over F , with the U4-action given by (3.10)–(3.13). By Proposition 3.5, there exists a
Galois U4-algebra L over F such that LZ4 
 (Fa,b,c)x,x′ as U4-algebras. In particular, LQ4 
 Fa,b,c
as (Z/pZ)3-algebras. By Corollary 2.5, we conclude that 〈a, b, c〉 vanishes. �

3.4 Galois U5-algebras

Let a, b, c, d∈ F×. We write (Z/pZ)4 = 〈σa, σb, σc, σd〉 and regard Fa,b,c,d as a Galois (Z/pZ)4-
algebra over F as in § 2.1.
Proposition 3.7. Let a, b, c, d∈ F× be such that (a, b) = (b, c) = (c, d) = 0 in Br(F ). The
Massey product 〈a, b, c, d〉 is defined if and only if there exist u∈ F×

a,c, v ∈ F×
b,d and w ∈ F×

b,c
such that

Na(u) ·Nd(v) =wp, (σb − 1)(σc − 1)w= ζ.

Proof. Denote by U+
4 and U−

4 the top-left and bottom-right 4× 4 corners of U5, respectively,
and let S :=U+

4 ∩U−
4 be the middle subgroup U3. Let Q

+
4 and Q−

4 be the kernels of the maps
U+
4 → (Z/pZ)3 and U−

4 → (Z/pZ)3, respectively, and let P+
4 and P−

4 be the kernels of the maps
U+
4 →U3 and U−

4 →U3, respectively.

Suppose 〈a, b, c, d〉 is defined. By Corollary 2.5, there exists a U5-algebra L such that LQ5 

Fa,b,c,d as (Z/pZ)4-algebras. Using Lemma 2.2, we fix α∈ F×

a and γ ∈ F×
c such that Na(α) = b

and Nc(γ) = b. By Proposition 3.5, there exist u, u′ ∈ F×
a,c such that, letting x′ :=Nc(u

′) and

x :=Na(u), the U
+
4 -algebra K1 induced by L is isomorphic to the U

+
4 -algebra (Fa,b,c)x′,x, where

U
+
4 acts via (3.10)–(3.13), and where the roles of x and x′ have been switched.
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Similarly, there exist v, v′ ∈ F×
b,d such that, letting z :=Nd(v) and z

′ :=Nb(v
′), the U−

4 -algebra

K2 induced by L is isomorphic to (Fb,c,d)z,z′ . Since the U3-algebras (K1)
P+

4 and (K2)
P−

4 are equal,
by Proposition 3.2(3) there exists w ∈ F×

b,c such that

Na(u) ·Nd(v) = xz =wp, (σb − 1)(σc − 1)w= ζ.

Conversely, let u∈ F×
a,c, v ∈ F×

b,d, and w ∈ F×
b,c be such that

Na(u) ·Nd(v) =wp, (σb − 1)(σc − 1)w= ζ.

By Lemma 2.2, there exist α∈ F×
a and δ ∈ F×

d such that Na(α) = b and Nd(δ) = c. We may write

(σb − 1)w=
c1/p

β
, (σc − 1)w=

b1/p

γ
,

for some β ∈ F×
b and γ ∈ F×

c . We have

Na((σc − 1)u · (γ/α)) = (σc − 1)Na(u) ·Na(γ/α) = (σc − 1)wp · (γp/b) = 1.

By Hilbert’s Theorem 90, there is u′ ∈ F×
a,c such that

α · (σa − 1)u′ = γ · (σc − 1)u.

By Proposition 3.5, we obtain a Galois U+
4 -algebra K1 over F with the property that (K1)

Q+
4 


Fa,b,c as (Z/pZ)
3-algebras. Similarly, we get a Galois U−

4 -algebra over F such that (K2)
Q−

4 
 Fb,c,d
as (Z/pZ)3-algebras. Since Na(u) ·Nd(v) =wp and (σb − 1)(σc − 1)w= ζ, by Proposition 3.2(3)

the U3-algebras (K1)
P+

4 and (K2)
P−

4 are isomorphic. Now Lemma 2.1 applied to the cartesian
square (2.14) for n= 4 yields a U5-Galois algebra L such that LQ5 
 Fa,b,c,d as (Z/pZ)

4-algebras.
By Corollary 2.5, this implies that 〈a, b, c, d〉 is defined. �

Lemma 3.8. Let b, c∈ F× and w ∈ F×
b,c. We have (σb − 1)(σc − 1)w= 1 if and only if there exist

wb ∈ F×
b and wc ∈ F×

c such that w=wbwc in F
×
b,c.

Proof. We have (σb − 1)(σc − 1)(wbwc) = (σb − 1)wc = 1 for all wb ∈ F×
b and wc ∈ F×

c . Conversely,
if w ∈ F×

b,c satisfies (σb − 1)(σc − 1)w= 1, then (σc − 1)w ∈ F×
c and Nc((σc − 1)w) = 1, and

hence by Hilbert’s Theorem 90 there exists wc ∈ F×
c such that (σc − 1)wc = (σc − 1)w. Letting

wb :=w/wc ∈ F×
b,c, we have

(σc − 1)wb = (σc − 1)(w/wc) = 1,

that is, wb ∈ F×
b . �

From Proposition 3.7, we derive the following necessary condition for a fourfold Massey
product to be defined.

Proposition 3.9. Let p be a prime, let F be a field of characteristic different from p and
containing a primitive pth root of unity ζ, let a, b, c, d∈ F×, and suppose that 〈a, b, c, d〉 is
defined over F . For every w ∈ F×

b,c such that (σb − 1)(σc − 1)w= ζ, there exist u∈ F×
a,c and

v ∈ F×
b,d such that Na(u)Nd(v) =wp.

Proof. By Proposition 3.7, there exist u0 ∈ F×
a,c, v0 ∈ F×

b,d and w0 ∈ F×
b,c such that

Na(u0) ·Nd(v0) =wp0, (σb − 1)(σc − 1)w0 = ζ.

We have (σb − 1)(σc − 1)(w0/w) = 1. By Lemma 3.8, this implies that w0 =wwbwc, where wb ∈
F×
b and wc ∈ F×

c . If we define u= u0wc and v= v0wb, then

Na(u)Nd(v) =Na(u0)Na(wc)Nd(v0)Nd(wb) =wp0w
p
cw

p
b =wp. �
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4. A generic variety

In this section, we let p be a prime number, and we let F be a field of characteristic different
from p and containing a primitive pth root of unity ζ.

Let b, c∈ F×, and let X be the Severi–Brauer variety associated to (b, c) over F ; see [GS17,
Chapter 5]. For every étale F -algebra K, we have (b, c) = 0 in Br(K) if and only if XK 
 P

p−1
K

over K. In particular, Xb 
 P
p−1
b over Fb. (Recall that we write (Pp−1

b for P
p−1
Fb

.) By [GS17,
Theorem 5.4.1], the central simple algebra (b, c) is split over F (X).

We define the degree map deg : Pic(X)→Z as the composite of the pullback map Pic(X)→
Pic(Xb)
Pic(Pp−1

b ) and the degree isomorphism Pic(Pp−1
b )→Z. This does not depend on the

choice of isomorphism Xb 
 P
p−1
b .

Lemma 4.1. Let b, c∈ F×, let Gb :=Gal(Fb/F ) and let X be the Severi–Brauer variety of (b, c)
over F . Let s1, . . . , sp be homogeneous coordinates on P

p−1
F .

(1) There exists a Gb-equivariant isomorphism Xb
∼−→ P

p−1
b , where Gb acts on Xb via its action

on Fb, and on P
p−1
b by

σ∗b (s1) = csp, σ∗b (si) = si−1 (i= 2, . . . , p).

(2) If (b, c) �= 0 in Br(F ), the image of deg : Pic(X)→Z is equal to pZ.

(3) There exists a rational function w ∈ Fb,c(X)× such that

(σb − 1)(σc − 1)w= ζ

and

div(w) = x− y in Div(Xb,c),

where x, y ∈ (Xb,c)
(1) satisfy deg(x) = deg(y) = 1, σb(x) = x and σc(y) = y.

Proof. (1) Consider the 1-cocycle z : Gb→PGLp(Fb) given by

σb �→

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 c
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
.

By [GS17, Construction 2.5.1], the class [z]∈H1(Gb,PGLp(Fb)) coincides with the class of the
degree-p central simple algebra over F with Brauer class (b, c), and hence with the class of
the associated Severi–Brauer variety X. It follows that we have a Gb-equivariant isomorphism
Xb 
 P

p−1
b , where Gb acts on Xb via its action on Fb, and on P

p−1
b via the cocycle z. This

proves (1).
(2) By a theorem of Lichtenbaum [GS17, Theorem 5.4.10], we have an exact sequence

Pic(X)
deg−−→Z

δ−→Br(F ),

where δ(1) = (b, c). Since (b, c) has exponent p, we conclude that the image of deg is equal to pZ.
(3) Let Gb,c :=Gal(Fb,c/F ) = 〈σb, σc〉. By (1), there is a Gb,c-equivariant isomorphism

f : Pp−1
b,c →Xb,c, where Gb,c acts on Xb,c via its action on Fb,c, the action of σc on P

p−1
b,c is trivial

and the action of σb on P
p−1
b,c is determined by

σ∗b (s1) = csp, σ∗b (si) = si−1 (i= 2, . . . , p).
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Consider the linear form l :=
∑p

i=1c
i/p · si on P

p−1
b,c and set w′ := l/sp ∈ Fb,c(Pp−1)×. We have

σ∗b (l) = c1/p · l, and hence (σb − 1)w′ = c1/p · (sp/sp−1). It follows that (σc − 1)(σb − 1)w′ = ξ. Let

x′, y′ ∈Div(Pp−1
b,c ) be the classes of the linear subspaces of P

p−1
b,c given by l= 0 and sp = 0,

respectively. Then

div(w′) = x′ − y′, σb(x
′) = x′, σc(y

′) = y′.

Define

w :=w′ ◦ f−1 ∈ Fb,c(X)×, x′ := f∗(x)∈ (Xb,c)
(1), y′ := f∗(y)∈ (Xb,c)

(1).

Then w, x, y satisfy the conclusion of (3). �

Lemma 4.2. Let a, b, c, d∈ F×. The complex of tori

Ra,c(Gm)×Rb,d(Gm)
ϕ−→Rb,c(Gm)

ψ−→Rb,c(Gm),

where ϕ(u, v) :=Na(u)Nd(v) and ψ(z) = (σb − 1)(σc − 1)z, is exact. Furthermore, the torus
Im(ϕ) =Ker(ψ) has dimension 2p− 1.

Proof. By Lemma 3.8, we have an exact sequence

Rc(Gm)×Rb(Gm)
ϕ′
−→Rb,c(Gm)

ψ−→Rb,c(Gm),

where ϕ′(x, y) = xy. The homomorphism ϕ factors as

Ra,c(Gm)×Rb,d(Gm)
Na×Nd−−−−−→Rc(Gm)×Rb(Gm)

ϕ′
−→Rb,c(Gm).

Since the homomorphisms Na and Nd are surjective, so is Na ×Nd. We conclude that Im(ϕ) =
Im(ϕ′) =Ker(ψ), as desired. Finally, it is immediate to see that Ker(ϕ′) =Gm, embedded anti-
diagonally in Rc(Gm)×Rb(Gm). Thus,

dim(Im(ϕ)) = dim(Im(ϕ′)) = 2p− dim(Ker(ϕ′)) = 2p− 1. �

Let a, b, c, d∈ F×, and consider the complex of tori of Lemma 4.2. We define the following
groups of multiplicative type over F :

P :=Ra,c(Gm)×Rb,d(Gm), S :=Ker(ψ) = Im(ϕ), T :=Ker(ϕ)⊂ P.

By Lemma 4.2, we get a short exact sequence

1→ T
ι−→ P

π−→ S→ 1, (4.1)

where ι is the inclusion map and π is induced by ϕ.

Lemma 4.3. The groups of multiplicative type T , P and S are tori.

Proof. It is clear that P and S are tori. We now prove that T is a torus. Consider the subgroup
Q⊂Ra,c(Gm), which makes the following commutative square cartesian.

Q Ra,c(Gm)

Gm Rc(Gm)

Na (4.2)

Here the bottom horizontal map is the obvious inclusion. It follows that Q is an Rc(R
(1)
a (Gm))-

torsor over Gm, and hence it is smooth and connected. Therefore, Q is a torus.
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The image of the projection T
ι
↪→ P →Ra,c(Gm) is contained in the torus Q. Moreover, the

kernel U of the projection is Rb(R
(1)
Fb,d/Fb

(Gm)), and hence it is also a torus. We have an exact
sequence

1→U → T →Q.

We have dim(U) = p(p− 1), and we see from the cartesian square (4.2) that dim(Q) = p2 − p+ 1.
By Lemma 4.2, we have dim(S) = 2p− 1. From (4.1), we deduce that

dim(T ) = dim(P )− dim(S) = 2p2 − (2p− 1) = 2p2 − 2p+ 1.

Therefore, dim(T ) = dim(U) + dim(Q), and so the sequence

1→U → T →Q→ 1

is exact. As U and Q are tori, so is T . �

Proposition 4.4. Let p be a prime, let F be a field of characteristic different from p and
containing a primitive pth root of unity ζ, and let a, b, c, d∈ F×. Suppose that (a, b) = (b, c) =
(c, d) = 0 in Br(F ), and let w ∈ F×

b,c be such that (σb − 1)(σc − 1)w= ζ. Let T and P be the tori
appearing in (4.1), and let Ew ⊂ P be the T -torsor given by the equation Na(u)Nd(v) =wp.
Then the mod p Massey product 〈a, b, c, d〉 is defined over F if and only if Ew is trivial.

The construction of Ew is functorial in F . Therefore, for every field extension K/F ,
the mod p Massey product 〈a, b, c, d〉 is defined over K if and only if Ew is split by K.
We may thus call Ew a generic variety for the property ‘the Massey product 〈a, b, c, d〉 is
defined’.

Proof. Suppose that the Massey product 〈a, b, c, d〉 is defined over F . By Proposition 3.9, there
exist u∈ F×

a,c, v ∈ F×
b,d such that Na(u)Nd(v) =wp. This means precisely that Ew ⊂ P has the

F -point (u, v). Thus, the T -torsor Ew is trivial.
Conversely, suppose that the T -torsor Ew is trivial and let (u, v) be an F -point of Ew. Then we

have Na(u)Nd(v) =wp and, by assumption, we also have (σb − 1)(σc − 1)w= ζ. Proposition 3.7
now implies that the Massey product 〈a, b, c, d〉 is defined over F . �

Corollary 4.5. Let p be a prime, let F be a field of characteristic different from p and
containing a primitive pth root of unity ζ, and let a, b, c, d∈ F× be such that (a, b) = (c, d) = 0
in Br(F ). Let X be the Severi–Brauer variety of (b, c) over F , fix w ∈ Fb,c(X)× as in Lemma
4.1(3) and let Ew ⊂ PF (X) be the TF (X)-torsor given by the equation Na(u)Nd(v) =wp.

The Massey product 〈a, b, c, d〉 is defined over F (X) if and only if Ew is trivial over F (X).

Proof. This is a special case of Proposition 4.4, applied over the ground field F (X). �

5. Proof of Theorem 1.3

Let p be a prime and let F be a field of characteristic different from p and containing a primitive
pth root of unity ζ. Let a, b, c, d∈ F× be such that their cosets in F×/F×p are Fp-linearly
independent. Consider the field K := Fa,b,c,d, and write G=Gal(K/F ) = 〈σa, σb, σc, σd〉 as in

§ 2.1. We set Na :=
∑p−1

j=0σ
j
a ∈Z[G]. For every subgroup H of G, we also write Na for the image

of Na ∈Z[G] under the canonical map Z[G]→Z[G/H]. We define Nb, Nc and Nd in a similar
way.

Let

1→ T
ι−→ P

π−→ S→ 1
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be the short exact sequence of F -tori (4.1). It induces a short exact sequence of cocharacter
G-lattices

0→ T∗
ι∗−→ P∗

π∗−→ S∗ → 1.

By definition of P and S,

P∗ =Z[G/〈σb, σd〉]⊕Z[G/〈σa, σc〉], S∗ = 〈Nb, Nc〉 ⊂Z[G/〈σa, σd〉].
Let X be the Severi–Brauer variety associated to (b, c)∈Br(F ). Since XK 
 P

p−1
K , the degree

map Pic(XK)→Z is an isomorphism, and so the map Div(XK)→Pic(XK) is identified with
the degree map deg : Div(XK)→Z. Thus, the sequence (B.2) for the torus T takes the form

1→ T (K)→ T (K(X))
div−−→Div(XK)⊗ T∗

deg−−→ T∗ → 0, (5.1)

where T∗ denotes the cocharacter lattice of T .

Lemma 5.1.

(1) We have (T∗)G =Z · η, where ι∗(η) = (NaNc,−NbNd) in (P∗)G.
(2) If (b, c) �= 0 in Br(F ), the image of deg : (Div(Xb,c)⊗ T∗)G→ (T∗)G is equal to p(T∗)G.

Proof. (1) The free Z-module (P∗)G has a basis consisting of the elements (NaNc, 0) and
(0, NbNd). The map π∗ : P∗ → S∗ ⊂Z[G/〈σa, σd〉] takes (1, 0) to Nb and (0, 1) to Nc. It follows
that Ker(π∗)G is generated by (NaNc,−NbNd).

(2) By Lemma 4.1(2), the image of the composition

Div(X)⊗ TG∗ = (Div(X)⊗ T∗)G→ (Div(Xb,c)⊗ T∗)G
deg−−→ (T∗)G

is equal to p(T∗)G. Thus, the image of the degree map contains p(T∗)G.
We now show that the image of the degree map is contained in p(T∗)G.
For every x∈X(1), pick x′ ∈ (Xb,c)

(1) lying over x, and write Hx for the G-stabilizer of x′.
The injective homomorphisms of G-modules

jx : Z[G/Hx] ↪→Div(Xb,c), gHx �→ g(x′),

yield an isomorphism of G-modules

⊕x∈X(1)jx : ⊕x∈X(1) Z[G/Hx]
∼−→Div(Xb,c).

To conclude, it suffices to show that the image of

(T∗)Hx = (Z[G/Hx]⊗ T∗)G→ (Div(Xb,c)⊗ T∗)G
deg−−→ (T∗)G (5.2)

is contained in p(T∗)G for all x∈X(1). Set H :=Hx.
The composition (5.2) takes a cocharacter q ∈ (T∗)H to

deg

( ∑
gH∈G/H

gx′ ⊗ gq

)
=deg(x′) ·NG/H(q).

Thus, (5.2) coincides with the norm map NG/H times the degree of x′.
Suppose that G=H. Then deg(x′) = deg(x) and, since (b, c) �= 0, the degree of x is divisible

by p by Lemma 4.1(2).
Suppose that G �=H. Then either 〈σa, σc〉 or 〈σb, σd〉 is not contained in H. Suppose that

〈σb, σd〉 is not contained in H and let N be the subgroup generated by H, σb, σd. Note that H
is a proper subgroup of N .
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The norm map NG/H : (T∗)H → (T∗)G is the composition of the two norm maps

(T∗)H
NN/H−−−→ (T∗)N

NG/N−−−→ (T∗)G.

Since Z[G/〈σb, σd〉]H =Z[G/〈σb, σd〉]N , the norm map (T∗)H → (T∗)N is multiplication by
[N :H]∈ pZ on the first component of T∗ with respect to the inclusion ι∗ of T∗ into
P∗ =Z[G/〈σb, σd〉]⊕Z[G/〈σa, σc〉].

By Lemma 5.1(1), (T∗)G =Z · η, where ι∗(η) = (NaNc,−NbNd) in (P∗)G. Since NaNc is not
divisible by p in Z[G/〈σb, σd〉], the image of (5.2) is contained in pZ · η= p(T∗)G, as desired. The
proof in the case when 〈σa, σc〉 is not contained in H is entirely analogous. �

We write

η ∈Coker[(Div(Xb,c)⊗ T∗)G
deg−−→ (T∗)G]

for the coset of the generator η ∈ (T∗)G appearing in Lemma 5.1(1). If (b, c) �= 0, then we have
η �= 0 by Lemma 5.1(2). We consider the subgroup of unramified torsors

H1(G, T (K(X)))nr :=Ker[H1(G, T (K(X)))
div−−→H1(G,Div(XK ⊗ T∗))]

and the homomorphism

θ : H1(G, T (K(X)))nr →Coker[(Div(XK)⊗ T∗)G
deg−−→ (T∗)G],

which are defined in (B.3).

Lemma 5.2. Let b, c∈ F× be such that (b, c) �= 0 in Br(F ) and let w ∈ Fb,c(X)× be such that
(σb − 1)(σc − 1)w= ζ and div(w) = x− y, where deg(x) = deg(y) = 1 and σb(x) = x and σc(y) =
y. Let Ew ⊂ PF (X) be the TF (X)-torsor given by the equation Na(u)Nd(v) =wp, and write [Ew]
for the class of Ew in H1(G, T (K(X))).

(1) We have [Ew]∈H1(G, T (K(X)))nr.

(2) Let θ be the homomorphism of (B.3). We have θ([Ew]) =−η �= 0.

Proof. The F -tori T , P and S of (4.1) are split by K = Fa,b,c,d. Therefore, we may consider
diagram (B.6) for the short exact sequence (4.1), the splitting field K/F and the Severi–Brauer
variety X of (b, c) over F .

(Div(XK) ⊗ T∗)G (T∗)G

P (F (X)) (Div(XK) ⊗ P∗)G (P∗)G

S(F (X)) (Div(XK) ⊗ S∗)G (S∗)G

H1(G,T (K(X))) H1(G,Div(XK) ⊗ T∗)

ι∗

deg

ι∗

π∗

div

π∗

deg

π∗

∂

div

∂

deg

div

Since (σb − 1)(σc − 1)wp = 1, we have wp ∈ S(F (X)). The image of wp under ∂ is equal to
[Ew]∈H1(G, T (K(X))).

Let H ⊂G be the subgroup generated by σa and σd. The canonical isomorphism

Div(Xb,c) =Div(XK)H = (Div(XK)⊗Z[G/H])G
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sends the divisor div(w) = x− y to
∑p−1

i,j=0 σ
i
bσ

j
c (x− y)⊗ σibσ

j
c . Therefore, the element div(wp)

in (Div(XK)⊗ S∗)G ⊂ (Div(XK)⊗Z[G/H])G is equal to

e := p

p−1∑
i,j=0

(σibσ
j
c (x− y)⊗ σibσ

j
c ) = p

p−1∑
j=0

(σ jc x⊗ σ jcNb)− p

p−1∑
i=0

(σiby⊗ σibNc).

Since S∗ is the G-sublattice of Z[G/〈σa, σd〉] generated by Nb and Nc, this implies that e belongs
to (Div(XK)⊗ S∗)G. Then e= π∗(f), where

f :=

p−1∑
j=0

(σ jc x⊗ σ jcNa)−
p−1∑
i=0

(σiby⊗ σibNd)∈ (Div(XK)⊗ P∗)G.

It follows that div([Ew]) = ∂(e) = ∂(π∗(f)) = 0, which proves (1).
Moreover, since deg(x) = deg(y) = 1, we have

deg(f) = (NaNc,−NbNd) = ι∗(η) in (P∗)G.

In view of (B.7), this implies that θ([Ew]) =−η. We know from Lemma 5.1(2) that η �= 0. This
completes the proof of (2). �

Proof of Theorem 1.3 . Replacing F by a finite extension, if necessary, we may suppose that
F contains a primitive pth root of unity ζ. Let E := F (x, y), where x and y are independent
variables over F , let X be the Severi–Brauer variety of the degree-p cyclic algebra (x, y) over E
and let L :=E(X). Consider the following elements of E×:

a := 1− x, b := x, c := y, d := 1− y.

We have (a, b) = (c, d) = 0 in Br(E) by the Steinberg relations [Ser79, Chapter XIV,
Proposition 4(iv)], and hence (a, b) = (b, c) = 0 in Br(L). Moreover, (b, c) �= 0 in Br(E) because
the residue of (b, c) along x= 0 is non-zero, whereas (b, c) = 0 in Br(L) by [GS17, Theorem 5.4.1].
Thus, (a, b) = (b, c) = (c, d) = 0 in Br(L).

Consider the sequence of tori (4.1) over the ground field E associated to the scalars a, b, c, d∈
E× chosen above:

1→ T → P → S→ 1.

Let w ∈Lb,c(X) be as in Lemma 4.1(3), and let Ew ⊂ PL be the TL-torsor given by the equation
Na(u)Nd(v) =wp. By Lemma 5.2(2), the torsor Ew is non-trivial over L. Now Corollary 4.5
implies that the Massey product 〈a, b, c, d〉 is not defined over L. In particular, by Lemma 2.3,
the differential graded ring C∗(ΓL,Z/pZ) is not formal. �

Appendix A. Homological algebra

Let G be a profinite group, and let

0→A0
α0−→A1

α1−→A2
α2−→A3 → 0 (A.1)

be an exact sequence of discrete G-modules. We break (A.1) into two short exact sequences

0→A0
α0−→A1 →A→ 0,

0→A→A2
α2−→A3 → 0.

We obtain a homomorphism

θ : Ker[H1(G, A1)
α1−→H1(G, A2)]→Coker[AG2

α2−→AG3 ], (A.2)

which is defined as the composition of the map

Ker[H1(G, A1)
α1−→H1(G, A2)]→Ker[H1(G, A)→H1(G, A2)],
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and the inverse of the isomorphism

Coker[AG2
α2−→AG3 ]

∼−→Ker[H1(G, A)→H1(G, A2)], (A.3)

which is induced by the connecting homomorphism AG3 →H1(G, A).

Lemma A.1. We have an exact sequence

H1(G, A0)
α0−→Ker[H1(G, A1)

α1−→H1(G, A2)]
θ−→Coker[AG2 →AG3 ]→H2(G, A0),

where the last map is defined as the composition of (A.3) and the connecting homomorphism
H1(G, A)→H2(G, A0).

Proof. The proof follows from the definition of θ and the exactness of (A.1). �

Consider a commutative diagram of discrete G-modules with exact rows and columns.

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

α0

ι0

α1

ι1

α2

ι2 ι3

β0

π0

β1

π1

β2

π2 π3

γ0 γ1 γ2

(A.4)

It yields a commutative diagram of abelian groups where the columns are exact and the rows
are complexes.

AG
1 AG

2 AG
3

BG
1 BG

2 BG
3

CG
1 CG

2 CG
3

H1(G, A1) H1(G, A2)

α1

ι1

α2

ι2 ι3

β1

π1

β2

π2 π3

∂1

γ1 γ2

∂2

α1

(A.5)

Suppose that the connecting homomorphism ∂1 : C
G
1 →H1(G, A1) is surjective. We define a

function

θ′ : Ker[H1(G, A1)
α1−→H1(G, A2)]→Coker(AG2

α2−→AG3 )

as follows. Let z ∈H1(G, A1) such that α1(z) = 0 in H1(G, A2). By assumption, there exists
c1 ∈CG1 such that ∂1(c1) = z. By the exactness of the second column, there exists b2 ∈BG

2 such
that π2(b2) = γ1(c1). By the exactness of the third column and the injectivity of ι3, there exists
a unique element a3 ∈AG3 such that β2(b2) = ι3(a3). We set

θ′(z) := a3 + α2(A
G
2 ).

A diagram chase shows that θ′ is a well-defined homomorphism.

Lemma A.2. Let G be a profinite group, and suppose that we are given an exact sequence (A.1)
and a commutative diagram (A.4) such that the connecting homomorphism ∂1 : C

G
1 →H1(G, A1)

is surjective. Then θ=−θ′.
Proof. Let z ∈H1(G, A1) be such that α1(z) = 0 in H1(G, A2). Since the map ∂1 : C

G
1 →

H1(G, A1) is surjective, there exists c1 ∈CG1 such that ∂1(c1) = z. Let b1 ∈B1 be such that
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π1(b1) = c1, and, for all g ∈G, let a1g be the unique element of A1 such that ι1(a1g) = gb1 − b1.
Then ∂1(c1) is represented by the 1-cocycle {a1g}g∈G.

Define b2 := β1(b1) and c2 := γ1(c1), so that π2(b2) = c2. Since α1(z) = 0 is represented by the
cocycle {α1(a1g)}g∈G, we deduce that there exists a2 ∈A2 such that α1(a1g) = ga2 − a2 for all

g ∈G. It follows that gb2 − b2 = ι2(ga2 − a2) for all g ∈G, that is, b2 − ι2(a2) belongs to BG
2 .

Moreover,

π2(b2 − ι2(a2)) = π2(b2) = γ1(c1).

Finally,

β2(b2 − ι2(a2)) = β2(β1(b1))− ι3(α2(a2)) = ι3(−α2(a2)).

By definition, θ′(z) =−α2(a2) + α2(A
G
2 ). Observe that α2(a2) belongs to A

G
3 because, for every

g ∈G,
gα2(a2)− α2(a2) = α2(ga2 − a2) = α2(α1(a1g)) = 0.

For all g ∈G, let ag ∈A be the image of a1g. The homomorphism

Ker[H1(G, A1)
α1−→H1(G, A2)]→Ker[H1(G, A)→H1(G, A2)],

induced by the map A1 →A, sends the class of {a1g}g∈G to the class of {ag}g∈G.
The element a2 ∈A2 is a lift of α2(a2). As ga2 − a2 = α1(a1g) for all g ∈G, the injective map

A→A2 sends ag to ga2 − a2 for all g ∈G. Therefore, the connecting map AG3 →H1(G, A) sends
α2(a2) to the class of {ag}g∈G. It follows that the isomorphism

Coker[AG2
α2−→AG3 ]

∼−→Ker[H1(G, A)→H1(G, A2)],

induced by AG3 →H1(G, A), sends α2(a2) + α2(A
G
2 ) to the class of {ag}g∈G. By the definition of

θ, we conclude that θ(z) = α2(a2) + α2(A
G
2 ) =−θ′(z). �

Appendix B. Unramified torsors under tori

Let F be a field, let X be a smooth projective geometrically connected F -variety, let K be a
Galois extension of F (possibly of infinite degree over F ) and let G :=Gal(K/F ). We have an
exact sequence of discrete G-modules

1→K× →K(X)× div−−→Div(XK)
λ−→Pic(XK)→ 0, (B.1)

where div takes a non-zero rational function f ∈K(X)× to its divisor and λ takes a divisor on
XK to its class in Pic(XK).

Let T be an F -torus split by K. Write T∗ for the cocharacter lattice of T : it is a
finitely generated Z-free G-module. Tensoring (B.1) with T∗, we obtain an exact sequence of
G-modules

1→ T (K)→ T (K(X))
div−−→Div(XK)⊗ T∗

λ−→Pic(XK)⊗ T∗ → 0, (B.2)

where we have used the fact that K× ⊗ T∗ = T (K).
We define the subgroup of unramified torsors

H1(G, T (K(X)))nr :=Ker[H1(G, T (K(X)))
div−−→H1(G,Div(XK ⊗ T∗))].

The sequence (B.1) is a special case of (A.1). In this case, the map θ of (A.1) takes the form

θ : H1(G, T (K(X)))nr →Coker[(Div(XK)⊗ T∗)G
λ−→ (Pic(XK)⊗ T∗)G]. (B.3)
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Proposition B.1. We have an exact sequence

H1(G, T (K))→H1(G, T (K(X)))nr
θ−→Coker[(Div(XK)⊗ T∗)G

λ−→ (Pic(XK)⊗ T∗)G]
→H2(G, T (K)),

where the first map and the last map are induced by (B.2).

Proof. This is a special case of Lemma A.1. �

By Lemma A.2, the map θ may be computed as follows. Let

1→ T
ι−→ P

π−→ S→ 1 (B.4)

be a short exact sequence of F -tori split by K such that P is a quasi-trivial torus. Passing to
cocharacter lattices, we obtain a short exact sequence of G-modules

0→ T∗
ι∗−→ P∗

π∗−→ S∗ → 0. (B.5)

We tensor (B.1) with T∗, P∗ and S∗, respectively, and pass to group cohomology to obtain
the following commutative diagram, where the columns are exact and the rows are complexes.

(Div(XK) ⊗ T∗)G (Pic(XK) ⊗ T∗)G

P (F (X)) (Div(XK) ⊗ P∗)G (Pic(XK) ⊗ P∗)G

S(F (X)) (Div(XK) ⊗ S∗)G (Pic(XK) ⊗ S∗)G

H1(G,T (K(X))) H1(G,Div(XK) ⊗ T∗)

ι∗

λ

ι∗

π∗

div

π∗

λ

π∗

∂

div

∂

λ

div

(B.6)

Note that Gal(K(X)/F (X)) =G. Therefore, H1(G, P (K(X))) is trivial, and hence
∂ : S(F (X))→H1(G, T (K(X))) is surjective.

Let τ ∈H1(G, T (K(X)))nr and choose σ ∈ S(F (X)) such that ∂(σ) = τ . Then pick ρ∈
(Div(XK)⊗ P∗)G such that π∗(ρ) = div(σ), and let t be the unique element in (Pic(XK)⊗ T∗)G

such that λ(ρ) = ι∗(t). Lemma A.2 implies that

θ(τ) =−t. (B.7)

Finally, suppose that K = Fs is a separable closure of F , so that G=ΓF , and write Xs for
X ×F Fs. The exact sequence (B.2) for K = Fs takes the form

1→ T (Fs)→ T (Fs(X))
div−−→Div(Xs)⊗ T∗

λ−→Pic(Xs)⊗ T∗ → 0. (B.8)

We have the inflation–restriction sequence

0→H1(F, T (Fs(X)))
Inf−−→H1(F (X), T )

Res−−→H1(Fs(X), T ).

Since T is defined over F , it is split by Fs, and hence by Hilbert’s Theorem 90 we have
H1(Fs(X), T )= 0. Thus, the inflation map H1(F, T (Fs(X)))→H1(F (X), T ) is an isomorphism.
We identify H1(F, T (Fs(X))) with H1(F (X), T ) via the inflation map. If we define

H1(F (X), T )nr :=Ker[H1(F (X), T )
div−−→H1(F,Div(Xs)⊗ T∗)],

856

https://doi.org/10.1112/S0010437X25007018 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007018


Non-formality of Galois cohomology modulo all primes

the map θ of (A.2) takes the form

θ : H1(F (X), T )nr →Coker[(Div(Xs)⊗ T∗)ΓF → (Pic(Xs)⊗ T∗)ΓF ].

Corollary B.2. We have an exact sequence

H1(F, T )→H1(F (X), T )nr
θ−→Coker[(Div(Xs)⊗ T∗)ΓF

λ−→ (Pic(Xs)⊗ T∗)ΓF ]→H2(F, T ),

where the first and last map are induced by (B.8).

Proof. This is a special case of Proposition B.1. �
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