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Abstract

In this paper, we give an explicit construction of a quasi-idempotent in the q-rook monoid algebra Rn(q)
and show that it generates the whole annihilator of the tensor space U⊗n in Rn(q).
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1. Introduction
The q-rook monoid algebra Rn(q) (see Section 2.1 for a precise definition), was first
studied by Solomon [15] as the Iwahori–Hecke algebra for the monoid of matrices
over a finite field. Then the representation theory of q-rook monoid algebras and their
specialisation analogues (with q = 1) was taken up in [1, 4, 5, 16]. Paget in [13]
considered the modular representation theory of q-rook monoid algebras and proved
that the q-rook monoid algebra Rn(q) (where q may be a unit root) is a cellular algebra
in the sense of Graham and Lehrer [3] (see [2] for the case of q = 1).

In [17], Solomon defined an action of Rn(q) on the tensor space U⊗n, where
U = L(0) ⊕ L(ε1) is the direct sum of the trivial and natural module for the quantum
general linear group Uq(glm). Halverson in [5] found a new presentation of Rn(q) and
used it to show that Solomon’s action of Rn(q) on the tensor space U⊗n can be extended
to a Schur–Weyl duality as follows.

Theorem 1.1 [5, Corollary 4.3]. The map ϕ : Rn(q)→ EndUq(glm)(U⊗n) is a surjective
algebra homomorphism and, if m ≥ n, then ϕ is an isomorphism.

When m < n, the algebra homomorphism ϕ is in general not injective. Therefore
it is natural to ask how to describe the kernel of the homomorphism ϕ, that is, the
annihilator of U⊗n in the algebra Rn(q). The purpose of this article is to answer the
question. Furthermore, we characterise the generators of Ker(ϕ) at an integral level so
as to be compatible with the cellular structure of Rn(q) and EndUq(glm)(U⊗n). In other
words, the generators of Ker(ϕ) belong to a Z[q, q−1]-lattice of Rn(q).
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In the invariant theory of classical and quantum groups, characterising the
annihilator of a tensor power of the natural module of a classical or quantum group
in a Hecke algebra, Brauer algebra, or Birman–Murakami–Wenzl (BMW) algebra is
one formulation of the second fundamental theorem of invariant theory (see [11] and
the references therein for a detailed description of this topic). Recently, Hu and the
author [8] proved the second fundamental theorem for symplectic groups and Lehrer
and Zhang [10] gave the second fundamental theorem for orthogonal groups, taking
advantage of a different formulation of the invariant theory. It is surprising to some
extent that in both the symplectic and orthogonal cases and their quantised versions,
the annihilator of n-tensor space in a specialised Brauer algebra or BMW algebra is
generated by an explicitly described quasi-idempotent. Motivated by these results, we
have found that the annihilator of tensor space U⊗n in a rook monoid algebra (the case
q = 1 in the present paper) is also generated by a quasi-idempotent [18]. We shall
construct a quasi-idempotent Φm+1 (see Section 3) in Ker ϕ and prove the following
result.

Theorem 1.2. With the above notation, if m < n, then AnnRn(q)(U⊗n) = 〈Φm+1〉.

On the other hand, Halverson and Ram in [6] proved that the q-rook monoid algebra
Rn(q) is a quotient of the Hecke algebra of type B. From this point of view, they showed
that the Schur–Weyl duality for Rn(q) (Theorem 1.1) comes from a Schur–Weyl duality
for cyclotomic Hecke algebras studied in [7, 14]. Another motivation of this paper is
to try to build a bridge to characterise the annihilator of tensor space in a cyclotomic
Hecke algebra.

Note that one of the main differences between q-rook monoid algebras and the
Hecke algebras, Brauer algebras and BMW algebras is that the q-rook monoid algebra
Rn(q) generally cannot be realised as a diagram algebra except in the case of q = 1 (see
[5, Remark 4.4]). Therefore our proof of Theorem 1.2 differs from that in [8, 11, 18]
and we will view Rn(q) as a module of the Hecke algebra of a symmetric group.

2. Preliminaries
2.1. The q-rook monoid. Let q be an indeterminate. Halverson [5] defined the
q-rook monoid algebra Rn(q) to be the unital associative C(q)-algebra generated by
T1,T2, . . . ,Tn−1 and P1, P2, . . . , Pn subject to the relations:

(A1) T 2
i = (q − q−1)Ti + 1, for 1 ≤ i ≤ n − 1,

(A2) TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n − 2,
(A3) TiT j = T jTi, for |i − j| > 1,

(R1) P2
i = Pi, for 1 ≤ i ≤ n,

(R2) PiP j = P jPi, for 1 ≤ i, j ≤ n,
(R3) PiT j = T jPi, for 1 ≤ i < j ≤ n − 1,
(R4) PiT j = T jPi = qPi, for 1 ≤ j < i ≤ n,

(R5) Pi+1 = qPiT−1
i Pi = qPiTiPi − (q2 − 1)Pi, for 1 ≤ i ≤ n − 1.
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Note that our definition of Rn(q) is slightly different from the definition in [5].
However, it is equivalent (see [6, Remark 1.2]). Halverson gave a basis of Rn(q) which
we now recall. Throughout this paper, we identify the symmetric group Sn with the
group of left permutations on the set {1, 2, . . . , n}. For σ ∈ Sn with reduced expression
σ = si1 si2 · · · sik define Tσ := Ti1 Ti2 · · ·Tik . Then Tσ is well defined because of the braid
relations (A2) and (A3). Furthermore, the subalgebra generated by T1, T2, . . . , Tn−1,
denoted by Hn(q), is isomorphic to an Iwahori–Hecke algebra of type A (see [5,
Corollary 3.4]).

For an integer r with 0 ≤ r ≤ n, define

Dr := {d ∈ Sn | d(1) < d(2) < · · · < d(r), d(r + 1) < · · · < d(n)}.

Note that D0 = {1} and Dr is the set of distinguished left coset representatives of the
parabolic subgroup S(r,n−r) in Sn. Write Ωr := {(d1, d2, σ) | d1, d2 ∈ Dr, σ ∈ S{r+1,...,n}}

and Ω :=
⋃n

r=0 Ωr. For (d1, d2, σ) ∈ Ωr, define

T(d1,d2,σ) := Td1 PrTσT−1
d2
.

When r = 0, we interpret P0 = 1. For d ∈ Dr, if we assume that ai = d(i) for 1 ≤ i ≤ r,
then there is a reduced expression

d = (sa1−1 · · · s2s1)(sa2−1 · · · s3s2) · · · (sar−1 · · · sr+1sr).

Hence our notation coincides with that in [5, Section 2].

Lemma 2.1 [5, Theorem 2.1 and Corollary 2.2]. The set {T(d1,d2,σ) | (d1, d2, σ) ∈ Ω}

forms a basis of Rn(q).

As foreshadowed in the introduction, we want to characterise the generators of
Ker(ϕ) at an integral level so as to be compatible with the cellular structure of Rn(q) and
EndUq(glm)(U⊗n). We shall use a slightly different basis of Rn(q) to that in Lemma 2.1.
Let ∗ be the involution, an anti-automorphism of order 2, of Rn(q) defined on the
generators by

T ∗i := Ti, P∗j := P j for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n.

The proof of the following lemma is similar to that of [13, Proposition 3] and hence
we omit it here.

Lemma 2.2. The set {Td1 PrTσT ∗d2
| (d1, d2, σ) ∈ Ω} forms a basis of Rn(q).

2.2. The classical case (q = 1). In this subsection, we recall the main results of [18]
for later use. Let Rn be the set of all n × n matrices that contain at most one entry
equal to 1 in each row and column and zeros elsewhere. With the operation of matrix
multiplication, Rn has the structure of a monoid. The monoid Rn is known both as the
rook monoid and the symmetric inverse semigroup [15]. The following presentation
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of Rn is much more helpful. The rook monoid Rn is generated by s1, s2, . . . , sn−1 and
p1, p2, . . . , pn subject to the following relations:

s2
i = 1 for 1 ≤ i ≤ n − 1,

sis j = s jsi for |i − j| > 1,
sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2,

p2
i = pi for 1 ≤ i ≤ n,

pi p j = p j pi for i , j,
si pi = pi+1si for 1 ≤ i ≤ n − 1,
si p j = p jsi for j , i, i + 1,
pisi pi = pi pi+1 for 1 ≤ i ≤ n − 1.

From this presentation, it is clear that the q-rook monoid algebra Rn(q) is indeed a
q-analogue of the rook monoid algebra CRn. Notice, when we take the specialisation
q→ 1, that limq→1 P j = p1 p2 · · · p j for each 1 ≤ j ≤ n.

Let V be an m-dimensional vector space over the fieldC. Let U1 = C ⊕ V and GL(V)
denote the general linear group over V . The following analogue of Theorem 1.1 was
proved by Solomon [16, Theorem 5.10 and Corollary 5.18].

Proposition 2.3. The map ϕ1 : CRn → EndGL(V)(U⊗n
1 ) is a surjective algebra

homomorphism and, if m ≥ n, then ϕ is an isomorphism.

For any positive integer k ≤ n, the natural map si 7→ si, p j 7→ p j for all 1 ≤ i ≤ k − 1
and 1 ≤ j ≤ k extends to an algebra embedding from CRk into CRn. In [18, Section 4],
when m < n, we defined a quasi-idempotent

Ym+1 =
∑

σ∈Sm+1

(−1)`(σ)σ −
∑

(d1,d2,σ)∈Ω1

(−1)`(d1)+`(σ)+`(d2)d1 p1σd−1
2 ∈ CRm+1.

Proposition 2.4 [18, Theorem 1.2]. If m < n, then AnnCRn

(
U⊗n

1
)

= 〈Ym+1〉.

2.3. Specialisations. We now relate the quantised case to the classical (q = 1) case
and then find a way to construct the generators of Ker(ϕ) at an integral level. Let Aq

be the subring of C(q) consisting of the rational functions with no pole at q = 1. The
evaluation map ψ1 :Aq → C taking q to 1 is a C-algebra homomorphism.

Let Rn(Aq) be theAq-span of the set {Td1 PrTσT ∗d2
| (d1, d2, σ) ∈ Ω}. Then Rn(Aq) is

anAq-subalgebra of Rn(q) and Rn(q) = C(q) ⊗ι Rn(Aq), where ι is the inclusion ofAq

into C(q) (see the cellular structure of a q-rook monoid algebra in [13]). On the other
hand, since U = L(0) ⊕ L(ε1) is the direct sum of the trivial and natural module for
Uq(glm), both Uq(glm) and U⊗n have Aq-forms UAq (glm) and U⊗n

Aq
, such that UAq (glm)

acts on U⊗n
Aq

. We can therefore take the specialisation limq→1 := C ⊗ψ1 −, for all theAq-
modules just mentioned. It is well known that limq→1 UAq (glm) = U(glm), the universal
enveloping algebra of glm over C. Clearly limq→1 Rn(Aq) = CRn. We refer to [9] for
more details of the specialisation of quantum groups.
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The following proposition indicates a way to construct the generators of Ker(ϕ).
The proof is similar to that in [11, Theorem 8.2].

Proposition 2.5. With the above notation, let Φ be an idempotent in CRn such that the
ideal 〈Φ〉 = Ker(ϕ1). Assume that Φq ∈ Rn(Aq) is such that:

(1) Φ2
q = f (q)Φq, where f (q) ∈ Aq;

(2) limq→1 Φq = cΦ, where c , 0.

Then Φq generates the ideal Ker(ϕ).

Proof. It follows from limq→1〈Φq〉 = 〈Φ〉 that dimC(q)〈Φq〉 ≥ dimC〈Φ〉. Here 〈Φq〉 is
the ideal in Rn(q) generated by Φq. Hence, if Φq ∈ Ker(ϕ),

dimC CRn/〈Φ〉 ≥ dimC(q) Rn(q)/〈Φq〉

≥ dimC(q) Rn(q)/Ker(ϕ)
= dimC(q) EndUq(glm)(U⊗n) = dimC CRn/〈Φ〉.

We now prove Φq ∈ Ker(ϕ), that is, ΦqU⊗n = 0. In fact, we only need to prove
ΦqU⊗n

Aq
= 0. Note that limq→1 ΦqU⊗n

Aq
= cΦU⊗n

1 = 0 and hence ΦqU⊗n
Aq
⊆ (q − 1)U⊗n

Aq
.

We use a recursive procedure to show that ΦqU⊗n
Aq
⊆ (q − 1)iU⊗n

Aq
for each positive

integer i, which in turn implies that ΦqU⊗n
Aq

= 0. Assume that ΦqU⊗n
Aq
⊆ (q − 1)iU⊗n

Aq
for

some positive integer i. Then f (q)ΦqU⊗n
Aq

= Φ2
qU⊗n
Aq
⊆ (q − 1)i+1U⊗n

Aq
by the inductive

hypothesis. But f (q) is not divisible by q −1 inAq, since limq→1 Φ2
q = c2Φ = f (1)Φ , 0.

In other words, f (q) is invertible in Aq. Therefore ΦqU⊗n
Aq
⊆ (q − 1)i+1U⊗n

Aq
and this

completes the proof of the proposition. �

3. Proof of Theorem 1.2

By Propositions 2.5 and 2.4, to construct the generators of Ker(ϕ), we only need
to construct a q-analogue of Ym+1. In other words, we need to construct an element
Φm+1 ∈ Rm+1(q) having the one-dimensional sign representation of Rm+1(q) (see [18,
Section 3]), that is,

TiΦm+1 = Φm+1Ti = (−q)−1Φm+1 and P jΦm+1 = Φm+1P j = 0

for all 1 ≤ i ≤ m and 1 ≤ j ≤ m + 1.
Since we work on the field C(q), the q-rook monoid algebra Rn(q) is semisimple

[17]. By the representation theory of Rn(q) [5, 13], there exists an element Φn ∈ Rn(q)
for n ≥ 2 such that TiΦn = ΦnTi = (−q)−1Φn and P jΦn = ΦnP j = 0 for all 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ n.

Lemma 3.1. The element Φn can be taken of the form

Φn =
∑
σ∈Sn

(−q)−`(σ)Tσ +

n∑
r=1

∑
(d1,d2,σ)∈Ωr

C(d1,d2,σ)(−q)−`(d1)−`(σ)−`(d2)Td1 PrTσT ∗d2
,

where C(d1,d2,σ) ∈ C(q).
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Proof. For 0 ≤ r ≤ n, let R(r)
n be the two-sided ideal of Rn(q) generated by Pr. This

gives a filtration
Rn(q) = R(0)

n ⊃ R(1)
n ⊃ R(2)

n ⊃ · · · ⊃ R(n)
n ⊃ 0

of two-sided ideals. It is clear that there is an algebra epimorphism

θ : Rn(q)� Rn(q)/R(1)
n � Hn(q),

where Hn(q), generated by T1,T2, . . . ,Tn−1, is isomorphic to an Iwahori–Hecke algebra
of type A. Since the algebras Rn(q) and Hn(q) are both semisimple, the image θ(Φn)
must correspond to the Young anti-symmetriser of Hn(q). Then the lemma follows
from Lemma 2.2 and the well-known representation theory of the Iwahori–Hecke
algebra Hn(q). �

Since Rn(q) generally cannot be realised as a diagram algebra except in the case
q = 1 (see [5, Remark 4.4]), we find another way to describe Φn different from the
methods in [8, 11, 18]. Note that the Iwahori–Hecke algebra Hn(q) is a subalgebra of
Rn(q) by [5, Corollary 3.4]. Hence Rn(q) can be viewed as a left Hn(q)-module in the
natural manner. Define

R[r]
n := C(q)- Span{Td1 PrTσT ∗d2

| (d1, d2, σ) ∈ Ωr}

for 0 ≤ r ≤ n. The following technical lemma aims to give some explicit structure
constants.

Lemma 3.2. The space R[r]
n is an Hn(q)-submodule of Rn(q) for each r with 0 ≤ r ≤ n.

Proof. For any (d1, d2, σ) ∈ Ωr, we only need to prove TiTd1 PrTσT ∗d2
∈ R[r]

n for each
1 ≤ i ≤ n − 1. Since Dr is the set of distinguished left coset representatives of S(r,n−r)
in Sn, there exists a sequence of positive integers 1 ≤ a1 < a2 < · · · < ar ≤ n such that

Td1 = (Ta1−1 · · · T2T1)(Ta2−1 · · · T3T2) · · · (Tar−1 · · · Tr+1Tr).

Then four cases arise.
Case 1. i, i + 1 < {a1, a2, . . . , ar}. Then d1( j) = i with j > r. Moreover,

TiTd1 PrTσT ∗d2
= Td1 T jPrTσT ∗d2

= Td1 Pr(T jTσ)T ∗d2
(by relation (R3))

=

{
Td1 PrTs jσT ∗d2

if `(s jσ) = `(σ) + 1,
(q − q−1)Td1 PrTσT ∗d2

+ Td1 PrTs jσT ∗d2
if `(s jσ) = `(σ) − 1.

Case 2. i ∈ {a1, a2, . . . , ar} and i + 1 < {a1, a2, . . . , ar}. Then sid1 ∈ Dr and `(sid1) =

`(d1) + 1. Hence
TiTd1 PrTσT ∗d2

= Tsid1 PrTσT ∗d2
.

Case 3. i < {a1, a2, . . . , ar} and i + 1 ∈ {a1, a2, . . . , ar}. Then sid1 ∈ Dr and `(sid1) =

`(d1) − 1. Hence

TiTd1 PrTσT ∗d2
= (q − q−1)Td1 PrTσT ∗d2

+ Tsid1 PrTσT ∗d2
.
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Case 4. i, i + 1 ∈ {a1, a2, . . . , ar}. Then d1( j) = i with j < r. From relation (R4),

TiTd1 PrTσT ∗d2
= Td1 T jPrTσT ∗d2

= qTd1 PrTσT ∗d2
.

In each case, TiTd1 PrTσT ∗d2
is a linear combination of the basis elements belonging to

the space R[r]
n , and hence this completes the proof of the lemma. �

Let us now calculate the coefficients C(d1,d2,σ) in Lemma 3.1. The following lemma
is well known for symmetric groups.

Lemma 3.3. Let r be an integer with 0 ≤ r ≤ n. There exists a unique element w0 ∈ Dr

of maximal length r(n − r). If sir(n−r) · · · si2 si1 is a reduced expression of w0, then for any
integer j with 0 ≤ j ≤ r(n − r), there is si j · · · si2 si1 ∈ Dr. Conversely, for any d ∈ Dr,
there exists a reduced expression sir(n−r) · · · si2 si1 of w0 such that d = si j · · · si2 si1 for some
j with 0 ≤ j ≤ r(n − r).

For an arbitrary element a ∈ Rn(q), we say that Td1 PrTσT ∗d2
is involved in a, if

Td1 PrTσT ∗d2
appears with nonzero coefficient when writing a as a linear combination

of the basis in Lemma 2.2.

Lemma 3.4. For any r with 1 ≤ r ≤ n and any (d1, d2, σ1), (d3, d4, σ2) ∈ Ωr, we have
C(d1,d2,σ1) = C(d3,d4,σ2). In particular, the element Φn can be taken of the form

Φn =
∑
σ∈Sn

(−q)−`(σ)Tσ +

n∑
r=1

cr

∑
(d1,d2,σ)∈Ωr

(−q)−`(d1)−`(σ)−`(d2)Td1 PrTσT ∗d2
,

where cr ∈ C(q).

Proof. We first claim that C(d1,d2,σ) = C(d3,d2,σ). By Lemma 3.3, it suffices to prove that

C(d1,d2,σ) = C(sid1,d2,σ)

whenever sid1 ∈ Dr with `(sid1) = `(d1) + 1. Compare the coefficients of Td1 PrTσT ∗d2

on both sides of the equality TiΦn = (−q)−1Φn. For any (d5, d6,w) ∈ Ωs, if Td1 PrTσT ∗d2

is involved in TiTd5 PsTwT ∗d6
, then s = r by Lemma 3.2. Furthermore, if Td1 PrTσT ∗d2

is involved in TiTd5 PrTwT ∗d6
, it follows from the proof of Lemma 3.2 that d5 = d1 or

sid5 = d1. However, if d5 = d1, then TiTd5 PrTwT ∗d6
= Tsid1 PrTwT ∗d6

since sid1 ∈ Dr with
`(sid1) = `(d1) + 1, a contradiction. Hence we must have sid5 = d1 and then

TiTd5 PrTwT ∗d6
= TiTsid1 PrTwT ∗d6

= T 2
i Td1 PrTwT ∗d6

= (q − q−1)Tsid1 PrTwT ∗d6
+ Td1 PrTwT ∗d6

.

This yields (d5, d6,w) = (sid1, d2, σ). Now, the coefficient of Td1 PrTσT ∗d2
in TiΦn

is C(sid1,d2,σ)(−q)−`(d1)−1−`(σ)−`(d2). Comparing with the coefficient of Td1 PrTσT ∗d2
in

(−q)−1Φn, we have C(d1,d2,σ) = C(sid1,d2,σ) and hence the claim is proved.
Using Lemma 3.1, we see that Φ∗n = Φn. Combining this fact and the above claim,

C(d1,d2,σ) = C(1,d2,σ) = C(1,1,σ)
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for all (d1, d2, σ) ∈ Ωr and 1 ≤ r ≤ n. Therefore, to prove the lemma, it suffices
to prove C(1,1,σ1) = C(1,1,σ2) for all σ1, σ2 ∈ S{r+1,r+2,...,n}. Equivalently, it is enough
to show that C(1,1,siσ) = C(1,1,σ) for any σ ∈ S{r+1,r+2,...,n} and r + 1 ≤ i < n satisfying
`(siσ) = `(σ) + 1. Compare the coefficients of PrTσ on both sides of the equality
TiΦn = (−q)−1Φn. For any (d5, d6,w) ∈ Ωs, if PrTσ is involved in TiTd5 PsTwT ∗d6

, then
s = r by Lemma 3.2. Furthermore, if PrTσ is involved in TiTd5 PrTwT ∗d6

, it follows
from the proof of Lemma 3.2 that d5 = 1 (the identity element of the symmetric group
Sn), that is, `(d5) = 0) or d5 = si. However, d5 = si with r + 1 ≤ i < n contradicts the
condition d5 ∈ Dr. Hence we must have d5 = 1. Then, by relation (R3) and calculations
in Hn(q),

TiPrTwT ∗d6
= PrTiTwT ∗d6

=

{
PrTsiwT ∗d6

if `(siw) = `(w) + 1,
(q − q−1)PrTwT ∗d6

+ PrTsiwT ∗d6
if `(siw) = `(w) − 1.

This yields (d5, d6,w) = (1, 1, σ) or (d5, d6,w) = (1, 1, siσ). If (d5, d6,w) = (1, 1, σ),
then TiTd5 PrTwT ∗d6

= TiPrTσ = PrTsiσ, since `(siσ) = `(σ) + 1, a contradiction. Hence
(d5, d6, w) = (1, 1, siσ) and the coefficient of PrTσ in TiΦn is C(1,1,siσ)(−q)−`(σ)−1.
Comparing with the coefficient of PrTσ in (−q)−1Φn, we have C(1,1,σ) = C(1,1,siσ) and
this completes the proof of the lemma. �

Lemma 3.5. With the above notation, c2 = c3 = · · · = cn = 0.

Proof. By Lemma 3.4, the element Φn can be taken of the form

Φn =
∑
σ∈Sn

(−q)−`(σ)Tσ +

n∑
r=1

cr

∑
(d1,d2,σ)∈Ωr

(−q)−`(d1)−`(σ)−`(d2)Td1 PrTσT ∗d2
,

where cr ∈ C(q). To compute the coefficients cr with r ≥ 2, our strategy is to compare
the coefficients of Pr on both sides of T1Φn = (−q)−1Φn.

Assume (d1, d2,w) ∈ Ωs and Pr is involved in T1Td1 PsTwT ∗d2
. Then Lemma 3.2

implies that s = r. Furthermore, if Pr is involved in T1Td1 PrTwT ∗d2
, it follows from the

proof of Lemma 3.2 that d1 = 1 (the identity element of the symmetric group Sn), that
is, `(d1) = 0 or d1 = s1. But s1 <Dr because r ≥ 2. Hence d1 = 1 and

T1Td1 PrTwT ∗d2
= T1PrTwT ∗d2

= qPrTwT ∗d2
,

where the second equality follows from relation (R4). Therefore, Pr is involved in
T1Td1 PrTwT ∗d2

if and only if (d1, d2,w) = (1, 1, 1). In this case, the coefficient of Pr in
TiΦn is qcr. Comparing with the coefficient of Pr in (−q)−1Φn, we have qcr = (−q)−1cr,
which implies that cr = 0 since q is an indeterminate. �

Lemma 3.6. With the above notation, c1 = −q2(n−1).

Proof. To compute the coefficient c1, our strategy is to compare the coefficients of P1
on both sides of P1Φn = 0.
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We first find the w ∈ Sn for which P1 is involved in P1T ∗w. For any w ∈ Sn, we can
write w = si−1 · · · s2s1σ with 1 ≤ i ≤ n and σ ∈ S{2,...,n}. Now

P1T ∗w = P1Tw−1 = P1Tσ−1 (T1T2 · · · Ti−1),

which is an element in the set {Td1 PrTσT ∗d2
| (d1, d2, σ) ∈ Ω}. Therefore, P1 is involved

in P1T ∗w if and only if w = 1, the identity element of the symmetric group Sn. Hence
P1 is involved in P1Tw = P1T ∗w−1 if and only if w = 1.

Next, we find the (d1, d2,w) ∈ Ω1 for which P1 is involved in P1Td1 P1TwT ∗d2
. If

`(d1) = 0, then (d1, d2,w) = (1, 1, 1). If `(d1) > 0, we have Td1 = Ti−1 · · ·T2T1 for some
2 ≤ i ≤ n. It follows from relations (R3) and (R5) that

P1Td1 P1TwT ∗d2
= Ti−1 · · · T2(P1T1P1)TwT ∗d2

= q−1Ti−1 · · · T2P2TwT ∗d2
+ (q − q−1)P1Ti−1 · · · T2TwT ∗d2

.

In this case, P1 is only involved in the term P1Ti−1 · · · T2TwT ∗d2
. By calculations in

the Iwahori–Hecke algebra Hn(q) (see, for example, [12, Proposition 1.16]), P1 is
involved in P1Ti−1 · · · T2TwT ∗d2

if and only if w = s2s3 · · · si−1 and d2 = 1. Here, for
i = 2, we take w = 1. Therefore, P1 is involved in P1Td1 P1TwT ∗d2

with `(d1) > 0 if and
only if (d1, d2,w) = (si−1 · · · s2s1, 1, s2 · · · si−1) with 2 ≤ i ≤ n.

By the above argument, the coefficient of P1 in P1Φn is

1 + c1

(
1 +

n∑
i=2

(−q)−(i−1)−(i−2)(q − q−1)
)

= 1 + c1

(
1 + (1 − q2)

n−1∑
i=1

q−2i
)

= 1 + c1q−2(n−1).

Thus P1Φn = 0 implies that c1 = −q2(n−1). �

We now turn to the proof of the main result of this paper. For any positive integer
k ≤ n, the natural map Ti 7→ Ti, P j 7→ P j for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k can be
extended to an algebra embedding from Rk(q) into Rn(q). From this point of view,
when m < n (where m = dim L(ε1)),

Φm+1 =
∑

σ∈Sm+1

(−q)−`(σ)Tσ − q2m
∑

(d1,d2,σ)∈Ω1

(−q)−`(d1)−`(σ)−`(d2)Td1 PrTσT ∗d2
∈ Rn(q).

Proof of Theorem 1.2. By Proposition 2.4, the element Φ := Ym+1/(m + 1)! is an
idempotent such that 〈Φ〉 = Ker(ϕ1). Assume Φq = Φm+1, which belongs to the lattice
Z[q, q−1]-Span{Td1 PrTσT ∗d2

| (d1, d2, σ) ∈ Ω}. Note that Φ2
q =

∑
σ∈Sm+1

q−2`(σ)Φq and
limq→1 Φq = (m + 1)!Φ. Thus Proposition 2.5 completes the proof of the theorem. �
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