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Relationships between injectivity or generalized injectivity and chain conditions on
a module category have been studied by several authors. A well-known theorem of
Osofsky [14, 15] asserts that a ring all of whose cyclic right modules are injective is
semisimple Artinian. Osofsky's proofs in [14, 15] essentially used homological properties
of injective modules, and, later, her arguments were applied by other authors in their
studies of rings for which cyclic right modules are quasi-injective, continuous or
quasi-continuous (see e.g. [1, 10, 12]). Following [5] (cf. [4]), a module M is called a
CS-module if every submodule of M is essential in a direct summand of M. In the recent
paper [17], B. L. Osofsky and P. F. Smith have proved a very general theorem on cyclic
completely CS-modules from which many known results in this area follow rather easily.
In another direction, it was proved in [8] that a finitely generated quasi-injective module
with ACC (respectively DCC) on essential submodules is Noetherian (respectively
Artinian). This result was also extended to CS-modules in [3, 16], and weak CS-modules
in [19].

While CS-modules are a generalization of injective modules, finitely generated
CS-modules have an interesting property that their closed submodules are finitely
generated, which can be regarded as a weak form of the Noetherian condition. This
observation led to a study in [13] of modules all of whose closed submodules are finitely
generated.

In this paper, we will be interested in a class of modules which contains both finitely
generated CS-modules and modules with finite uniform dimension. A module M will be
called a CEF-module if every closed submodule of M contains a finitely generated
essential submodule, or, in other words, if every closed submodule of M is essentially
finitely generated. Similarly, a module M is called a CEC-module if every closed
submodule of M contains a cyclic essential submodule, or, equivalently, every closed
submodule of M is essentially cyclic.

We will show that if M is a finitely generated module such that for every nonzero
submodule N of M, M/N and every cyclic submodule of M/N is a direct sum of a
CEC-module and a module with finite uniform dimension, then M satisfies ACC on direct
summands. A similar result holds also for CEF-modules. Thus we obtain a generalization
of the main result in [9] on CS-modules. As a consequence, we get also a refinement of
the Osofsky-Smith theorem in [17]. Further, it is proved that a CS-module M for which
M/Soc(M) satisfies ACC on direct summands is a direct sum of a semisimple module and
a module with finite uniform dimension. Consequently, we obtain a partial extension of a
result of Camillo and Yousif [3] from CS-modules to CEC-modules.

Among examples of CEC-modules, we could mention uniform modules, injective
hulls of cyclic modules, or, more generally, any CS-module M with a cyclic essential
submodule K. Indeed, if A is a closed submodule in M, then A is a direct summand of M.
Thus the projection of K in A is cyclic, and contains K PI A which clearly is essential in A.
Hence A contains a cyclic essential submodule. Similarly, examples of CEF-modules are
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modules with finite uniform dimension, injective hulls of finitely generated modules, or
any CS-module with a finitely generated essential submodule.

Throughout this paper, all rings considered are associative with identity and all
modules are unitary right modules. For a module M, Soc(A/) will denote the socle of M,
and M is semisimple if M = Soc(M). A submodule N of M is called essential in M if
Nr\K¥=0 for every nonzero submodule K of M. In this case, M is called an essential
extension of N. A submodule C is called closed in M if C has no proper essential
extensions in M. A module M is said to have finite uniform dimension if M does not
contain an infinite direct sum of nonzero submodules. A module N is called a subquotient
of a module M if N is a submodule of a quotient of M.

We now state the main result of this paper.

THEOREM 1. Let M be a finitely generated module such that for every nonzero
submodule A of M, M/A and all cyclic submodules of MIA are direct sums of a
CEC-module and a module with finite uniform dimension. Then M satisfies ACC on direct
summands.

To prove this theorem, we will adapt the techniques developed by Osofsky and Smith
in [17]. First, we prove a lemma, which is of independent interest.

LEMMA 2. Let N be a CEF-module with the infinitely generated essential socle S such
that every finitely generated submodule of S is a direct summand of N, and every cyclic
submodule of N is a direct sum of a CEF-module and a module with finitely generated
socle. Then N/S is not a CEC-module.

oo

Proof. Suppose that N/S is a CEC-module. Let 5 = 0 5 , such that all 5, are infinitely

generated. For each i, 5, has a maximal essential extension £>,-. Since D, is closed in N, D,
contains a finitely generated essential submodule. Thus it is clear that 0 , ^ 5 , for each /,
so Dl = (D, + 5)/5 is nonzero for every i. Let A' be a maximal essential extension of

oo

0 Dl in N/S. Since N/S is a CEC-module, A' contains a cyclic essential submodule £ ' .
1=1

There exists a cyclic submodule E of N such that (E + S)/S = E'. Since E' is essential in
A', C'i=E' f\Dl is nonzero for each i. Let C, be the inverse image of C\ in D, under the
canonical map. Then we have 5, <= C, c Dh and clearly C, is not contained in 5. Because
Q c F , we have

C , c £ + 5 = £ 0 T
for some submodule T of S. If C,D£' = 0 for some i, then C, is isomorphic to a
submodule of T, thus C, is semisimple and so C, is contained in 5, a contradiction.
Therefore we have that for each i C, D E =£0. But C, is an essential extension of 5,, so it
follows that 5, fl £ =£ 0 for each i. Then we can take a nonzero simple submodule Vj in
5, n E for each i.

Since E is cyclic, by assumption, E = F® K, where F is a CEF-module and K has
finitely generated socle. It is easy to see that K is finitely generated semisimple. Let

V = 0 V,; and U = F D V. Then V = U © X, where X is isomorphic to a submodule of K;
i=i

hence X is finitely generated. Thus U is infinitely generated. Since F is a CEF-module,
and Uis semisimple, U has a finitely generated essential extension L in F. Clearly Li^U,

https://doi.org/10.1017/S0017089500008880 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008880


GENERALIZED INJECTIVITY AND CHAIN CONDITIONS 321

thus L' = (L + S)/S is nonzero, and L'cA'. Now we want to show that LD I 0 £>,) c 5 .
00 / CO \ ' = 1

Since 5 c 0 Dh this would imply that L' n I 0 D/ = 0, a contradiction of the fact that
/=i \i=i /

0 Di is essential in A'.

In fact, for each n, we have

- n 0 D, I n 5 = L n (10 D, I n 5

= L n 0 5, s ( 0 v;) n (© 5,) = © vt.

n

But 0 V, is a direct summand of N by assumption; together with the fact that 5 is essential

in N, it implies that L D 0 D,, c 5, for each n. Thus we have L D 0 D, c: 5 which gives us
/ = 1 / = 1

the desired contradiction. This completes the proof of Lemma 2.
LEMMA 3. Let M be a CEF-module such that M/Soc(M) has finite uniform dimension.

Then M has finite uniform dimension.

Proof. It is enough to show that 5 = Soc(M) is finitely generated. Suppose that 5 is

infinitely generated; then we can write 5 = 0 5,, where each 5, is infinitely generated.

Since M is a CEF-module, each 5, has a maximal essential extension D, which contains a

finitely generated essential submodule Bh Then clearly £>,#5,, and 0 ((£>, + 5)/5) is an
infinite direct sum in M/S, a contradiction.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Suppose that there exists an infinite ascending chain of direct
summands As of M:

There is a direct summand B\ of M such that M = Ax® Bx. Then it is clear that
A2 = AX®{A2C\BX). Thus there is a submodule B2 of B, such that Bx = B2®(A2C\ Bx).
It follows that M = A2® B2. Repeating this argument, we produce an infinite descending
chain of direct summands Bt of M with

Let Bn = Cn+X © Bn+X with n > l , and put CX=AX. Then we get an infinite sequence {Cn}
of direct summands Cn of M, such that

M = (®c)®Bn, and ( © c) c Bn

for each n ^ 1.
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Since each C, is finitely generated, C, contains a maximal submodule Xh Consider the

quotient module /> = A / /0A ' , . Then we have 5 = I 0 C, ) / ( 0 XtI is a semisimple
/ /=1 \i=\ II \i = l /

n

submodule of P. Note that, by the construction, for each n, Sn = 0 (C,/Ar,) is a direct
/=i

summand of P. It follows that every finitely generated submodule of S, being a direct
summand of some Sn, must be a direct summand of P.

By hypothesis, P = Pt © D , where P, is a CEC-module and D has finite uniform
dimension. Let S' = PiC\S; then S = S'@T for some submodule 7 of 5. Since T is
isomorphic to a submodule of D, T is finitely generated. Thus S' is infinitely generated.
Since Px is a CEC-module, it is easy to see that 5' has a cyclic essential extension L in P,.
Again by hypothesis, L = N ®F such that N is a CEC module and F has finite uniform
dimension. Let Q = NHS'; then Q is essential in N. Repeating the above argument, we
can show that Q is infinitely generated. It is also clear that every finitely generated
submodule of Q is a direct summand of N.

Now we have N/Q = H © G, where H is a CEC-module and G has finite uniform
dimension. We see that N satisfies the conditions of Lemma 2, thus N/Q cannot be a
CEC-module, so G must be nonzero. Since G is cyclic, there is a cyclic submodule N, of
N such that (Ni + Q)/Q = G. Let Q^N^nQ; then Q ^ S o c M ) and NJQ^ = G, so
NJQX has finite uniform dimension. By hypothesis, Nt = N2®Y such that N2 is a
CEC-module and Y has finite uniform dimension. Then

NjQt = N2/Soc(N2) © y/Soc(y).

and it follows that N2/Soc(N2) has finite uniform dimension. By Lemma 3, Soc(A^) is
finitely generated, hence (2i is finitely generated. Therefore <2i is a direct summand of N,
and, since <2i ' s essential in Nu it follows that N{ = QU so G = 0. This contradiction
completes the proof of the theorem.

REMARK. We are unable to answer the following question. Let M be a cyclic module
such that every cyclic subquotient of M is a direct sum of a CEC-module and a module
with finitely generated socle. Does M satisfy ACC on direct summands?

For CEF-modules, the following theorem can be obtained with a proof similar to that
of Theorem 1.

THEOREM 4. Let M be a finitely generated module such that for every nonzero
submodule A of M, every finitely generated submodule of Ml A is a direct sum of a
CEF-module and a module with finite uniform dimension. Then M has ACC on direct
summands.

Next we will derive some consequences of these results. The first corollary is the
main result of [9], which is turn is a generalization of [6] and [7].

COROLLARY 5 (see [9]). Let M be a cyclic module such that every cyclic subquotient of
M is a direct sum of a CS-module and a module with finite uniform dimension. Then M is a
finite direct sum of uniform modules.

Proof. By Theorem 1, M has ACC on direct summands; thus M is a finite direct sum
of indecomposable submodules. Now the result follows from the fact that an indecom-
posable CS-module is uniform.

https://doi.org/10.1017/S0017089500008880 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008880


GENERALIZED INJECTIVITY AND CHAIN CONDITIONS 323

The next result can be regarded as a refinement of the Osofsky-Smith theorem in
[17].

COROLLARY 6. Let M be a cyclic module such that every cyclic subquotient of M is a
CEC-module. Then M has ACC on direct summands.

COROLLARY 7. Let M be a finitely generated module such that every finitely generated
subquotient of M is a CEF-module. Then M has ACC on direct summands.

The following result is immediate from Corollaries 6 and 7.

COROLLARY 8. Let R be a ring for which every cyclic {respectively finitely generated)
right module is a CEC-module {respectively CEF-module). Then every cyclic {respectively
finitely generated) right R-module satisfies ACC on direct summands.

If R is a von Neumann regular ring, then every finitely generated right ideal of R is
principal. Thus, from the proof of Theorem 1, we obtain

COROLLARY 9. Let R be a von Neumann regular ring. Then R is semisimple Artinian
if and only if every cyclic right R-module is a CEF-module.

In [14, Lemma 5], Osofsky proved that if {e,}r=i is an infinite set of orthogonal
/ °°idempotents in a von Neumann regular right self-injective ring R, then R / © e:R is not

an injective right R-module. From Lemma 2 we can obtain a related result.

COROLLARY 10. Let R be a von Neumann regular right self-injective ring. If
S = Soc(/?R) is infinitely generated, then {R/S)R is not a CEF-module.

Proof. Let E be the injective hull of 5 in RR; then the module ER satisfies the
conditions of Lemma 2. Note that every finitely generated submodule of ER is cyclic.
From the proof of Lemma 2, it follows that {E/S)R is not a CEF-module. It is easy to
prove that a direct summand of a CEF-module is again CEF, so we obtain that {R/S)R is
not a CEF-module.

Modules with chain conditions on essential submodules have been studied extensively
in recent years (see e.g. [2, 3, 8, 11, 16, 18, 19]). Extending [8] and [11], Camillo and
Yousif [3] showed that if M is a CS-module such that A//Soc(M) has finite uniform
dimension, then M is a direct sum of a semisimple module and a module with finite
uniform dimension. Note that a module with finite uniform dimension has ACC on direct
summands. Now we shall extend the above result of Camillo and Yousif to CS-modules M
with M/Soc{M) satisfying ACC on direct summands. For our result, we need some
lemmas, the first of which is elementary, so we omit the proof.

LEMMA 11. For a module M the following conditions are equivalent.
(a) M satisfies ACC on direct summands.
(b) M does not contain an infinite direct sum © At of submodules At, where © Atis a

direct summand of M for each n > 1.

LEMMA 12. Let M be a module and S = Soc(M).
(a) // A and B are submodules of M with A D B = 0, then

{{A + S)/S)n{{B
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(b) If A is a direct summand of M, then (A + S)/S is a direct summand of M/S.

(c) / / 0 A is a direct sum of submodules of M, then 0( ( /4 , + S)/S) is also a direct
iel iel

sum of submodules in M/S.

Proof, (a) Let / : M - » M / 5 be the canonical map. Suppose that A and B are
submodules of M such that A(1B = O. Set V=f(A)nf(B), then there exists a
submodule VcA such that f(V) = V. Clearly VcB + S = B®T for some submodule
I c 5 . Since V D B = 0, it follows that V is isomorphic to a submodule of T. Hence V c S
which implies that V = 0. Therefore we have f{A) n / (B) = 0.

(b) Let A be a direct summand of M. Then M = A © S for some submodule B of M.
Clearly M/S =f(A)+f(B). By (a) we have f(A)nf(B) = 0. Thus /(/I) is a direct
summand of M/S.

(c) This is an immediate consequence of (a).

Following Smith [19], a module M will be called almost semisimple if M has essential
socle and every finitely generated semisimple submodule of M is closed in M.

PROPOSITION 13. Let M be a CS-module such that M/Soc(M) has ACC on direct
summands. Then M is a direct sum of a semisimple module and a module with finite
uniform dimension.

Proof. Let S = Soc(Af). Then M = Af, ©M2, where S is essential in A/,. Clearly M2 is
isomorphic to a direct summand of M/S, thus by hypothesis M2 has ACC on direct
summands. Hence M2 is a finite direct sum of indecomposable submodules, and, since M2

is CS, M2 is a finite direct sum of uniform modules. Therefore, without loss of generality,
we may assume that M has essential socle.

Now we show that M is a direct sum of an almost semisimple module and a module
with finite uniform dimension. If M is not almost semisimple, there exists a finitely
generated submodule 5, of 5 such that 5, is not closed in M. Then 5, is essential in a
direct summand Ax of M, and Ax =£5,. Let M - A{ © B,. If B, is not almost semisimple,
Bx contains a finitely generated semisimple submodule 52 which is not closed in B,. Thus
S2 is essential in a direct summand A2 of Bu and A2^S2. Note that Ax ®A2 is a direct
summand of M. Repeat this process; it produces a direct sum Ax ® A2® A3®. . . of
submodules A, of M such that At has finite uniform dimension and At is not semisimple

n

for each i ^ l , and furthermore 0^4,- is a direct summand of M for all n > 1. By
i=i

Lemma 12,

is a direct sum in M/S, and 0 ((/I, + S)/S) is a direct summand of M/S for all n > 1. By
i'=i

Lemma 11, this process must stop. Therefore M is a direct sum of an almost semisimple
module N and a module F with finitely generated essential socle. Clearly N is a
CS-module and N/Soc(N) has ACC on direct summands.

Next we show that N is semisimple. Let £ be a finitely generated submodule of N.
Then E is essential in a direct summand H of N. Suppose that T = Soc(£) is infinitely
generated. We claim that T contains an infinitely generated submodule which is closed in
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H. Assume that it is not so. Take an infinitely generated submodule T, of T such that
T/Tx is infinitely generated. Then H = C, © Du where T, is essential in C,. Clearly
Soc(D,) is infinitely generated. Take an infinitely generated submodule T2 of Soc(D,) such
that (Soc(Di))/T2 is infinitely generated. Then T2 is essential in a direct summand C2 of H.
Continuing in this manner, we get an infinite direct sum Ct(B C2 © C3 © . . . of H such

n

that C, is not semisimple and 0 C, is a direct summand of H for all n > 1. Since
/=i

H/Soc(H) has also ACC on direct summands, Lemma 12 gives us a contradiction. Thus T
contains an infinitely generated submodule K which is closed in H. Then K is a direct
summand of H, and hence of E, so K is finitely generated. This contradiction shows that
T = Soc(£) must be finitely generated. Because N is CS and almost semisimple, T is a
direct summand of N. But T is essential in E, so we get that T = E, thus £ is semisimple.
Therefore N is semisimple which completes the proof.

REMARK. In [19] Smith introduced weak CS-modules as modules in which every
semisimple submodule is essential in a direct summand. By [19, Corollary 2.7], if M is a
weak CS-module such that M/Soc(M) has finite uniform dimension, then M is a direct
sum of a semisimple module and a module with finite uniform dimension. Also, Osofsky
[16] studied CS-modules satisfying K-chain conditions on essential submodules, for an
infinite cardinal N. Thus, it might be interesting to investigate CS or weak CS-modules M
such that M/Soc(M) satisfies X-chain conditions on direct summands, for an infinite
cardinal K.

Extending the Osofsky-Smith theorem [17], Camillo and Yousif [3] proved that if M
is a cyclic CS-module such that all cyclic singular subquotients of M are CS-modules, then
M has finite uniform dimension. As an application of Proposition 13, we can now get a
partial generalization of this last result.

PROPOSITION 14. Let M be a CS-module with the essential socle S such that M/S is
cyclic and all cyclic singular subquotients of M are CEC-modules. Then M is a direct sum
of a semisimple module and a module with finite uniform dimension.

Proof. Clearly every cyclic subquotient of M/S is a CEC-module. Thus, by Corollary
6, M/S has ACC on direct summands. The result follows now by Proposition 13.
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