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We introduce a low-order dynamical system to describe thermal convection in an annular
domain. The model derives systematically from a Fourier–Laurent truncation of the
governing Navier–Stokes Boussinesq equations and accounts for spatial dependence
of the flow and temperature fields. Comparison with fully resolved direct numerical
simulations (DNS) shows that the model captures parameter bifurcations and reversals
of the large-scale circulation (LSC), including states of (i) steady circulating flow,
(ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms
of the fluid’s angular momentum and centre of mass (CoM) reveals equivalence to a
damped pendulum with forcing that raises the CoM above the fulcrum. This formulation
offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced
pendulum, and it yields an explicit formula for the frequency f ∗ of regular LSC reversals in
the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement
with DNS and produces the scaling law f ∗ ∼ Ra0.5.

Key words: Bénard convection, buoyancy-driven instability, low-dimensional models

1. Introduction

Thermal convection and the associated large-scale circulation (LSC) play an instrumental
role in applications diverse as atmospheric and oceanic flows (Salmon 1998; Zhong,
Funfschilling & Ahlers 2009), mantle and liquid-core convection (Whitehead 1972; Zhang
& Libchaber 2000; Zhong & Zhang 2005; Whitehead & Behn 2015; Huang et al. 2018) and
solar magneto-hydrodynamics (de Wit et al. 2020). In these settings, it is known that the
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LSC can spontaneously reverse direction (Ahlers, Grossmann & Lohse 2009), manifesting,
for example, as a sudden change in wind direction (van Doorn et al. 2000) or potentially a
reversal of the Earth’s magnetic dipole (Glatzmaier et al. 1999).

Large-scale circulation reversals have been observed in controlled laboratory
experiments (Creveling et al. 1975; Gorman, Widmann & Robbins 1984, 1986; Castaing
et al. 1989; Brown & Ahlers 2007; Xi & Xia 2007; Sugiyama et al. 2010; Song,
Villermaux & Tong 2011; Wang et al. 2018; Chen et al. 2019) and numerical simulations
(Sugiyama et al. 2010; Xu, Chen & Xi 2021), where a progressive increase of the Rayleigh
number Ra triggers a sequence of transitions. Depending on underlying conditions, this
sequence can include: (i) the onset of fluid motion giving rise to steady circulation; (ii)
the destabilization of this circulatory state giving rise to chaotic reversals of the LSC;
(iii) a return to order at high Ra in which LSC reversals recur periodically despite
small-scale turbulence.

Despite much progress, LSC reversals remain poorly understood. Current theory can
be broadly categorized as application of the Lorenz equations or phenomenological
models. The Lorenz equations, originally derived in the context of planar upper and
lower boundaries with unbounded horizontal periodicity (Lorenz 1963), captures many
of the transitions listed above. However, when applied to the finite geometries accessible
to experiments, the Lorenz system only describes the spatially averaged flow (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann, Gorman & Robbins 1989; Ehrhard &
Müller 1990; Singer, Wang & Bau 1991), resulting in substantial quantitative differences
with experiments (Gorman et al. 1986). More recent phenomenological models account
for additional physical effects, such as detached thermal plumes or corner rolls, by
supplementing fundamental conservation laws with nonlinear or stochastic terms (Araujo,
Grossmann & Lohse 2005; Brown & Ahlers 2007; Ni, Huang & Xia 2015). While
these models lend great physical insight, the connection to first principles may not
be self-evident due to the ad hoc nature of the extra terms. In rectangular and
cylindrical domains, it has been suggested that corner vortices and the associated turbulent
fluctuations can perturb the LSC structure, causing it to switch between two bistable states
(Brown & Ahlers 2007; Sugiyama et al. 2010). Switching may occur irregularly, partly due
to intermittent heat accumulation and release (Wang et al. 2018).

In this article, we discuss one physical scenario in which a first-principled and precise
understanding of LSC reversals can be gained. The scenario is thermal convection in
a narrow annulus, closely related to a so-called closed-loop thermosyphon (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann et al. 1989; Ehrhard & Müller 1990;
Singer et al. 1991; Basu, Bhattacharyya & Das 2014). The annular geometry reinforces the
dominant circular structure of natural convection, while eliminating corner-induced effects
that tend to introduce greater complexity and tend to be geometric specific. The confined
nature of the annular flow is more amenable to low-dimensional characterization, while
also exhibiting sufficiently complex behaviour, such as chaotic and periodic LSC reversals,
to be useful for understanding convection. The results of our study complement those
conducted in rectangular geometries, where domain corners impact convective behaviour
(Brown & Ahlers 2007; Sugiyama et al. 2010; Ni et al. 2015; Chen et al. 2019).

Rather than beginning with the Lorenz equations and making adjustments to suit
the annulus, we derive a low-order system directly from a Fourier–Laurent truncation
of the governing Navier–Stokes Boussinesq (NSB) equations. The resulting system
resembles the Lorenz equations, but differs in a few important ways. Notably, the
Laurent expansion accounts for spatial dependence of the flow (see also Yorke, Yorke &
Mallet-Paret 1987), permitting exact enforcement of boundary conditions without the need
for empirically estimated friction or heat-transfer coefficients. Comparison with direct
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numerical simulations (DNS) shows this system captures the entire sequence of transitions,
including regimes of chaotic and periodic LSC reversals.

Importantly, we show equivalence between this low-order system and an externally
driven mechanical pendulum. Two length scales naturally emerge from this
correspondence: the fulcrum y1 of the pendulum and the point y0 towards which
the fluid centre of mass (CoM) is externally driven, both given by explicit formulas.
Knowledge of these quantities yields a simple formula for the frequency of periodic LSC
reversals in the high-Ra regime, shown to be in excellent agreement with DNS. Further,
this correspondence reveals a transparent mechanism for reversals, namely the inertial
overshoot of the fluid CoM as equivalent to a forced pendulum. The clean characterization
afforded by annular convection may offer a new point of approach for understanding
convection in other geometries.

2. Convective states revealed by direct numerical simulations

Figure 1(a) depicts the problem setup in which a two-dimensional annular fluid domain
is heated from below. Thermal exchange occurs along the outer boundary with an
imposed temperature that decreases linearly with height, while the inner boundary remains
adiabatic. Dimensionless temperature T , velocity u and pressure p fields are governed by
the incompressible NSB equations

∂u
∂t

+ u · ∇u = −∇p + Pr ∇2u + Ra Pr Tey, (2.1)

∂T
∂t

+ u · ∇T = ∇2T, (2.2)

∇ · u = 0, (2.3)

holding in the dimensionless annulus, r0 < r < 1/2, where r0 is the radius of the inner
boundary shown in figure 1(a). Both the inner and outer rings are no-slip boundaries.
Parameters include the Rayleigh number Ra = βT�Th3g/(νκ) and Prandtl number Pr =
ν/κ (Appendix A), where h is the dimensional outer boundary diameter and �T is the
temperature difference between the bottom and top points of the outer boundary. Other
physical parameters include βT , g, ν, κ , which are the thermal expansion coefficient,
acceleration due to gravity, kinematic viscosity and thermal diffusivity, respectively. When
Ra is sufficiently high, the destabilizing action of buoyancy can give rise to natural
convection.

To quantify different convective states, we will examine the spatially averaged fluid
angular momentum L(t) and the fluid CoM coordinates (X(t), Y(t)), given by

L(t) = 1
A0

∫
Ω

ru dA, (2.4)

X(t) = − 1
A0

∫
Ω

xT dA, (2.5)

Y(t) = − 1
A0

∫
Ω

yT dA. (2.6)

Here, A0 = π(1 − 4r2
0)/4 is the area of the annulus Ω and dA = r dr dθ is the area

element. The fluid CoM coordinates above are expressed in terms of the temperature
field owing to the fact that fluid density varies as the negative of T . We note that L > 0
corresponds to a counter-clockwise rotating flow.
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Figure 1. Direct numerical simulations of natural convection in an annulus. (a) Schematic of an annular fluid
domain heated from below. (b) At low Ra (3.9 × 105), the conductive state is stable, resulting in a raised
CoM (green dot). Any initial angular momentum quickly dissipates as shown in the plot of L(t) below. (c) At
higher Ra (3.1 × 106) the system transitions to steady circulation with offset CoM and non-zero L. (d) At yet
higher Ra (5 × 107), the LSC can spontaneously reverse direction. The fluid CoM wanders erratically (green
trajectory) and L(t) reverses chaotically. (e) At the highest Ra (1.6 × 109), the LSC reversals recur periodically,
even though the small-scale flow is turbulent. ( f ) The temperature power spectrum of (e) peaks at frequency
f ∗, corresponding to the LSC reversal frequency. At higher frequency, the decay rate is consistent with a −1.4
power law. See supplementary movies (b)–(e) available at https://doi.org/10.1017/jfm.2024.584. In all cases,
Pr = 4 and r0 = 0.4.

The range of convective states are revealed by DNS of the NSB system, as shown in
figure 1. Simulations are based on a Chebyshev–Fourier pseudo-spectral discretization
(Appendix B) of (2.1) to (2.3) in streamfunction–vorticity form with implicit–explicit
time stepping (Peyret 2002; Huang, Shelley & Stein 2021; Huang & Zhang 2023). At low
Ra, figure 1(b) shows the existence of a stable conductive state with no fluid motion and
with raised CoM (green dot). In this regime, perturbations to the conductive state decay
rapidly, as seen in the plot below showing L(t) → 0. Increasing Ra eventually destabilizes
the system, leading to the state shown in figure 1(c), where the fluid circulates either
clockwise (CW) or counterclockwise (CCW) at a constant rate. In this state, the fluid
CoM is fixed and offset from centre. By further increasing Ra, this steady circulating
state also destabilizes; the direction of circulation now alternates over time and the flow
reverses chaotically, as shown in the time series of L in figure 1(d). The fluid CoM wanders
erratically in this regime. Interestingly, large-scale chaos disappears when Ra becomes
sufficiently high, and figure 1(e) reveals an oscillating state with periodic LSC reversals.
Here, the oscillatory CoM trajectory resembles pendulum motion. Although the reversals
are periodic, the small-scale flow is turbulent and resolved by the DNS. The turbulent
fluctuations are characterized by the frequency power spectrum of the temperature field,
shown in figure 1( f ) to follow the turbulent Bolgiano–Obukhov power law of natural
convection (Wu et al. 1990; Lohse & Xia 2010).

3. Low-order model for LSC reversals

All of these states can be recovered by a low-dimensional system that arises directly from
the governing NSB equations. As further detailed in Appendix C, the brief derivation is as
follows. In polar coordinates, u = u(r, θ, t)eθ + v(r, θ, t)er and T = T(r, θ, t), consider
a Fourier expansion in θ and a Laurent expansion in r, and truncate each to a desired
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Large-scale reversals explained by pendulum correspondence

order while enforcing all boundary conditions (BCs). The choice of Laurent expansion is
guided by the form of the conductive-state solution and recovers this basic state with no
approximation made. Inserting the truncated variables into (2.1) to (2.3) and projecting
onto the Fourier–Laurent basis yields a finite-dimensional system.

Truncating the combined Fourier–Laurent expansion at the lowest order capable of
satisfying all BCs and casting in terms of the physically relevant variables L(t),X(t), Y(t)
produces the dynamical system

L̇ = −Ra Pr X − α Pr L, (3.1)

Ẋ = −kL(Y − y1)− βX, (3.2)

Ẏ = kLX − β(Y − y0). (3.3)

This system governs the evolution of the fluid angular momentum L(t) and fluid CoM
coordinates (X(t), Y(t)) defined in (2.4) to (2.6). The coefficients α, β, k, y0, y1 > 0 are
purely geometric in that they depend on r0 only. Formulas for these coefficients are given
in Appendix C. Although no assumption is made on the width of the annulus, the low-order
truncation is most accurate for a relatively narrow annulus. We therefore set r0 = 0.4 in
all numerical examples. Higher-order truncations could be used for a wider annulus.

The above system exhibits the same quadratic nonlinearity as the Lorenz equations. The
parameter structure, however, arises directly from the annular geometry and differs from
that of Lorenz. Differences, therefore, exist in the parameter regimes accessible by each
system and especially in the threshold values separating different states.

While the comparison with the Lorenz equations can be illuminating, even more
physical insight can be gained by recognizing how (3.1) to (3.3) relate to a mechanical
pendulum. In particular, if one artificially sets β = 0, then (3.1) to (3.3) are identical to
those of a pendulum with fulcrum y1, length l =

√
X2 + (Y − y1)2, effective gravitational

constant geff = kl2 Ra Pr and damping rate αPr. The system is simply written in terms
of the pendulum CoM and angular momentum rather than the more familiar angular
displacement. In this equivalence, the pendulum CoM corresponds exactly to the fluid
CoM (X, Y) as defined in (2.5) and (2.6), and the pendulum angular momentum
corresponds exactly to the fluid angular momentum L as defined in (2.4). Note that the
effective gravitational constant geff of the pendulum system is unrelated to the actual
gravitational constant g of the thermal convection system. Also note that if β /= 0, the
two additional driving terms present in (3.2) and (3.3) can cause the pendulum length
l =

√
X2 + (Y − y1)2 to vary dynamically, opening the possibility of chaotic dynamics.

The driving terms involving β arise from the interaction of boundary heating and
buoyancy. As seen in (3.1) to (3.3), these terms drive the CoM towards the point (0, y0),
which Appendix A shows is the CoM of the conductive state. Thus, (L,X, Y) = (0, 0, y0)
corresponds to the conductive-state solution that is given explicitly by (A4) and depicted in
figure 1(b). Stability analysis discussed in § 4 shows that this state is stable up to a critical
Rayleigh number.

The most important parameters in the pendulum correspondence of (3.1) to (3.3) are
y0 and y1, corresponding to the height of the conductive-state CoM and the pendulum
fulcrum, respectively. Appendices A and C give explicit formulas for these two length
scales in terms of the geometric parameter r0. When the fluid CoM lies at the pendulum
fulcrum, (X, Y) = (0, y1), the restoring torque in (3.1) to (3.3) vanishes but the driving
terms that push (X, Y) towards (0, y0) do not vanish. The state (L,X, Y) = (0, 0, y1) is
therefore not an equilibrium of the system due to the continual injection of thermal energy
from the boundary. Appendix C further shows that y0 > y1 > 0 for any choice of r0,
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Figure 2. Trajectories of ODE system (3.1)–(3.3) in comparison with fully resolved DNS. The trajectories
of (L,X,Y) are remarkably similar across the range of Rayleigh numbers, showing (a) convergence to a stable
circulating state for Ra = 3.1 × 106, (b) strange-attractor dynamics for Ra = 5 × 107 and (c) periodic dynamics
for Ra = 1.1 × 109. In all cases, Pr = 4 and r0 = 0.4.

implying that the thermal injection always acts to raise the CoM above the fulcrum and,
hence, tends to destabilize the system.

4. Bifurcations and comparison with DNS

How well do these simple ordinary differential equations (ODE) describe the dynamics
of convection? Figure 2 shows trajectories of (L,X, Y) computed by fully resolved DNS
(top) vs those computed by the ODE model (bottom) for the same Rayleigh numbers as
figure 1(c–e). Figure 2(a–c) shows that the trajectories from DNS and the ODE model are
remarkably similar across the range of Ra, exhibiting (a) convergence to a stable circulating
state, (b) chaotic dynamics near a strange attractor and (c) periodic orbits at the highest
Ra. The trajectories in figure 2(b,c) indicate reversals of the LSC, as can be seen by the
sign change of L. The LSC reversals are chaotic in figure 2(b) and periodic in figure 2(c).

The bifurcation diagram in figure 3 shows that a pitchfork bifurcation occurs at a
critical value Ra∗

1. At this value, the conductive state loses stability, and, simultaneously,
the bistable circulating states appear (CW and CCW circulation). At a second critical
value, Ra∗

2, these circulating states lose stability through a Hopf bifurcation. Immediately
past Ra∗

2, the dynamics is fractal-like and chaotic, characteristic of a strange attractor.
These observations are further supported by measurements of the fractal dimension D2
(Ott 2002) and Lyapunov exponent λ shown in the inset. At much higher Ra, order
reemerges and trajectories resemble the arc-like path of a pendulum.

The ODE model yields exact formulas for both critical values (Appendix D)

Ra∗
1 = αβ

k�y
, Ra∗

2 = α2 Pr
k�y

(
α Pr + 4β
α Pr − 2β

)
, (4.1a,b)

where �y = y0 − y1 > 0 is the distance between the conductive-state CoM and the
pendulum fulcrum. Briefly, the value Ra∗

1 is found through linear stability analysis of
the conductive state (L,X, Y) = (0, 0, y0). As Ra crosses Ra∗

1, the conductive state loses
stability and the circulating states appear. Immediately past Ra∗

1, the Jacobian of each
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Figure 3. Bifurcation diagram shows a pitchfork bifurcation at Ra∗
1 and a Hopf bifurcation at Ra∗

2. Trajectories
corresponding to figure 2(a–c) are marked on the diagram; for all trajectories, Pr = 4 and r0 = 0.4. Inset: the
fractal dimension D2 and Lyapunov exponent λ distinguish chaotic states from orderly ones.

circulating state possesses three real, negative eigenvalues. As Ra increases further, two
eigenvalues become complex, z2,3 = σ ± iω, with σ < 0 initially. As Ra crosses Ra∗

2, σ
becomes positive and thus the circulating states lose stability, giving way to the strange
attractor seen in figure 2(b). This analysis is similar to that conducted for the Lorenz
equations (Welander 1967; Creveling et al. 1975; Gorman et al. 1986; Ehrhard & Müller
1990), the main difference being that modelling choices made early on (e.g. accounting
for the flow’s spatial dependence) enable greater accuracy in predicting the bifurcation
parameters than obtained previously (Gorman et al. 1986).

The phase diagram in figure 4 gives a bird’s eye view of the different convective states.
In the figure, coloured dots correspond to fully resolved DNS, showing regions of a stable
conductive state (blue), bistable circulating states (green) and LSC reversals, both chaotic
(orange) and periodic (red). The boundaries between these regions are well predicted by
the formulas for Ra∗

1 and Ra∗
2 given in (4.1). In particular, Ra∗

1 is independent of the Prandtl
number, giving the vertical green line. The predicted value of Ra∗

1 agrees with DNS in all
cases to within the grid resolution of figure 4. Meanwhile, the orange curve shows the Pr
dependence of Ra∗

2. For the important case of water, 4 < Pr < 8, this threshold is also
predicted to within the grid resolution. While some discrepancy is visible for other values
of Pr, the curve captures the qualitative shape of the boundary, in particular the horizontal
asymptote Pr∗ = 2β/α obtained by setting the denominator of Ra∗

2 equal to zero. We
note that, even though it is a very different geometry, thermal convection in a rectangular
domain yields a phase diagram with the same states and with similar orders of magnitude
for the thresholds (Araujo et al. 2005).

5. Periodic LSC reversals at high Ra

As Ra increases well beyond Ra∗
2, large-scale chaos subsides and gives way to the nearly

periodic trajectories seen in figure 2(c). While the bifurcations discussed in the previous
section have been qualitatively described by related models, the periodic regime has
received less attention and, so far, has resisted clean characterization. It is precisely this
regime where the novel mechanical-pendulum correspondence becomes most valuable.

As seen in the figure 3 inset, the return to order at high Ra is indicated by the fractal
dimension dropping to one and the Lyapunov exponent dropping to zero at the same
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Figure 4. Phase diagram of different convective states. Coloured dots are from DNS, where blue indicates a
stable conductive state, green indicates bistable circulating states, orange indicates chaotic LSC reversals and
red indicates periodic LSC reversals. Formulas for Ra∗

1 and Ra∗
2 from the ODE model predict the boundaries

between the regions well.
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Figure 5. At very high Ra, order reemerges and the large-scale dynamics becomes periodic. (a) The fluid CoM
follows the swinging motion of a pendulum about fulcrum (0, y1). (b) The frequency of LSC reversals is well
predicted by (5.1) for high Ra. In all cases, Pr = 4 and r0 = 0.4.

Rayleigh number, roughly Ra = 109. At this value, a stable limit cycle emerges in the ODE
system, giving CoM orbits that resemble pendulum motion. Figure 5(a) shows four such
orbits of the fluid CoM (X(t), Y(t)) for Rayleigh numbers in the range 1/4 × 1010 < Ra <
16 × 1010. At the lowest Ra, the corresponding pendulum length l(t) =

√
X2 + (Y − y1)2

varies somewhat over the period. At higher Ra, though, the orbit tightens and l remains
nearly constant throughout. Recall that, even though the large-scale dynamics of the fluid
angular momentum L(t) and CoM (X(t), Y(t)) is regular in this regime, the DNS shows
that turbulent fluctuations inhabit the small scales (see figure 1e).

Each swing of the pendulum seen in figure 5(a) corresponds to a sign change of the
fluid angular momentum L and, therefore, a reversal of the LSC. This simple observation
offers a way to predict the dominant frequency f ∗ of LSC reversals. In the pendulum
correspondence of (3.1) to (3.3), the gravitational constant is geff = kl2 Ra Pr, giving
a small-amplitude frequency of

√
kl Ra Pr/(2π). The amplitudes seen in figure 5(a),

however, are not small, implying that the frequency depends on both the pendulum length
l and the maximum swing angle φmax.

As detailed in the Appendix E, both of these quantities can be estimated through
an energy balance with Eeff = 1

2 kL2 + Ra Pr(Y − y1) representing the sum of kinetic
and potential energy of the mechanical-pendulum system. This quantity is an effective
energy of the pendulum system and does not directly represent the actual energy of the

993 A3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.584


Large-scale reversals explained by pendulum correspondence

thermal convection system. Although Eeff is not necessarily conserved over the dynamics,
it does satisfy a precise energy law with energy injection (from boundary heating) and
dissipation (from fluid viscosity). In the case of a limit cycle, the total energy injected
must balance that dissipated, and the period-averaged Eeff is conserved. With a few
additional approximations made, this principle allows one to solve for pendulum length
and maximum swing angle that arise in the case of a limit cycle. The resulting values of l
and φmax depend on geometry and Pr, but not on Ra (see Appendix E). With these values
known, the (dimensionless) frequency of high-Ra LSC reversals is given by

f ∗ =
√

kl Ra Pr

4K(sin2(φmax/2))
, (5.1)

where K is the complete elliptic integral of the first kind.
Figure 5(b) shows a comparison between this simple formula and the reversal frequency

measured in the fully resolved DNS. In the DNS, the reversal frequency is measured as
the peak location in the temperature power spectrum (see figure 1f ). Figure 5(b) shows
that (5.1) predicts the reversal frequency measured in DNS remarkably well over the
largest decade of Ra run (roughly Ra = 2 × 108 to 2 × 109). At higher Ra, DNS becomes
computationally prohibitive but numerical solution of the ODE model is feasible, and the
corresponding measurements of f ∗ also agree with (5.1). The close agreement between
DNS, the ODE model, and (5.1) suggests the primary mechanism for LSC reversals has
been properly accounted for by the mechanical-pendulum correspondence.

In dimensional terms, (5.1) gives a reversal frequency of F∗ = cN∗, where
N∗ = √

βT�Tg/h is the Brunt–Väisälä frequency, i.e. the inverse of the free-fall time
scale, and c is a constant that depends on geometry and Pr, but not Ra (Appendix E).
We note that c = 0.04 for the case of figure 5, indicating roughly 25 free-fall time scales
per reversal event. Other geometries may yield different values of this ratio.

6. Discussion

The low-order system given by (3.1) to (3.3) arises from systematic analysis of the
governing NSB equations and has been shown to accurately describe a range of convective
states in the annular domain. In contrast with related Lorenz-type models (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann et al. 1989; Ehrhard & Müller 1990;
Singer et al. 1991; Araujo et al. 2005), the Laurent expansion underlying (3.1) to (3.3)
accounts for spatial dependence of the flow and temperature fields, precluding the need
for empirically estimated friction or heat-transfer coefficients. This modelling choice
enables greater accuracy in predicting parameter bifurcations, as demonstrated by direct
comparison with fully resolved DNS. Many of these related models have been used as the
foundation for control (Singer et al. 1991; Wang, Singer & Bau 1992), data assimilation
(Harris et al. 2012; Chen & Majda 2018) and machine learning (Chen 2020). The accuracy
and conceptually transparency afforded by (3.1) to (3.3) could further such endeavours.

Importantly, this low-order system reveals a previously unrecognized pendulum
structure underlying natural convection. In particular, (3.1) to (3.3) correspond to a damped
pendulum with CoM driven upwards towards the conductive-state CoM. In addition to
its physical elegance, this equivalence enables accurate predictions for the frequency
of regular LSC reversals observed at high Ra. Furthermore, it provides a transparent
mechanism for the reversals. Just like a mechanical pendulum, inertia causes the fluid
CoM to overshoot equilibrium. The CoM eventual reaches a zenith, at which point the
restoring torque reverses the system’s angular momentum, thereby creating a LSC reversal.
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The driving terms in (3.1) to (3.3) are necessary to counteract the damping from viscous
dissipation; it is the interplay between these two terms that selects the effective pendulum
length, the swing angle and thus the frequency of reversals.

This low-order model is closely related to the Lorenz equations; indeed, a change of
variables can map (3.1) to (3.3) to a system with the same variable structure but a different
parameter structure as Lorenz. A corollary of this fact is that the Lorenz system too could
be usefully regarded as an externally driven mechanical pendulum. This observation may
lend new insights into the study of the Lorenz equations. We note that, although periodic
solutions of the Lorenz equations have been explored mathematically (Robbins 1979;
Sparrow 2012), the physical connection to LSC reversals was not made.

A benefit of the annular domain is that it accentuates the dominant circulating pattern of
natural convection, while suppressing other, geometric-specific effects. Related to this fact,
we have found that the annulus yields a simple law for the Ra-dependence of the periodic
LSC reversal frequency f ∗, described by an explicit formula, (5.1), and corroborated by
comparison with DNS. Previous theoretical analysis in a rectangular geometry suggests
the power law f ∗ ∼ Ra0.44 (Araujo et al. 2005), and laboratory experiments with cryogenic
helium gas in a cylindrical container suggest f ∗ ∼ Ra0.71 (Araujo et al. 2005). In the
present case of an annulus, the modelling prediction and DNS are in agreement, both
unambiguously showing a scaling of f ∗ ∼ Ra0.5. Therefore, annular convection may be
considered an ideal ‘ground state’ that yields a precisely determined scaling law for the
frequency of reversals. Perhaps future studies could build upon this model to determine
how the scaling law is modified by various geometric effects.

Curiously, the scaling law f ∗ ∼ Ra0.5 is seen in experimental measurements of thermal
convection in a disk (Song et al. 2011), but for the frequency of oscillations in the strength
of the LSC. The period of this oscillation is much shorter than the average reversal time
seen in the experiments (Wang et al. 2018), suggesting differences in the LSC reversals
that occur in disk convection. In the annular domain, the inner boundary at r = r0 serves
as a confinement that regulates the flow. The recent study of Li, Chen & Xi (2024)
demonstrates this concept experimentally, as the inclusion of a central obstruction in
Rayleigh–Bénard convection substantially modifies the flow structures and enhances heat
transfer.

Here, we have focused on the lowest-order system capable of satisfying the BCs
on the annulus, but the truncation procedure can in principle be carried out to any
order. At extremely high Ra, turbulent effects (Lohse & Xia 2010) are associated with
fine-scale structures, which could potentially be captured by retaining higher-order terms
in the Fourier–Laurent expansion, either directly or through stochastic parameterization.
Moreover, extension of the model into three dimensions could account for azimuthal
rotations of the LSC plane, which experiments have shown take a stochastic character
(Brown, Nikolaenko & Ahlers 2005). Finally, we hope to couple the model to slowly
moving boundaries to examine phase-change processes, such as melting or dissolution,
that couple to the action of natural convection (Huang, Moore & Ristroph 2015; Moore
2017; Huang et al. 2020; Huang & Moore 2022; Weady et al. 2022).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.584.
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Appendix A. Formulation and background

To obtain the dimensionless (2.1) to (2.3), space has been rescaled on h (the diameter of
the outer annulus boundary), time on h2/κ (the thermal diffusive time scale), velocity
on κ/h and density variations on �ρ = ρ0βT�T . The prescribed temperature on the
outer boundary, r = 1/2, decreases linearly with height, while the inner boundary, r = r0,
remains adiabatic. The velocity field, expressed as u = ueθ + ver in polar coordinates,
satisfies no-slip conditions on both boundaries. The BCs are thus

u = v = 0 at r = r0 and r = 1/2, (A1)

∂T
∂r

= 0 at r = r0, (A2)

T = 1 − sin θ
2

at r = 1/2. (A3)

Equations (2.1) to (2.3) support a conductive-state solution with no fluid motion
(u, v) = (0, 0). The corresponding temperature field that satisfies BCs (A2)–(A3) is given
by

T = 1
2

− r0

1 + 4r2
0

(
r
r0

+ r0

r

)
sin θ. (A4)

The fluid angular moment L and fluid CoM coordinates (see (2.4) to (2.6)) associated
with the conductive-state solution are

L = 0, X = 0, Y = y0 = 1 + 12r2
0

16(1 + 4r2
0)
. (A5a–c)

That is, y0 represents the CoM of the conductive state. As seen above, y0 > 0 for any value
of r0, indicating that the conductive-state CoM always lies above the annulus center.

Appendix B. Numerical methods

Equations (2.1) to (2.3) can be written in the streamfunction–vorticity form

∂ω

∂t
+ u · ∇ω = Pr∇2ω + Pr Ra

(
∂T
∂r

cos θ − 1
r
∂T
∂θ

sin θ
)
, (B1)

∂T
∂t

+ u · ∇T = ∇2T, (B2)

−∇2ψ = ω, u = ∇⊥ψ. (B3a,b)

Where the vorticity is ω = r−1[∂r(ru)− ∂θv], and the streamfunction ψ recovers the flow
velocity through u = ∇⊥ψ = r−1ψθer − ψreθ .
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Discretizing time with the second-order Adam–Bashforth backward differentiation
method, (B1) to (B3) become

∇2ω(n) − σ1ω
(n) = f (n), (B4)

∇2T(n) − σ2T(n) = g(n), (B5)

−∇2ψ(n) = ω(n), (B6)

at time step t = n�t. Here

∇2 = ∂2

∂r2 + 1
r
∂

∂r
+ 1

r2
∂2

∂θ2 , (B7)

σ1 = 3
2 Pr�t

, σ2 = 3
2�t

, (B8a,b)

f (n) = Pr−1[2(u · ∇ω)(n−1) − (u · ∇ω)(n−2)]

− (2 Pr�t)−1(4ω(n−1) − ω(n−2))

− Ra(Tr cos θ − r−1Tθ sin θ)(n), (B9)

g(n) = [2(u · ∇T)(n−1) − (u · ∇T)(n−2)]

− (2�t)−1(4T(n−1) − T(n−2)). (B10)

Explicit and nonlinear terms in f (n) and g(n) are computed pseudo-spectrally with an
efficient anti-aliasing filter (Hou & Li 2007). Equations (B4) to (B6) are then solved by the
Fourier–Chebyshev method detailed in Peyret (2002), Huang & Zhang (2023) and Huang
& Moore (2023). There are typically 1024 Fourier modes and 128 Chebyshev nodes in
each DNS of this article. The time step is �t = 5 × 10−4 Ra−1/2, considering the flow
velocity |u| ∼ √

Ra. These parameters are tested to yield resolved and accurate solutions.
For the ODE model, we use the ode45 package of MATLAB.

Figure 6 shows the convergence test of the DNS scheme. In the spatial convergence
test figure 6(a), the time step �t = 10−4 is fixed and Nr = Nθ = N. A high-resolution
solution with N = 1024 is computed first and the convergence towards this solution is
tested by letting N progressively increase. Figure 6(a) shows the results of this test and
demonstrates spectral convergence. That is, the error decreases exponentially with N until
a limiting error of roughly 10−9 is reached. In the temporal convergence test shown in
figure 6(b), Nr = Nθ = 100 is fixed and �t is decreased by half during each test and then
the error between each refinement is compared. Shown in figure 6(b), the refinement error
decays as O(�t2), demonstrating a second-order temporal convergence.

Appendix C. Derivation of the ODE model

In polar coordinates, the θ components of (2.1) to (2.3) are given by

ut + vur + 1
r

uuθ + 1
r

uv = −1
r

pθ + Ra Pr T cos θ

+ Pr
(

urr + 1
r

ur + 1
r2 uθθ − 1

r2 u + 2
r2 vθ

)
, (C1)
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Figure 6. Convergence of the numerical solver. (a) Spatial convergence test shows the error decays spectrally.
(b) Temporal convergence test demonstrates a second-order convergence in time stepping.

Tt + u
r

Tθ + vTr = 1
r
∂

∂r
(rTr)+ 1

r2 Tθθ , (C2)

vr + 1
r
v + 1

r
uθ = 0. (C3)

Multiplying (C1) by r2, integrating over the fluid domain, applying incompressibility (C3)
and the no-slip condition (A1) and using the CoM definition (2.5)–(2.6) gives

L̇ = −Ra Pr X + Pr
A0

∫ 2π

0
(r2ur)

∣∣∣∣∣
r1

r0

dθ. (C4)

This evolution equation for the fluid angular momentum is exact within the NSB
framework.

The temperature and velocity fields T(r, θ, t), u(r, θ, t), v(r, θ, t) are each periodic in θ
and so can be written as Fourier series

T(r, θ, t) = a0(r, t)+
∞∑

n=1

an(r, t) cos nθ + bn(r, t) sin nθ, (C5)

u(r, θ, t) =
∞∑

n=−∞
ûn(r, t) einθ , (C6)

v(r, θ, t) =
∞∑

n=−∞
v̂n(r, t) einθ . (C7)

The temperature BCs (A2)–(A3) imply

∂ran = ∂rbn = 0 at r = r0, (C8)

a0 = 1/2, b1 = −1/2, all others vanish at r = 1/2. (C9)

The no-slip BC (A1) and incompressibility (C3) yield conditions

ûn(r, t) = v̂n(r, t) = 0 at r = r0 and r = 1/2, (C10)

inûn + v̂n + r∂rv̂n = 0 for r ∈ (r0, 1/2). (C11)
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Given the constraints (C10) and (2.3), the lowest-order truncation of (C5) and (C6)
possible is

u(r, t) = û0(r, t), v(r, t) = 0, (C12a,b)

T(r, θ, t) = a0(r, t)+ a1(r, t) cos θ + b1(r, t) sin θ, (C13)

where a0, a1, b1, û0 satisfy the BCs (C8) to (C10).
Inserting (C12) and (C13) into (C2), multiplying by r2 and projecting onto respective

Fourier mode gives

ȧ0 = r−1∂r(r∂ra0), (C14)

r2ȧ1 = −rû0b1 − a1 + r∂r(r∂ra1), (C15)

r2ḃ1 = +rû0a1 − b1 + r∂r(r∂rb1). (C16)

Boundary conditions (C8)–(C9) then imply limt→∞ a0(r, t) = 1/2 irrespective of the
initial condition. We therefore set a0 = 1/2, since variations from this value simply reflect
the transient dynamics that is decoupled from the rest of the system.

From (2.4) to (2.6), L, X, Y can be evaluated as

L(t) = 2π

A0

∫ 1/2

r0

r2û0(r, t) dr, (C17)

X(t) = − π

A0

∫ 1/2

r0

r2a1(r, t) dr, (C18)

Y(t) = − π

A0

∫ 1/2

r0

r2b1(r, t) dr. (C19)

Differentiating equations (C18) and (C19) with respect to time and inserting (C15) and
(C16) gives

Ẋ = π

A0

∫ 1/2

r0

rû0(r, t)b1(r, t) dr − π

A0

(
r2 ∂a1

∂r
− ra1

)∣∣∣∣
r1

r0

, (C20)

Ẏ = − π

A0

∫ 1/2

r0

rû0(r, t)a1(r, t) dr − π

A0

(
r2 ∂b1

∂r
− rb1

)∣∣∣∣
r1

r0

. (C21)

Given that the conductive-state solution (A4) takes the form of a Laurent polynomial,
we consider a Laurent expansion of the variables û0(r, t), a1(r, t), b1(r, t). Truncating each
series to the lowest order capable of satisfying BCs (C8)–(C10) gives

û0(r, t) = C(t)(r − r0)(1 − 2r)r−1, (C22)

a1(r, t) = 1
2 A(t)(2r − 1)(1 − 2r2

0r−1), (C23)

b1(r, t) = −1
2 + 1

2 B(t)(2r − 1)(1 − 2r2
0r−1). (C24)

where (A,B,C) are time-dependent coefficients. We note that setting A(t) = C(t) = 0,
B(t) = −(4r2

0 + 1)−1 recovers the conductive-state solution, (A4), exactly.
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Inserting (C22) to (C24) into (C17), (C18) and (C19) gives linear relationships between
(L, X, Y) and (A, B, C):

L(t) = (1 − 2r0)
2

12
C(t), (C25)

X(t) = (1 − 2r0)
2(1 + 6r0 + 16r2

0)

48(1 + 2r0)
A(t), (C26)

Y(t) = 1 + 2r0 + 4r2
0

12(1 + 2r0)
+ (1 − 2r0)

2(1 + 6r0 + 16r2
0)

48(1 + 2r0)
B(t). (C27)

Evaluating the right-hand sides of (C4), (C20) and (C21) using (C22) to (C27) gives the
dynamical system (3.1) to (3.3) that is the main focus of this article. The coefficients
α, β, y0, y1, and k can be found by analytical integration (accelerated by symbolic
programming). Each of these coefficients depends on r0 only as given by

α = 48
(1 − 2r0)2

, β = 48(1 + 4r2
0)

(1 − 2r0)2(1 + 6r0 + 16r2
0)
, y0 = 1 + 12r2

0

16(1 + 4r2
0)
, (C28a–c)

k = 24
(1 − 2r0)(1 − 6r0 − 4r2

0 − 88r3
0 + 32r4

0)− 96r3
0 ln (2r0)

(1 − 2r0)5(1 + 6r0 + 16r2
0)

, (C29)

y1 = (1 − 4r2
0)(1 − 8r0 − 224r3

0 − 80r4
0)− 192r3

0(1 + 2r0 + 4r2
0) ln (2r0)

24(1 − 4r2
0)(1 − 6r0 − 4r2

0 − 88r3
0 + 32r4

0)− 2304(1 + 2r0)r3
0 ln (2r0)

. (C30)

Appendix D. Stability analysis of the ODE system

The fixed points of (3.1) to (3.3) are obtained by setting the right-hand sides equal to zero.
There can be up to three fixed points, given by the following.

(i) The conductive state
L = 0, X = 0, Y = y0. (D1a–c)

(ii) The circulating states

L = ±L1, X = ∓ α

Ra
L1, Y = y1 + αβ

kRa
, (D2a–c)

where

L1 = ±β
k

√
k Ra
αβ

�y − 1. (D3)

We note that the circulating states only exist if Ra ≥ αβ/(k�y) = Ra∗
1.

The Jacobian of (3.1) to (3.3) is

J(L,X, Y) =
⎡
⎣ −α Pr −Ra Pr 0

−k(Y − y1) −β −kL
kX kL −β

⎤
⎦ . (D4)

Evaluating the Jacobian at fixed point (D1), one can show that all eigenvalues are
negative if Ra < Ra∗

1, thereby confirming the conductive state is stable when Ra <
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Ra∗
1. Above Ra∗

1, (D1) becomes unstable and the two circulating states given by (D2)
appear, indicating a pitchfork bifurcation. The circulating states are stable provided that
Ra∗

1 < Ra < Ra∗
2, with Ra∗

2 defined in (4.1). Above Ra∗
2, the real part of the complex

eigenvalues become positive, rendering the circulating states unstable.

Appendix E. High-Ra LSC reversal frequency

At very high Ra, order reemerges in the system and the large-scale dynamics becomes
nearly periodic. The dominant frequency f ∗ of the LSC reversals can be obtained by the
pendulum equivalence of (3.1) to (3.3). In this correspondence, the gravitational constant
is geff = kl2 Ra Pr, which gives a small-amplitude frequency of

√
kl Ra Pr/(2π). The

oscillation amplitude, however, is not small, which implies that f ∗ depends on both the
pendulum length l and the maximum swing angle φmax, both of which can be estimated
through an energy balance.

Multiplying (3.2) by X, (3.3) by Y , and adding gives the exact relation
d
dt

l2 = −2βl2 + 2β�y(Y − y1). (E1)

Assuming periodicity implies that the time average of dl2/dt vanishes, giving

〈l2〉 = �y〈Y − y1〉, (E2)

where 〈·〉 indicates a time average.
Consider the effective energy of the pendulum system

Eeff = 1
2 kL2 + Ra Pr(Y − y1). (E3)

Here, the terms on the right-hand side represent the kinetic and potential energy of the
mechanical pendulum, respectively. Taking a time derivative and using (3.1) and (3.3),
gives the energy law

Ėeff = −α Pr kL2 + β Ra Pr( y0 − Y). (E4)

The first term above represents energy dissipation due to damping while the second
term represents positive energy injected into the system from the external driving. The
assumption of periodicity implies 〈Ėeff 〉 = 0, which gives

kα〈L2〉 = Raβ〈y0 − Y〉. (E5)

Meanwhile, directly averaging (E3) gives

〈Eeff 〉 = 1
2 k〈L2〉 + Ra Pr〈Y − y1〉. (E6)

At the bottom of the swing, Y = y1 − l, L = Lmax, the energy is

Ebot = 1
2 kL2

max − Ra Pr l. (E7)

Due to periodicity, 〈L2〉 = L2
max/m, where m is a constant. Although energy is not strictly

conserved, it is conserved on average for periodic dynamics. We therefore make the
assumption of nearly constant energy, Ebot = 〈E〉 in order to solve for l and φmax. Setting
(E6) equal to (E7) and using (E2) and (E5) gives

l = �y
(

(m − 1)β
(m − 1)β + 2αPr

)
. (E8)

At the apex, φ = φmax and Ẋ = Ẏ = 0. Equations (3.2) and (3.3) then simplify to
X2 = ( y0 − Y)(Y − y1). As X = l sinφ and Y = y1 − l cosφ, we have l = −�y cosφmax,
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thus providing the value of φmax once l is given by (E8). Based on figure 1(e), we choose
the value m = 2.5 as the midpoint of a sinusoidal (m = 2) and a triangular (m = 3)
waveform.

With the values of l and φmax determined, the frequency of (large-amplitude) pendulum
oscillation, and therefore the frequency of regular LSC reversals, is given by (5.1) in the
text. We note that the parameters of figure 4, Pr = 4 and r0 = 0.4, give values l = 0.005
and φmax = 1.62.

Converting (5.1) to a dimensional frequency gives

F∗ = κ

h2 f ∗ = cN∗, (E9)

where N∗ = √
βT�Tg/h is the Brunt–Väisälä frequency and

c =
√

kl

4K(sin2(φmax/2))
(E10)

is a constant that depends only on r0 and Pr. In particular, c is independent of the Rayleigh
number.
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