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Abstract

We analyze the existence of Kähler–Einstein metrics of positive curvature in the neigh-
borhood of a germ of a log terminal singularity (X, p). This boils down to solving
a Dirichlet problem for certain complex Monge–Ampère equations. We establish a
Moser–Trudinger inequality (MT )γ in subcritical regimes γ < γcrit(X, p) and show the
existence of smooth solutions in those cases. We show that the expected critical expo-

nent γ̃crit(X, p) = ((n+ 1)/n)v̂ol(X, p)1/n can be expressed in terms of the normalized
volume, an important algebraic invariant of the singularity.
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1. Introduction

Let (X, p) be a germ of an isolated singularity. We analyze the existence of local Kähler–Einstein
metrics of positive curvature in a neighborhood of p. It follows from [BBEGZ19, Proposition 3.8]
that the singularity has to be log terminal, a relatively mild type of singularity that plays a central
role in birational geometry. We refer the reader to Definition 2.8 for a precise formulation and
simply indicate here that a prototypical example is the vertex of the affine cone over a Fano
manifold. Consider indeed

X = {z ∈Cn+1, P (z) = 0},
P a homogeneous polynomial of degree d∈N∗ so that H = {[z]∈CPn, P (z) = 0} is a smooth
hypersurface of the complex projective space. Then (X, 0) is log terminal if and only if H is
Fano (which is equivalent here to d < n+ 1). Thus, log terminal singularities can be seen as a
local analogue of Fano varieties.

Given a local embedding (X, p) ↪→ (CN , 0), constructing such a local Kähler–Einstein metric
boils down to solve a complex Monge–Ampère equation

(MA)γ,φ,Ω

⎧⎪⎨
⎪⎩

(ddcϕ)n =
e−γϕ dμp∫
Ω e

−γϕ dμp
,

ϕ|∂Ω = φ,

where Ω is a smooth neighborhood of p, φ is a smooth boundary data, μp is an adapted volume
form (see Definition 2.9), and γ > 0 is a parameter. We seek for a solution ϕ∈ C∞(Ω \ {p})∩
C0(Ω) which is strictly plurisubharmonic in Ω \ {p}, so that ωKE := ddcϕ is a Kähler form in
Ω \ {p} satisfying the Einstein equation

Ric(ωKE) = γωKE.

An important motivation comes from the global study of positively curved Kähler–Einstein
metrics ωKE on Q-Fano varieties. Such canonical singular metrics have been constructed in
[BBEGZ19] and further studied in [BBJ21, LTW21, Li22], extending the resolution of the Yau–
Tian–Donaldson conjecture [CDS15] to this singular context. Despite recent important progress
[HS17, Dru18, HP19, BGL22], the geometry of these singular metrics remains mysterious and
one needs to better understand the asymptotic behavior of ωKE near the singularities.

We restrict the metric ωKE to a neighborhood of p and wish to analyze the behavior of its
local potentials ωKE = ddcϕKE near p. The latter solve a Monge–Ampère equation (MA)γ,φ,Ω, as
can be seen by locally trivializing a representative of the first Chern class (after an appropriate
rescaling). The boundary data are thus given by the solution ϕKE = φ itself.

Studying the family of equations (MA)γ,φ,Ω we will give evidence that:

– the possibility of solving (MA)γ,φ,Ω should be independent of Ω and φ;
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– the largest exponent γcrit(X, p) for which we can solve (MA)γ,φ,Ω should only depend on
the algebraic nature of the log terminal singularity.

Following earlier works dealing with the case of compact Kähler varieties or the local smooth
setting [BBGZ13, GKY13, BB22, BBEGZ19], we develop a variational approach to solve these
equations. A crucial role is played by

Eφ(ϕ) =
1

n+ 1

n∑
j=0

∫
Ω

(ϕ− φ0)(ddcϕ)j ∧ (ddcφ0)
n−j ,

the Monge–Ampère energy of ϕ relative to a plurisubharmonic extension φ0 of φ. This energy
is a primitive of the Monge–Ampère operator and a building block of the functional Fγ whose
Euler–Lagrange equation is (MA)γ,φ,Ω,

ϕ∈ Tφ(Ω) �→ Fγ(ϕ) =Eφ(ϕ) +
1

γ
log

∫
Ω
e−γϕ dμp ∈R.

Here Tφ(Ω) denotes the set of all plurisubharmonic functions ϕ in Ω which are continuous on Ω
and such that ϕ|∂Ω = φ.

In order to solve (MA)γ,φ,Ω one can try and extremize Fγ by showing that it is a proper
functional. Our first main result in this direction (Theorem 5.1) is the following Moser–Trudinger-
type inequality.

Theorem A. For any 0< γ < ((n+ 1)/n)α(X, μp), there exists Cγ > 0 such that( ∫
Ω
e−γϕ dμp

)1/γ
≤Cγ exp(−Eφ(ϕ)), (MTγ)

for all ϕ∈ Tφ(Ω).

The alpha invariant of the singularity (X, p) is defined by

α(X, μp) := sup

{
α> 0, sup

ϕ∈F1(Ω)

∫
Ω
e−αϕ dμp <+∞

}
,

where F1(Ω) denotes the set of plurisubharmonic functions ϕ with φ-boundary values, whose
Monge–Ampère mass is bounded by

∫
Ω(ddcϕ)n ≤ 1.

When (X, p) is smooth, Theorem A has been obtained independently in [BB22, GKY13] with
α(X, μp) = n (the normalizations and methods are quite different in these two works, but they
eventually produce the same critical exponent).

We introduce

γcrit(X, p) := sup{γ > 0 such that (MTγ) holds}.

While Theorem A provides a lower bound for γcrit(X, p), we provide an upper bound in
Theorem 4.5, which yields

n+ 1

n
α(X, μp)≤ γcrit(X, p)≤

n+ 1

n
v̂ol(X, p)1/n,

where v̂ol(X, p) denotes the normalized volume of the singularity (X, p). This is an algebraic
invariant of the singularity at p introduced by Chi Li in [Li18], which has recently played a
key role in the algebraic understanding of the moduli space of K-stable Fano varieties (see
[Blu18, Liu18, LWX21, LXZ22] and the references therein); we refer to Definition 2.15 for a
precise definition.
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When p is smooth then α(X, μp) = v̂ol(X, p)1/n = n by [ACKPZ09, Dem09]. It is tempting

to conjecture that the equality α(X, μp) = v̂ol(X, p)1/n always holds. We establish in § 5 the
following partial bounds on α(X, μp).

Theorem B. The following inequalities hold:

n

mult(X, p)1−1/n

lct(X, p)

1 + lct(X, p)
≤ α(X, μp)≤ v̂ol(X, p)1/n.

Moreover, α(X, μp) = v̂ol(X, p)1/n if (X, p) is an admissible singularity.

Here mult(X, p) denotes the algebraic multiplicity of (X, p), while lct(X, p) is its log canon-
ical threshold (see Definition 2.12). Having α(X, μp) bounded from below is quite involved; we

show that α(X, μp) = v̂ol(X, p)1/n when n= 2, but our lower-bound is not sharp when n≥ 3
unless (X, p) is an admissible singularity, a notion introduced in [LTW21]. The vertex of the
affine cone over a smooth Fano manifold is an example of admissible singularity (see § 5).

Using analytic Green functions and Demailly’s comparison theorem, we provide in
Propositions 5.6 and 5.8 evidence for the equality α(X, μp) = v̂ol(X, p)1/n. Appendix A uses
an algebraic approach based on [BdFF12], to establish a stronger result than Proposition 5.8.

We note in Lemma 3.13 that if (MTγ) holds, then Fγ is coercive (a strong quantitative version
of properness). When γ < γcrit(X, p), we then further show the existence of smooth solutions to
(MA)γ,φ,Ω.

Theorem C. If γ < γcrit(X, p), then there exists a plurisubharmonic function ϕ∈ C∞(Ω \ {p})
which is continuous in Ω with ϕ|∂Ω = φ, and such that

(ddcϕ)n =
e−γϕ dμp∫
Ω e

−γϕ dμp
in Ω.

We expect the solution to be unique, at least when Ω is a generic Stein neighborhood of p.
We refer the reader to [GKY13, BB22] for partial results in this direction when p is a smooth
point.

2. Preliminaries

2.1 Analysis on singular spaces

Let X be a reduced complex analytic space of pure dimension n≥ 1. We let Xreg denote the
complex manifold of regular points of X and Xsing :=X \Xreg be the set of singular points; this
is an analytic subset of X of complex codimension ≥1. We always assume in this article that:

– Xsing = {p} consists of a single isolated point;
– Xreg is locally irreducible at p;
– U is a fixed neighborhood of p and j :U ↪→CN is a local embedding onto an analytic subset

of CN for some N ≥ 1.

As we are interested in the asymptotic behavior of Kähler–Einstein potentials near the
singular point p, we shall identify X with j(U) in the following.

2.1.1 Plurisubharmonic functions. Using the local embedding j, it is possible to define the
spaces of smooth forms on X as restriction of smooth forms of CN . The notion of currents on X
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is defined by duality; the operators ∂ and ∂̄, d, dc and ddc are also well defined by duality (see
[Dem85] for more details).

Here d= ∂ + ∂ and dc = (1/4iπ)(∂ − ∂) are real operators and ddc = (i/2π)∂∂. With this
normalization the function z ∈Cn �→ ρFS(z) = log[1 + |z|2]∈R is smooth and plurisubharmonic
(psh for short) in Cn, with ∫

Cn

(ddcρFS)n = 1.

Definition 2.1. We say that a function u :X −→R∪ {−∞} is psh on X if it is the restriction
of a psh function of CN .

We let PSH(X) denote the set of all psh functions on X that are not identically −∞.

Recall that u is called weakly psh on X if it is locally bounded from above on X and its
restriction to Xreg is psh. One can extend it to X by u∗(p) := lim supXreg�y→p u(y). Since X is
locally irreducible, it follows from the work of Fornæss and Narasimhan [FN80] that u is weakly
psh if and only if u∗ is psh (see [Dem85, Corollary 1.11]).

If u∈ PSH(X), then u is upper semi-continuous on X and locally integrable with respect to
the volume form

dVX := ωneucl ∧ [X].

Here [X] denotes the current of integration along X and ωeucl :=
∑N

j=1 i dzj ∧ dzj is the euclidean
Kähler form. In particular, ddcu is a well-defined current of bidegree (1, 1) which is positive.

2.1.2 Pseudoconvex domains and boundary data. Following [FN80] we say that X is Stein
if it admits a C2-smooth strongly psh exhaustion.

Definition 2.2. A domain Ω�X is strongly pseudoconvex if it admits a negative C2-smooth
strongly psh exhaustion, i.e. a function ρ strongly psh in a neighborhood Ω′ of Ω such that
Ω := {x∈Ω′; ρ(x)< 0}, dρ �= 0 on ∂Ω, and for any c < 0,

Ωc := {x∈Ω′; ρ(x)< c}� Ω

is relatively compact.

We are interested in solving a Dirichlet problem for some complex Monge–Ampère equations
in a bounded strongly pseudoconvex domain Ω = {ρ < 0}, with given boundary data φ∈ C∞(∂Ω).

Definition 2.3. Given φ∈ C∞(∂Ω), we fix φ0 a psh function in Ω which is C∞-smooth near Ω
and such that φ0|∂Ω = φ.

Such an extension can be obtained as follows: we pick φ̃ an arbitrary C2-smooth extension
to Ω, and then consider φ0 := φ̃+Aρ, for A so large that φ0 is C2-smooth and psh in Ω. All
quantities introduced in the remainder of the paper are essentially independent of the particular
choice of the extension.

2.1.3 Monge–Ampère operators. The complex Monge–Ampère operator (ddc·)n acts on a
smooth psh functions ϕ. When X = Cn, it boils down to

(ddcϕ)n = cn det

(
∂2ϕ

∂zj∂zk

)
ωneucl,

where cn > 0 is a normalizing constant.
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2.1.4 Bounded functions. Following [BT82] this operator can be extended to the class
PSH(X)∩L∞

loc by using approximation by smooth psh functions: given ϕ∈ PSH(X)∩L∞
loc,

there exists a unique positive Radon measure μϕ on X such that for any sequence (ϕj) of
smooth psh functions decreasing to ϕ, one has

μϕ = lim(ddcϕj)
n,

where the limit holds in the weak sense. One then sets (ddcϕ)n := μϕ.

Definition 2.4. We set

T ∞
φ (Ω) := {ϕ∈ SPSH(Ω)∩ C∞(Ω) :ϕ|∂Ω = φ},

where SPSH(Ω) is the set of strictly psh functions, and

Tφ(Ω) :=

{
ϕ∈ PSH(Ω)∩ C0(Ω) :ϕ|∂Ω = φ,

∫
Ω

(ddcϕ)n <+∞
}
,

This latter class has been introduced by Cegrell in [Ceg98]; it can be used as a psh version of
test functions (in the sense of distributions), as well as a building block for finite-energy classes
of mildly unbounded functions.

Lemma 2.5. Any ϕ∈ Tφ(Ω) is a quasi-decreasing limit of functions in T ∞
φ (Ω).

Proof. Fix a local embedding X ↪→CN . A function ϕ∈ Tφ(Ω) is the restriction of an ambient
continuous psh function ψ. We use standard convolution in CN to find a sequence of smooth
strictly psh functions ψj decreasing to ψ. Consider ϕj = ψj |X − εj , where 0< εj goes to zero

so that ϕj <φ0 near ∂Ω (the functions ψj |X uniformly converge to ϕ by continuity). Set ϕ̃j :=

m̃ax(ϕj , Ajρ+ φ0), where m̃ax is a regularized maximum, then ϕj ∈ T ∞
φ (Ω) converges to ϕ as

Aj→+∞.

2.1.5 Mildly unbounded functions. The complex Monge–Ampère operator can be defined
for mildly unbounded psh functions. We refer the reader to [Ceg04, Blo06] for the case of smooth
domains in Cn; their analysis easily extends to our context.

Definition 2.6. We let F(Ω) denote the set of all functions ϕ∈ PSH(Ω) which are decreasing
limit of a sequence of functions ϕj ∈ Tφ(Ω) such that

sup
j

∫
Ω

(ddcϕj)
n <+∞.

The operator (ddc·)n is well defined on F(Ω), continuous along monotonic sequences, and
yields Radon measures (ddcϕ)n which have finite mass in Ω. We endow F(Ω) with the L1-
topology. Let us stress that the operator ϕ �→ (ddcϕ)n is not continuous for the L1-topology, but
the class F(Ω) enjoys the following useful compactness property.

Proposition 2.7. The set F1(Ω) = {ϕ∈F(Ω);
∫
Ω(ddcϕ)n ≤ 1} is compact.

This is shown in [Zer09, Observation A.3] for smooth domains, and the same proof applies in
our mildly singular context. Let us stress that the Monge–Ampère operator cannot be defined
for all psh functions: there is, for example, no reasonable way to make sense of (ddc log |z1|)n.
A consequence of Proposition 2.7 is that one cannot approximate such a function by a decreasing
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sequence of psh functions with prescribed boundary values and uniformly bounded Monge–
Ampère masses.

2.2 Adapted volume form

2.2.1 Log terminal singularities. Let Y be a connected normal complex variety such that
KY is Q-Cartier near p∈ Y . One can consider the ddc-cohomology class of −KY , denoted by
c1(Y ).

Given a log-resolution π : Ỹ → Y of (Y, p), there exists a unique Q-divisor
∑

i aiEi whose
push-forward to Y is 0 and with

KỸ = π∗(KY ) +
∑
i

aiEi.

Definition 2.8. The coefficient ai ∈Q is the discrepancy of Y along Ej . One says that p is a
log terminal singularity if aj >−1 for all j.

It is classical that this condition is independent of the choice of resolution. In the remainder
of this article we assume that:

– the singularity (X, 0) is log terminal;
– Y = Ω is a strongly pseudoconvex neighborhood of 0 = p∈X;
– the canonical bundle KΩ is Q-Cartier and rKΩ = 0 for some r ∈N.

Definition 2.9 [EGZ09, Definition 6.5]. Fix σ a nowhere-vanishing holomorphic section of
rKΩ, and h a smooth hermitian metric of KΩ, then

μp = λ
(cnσ ∧ σ̄)1/r

|σ|2/rhr

is an adapted measure, where λ> 0 is a positive normalizing constant.

Observe that μp is independent of the choice of σ, and

ddc log μp =−Θh(KΩ)

is the curvature of h, as follows from the Poincaré–Lelong formula.
The measure μp has finite mass by [EGZ09, Lemma 6.4]: let π : Ω̃→Ω be a resolution of

(Ω, 0), then

π∗μp = λ

M∏
j=1

|sEj
|2aj dVΩ̃,

where dVΩ̃ is a smooth volume form on Ω̃, E1, . . . , EM are exceptional divisors, sEj
are

holomorphic sections such that Ej = (sEj
= 0), and

rKΩ̃ = π∗(rKΩ) + r

M∑
j=1

ajEj = r

M∑
j=1

ajEj .

Thus f̃ =
∏M
j=1|sEj

|2aj belongs to Ls(dVΩ̃) for some s > 1, as p is log terminal.

Definition 2.10. We choose λ= λΩ so that μp is a probability measure in Ω.

The results to follow are independent of this (convenient) normalization.
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2.2.2 Ricci curvature. Let ω be a positive closed current of bidegree (1, 1) in Ω with bounded
local potentials. Its top power ωn is well defined as explained in § 2.1.3. If ωn is absolutely
continuous with respect to dVX , then we set

Ric(ω) :=−ddc log ωn.

Definition 2.11. We say that ω is a Kähler–Einstein metric if it satisfies

Ric(ω) = γω

for some γ ∈R.

In this article, we are mainly interested in the case when γ > 0. We choose the hermitian
metric h≡ 1 for KΩ, so that Θh = 0. Since

Ric(ω) = Ric(μp)− ddc log(ωn/μp),

the above Kähler–Einstein equation is equivalent, writing ω= ddcϕ, to

(ddcϕ)n = e−γϕewμp,

where w is a pluriharmonic function in Ω. Changing ϕ in ϕ−w/γ and then ϕ in tϕ (observe
that Ric(tω) = Ric(ω) for any t > 0), we can normalize ω by

∫
Ω ω

n = 1 and reduce to

(ddcϕ)n =
e−γϕμp∫
Ω e

−γϕμp
.

Seeking for a Kähler–Einstein metric thus leads one to solve (MA)γ,φ,Ω.
Conversely solving (MA)γ,φ,Ω will produce a Kähler–Einstein metric ω= ddcϕ, if we can

establish enough regularity of the solution ϕ.

2.2.3 Log canonical threshold. We consider the density f = μp/dVX . It is related to the
density f̃ in a resolution by

π∗μp = f ◦ π · π∗ dVX = f̃ dVΩ̃.

An analytic expression for f is obtained as follows. Recall that dVX = ωneucl ∧ [X], where ωeucl

denotes the euclidean Kähler form on CN . Set dzI = dzi1 ∧ · · · ∧ dzin , where 1≤ i1 < · · ·< in ≤
N . There exists germs of holomorphic functions fI ∈OΩ,0 such that (dzI)

r = fIσ since σ is
a local generator of rKX . In particular, the volume form dVX := ωneucl ∧ [Ω] is comparable to
(
∑

I |fI |2/r)μp, i.e.

μp = f dVX , with f ∼
(∑

I

|fI |2/r
)−1

.

The germs of holomorphic functions fI generate an ideal Irp , where Ir is an ideal sheaf
associated to the singularities of (X, p). In particular,

π−1Ir · OΩ̃ =OΩ̃

(
− r

M∑
j=1

bjEj

)

for coefficients bj ∈N such that f ◦ π∼
∏M
j=1|sEj

|−2bj .

Definition 2.12. The log canonical threshold of (X, p) is given by

lct(X, p) := inf
j∈1,...,M

aj + 1

bj
.
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We let the reader check that the definition is independent of the choice of resolution, and
that lct(X, I)∈ (0, n]. One can equivalently use the following point of view: if I is a general ideal
sheaf,

lct(X, I) := inf
E/X

AX(E)

ordE(I)
(2.1)

where AX(E) := 1 + ordE(KY/X) is the log-discrepancy of E, and the infimum is over all prime
divisors E on resolutions Y of X. When I is supported at p we can restrict in (2.1) to consider
prime divisors centered at p.

Example 2.13. The ordinary double point (ODP) X = {z ∈Cn+1,
∑n

j=0 z
2
j = 0} is the simplest

isolated log terminal singularity which is not a quotient singularity when n≥ 3 (when n= 2, log
terminal singularities are precisely the singularities of the form X = C2/G, G⊂GL(2,C) a finite
subgroup).

In this case I2 = (z21 , . . . , z
2
n). Indeed the n-forms

σj :=
(dz0 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn)2

z2j
=−(dz0 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn)2∑

k �=j z
2
k

,

defined on Uj := {zj �= 0}, glue together to give a local generator σ of 2KX (note that∑n
j=0 zj dzj = 0). In particular, |fI |2/r = |zj |2 where j = [0, n] \ I, r= 2 and

μp ∼
1∑n

j=0|zj |2
dVX .

If π : Bl0C
n+1→Cn+1 denotes the blow-up at 0, E the exceptional divisor, and F the

restriction of E to Y , the strict transform of X, we obtain

π−1I2 · OY =OY (−2F ) and π∗μp = |sF |2(n−2) dVY

for a smooth volume form dVY . Thus, lct(X, p) = lct(X, I) = n− 1.

We will need the following result which connects lct(X, p) and the integrability properties of
the density f = μp/dVX .

Lemma 2.14. The density f = μp/dVX belongs to Lr(dVX) for r < 1 + lct(X, p).

Proof. Let π : Ω̃→Ω be a resolution of the singularity. Recall that

f ◦ π∼
M∏
j=1

|sEj
|−2bj and f̃ =

M∏
j=1

|sEj
|2aj , hence π∗dVX ∼

M∏
j=1

|sEj
|2(aj+bj) dVΩ̃.

It follows that
∫
Ω f

r dVX ∼
∫
Ω̃

∏M
j=1|sEj

|2(aj+bj)−2rbj dVΩ̃ <+∞ if and only if r < (1 + aj + bj)/bj
for all j, which yields the statement since lct(X, p) = infj((1 + aj)/bj).

2.3 Normalized volume

The (Hilbert–Samuel) multiplicity of an ideal I supported at p is defined as

e(X, I) := lim
m→+∞

l(OX,p/Im)

mn/n!

where l denotes the length of an Artinian module.
Given a divisor E over X centered at p, the volume of E over p∈X is

volX,p(E) := lim
m→+∞

l(OX,p/am(E))

mn/n!

where am(E) := {f ∈OX,p : ordE(f)≥m} (see [ELS03]).
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Kähler–Einstein metrics near a log terminal singularity

Definition 2.15 [Li18]. The normalized volume of p∈X is

v̂ol(X, p) := inf
E/X

v̂olX,p(E),

where the infimum runs over all prime divisors E over X centered at p, and

v̂olX,p(E) :=AX(E)n · volX,p(E)

is the normalized volume of E over (x∈X).

We shall need the following important result.

Theorem 2.16 [Liu18, Theorem 27]. Let (X, p) be a log terminal singularity of complex
dimension dimCX = n. Then

v̂ol(X, p) = inf
I supported at p

lct(X, I)n · e(X, I).

Observe that the quantity lct(X, I)n · e(X, I) is invariant under rescaling I →Ir, r ∈N. One
can actually only consider coherent ideal sheaves supported at p. Indeed any ideal I supported at
p is associated to a closed subscheme Z such that SuppZ = {p} (see [Har77, Corollary II.5.10]),
while any ideal associated to a closed subscheme is coherent [Har77, Proposition II.5.9].

Example 2.17. Consider again X = {z ∈Cn+1,
∑n

j=0 z
2
j = 0}. Recall that I2 = (z21 , . . . , z

2
n) is

the ideal sheaf associated to the adapted measure, and that the ideal I2 corresponds to 2F
where F is the exceptional divisor in the blow-up at p. In particular, AX(F ) = n− 1.

We observe here that e(X, I2) = 2n+1 and v̂olX,p(F ) = 2(n− 1)n since

l(OX,p/I2m) = l(OX,p/a2m(F )) = 2n+1m
n

n!
+O(mn−1).

In [Li18, Example 5.3] it is further shown that F is a minimizer for the normalized volume of

p∈X, i.e. that v̂ol(X, p) = 2(n− 1)n.

3. A variational approach

A variational approach for solving degenerate complex Monge–Ampère equations has been
developed in [BBGZ13] in the context of compact Kähler manifolds. It notably applies to the con-
struction of singular Kähler–Einstein metrics of non-positive curvature. This has been partially
adapted to smooth pseudoconvex domains of Cn in [ACC12].

The case of positive curvature is notoriously more difficult, as illustrated by the resolution of
the Yau–Tian–Donaldson conjecture by Chen, Donaldson and Sun [CDS15]. It has been treated
extensively in [BBEGZ19], and eventually lead to an alternative solution of the Yau–Tian–
Donaldson conjecture for Fano varieties [BBJ21, LTW21, Li22]. Adapting [BBEGZ19] to our
local singular context, we develop in this section a variational approach for solving the equation

(MA)γ,φ,Ω

⎧⎪⎨
⎪⎩

(ddcϕ)n =
e−γϕ dμp∫
Ω e

−γϕ dμp
,

ϕ|∂Ω = φ.

(3.1)

3.1 Monge–Ampère energy

3.1.1 Smooth tests. Fix Ω = {ρ < 0} and φ as described previously, and

T ∞
φ (Ω) = {ϕ∈ SPSH(Ω)∩ C∞(Ω) :ϕ|∂Ω ≡ φ}.
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Recall that φ0 ∈ C∞(Ω̄)∩ PSH(Ω) denotes a smooth psh extension of φ to Ω̄. We set ω :=
ddcφ0. This is a semi-positive form, which can be assumed to be Kähler. However, if φ≡ 0, we
can equally well take φ0 ≡ 0 and get ω≡ 0.

Definition 3.1. We call Eφ(ϕ) := (1/(n+ 1))
∑n

j=0

∫
Ω(ϕ− φ0)(ddcϕ)j ∧ (ddcφ0)

n−j the φ-
relative Monge–Ampère energy of ϕ∈ T ∞

φ (Ω).

While the formula depends on the choice of φ0, it follows from Lemma 3.2 that the difference
of two such relative energies is constant:

Eφ1
(ϕ)−Eφ0

(ϕ) =Eφ1
(φ0).

For φ0 = 0, the formula reduces to E(ϕ) :=E0(ϕ) = (1/(n+ 1))
∫
Ω ϕ(ddcϕ)n.

This definition is motivated by the fact the Eφ is a primitive of the Monge–Ampère operator
for smooth psh functions with φ-boundary values.

Lemma 3.2. Fix ϕ∈ T ∞
φ (Ω), v ∈D(Ω). Then ϕ+ tv ∈ T ∞

φ (Ω) for t small, and

d

dt |t=0
Eφ(ϕ+ tv) =

∫
Ω
v(ddcϕ)n.

In particular, ϕ �→Eφ(ϕ) is increasing.

Here D(Ω) denotes the space of smooth functions with compact support in Ω.

Proof. Fix ϕ∈ T ∞
φ (Ω) and v ∈D(Ω). Since v is smooth with compact support, the function

±v+Cρ is psh for C > 0 large enough, while ϕ− ερ is psh for ε > 0 small enough. It follows
that ϕ+ tv is psh for t small enough.

Set ω= ddcφ0. The function ψt =ϕ− φ0 + tv has zero boundary values, and

Eφ(ϕ+ tv) =
1

n+ 1

n∑
j=0

∫
Ω
ψt(ω+ ddcψt)

j ∧ ωn−j .

It follows from Stokes theorem, as all functions involved in the integration by parts are identically
zero on ∂Ω, that

(n+ 1)
d

dt
Eφ(ϕ+ tv)

=

n∑
j=0

∫
Ω
ψ̇t(ω+ ddcψt)

j ∧ ωn−j +

n∑
j=1

∫
Ω
jψt dd

cψ̇t ∧ (ω+ ddcψt)
j−1 ∧ ωn−j

=

n∑
j=0

∫
Ω
ψ̇t(ω+ ddcψt)

j ∧ ωn−j +

n∑
j=1

∫
Ω
jψ̇t dd

cψt ∧ (ω+ ddcψt)
j−1 ∧ ωn−j

=

n∑
j=0

∫
Ω

(j + 1)ψ̇t(ω+ ddcψt)
j ∧ ωn−j −

n∑
j=1

∫
Ω
jψ̇t(ω+ ddcψt)

j−1 ∧ ωn−j+1

= (n+ 1)

∫
Ω
ψ̇t(ω+ ddcψt)

n,

writing ddcψt = (ω+ ddcψt)− ω in the third line, and then distributing and relabelling so as to
obtain a telescopic series. The formula follows for t= 0.

In short, the derivative of Eφ is the complex Monge–Ampère operator (ddcϕ)n which is a
positive measure. It follows that ϕ �→Eφ(ϕ) is increasing.
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Kähler–Einstein metrics near a log terminal singularity

3.1.2 Continuous setting. The previous result extends to the case of continuous psh
functions that are not necessarily strictly psh. Recall that

Tφ(Ω) :=

{
ϕ∈ PSH(Ω)∩C0(Ω̄), ϕ|∂Ω = φ and

∫
Ω

(ddcϕ)n <+∞
}
.

We would like to extend Lemma 3.2 to this less-regular setting. As ϕ+ tv is not necessarily
psh, we need to project it onto the cone of all psh functions. The following result will thus be
useful.

Lemma 3.3. Fix ϕ∈ Tφ(Ω) and f ∈D(Ω). Then P (ϕ+ f)∈ Tφ(Ω) where

P (ϕ+ f) := sup{ψ ∈ PSH(Ω), ψ≤ϕ+ f}.

Moreover, (ddcP (ϕ+ f))n is supported on the contact set {P (ϕ+ f) =ϕ+ f}.

Proof. Since ϕ+ f is bounded and continuous, it is classical to check that the envelope P (ϕ+ f)
is a well-defined psh function. As f has compact support, one moreover checks that P (ϕ+ f) is
continuous on ∂Ω with P (ϕ+ f)|∂Ω =ϕ|∂Ω = φ.

Solving Dirichlet problems in small ‘balls’ not containing the singular point, it follows from a
balayage argument that the Monge–Ampère measure of the envelope (ddcP (ϕ+ f))n is supported
on the contact set {P (ϕ+ f) =ϕ+ f}.

We extend Eφ(·) to Tφ(Ω) by monotonicity, setting

Eφ(ϕ) := inf{Eφ(ψ), ψ ∈ T ∞
φ (Ω) and ϕ≤ψ}.

It has been observed by Berman and Boucksom (in the setting of compact Kähler manifolds
[BB10]) that Eφ ◦ P is still differentiable, with (Eφ ◦ P )′ =E′

φ ◦ P . This result extends to our
local singular setting.

Proposition 3.4. Fix ϕ∈ Tφ(Ω) and f ∈D(Ω). Then t→Eφ(P (ϕ+ tf)) is differentiable and

d

dt |t=0
Eφ(P (ϕ+ tf)) =

∫
Ω
f(ddcϕ)n.

Proof. The proof is very similar to that in the compact case, we provide it as a courtesy to the
reader. Set ϕt := P (ϕ+ tf). By Lemma 3.5 we have∫

Ω
(ϕt −ϕ)(ddcϕt)

n ≤Eφ(ϕt)−Eφ(ϕ)≤
∫
Ω

(ϕt −ϕ)(ddcϕ)n. (3.2)

Since ϕt −ϕ≤ tf , the second inequality yields

lim sup
t→0+

Eφ(ϕt)−Eφ(ϕ)

t
≤
∫
X
f(ddcϕ)n,

and lim inft→0−((Eφ(ϕt)−Eφ(ϕ))/t)≥
∫
X f(ddcϕ)n.

It follows from Lemma 3.3 that (ddcϕt)
n is supported on {ϕt =ϕ+ tf}, hence the first

inequality in (3.2) yields ∫
Ω

ϕt −ϕ
t

(ddcϕt)
n =

∫
Ω
f(ddcϕt)

n.

Now (ddcϕt)
n→ (ddcϕ)n weakly since ϕt→ϕ uniformly, therefore

lim inf
t→0+

Eφ(ϕt)−Eφ(ϕ)

t
≥ lim inf

t→0+

∫
Ω
f(ddcϕt)

n =

∫
Ω
f(ddcϕ)n,
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and

lim sup
t→0−

Eφ(ϕt)−Eφ(ϕ)

t
≤ lim sup

t→0−

∫
Ω
f(ddcϕt)

n =

∫
Ω
f(ddcϕ)n.

Lemma 3.5. For any ϕ1, ϕ2 ∈ Tφ(Ω),∫
Ω

(ϕ1 −ϕ2)(dd
cϕ1)

n ≤Eφ(ϕ1)−Eφ(ϕ2)≤
∫
Ω

(ϕ1 −ϕ2)(dd
cϕ2)

n, (3.3)

while if ϕ1 ≤ϕ2, then

Eφ(ϕ1)−Eφ(ϕ2)≤
1

n+ 1

∫
X

(ϕ1 −ϕ2)(dd
cϕ1)

n. (3.4)

The energy is continuous along decreasing sequence in Tφ(Ω).

Proof. It follows from Stokes theorem that

Eφ(ϕ1)−Eφ(ϕ2) =
1

n+ 1

n∑
j=0

∫
Ω

(ϕ1 −ϕ2)(dd
cϕ1)

j ∧ (ddcϕ2)
n−j

and ∫
Ω

(ϕ1 −ϕ2)(dd
cϕ1)

j+1 ∧ (ddcϕ2)
n−j−1 ≤

∫
Ω

(ϕ1 −ϕ2)(dd
cϕ1)

j ∧ (ddcϕ2)
n−j ,

for any j = 0, . . . , n− 1. The desired inequalities follow.
Let ϕj ∈ Tφ(Ω) be a decreasing sequence converging to ϕ∈ Tφ(Ω). We obtain

0≤Eφ(ϕj)−Eφ(ϕ)≤
∫
Ω

(ϕj −ϕ)(ddcϕ)n→ 0

as j→+∞ by the monotone convergence theorem.

3.1.3 Finite energy class. Let PSHφ(Ω) denote the set of decreasing limits of functions in
Tφ(Ω). We extend Eφ to PSHφ(Ω) by monotonicity, setting

Eφ(ϕ) := inf{Eφ(ψ), ψ ∈ Tφ(Ω) and ϕ≤ψ}.

Definition 3.6. We set E1(Ω) := {ϕ∈ PSHφ(Ω); Eφ(ϕ)>−∞}.

This ‘finite energy class’ has been introduced and studied intensively by Cegrell for smooth
domains of Cn. His analysis extends to our mildly singular context. We summarize here the key
facts that we shall need.

Theorem 3.7 (Cegrell). The complex Monge–Ampère operator (ddc·)n and the energy Eφ are
well defined on the class E1(Ω). Moreover:

– functions in E1(Ω) have zero Lelong numbers;
– the sets Gb(Ω) = {ϕ∈ E1(Ω), −b≤Eφ(ϕ)} are compact for all b∈R;
– Lemma 3.5 holds if ϕ1, ϕ2 ∈ E1(Ω);
– if μ is a non-pluripolar probability measure such that E1(Ω)⊂L1(μ), then there exists a
unique function v ∈ E1(Ω)∩F1(Ω) such that μ= (ddcv)n.

We refer the reader to [Ceg98, Theorems 3.8, 7.2 and 8.2] for the proof of these results when
Ω is smooth.
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Kähler–Einstein metrics near a log terminal singularity

3.2 Ding functional

3.2.1 Euler–Lagrange equation. The Ding functional is

Fγ(ϕ) :=Eφ(ϕ) +
1

γ
log

∫
Ω
e−γϕ dμp.

Proposition 3.8. If ϕ maximizes Fγ over Tφ(Ω), then ϕ solves the complex Monge–Ampère
equation (3.1).

Proof. Assume that ϕ maximizes Fγ over Tφ(Ω), fix f ∈D(Ω), and set ϕt := P (ϕ+ tf). Then

Eφ(ϕt) +
1

γ
log

∫
Ω
e−γ(ϕ+tf) dμp ≤ Fγ(ϕt)≤ Fγ(ϕ),

i.e. the function t→Eφ(ϕt) + (1/γ) log
∫
Ω e

−γ(ϕ+tf) dμp reaches its maximum at t= 0.
Combining Proposition 3.4 and Lemma 3.9, we obtain

0 =
d

dt

(
Eφ(ϕt) +

1

γ
log

∫
Ω
e−γ(ϕ+tf) dμp

)
=

∫
Ω
f

(
(ddcϕ)n − e−γϕ dμp∫

Ω e
−γϕ dμp

)
,

i.e. ϕ solves (3.1).

Lemma 3.9. Fix ϕ∈ Tφ(Ω), f ∈D(Ω), and set ψt :=ϕ+ tf . Then

d

dt

(
log

∫
Ω
e−γψt dμp

)
|t=0

=−γ
∫
Ω fe

−γϕ dμp∫
Ω e

−γϕ dμp
.

Proof. By the chain rule, it is enough to observe that∫
Ω e

−γψt dμp −
∫
Ω e

−γϕ dμp
t

=−
∫
Ω
e−γϕ

(
1− e−tγf

t

)
dμp

and to apply the Lebesgue dominated convergence theorem to conclude.

3.2.2 Coercivity. In order to solve (3.1), one is lead to try and maximize Fγ . We show
in § 6 that when Fγ is coercive, the complex Monge–Ampère equation (3.1) admits a solution
ϕ∈ Tφ(Ω) which is smooth away from p.

Definition 3.10. The functional Fγ is coercive if there exists A, B > 0 such that

Fγ(ϕ)≤AEφ(ϕ) +B

for all ϕ∈ Tφ(Ω).

We observe in Lemma 3.13 that Eφ(ϕ)≤C(φ0) is bounded from above, uniformly in ϕ∈
Tφ(Ω). In particular, if Fγ is coercive with slope A> 0, then it is coercive for any A′ ∈ (0, A].
We can thus assume, without loss of generality, that A∈ (0, 1). The coercivity property is then
equivalent to

1

γ
log

∫
Ω
e−γϕ dμp ≤ (1−A)(−Eφ(ϕ)) +B,

or, equivalently, to the following Moser–Trudinger inequality( ∫
X
e−γϕ dμp

)1/γ

≤Ce(1−A)(−Eφ(ϕ)).

We summarize these observations in the following.
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Proposition 3.11. Fix γ > 0. The following properties are equivalent:

(i) Fγ is coercive;

(ii) there exists Cγ > 0 and a∈ (0, 1) such that for all ϕ∈ Tφ(Ω),( ∫
Ω
e−γϕ dμp

)1/γ
≤Cγe−aEφ(ϕ).

It follows from Hölder inequality (and the normalization μp(Ω) = 1) that if( ∫
Ω
e−γϕ dμp

)1/γ
≤Ce−Eφ(ϕ) (3.5)

holds for γ > 0, then it also holds for γ′ < γ. We thus introduce the following critical exponent.

Definition 3.12. We set

γcrit(X, p) := sup{γ > 0, (3.5) holds for all ϕ∈ Tφ(Ω)}.

Lemma 3.13. The functional Eφ is bounded from above on Tφ(Ω). Moreover:

– if Fγ is coercive, then γ ≤ γcrit(X, p);
– conversely, if γ < γcrit(X, p), then Fγ is coercive.

Proof. Consider φ̃0 = P (φ) := sup{ψ, ψ ∈ Tφ(Ω)}. This is the largest psh function in Ω such that

φ̃0 = φ on ∂Ω. The reader can check that it is continuous on Ω and satisfies (ddcφ̃0)
n = 0 in Ω.

If ϕ∈ Tφ(Ω), then ϕ≤ φ̃0, hence Eφ̃0
(ϕ)≤ 0. Thus,

Eφ0
(ϕ) =Eφ̃0

(ϕ) +Eφ0
(φ̃0)≤Eφ0

(φ̃0),

hence Eφ0
(ϕ) is uniformly bounded from above independently of the choice of φ0.

Similarly, the coercivity of Fγ or the inequality (3.5) do not depend on the choice of φ0.
In the remainder of this proof we thus assume that φ0 = P (φ). Since Eφ(ϕ)≤ 0 in this case, it
follows from Proposition 3.11 that if Fγ is coercive, then (3.5) holds, hence γ ≤ γcrit(X, p).

Conversely, assume γ < γcrit(X, p). Fix γ < γ′ < γcrit(X, p) and λ= γ/γ′ < 1. We can
assume that λ is close to 1. We assume first that φ≡ 0. For ϕ∈ T0(Ω) we observe that
λϕ∈ T0(Ω), with E0(λϕ) = λn+1E0(ϕ). The Moser–Trudinger (3.5) applied to (γ′, λϕ) thus
yields ( ∫

Ω
e−γϕ dμp

)1/γ
≤Cγ′e−λ

nE0(ϕ),

so that Fγ is coercive.
We now treat the general case, replacing the condition φ≡ 0 by (ddcφ0)

n ≡ 0. For ϕ∈ Tφ(Ω)
we observe that ϕλ = λϕ+ (1− λ)φ0 ∈ Tφ(Ω), with ϕλ − φ0 = λ(ϕ− φ0)≤ 0 and

(n+ 1)Eφ0
(ϕλ) = λ

n−1∑
j=0

∫
Ω

(ϕ− φ0)(ddcϕλ)j ∧ (ddcφ0)
n−j

= λ

n∑
k=1

n∑
j=k

(
j
k

)
λk(1− λ)j−k

∫
Ω

(ϕ− φ0)(ddcϕ)k ∧ (ddcφ0)
n−k.

Now
∑n

j=k ( j
k

)λk(1− λ)j−k ≤ a< 1 for all 1≤ k≤ n, since λ< 1 can be chosen arbitrarily

close to 1. Thus, Eφ0
(ϕλ)≥ aλEφ0

(ϕ) and the result follows as previously by applying the Moser–
Trudinger inequality (3.5) to ϕλ.
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Kähler–Einstein metrics near a log terminal singularity

3.3 Invariance

We give here some evidence that the critical exponent γcrit(X, p) should be independent of the
domain Ω and the boundary values φ.

3.3.1 Enlarging the domain. We first reduce to the case of zero boundary values.

Proposition 3.14. Let Ω2 be a smooth strongly pseudoconvex domain containing Ω. If the
Moser–Trudinger inequality holds for (γ,Ω2, 0), then it holds for (γ,Ω, φ).

Proof. Consider indeed ϕ∈ Tφ(Ω) and set

ϕ2 := sup{u∈ T0(Ω2), such that u≤ϕ in Ω}.

The family F of such functions is non-empty, as it contains Aρ2 for some large A> 1, where
ρ2 is a psh defining function for Ω2. Moreover, F is uniformly bounded from above by 0, so the
upper envelope ϕ2 is well defined and psh, as F is compact. Finally, ϕ2 ≥Aρ2, hence ϕ2 has zero
boundary values, and ϕ2 is lower semi-continuous, as an envelope of continuous functions, thus
ϕ2 ∈ T0(Ω2).

Since ϕ2 ≤ϕ in Ω, we observe that∫
Ω
e−γϕ dμp ≤

∫
Ω2

e−γϕ2 dμp.

Our claim will follow if we can show that, on the other hand, E0(ϕ2)≥Eφ(ϕ).
If ϕ is smooth one can show, by adapting standard techniques, that:

– ϕ2 is C1,1-smooth in Ω2 \ {p};
– (ddcϕ2)

n = 0 in Ω2 \Ω and (ddcϕ2)
n = 1{ϕ2=ϕ}(dd

cϕ)n in Ω.

Assuming φ≥ 0 and φ0 = sup{ψ, ψ ∈ Tφ(Ω)}, we infer

E0(ϕ2) =
1

n+ 1

∫
Ω
ϕ2(dd

cϕ2)
n =

1

n+ 1

∫
Ω
1{ϕ2=ϕ}ϕ(ddcϕ)n

≥ 1

n+ 1

∫
Ω
ϕ(ddcϕ)n ≥ 1

n+ 1

∫
Ω

(ϕ− φ)(ddcϕ)n ≥Eφ(ϕ).

To get rid of the assumption φ≥ 0, we observe that the Moser–Trudinger inequality holds for
given boundary data φ if and only if does so for φ+ c, for any c∈R (by changing ϕ in ϕ+ c).

Using Lemma 2.5, one can uniformly approximate ϕ by a sequence of smooth ϕj ∈ Tφ(Ω).
The corresponding sequence ϕ2,j uniformly converges to ϕ2, and we obtain the desired inequality
by passing to the limit in E0(ϕ2,j)≥Eφ(ϕj).

3.3.2 Rescaling. We now assume that φ= 0 and reformulate the coercivity property after
an appropriate rescaling. Observe that for any λ> 0, the map

ϕ∈ T0(Ω) �→ λϕ∈ T0(Ω)

is a homeomorphism. This allows us to reformulate the Moser–Trudinger inequality.

Proposition 3.15. The following statements are equivalent:

(a) Fγ is coercive;

(b) there exists C > 0, B ∈ (0, 1) such that for all ϕ∈ T0(Ω),
∫
Ω e

−ϕ dμp ≤Ce−(B/γn)E0(ϕ).

In particular, we can define the following critical exponent.
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Definition 3.16. We set

βcrit := inf

{
β > 0; sup

ϕ∈T0(Ω)

(∫
Ω
e−ϕ dμp/e

−βE0(ϕ)

)
<+∞

}
.

Note that γncrit = 1/βcrit, hence it follows from the previous analysis that Fγ is coercive if

and only if γ < β
−1/n
crit . When p∈X is smooth, it has been shown in [GKY13, Theorem 9] and

independently [BB22, Theorem 1.5] that

βcrit(Ω) =
1

(n+ 1)n
,

or, equivalently, that γcrit(Ω) = n+ 1. In particular, it does not depend on Ω.
We extend this independence to the case when p is the vertex of a cone over a Fano manifold.

Proposition 3.17. Assume that (X, p) is the affine cone over a Fano manifold Z embedded
in a projective space by the linear system | − rKZ | for r ∈N such that L= rK∗

Z is very ample,
and fix λ∈C∗. The Moser–Trudinger inequality holds for (γ,Ω, 0) if and only if it does so for
(γ, λΩ, 0).

Proof. Let L= rK∗
Z , let Dλ denote the dilatation z �→ λz and set Ωλ =Dλ(Ω). We blow up p to

obtain a resolution f : Y →X, where Y is the total space of L∗ and the exceptional divisor E is
the zero section of L∗.

Recall that KY = f∗KX + aE, where a is the discrepancy of Y along E. The adjunction
formula yields (KY +E)|E =KE , hence K∗

Z = (a+ 1)L. In particular, a=−1 + 1/r and (X, p)
is log terminal. The fibration π : Y =L∗→Z yields KY = π∗(KZ +L), hence f∗KX = π∗(KZ +
L)− aE.

Since π∗(KZ +L) is C∗-invariant, we can cook up an adapted volume form μp = μ1 · μE with
D∗
λμ1 = μ1 while D∗

λμE = |λ|2aμE . For ϕ∈ T0(Ωλ) we set ϕλ =ϕ ◦Dλ ∈ T0(Ω) and observe that

|λ|2a
∫
Ω
e−γϕλ dμp =

∫
Ωλ

e−γϕ dμp,

while EΩ,0(ϕλ) =EΩλ,0(ϕ). The conclusion follows.

We conjecture in § 5 that γcrit(X, p)
?
= ((n+ 1)/n)v̂ol(X, p)1/n and give partial results towards

this equality, which again suggest that γcrit(X, p) should be independent of (Ω, φ). In the
whole article, we therefore use the notation γcrit(X, p) instead of the more precise, and heavy,
γcrit(X, p,Ω, φ).

4. Upper bound for the coercivity

The purpose of this section is to establish the following upper bound:

γcrit(X, p)≤
n+ 1

n
v̂ol(X, p)1/n.

Adapting the proof of [BB17, Theorem 1.6], we will construct approximate Green’s functions to
test the thresholds in the Moser–Trudinger inequality.

4.1 Functions with algebraic singularities

Let I be a coherent ideal sheaf, and f1, . . . , fN ∈OX,p be local generators of Ip. The psh function

ϕI := log

( N∑
i=1

|fi|2
)

is well defined near p, with algebraic singularities encoded in I.
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Kähler–Einstein metrics near a log terminal singularity

Proposition 4.1. Let I be a coherent ideal sheaf supported at p. Then

e(X, I) =

∫
{p}

(ddcϕI)n

and

lct(X, I) = sup

{
α> 0 :

∫
Ω
e−αϕI dμp <+∞

}
,

where Ω is any (small) neighborhood of p∈X.

These algebraic quantities are thus independent of the choice of generators.

Proof. The equality e(X, I) =
∫
{p}(dd

cϕI)n is classical when Ω is smooth (see, e.g., [Dem12,

Lemma 2.1]), and the proof can be adapted to the singular context (see [Dem85, Chapter 4]).
Let π : Ω̃→Ω be a local log resolution of the ideal (X, I), i.e. a composition of blow-ups such

that π∗μp =
∏N
j=1|sEj

|2ajdVΩ̃ and

π−1I · OΩ̃ =OΩ̃

(
−

M∑
j=1

bjEj

)
,

where bj ∈N, aj ∈Q>−1, and E1, . . . , EM have simple normal crossings. Observe that∫
Ω
e−αϕI dμp ∼

∫
Ω̃

∏M
j=1|sEj

|2aj∏M
j=1|sEj

|2bjα
dVΩ̃ =

∫
Ω̃

M∏
j=1

|sEj
|2(aj−αbj) dVΩ̃,

is finite if and only if aj − αbj >−1 for any j = 1, . . . , M , i.e. if and only if

α< inf
j=1,...,M

aj + 1

bj
= lct(X, I),

as recalled in Definition 2.12.

4.2 Approximate Green functions

The functions λϕI play the role of Green functions adapted to the singularity (X, p). We show
here how to approximate them from above by smooth functions with prescribed boundary
values.

Lemma 4.2. Let I be a coherent ideal sheaf supported at p, and let f1, . . . , fm denote local
generators of I. Fix an open set Ω′ � Ω. There exists a family {ϕI,λ,ε}λ>0,ε>0 ∈ PSH(Ω)∩ C∞(Ω̄)
such that:

(i) ϕI,λ,ε | ∂Ω = φ for any λ> 0, ε∈ [0, 1];

(ii) ϕI,λ,ε = λ log (
∑m

j=1|fj |2 + ε2) + φ0 in Ω′;

(iii) ϕI,λ,ε↘ϕI,λ,0 =:ϕI,λ as ε↘ 0 for any λ> 0 fixed.

Proof. Without loss of generality we can assume that
∑m

j=1|fj |2 ≤ 1/e− 1 in Ω. Let ρ be a
smooth psh exhaustion for Ω and fix 0< r� 1, 0< δ� 1 small enough. There exists A> 0 big
enough and relatively compact open sets Br(0) � Ω′ � Ω̃� Ω such that

log

( m∑
j=1

|fj |2 + 1

)
+ δ≤Aρ over Ω \ Ω̃,
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while log(
∑m

j=1|fj |2)− δ ≥Aρ over Ω′ \Br(0). We infer that

uI,ε :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Aρ on Ω \ Ω̃,

max
δ

(
log

( m∑
j=1

|fj |2 + ε2
)
, Aρ

)
on Ω̃ \Ω′,

log

( m∑
j=1

|fj |2 + ε2
)

on Ω′,

is a decreasing family (in ε∈ [0, 1]) of psh functions which are smooth in Ω̄ \ {p} (smooth in Ω̄
for ε > 0) and which are identically 0 on ∂Ω. Here maxδ(·, ·) denotes the regularized maximum.
The lemma follows by setting ϕI,λ,ε := λuI,ε + φ0.

We now compute the asymptotic behavior, as ε decreases to 0, of the quantities involved in
the expected Moser–Trudinger inequality.

Lemma 4.3. Let I and {ϕI,λ,ε}ε∈(0,1] ⊂Tφ(Ω) be as in Lemma 4.2. Then, for any γ > 0, λ > 0
fixed there exists a constant Cλ,γ ∈R (independent of ε) such that

Cλ,γ + (γλ− lct(X, I)) log ε−2 ≤ log

∫
Ω
e−γϕI,λ,ε dμp (4.1)

for all 0< ε< ε0.

Proof. Taking a log resolution π : Y →X we obtain∫
Ω
e−γϕI,λ,ε dμp ≥

∫
Ω′

1

(
∑m

j=1|fj |2 + ε2)γλ
dμp

≥C1

∫
π−1(Ω′)

∏M
j=1|sEj

|2aj

(
∏M
j=1|sEj

|2bj + ε2)γλ
dVπ−1(Ω′),

where C1 is a uniform constant (independent on ε). We set

f :=

∏M
j=1|sEj

|2aj

(
∏M
j=1|sEj

|2bj + ε2)γλ
.

We can assume without loss of generality that lct(X, I) = (a1 + 1)/b1. Pick x∈E1, x /∈Ej , j =
2, . . . , M . We can find 0< r� 1 so small that Br(x)∩Ej = ∅ for any j = 2, . . . , M . We choose
holomorphic coordinates (z1, . . . , zn) centered at x such that E1 = {z1 = 0}. Thus, setting a :=
a1, b := b1 and c := γλ we get∫

π−1(Ω′)
f dVπ−1(Ω′) ≥C2

∫
Br(0)

|z1|2a
(|z1|2b + ε2)c

dλ(z) =C3

∫ r

0

u2a+1

(u2b + ε2)c
du,

where C2, C3 are uniform constants. If c≤ (a+ 1)/b (i.e. γλ≤ lct(X, I)), then∫ r

0

u2a+1

(u2b + ε2)c
du≥

∫ 1

0

u2a+1

(u2b + 1)c
=:C4

and (4.1) trivially follows. If c > (a+ 1)/b, then the substitution v := u/ε1/b yields∫ r

0

u2a+1

(u2b + ε2)c
du= ε−2(c−((a+1)/b))

∫ r/ε1/b

0

v2a+1

(v2b + 1)c

≥ ε−2(γλ−lct(X,I))
∫ r

0

v2a+1

(v2b + 1)c
dv.
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Kähler–Einstein metrics near a log terminal singularity

The lemma follows.

Lemma 4.4. Let I and ϕI,λ,ε ∈ Tφ(Ω) be as in Lemma 4.2. There exist positive constants
{C
,λ}
∈N,λ>0 and a family of functions F
 : (0, 1]→R>0 such that

−Eφ(ϕI,λ,ε)≤C
,λ +
λn+1

n+ 1
F
(ε) log ε−2,

for any ε∈ (0, 1], where:

– {C
,λ}
∈N,λ>0 is independent of ε∈ (0, 1];
– F
(ε)→ F
(0) =: e
 > 0 as ε↘ 0;
– e
↘ e(X, I) as �→+∞.

Proof. We take a sequence {Ω
}
∈N of open sets such that Ω
+1 � Ω
 for any �∈N and such
that

⋂

∈N Ω
 = {p}. Since Ω
 ⊂Ω′ (same notation as Lemma 4.2) for �∈N big enough, we

obtain

−Eφ(ϕI,λ,ε) =
1

n+ 1

n∑
j=0

∫
Ω

(φ0 −ϕI,λ,ε)(dd
cϕI,λ,ε)

j ∧ (ddcφ0)
n−j

=
1

n+ 1

n∑
j=0

∫
Ω\Ω�

(φ0 −ϕI,λ,ε)(dd
cϕI,λ,ε)

j ∧ (ddcφ0)
n−j

− 1

n+ 1

n∑
j=0

∫
Ω�

λj+1 log

( m∑
k=1

|fk|2 + ε2
)(
ddc log

( m∑
k=1

|fk|2 + ε2
))j
∧ (ddcφ0)

n−j .

(4.2)

The first term on the right-hand side of (4.2) is uniformly bounded in ε∈ [0, 1], for λ> 0, �∈N
fixed, since {ϕI,λ,ε}ε∈[0,1] is a continuous family of smooth functions on Ω \Ω
. We let C
,λ denote
a uniform upper bound for this quantity.

The second term on the right-hand side of (4.2) is bounded from above by

− 1

n+ 1

n∑
j=0

∫
Ω�

λj+1 log

( m∑
k=1

|fk|2 + ε2
)(

ddc log

( m∑
k=1

|fk|2 + ε2
))j
∧ (ddcφ0)

n−j

≤ λn+1

n+ 1
log ε−2

n∑
j=0

∫
Ω�

(
ddc log

( m∑
k=1

|fk|2 + ε2
))j
∧ (ddcφ0)

n−j .

We set

F
(ε) :=

n∑
j=0

∫
Ω�

(
ddc log

( m∑
k=1

|fk|2 + ε2
))j
∧ (ddcφ0)

n−j .

Observe that, for j = 0, . . . , n− 1,

lim

↗+∞

lim
ε↘0

∫
Ω�

(
ddc log

( m∑
k=1

|fk|2 + ε2
))j
∧ (ddcφ0)

n−j = 0,
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since the ideal sheaf I generated by f1, . . . , fm is supported at one point, while∫
Ω�

(
ddc log

( m∑
k=1

|fk|2 + ε2
))n
→ e


as ε↘ 0, where e
 ≥ e(X, I) and e
↘
∫
{p}(dd

cϕI,1)n as �↗+∞.

Proposition 4.1 yields
∫
{p}(dd

cϕI,1)n = e(X, I), ending the proof.

4.3 The upper bound

We are now ready for the proof of the following result.

Theorem 4.5. Let (X, p) be a an isolated log terminal singularity. Then

γcrit ≤
n+ 1

n
v̂ol(X, p)1/n.

Proof. Fix γ < γcrit and C1 > 0 such that

1

γ
log

∫
Ω
e−γϕ dμp ≤C1 −Eφ(ϕ) (4.3)

for any ϕ∈ Tφ(Ω).
Fix I coherent ideal sheaf supported at p, and let {ϕI,λ,ε}λ>0,ε∈(0,1] ∈ Tφ(Ω) as defined in

Lemma 4.2. Evaluating (4.3) at {ϕI,λ,ε}ε∈(0,1] yields

Cγ,λ +

(
λ− lct(X, I)

γ

)
log ε−2 ≤ 1

γ
log

∫
Ω
e−γϕI,λ,ε dμp

≤C1 −Eφ(ϕI,λ,ε)

≤C1 +CN,λ +
λn+1

n+ 1
FN (ε) log ε−2

for any N ∈N, ε∈ (0, 1] thanks to Lemmas 4.3 and 4.4. We infer(
λ− lct(X, I)

γ
− λn+1

n+ 1
FN (ε)

)
log ε−2 ≤C1 +CN,λ −Cγ,λ,

hence

λ− λn+1

n+ 1
eN ≤

lct(X, I)

γ
(4.4)

for any N ∈N, λ > 0 since FN (ε)→ eN as ε↘ 0 (Lemma 4.4).
The function gN : λ∈ (0,+∞) �→ λ− (λn+1/(n+ 1))eN ∈R reaches its maximum at λN,M :=

1/e
1/n
N . It follows therefore from (4.4) that

γ ≤ lct(X, I)

gN (λN,M )
=
n+ 1

n
lct(X, I)e

1/n
N .

Now eN ↘ e(X, I) as N →+∞ by Lemma 4.4, hence

γ ≤ n+ 1

n
lct(X, I)e(X, I)1/n.

Since this holds for any coherent ideal sheaf I supported at p , we obtain

γ ≤ n+ 1

n
inf
I

lct(X, I)e(X, I)1/n =
n+ 1

n
v̂ol(X, p)1/n,

where the equality follows from Theorem 2.16.
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5. Moser–Trudinger inequality

5.1 Uniform integrability versus Moser–Trudinger inequality

Recall that

α(X, μp) := sup

{
α> 0, sup

ϕ∈F1(Ω)

∫
Ω
e−αϕ dμp <+∞

}
.

This uniform integrability index is a local counterpart to Tian’s celebrated α-invariant, intro-
duced in [Tia87] in the quest for Kähler–Einstein metrics on Fano manifolds. We refer to
[DK01, Dem09, Zer09, ACKPZ09, DP14, GZ15, Pha18] for some contributions to the local
study of analogous invariants.

In this section we prove Theorem A, which can be seen as a local analogue of [BBEGZ19,
Proposition 4.13].

Theorem 5.1. One has γcrit(X, p)≥ ((n+ 1)/n)α(X, μp).

When (X, p) is smooth then α(X, μp) = n and this statement is equivalent (after an
appropriate rescaling) to [BB22, Theorem 1.5] and [GKY13, Theorem 9].

Together with Theorem 4.5, we would obtain the precise value

γcrit(X, p)
?
=
n+ 1

n
v̂ol(X, p)1/n

if we knew that α(X, μp) = v̂ol(X, p)1/n. We establish in § 5.2 the bound α(X, μp)≤ v̂ol(X, p)1/n

and analyze the reverse inequality in § 5.3.

5.1.1 Entropy. We let P(Ω) denote the set of probability measures on Ω. Given two
measures μ, ν ∈P(Ω), the relative entropy of ν with respect to μ is

Hμ(ν) :=

∫
Ω

dν

dμ
log

dν

dμ
dμ=

∫
Ω

log
dν

dμ
dν

if ν is absolutely continuous with respect to μ, and as Hμ(ν) := +∞ otherwise.
Given μ∈P(X), the relative entropy Hμ(·) is the Legendre transform of the convex functional

g ∈ C0(Ω)∩L∞(Ω) �→ log
∫
Ω e

g dμ∈R, i.e.

Hμ(ν) = sup
g∈C0(Ω)∩L∞(Ω)

( ∫
Ω
g dν − log

∫
Ω
eg dμ

)
.

We shall need the following duality result.

Lemma 5.2 [BBEGZ19, Lemma 2.11]. Fix μ∈P(Ω). Then

log

∫
Ω
eg dμ= sup

ν∈P(Ω)

( ∫
Ω
g dν −Hμ(ν)

)

for each lower semi-continuous function g : Ω→R∪ {+∞}.

Recall that we have normalized the adapted volume form so that μp ∈P(Ω).

Corollary 5.3. Fix 0<α<α(X, μp). Then there exists Cα > 0 such that

Hμp
(ν)≥−α

∫
Ω
ϕ dν −Cα

for all ϕ∈F1(Ω) and for all ν ∈P(Ω) such that Hμp
(ν)<+∞.
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Proof. This follows from Lemma 5.2 applied to g=−αϕ and μ= μp. By the definition of
α(X, μp), we obtain − log

∫
Ω e

−αϕ dμp ≥−Cα.

This corollary shows, in particular, that F1(Ω)⊂L1(ν) for any probability measure ν ∈P(X)
with finite μp-entropy. Since the measure ν is moreover non-pluripolar, the following result is a
consequence of Theorem 3.7.

Proposition 5.4. Fix ν ∈P(Ω) such thatHμp
(ν)<+∞. Then there exists a unique v ∈F1(Ω)∩

E1(Ω) such that
ν = (ddcv)n.

5.1.2 Proof of Theorem 5.1. The proof is similar to the derivation of the Moser–Trudinger
inequality from Brezis–Merle inequality by Berman and Berndtsson, see [BB22, § 4.2]. Fix
ϕ∈ Tφ(Ω) and 0<α<α(X, μp). By Lemma 5.2 for any ε > 0 there exists νε ∈P(Ω) such that
Hμp

(νε)<+∞ and

log

∫
Ω
e−((n+1)/n)αϕ dμp ≤ ε−

n+ 1

n
α

∫
Ω
ϕ dνε −Hμp

(νε). (5.1)

Proposition 5.4 ensures the existence of vε ∈F1(Ω)∩ E1(Ω) such that νε = (ddcvε)
n. It follows,

moreover, from Corollary 5.3 thatd

Hμp
(νε)≥−α

∫
Ω
vε dνε −Cα. (5.2)

Combining (5.1) and (5.2) we obtain

log

∫
Ω
e−((n+1)/n)αϕ dμp ≤ ε+Cα −

n+ 1

n
α

∫
Ω
ϕ dνε + α

∫
Ω
vε dνε. (5.3)

We observe that

− n+ 1

n
α

∫
Ω
ϕ dνε + α

∫
Ω
vε dνε =

n+ 1

n
α

∫
Ω

(vε −ϕ)(ddcvε)
n − α

n

∫
Ω
vε(dd

cvε)
n

≤−n+ 1

n
αEφ(ϕ) +

α

n

{
(n+ 1)Eφ(vε)−

∫
Ω
vε(dd

cvε)
n

}
by using Lemma 3.5 (the latter has been stated for functions in Tφ(Ω), it easily extends to the
class F1(Ω)∩ E1(Ω) by approximation). Since vε ≤ φ0 and Eφ(φ0) = 0, the same lemma ensures

(n+ 1)Eφ(vε)−
∫
Ω
vε(dd

cvε)
n ≤−

∫
Ω
φ0(dd

cvε)
n ≤− inf

Ω
φ0,

using that νε = (ddcvε)
n is a probability measure. Altogether this yields

log

∫
Ω
e−((n+1)/n)αϕ dμp ≤ ε+Cα −

α

n
inf
Ω
φ0 −

n+ 1

n
αEφ(ϕ).

Letting ε↘ 0 we conclude that( ∫
Ω
e−((n+1)/n)αϕ dμp

)n/((n+1)α)

≤C ′
αe

−Eφ(ϕ)

for any function ϕ∈ Tφ(Ω). Thus, γcrit(X, p)≥ ((n+ 1)/n)α(X, μp).

5.2 Upper bound on the α-invariant

Definition 5.5. We set

α̃(X, μp) := inf{c(ϕ), ϕ∈F1(Ω)},
where c(ϕ) := sup{c > 0;

∫
Ω e

−cϕ dμp <+∞}.
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Kähler–Einstein metrics near a log terminal singularity

5.2.1 Bounding the α-invariant by the normalized volume.

Proposition 5.6. One has α(X, μp)≤ α̃(X, μp)≤ v̂ol(X, p)1/n.

Proof. It follows from the definition that α(X, μp)≤ α̃(X, μp).
For any ε > 0 and I coherent ideal sheaf supported at 0, the function

ψI,ε :=ψI,λ,ε, with λ=

(
1− ε
e(X, I)

)1/n
given by Lemma 5.7, belongs to F1(Ω) and yields

α̃(X, μp)≤ c(ψI,ε) =
1

(1− ε)1/n
lct(X, I)e(X, I)1/n.

The latter equality is a consequence of Proposition 4.1. We conclude the proof by taking the
infimum over all I and letting ε↘ 0.

Lemma 5.7. Let I be a coherent ideal sheaf supported at p. Then, for any λ, ε > 0 there exists
a function ψI,λ,ε ∈F(Ω) such that:

(i) ψI,λ,ε = λ log(
∑m

j=1|fj |2) near 0 for local generators f1, . . . , fm of I;
(ii) λne(X, I)≤

∫
Ω(ddcψI,λ,ε)n ≤ λne(X, I) + ε.

Proof. Assume that φ0 is the maximal psh extension of φ to Ω, i.e. the largest psh function in
Ω which lies below φ on ∂Ω. It satisfies (ddcφ0)

n = 0 in Ω.
Fix f1, . . . , fm local generators of the ideal I and set ψλ := λ log(

∑m
j=1|fj |2). We can assume

without loss of generality that the fj are well defined in Ω and normalized so that ψλ ≤ φ0 − 1
in Ω. For r > 0, we consider

ϕr := sup{u∈ PSH(Ω), u≤ ψλ in B(r) and u≤ φ0 in Ω}.
The corresponding family of psh functions is non-empty as it contains ψλ. For A> 1 large enough,
the function

wr =

{
ψλ in B(r),
max(ψλ, Aρ+ φ0) in Ω \B(r),

is psh and coincides with Aρ+ φ0 near ∂Ω. It follows that:

– ϕr ∈ PSH(Ω) with ϕr = φ on ∂Ω;
– ϕr ≡ψλ in B(r), hence λne(X, I)≤

∫
Ω(ddcϕr)

n;

– (ddcϕr)
n = 0 in Ω \B(r) (balayage argument).

The family r �→ϕr increases, as r > 0 decreases to 0, to some psh limit ϕ whose Monge–
Ampère measure (ddcϕ)n is concentrated at the origin. It follows from Bedford–Taylor continuity
theorem that (ddcϕ)n is the weak limit of (ddcϕr)

n ≥ λne(X, I)δ0, hence (ddcϕ)n ≥ λne(X, I)δ0.
Conversely, ψλ ≤ϕ near 0, hence Demailly’s comparison theorem ensures that

(ddcϕ)n(0)≤ (ddcψλ)n(0)≤ λne(X, I),

whence equality. Thus, φI,λ,ε :=ϕrε satisfies the required properties.

5.2.2 Normalized volume versus uniform integrability.

Proposition 5.8. One has α̃(X, μp) = v̂ol(X, p)1/n.

We refer the reader to Appendix A for a more algebraic approach based on [BdFF12], which
moreover provides a slightly stronger result.
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When (X, p) is smooth, it follows from [DK01] that α̃(X, μp) = α(X, μp). The situation is,
however, more subtle in the singular context (see § 5.3.2).

Proof. By Proposition 5.6 it suffices to show that α̃(X, μp)≥ v̂ol(X, p)1/n, i.e.
∫
Ω e

−αϕ dμp <+∞
for all ϕ∈F1(Ω) and α< v̂ol(X, p)1/n = infI lct(X, I)nep(I).

In a log resolution π : Ω̃→Ω, this boils down to
∫
Ω̃ e

−αϕ◦π ∏M
i=1|si|

2ai

hi
dV <+∞, where si are

holomorphic sections defining simple normal crossing exceptional divisors E1, . . . , EM , KΩ̃/Ω =∑M
j=1 aiEi and where dV is a smooth volume form. The log terminal condition ensures that

ai >−1 for all i= 1, . . . , M .
As α< v̂ol(X, p)1/n ≤ n, the integrability condition is equivalent to show that for any point

x∈
⋃M
i=1 Ei there exists a small ball B(x, r) such that∫

B(x,r)
e−αϕ◦π

M∏
i=1

|si|2ai

hi
dV <+∞. (5.4)

Set U :=
∑

i:ai≥0 ai log|si|2hi
, V := αϕ ◦ π and W :=−

∑
i:ai<0 ai log|si|2hi

. By [BBJ21,
Theorem B.5] the condition (5.4) holds if and only if there exists ε > 0 such that

ν(U ◦ g, F ) +AΩ̃(F )≥ (1 + ε)ν(V ◦ g, F ) + (1 + ε)ν(W ◦ g, F ) (5.5)

for any F prime divisor over Ω̃ with center in a small ball B(x, r′)⊂B(x, r), i.e. F ⊂Ω′ for
g : Ω′→ Ω̃ modification. Observe that

ν(U ◦ g, F ) +AΩ̃(F )− ν(W ◦ g, F ) = ordF (g∗KΩ̃/Ω) + 1 + ordF (KΩ′/Ω̃)

= 1 + ordF (KΩ′/Ω) =AΩ(F ).

Thus, (5.5) becomes

α(1 + ε)≤ AΩ(F )− εν(W ◦ g, F )

ν(ϕ ◦ π ◦ g, F )
. (5.6)

As ai >−1 for all i, [BBJ21, Theorem B.5] ensures the existence of a> 0 such that AΩ̃(F )≥
(1 + a)ν(W ◦ g, F ) for any prime divisor F over Ω̃ as above. Thus,

AΩ̃(F )≤AΩ(F ) + ν(W ◦ g, F )≤ 1

1 + a
AΩ̃(F ) +AΩ(F ),

and ν(W ◦ g, F )≤ (1/(1 + a))AΩ̃(F )≤ (1/a)AΩ(F ). Therefore, (5.6) holds if

α(1 + ε)≤ a− ε
a

AΩ(F )

ν(ϕ ◦ π ◦ g, F )
. (5.7)

Since ϕ∈F1(Ω), it follows from the comparison theorem of Demailly [Dem85, Theorem 4.2]
that for a coherent ideal sheaf I supported at p∈Ω,

1≥
∫
Ω

(ddcϕ)n ≥ νI(ϕ, p)n
∫
CN

(ddcfI)n ∧ [X] = νI(ϕ, p)nep(I), (5.8)

where fI = log(
∑

i|fi|2) for generators {fi}i of I and

νI(ϕ, p) := sup{s > 0 :ϕ≤ sfI +O(1)}= min
G

ν(ϕ ◦ π ◦ g, G)

ordGI
,

where π ◦ g : Ω′→Ω is a log resolution for I and the minimum is over all exceptional divisors of
Ω′→Ω. Lemma 5.9 ensures that for any prime divisor F and δ > 0 there exists an ideal I such
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Kähler–Einstein metrics near a log terminal singularity

that

AΩ(F )

ν(ϕ ◦ π ◦ p, F )
≥ (1− δ)AΩ(F )

ordFI
(νI(ϕ, p))−1 ≥ (1− δ)AΩ(F )

ordFI
ep(I)1/n

≥ (1− δ)lct(X, I)ep(I)1/n ≥ (1− δ)v̂ol(X, p)1/n.

Thus, (5.7) holds if α(1 + ε)≤ (((a− ε)(1− δ))/a)v̂ol(X, p)1/n, concluding the proof.

Lemma 5.9. Fix ϕ∈F1(Ω) and F ⊂Ω′ prime divisor such that π ◦ g(F ) = p. For any ε > 0, there
exists a coherent ideal sheaf I supported at p such that

νI(ϕ, p)≥ (1− ε)ν(ϕ ◦ π ◦ g, F )

ordF (I)
.

Proof. Let c := ν(ϕ ◦ π ◦ g, F ) and for c′ ∈Q, c′ ≤ c, set

Amc′(F ) := {f ∈OX,p : ordF (f ◦ π ◦ g)≥mc′}
for m∈N divisible enough. Then Amc′(F ) is an ideal sheaf and

lim sup
m→+∞

ordF (Amc′(F ))

m
= c′. (5.9)

In particular, if ϕmc′ ∈PSH(B(p, r)) has algebraic singularities along Amc′(F ), then for any
ε > 0, ϕmc′ is less singular than (mc′/(c− ε))ϕ around p if m≥m1(ε)� 1. For any G exceptional
divisor on Ω′ and m≥m1(ε) we infer

ν(ϕ ◦ π ◦ g, G)

ordG(Amc′(F ))/m
=

ν(ϕ ◦ π ◦ g, G)

ν(ϕmc′ ◦ π ◦ g, G)/m
≥ c− ε

c′
. (5.10)

On the other hand, (5.9) implies that there exists m0(ε)≥m1(ε)� 1 with

ν(ϕ ◦ π ◦ g, F )

ordF (Am0c′(F ))/m0
≤ c

c′ − ε . (5.11)

Combining (5.10) and (5.11) we obtain

min
G

ν(ϕ ◦ π ◦ g, G)

ordG(Am0c′(F ))/m0
≥ c− ε

c′
≥
(

1− εc+ c′

cc′

)
c

c′ − ε

≥
(

1− εc+ c′

cc′

)
ν(ϕ ◦ π ◦ g, F )

ordF (Am0c′(F ))/m0
.

Since c′ and ε are arbitrary, and x �→ f(x) = (c+ x)/cx is decreasing, we deduce that for any
ε > 0 there exists c′ ∈Q and m0 =m0(c, c

′, ε) such that

νAm0c′ (F )(ϕ, p)≥ (1− ε) ν(ϕ ◦ π ◦ g, F )

ordF (Am0c′(F ))
.

Setting A :=Am0c′(F ) concludes the proof.

5.3 Lower bounds on the α-invariant

We provide in this section two effective (but not sharp) lower bounds on α(X, μp).

5.3.1 Using projections on n-planes. A result of Skoda ensures that e−ϕ is integrable if the
Lelong numbers of ϕ are small enough (see [GZ17, Theorem 2.50]). This has been largely extended
by Demailly and Zeriahi who provided uniform integrability results for functions ϕ∈F1(Ω) (see
[Dem09, ACKPZ09]). In this section, we extend these results to our singular setting.
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Theorem 5.10. One has

α(X, μp)≥
n

mult(X, p)1−1/n

lct(X, p)

1 + lct(X, p)
.

Proof. Recall that μp = fdVX with f ∈Lr(dVX). The exponent r > 1 has been estimated in
Lemma 2.14. Using Hölder inequality, we thus obtain

α(X, μp)≥
lct(X, p)

1 + lct(X, p)
α(Ω, dVX).

The remainder of the proof consists of establishing the lower bound

α(Ω, dVX)≥ n

mult(X, p)1−1/n
.

Recall that dVX = ωneucl ∧ [X], where ωeucl denotes the euclidean Kähler form. Thus, dVX =∑
I(πI)

∗(dVI), where I = (i1, . . . , in) is a n-tuple, πI : CN →CnI denotes the linear projection on
CnI , and dVI is the euclidean volume form on CnI . We choose coordinates in CN so that each
projection map πI : Ω→ΩI ⊂Cn is proper. For ϕ∈F1(Ω), we obtain∫

Ω
e−αϕ dVX =

∑
I

∫
ΩI

(πI)∗(e
−αϕ) dVI ≤mult(X, p)

∑
I

∫
ΩI

e−α(πI)∗ϕ dVI .

We assume here, without loss of generality, that ϕ≤ 0, and use the (sub-optimal) inequal-
ity (πI)∗(e−αϕ)≤mult(X, p)e−α(πI)∗ϕ. The function ϕI := (πI)∗ϕ is psh in ΩI = πI(Ω), with
boundary values (πI)∗(φ). We claim that∫

ΩI

(ddcϕI)
n ≤mult(X, p)n−1. (5.12)

Once this is established, it follows from the main result of [ACKPZ09] that for all 0< ε small
enough, there exists Cε > 0 independent of ϕ such that∫

ΩI

e−((n−ε)/mult(X,p)1−1/n)ϕI dVI ≤Cε,

which yields the desired lower bound α(Ω, dVX)≥ (n/(mult(X, p)1−1/n)).
It remains to check (5.12). We decompose ϕI(z) =

∑m
i=1 ϕ(xi), where m= mult(X, p) and

x1, . . . , xm denote the preimages of z counted with multiplicities. The assumption on the Monge–
Ampère mass of ϕ reads

m∑
i=1

∫
(ddcϕ)n(xi)≤ 1.

We set ani :=
∫

(ddcϕ)n(xi) and use [Ceg04, Corollary 5.6] to estimate

∫
(ddcϕI)

n =

m∑
i1,...,in=1

∫
ddcϕ(xi1)∧ · · · ∧ ddcϕ(xin)≤

m∑
i1,...,in=1

ai1 · · · ain =

( m∑
i

ai

)n
.

The latter sum is maximized when a1 = · · ·= am =m−1/n, yielding (5.12).

Example 5.11. Let X = {z ∈Cn+1, F (z) = 0} be the Ak-singularity, where F (z) = zk+1
0 + z21 +

· · · z2n. Arguing as we have done for the ODP (k= 1), one can check that μp ∼ dVX/‖F ′‖2 so
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that mult(X, p) = 2 and lct(X, p) = n− 2 + 2/(k+ 1). Now

v̂ol(Ak, p)
1/n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

21/n
(
n− 2

n− 1

)1−1/n

n if
k+ 1

2
≥ n− 1

n− 2
,

(k+ 1)1/n
(

(n− 2)(k+ 1) + 2

k+ 1

)
if
k+ 1

2
<
n− 1

n− 2
,

as computed by Li in [Li18, Example 5.3]. For n� 1, the lower bound provided by Theorem 5.10
is thus short of a factor 2 = mult(X, p) by comparison with the expected lower bound

v̂ol(Ak, p)
1/n.

5.3.2 Using resolutions.

Proposition 5.12. Let π : Ω̃→Ω be a resolution of singularities with simple normal crossing,
and let {ai}i=1,...,M be the discrepancies. Then

α(X, μp)≥
v̂ol(X, p)1/n

1 + (maxi ai)+
.

In particular, if the singularity is ‘admissible’, then α(X, μp) = v̂ol(X, p)1/n.

Following [LTW21, Definition 1.1] we say here that (X, p) is an admissible singularity if
there exists a resolution π : X̃→X (with snc exceptional divisor E =

∑
j Ej and π-ample divi-

sor −
∑
bjEj , bj ∈Q+) such that the discrepancies ai ∈ (−1, 0] are all non-positive. Recall

that:

– any two-dimensional log terminal singularity is admissible;
– the vertex of the affine cone over a Fano manifold embedded in a projective space by the

linear system associated to a multiple of the anticanonical bundle is admissible (cf. the proof
of Proposition 3.17);

– (X, p) is admissible if it is Q-factorial and admits a crepant resolution.

Theorem B from the introduction follows from the combination of Proposition 5.6,
Theorem 5.10 and Proposition 5.12.

Proof. We seek α> 0 such that

sup
ϕ∈F1(Ω)

∫
Ω̃
e−αϕ◦π

M∏
i=1

|si|2ai

hi
dV <+∞. (5.13)

If all the ai are non-positive we can use [DK01, Main Theorem] to show that α(X, μp) =

α̃(X, μp), hence α(X, μp) = v̂ol(X, p)1/n by Proposition 5.8. Indeed, assume that there exists
γ > 0 such that α(X, μp)< γ < α̃(X, μp). By definition, we can find ψj ∈F1(Ω) such that∫
Ω e

−γψj dμp→+∞. Extracting and relabelling, we can assume that ψj→ψ in L1 with c(ψ)> γ.

The psh functions ϕj =ψj + γ−1
∑M

i=1(−ai) log|si|2hi
converge to ϕ=ψ+ γ−1

∑M
i=1(−ai) log|si|2hi

in L1(Ω̃) and c(ϕ)> γ. It follows therefore from [DK01, Theorem 0.2.2] that∫
Ω
e−γψj dμp =

∫
Ω̃
e−γϕj dV −→

∫
Ω̃
e−γϕ dV <+∞,

contradicting the assumption
∫
Ω e

−γψj dμp→+∞.
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In general, we set U :=
∑

i:ai>0 ai log|si|2hi
and W :=−

∑
i:ai≤0 ai log|si|2hi

. Using [DK01, Main
Theorem], we obtain

α(X, μp)≥ inf
ϕ∈F1(Ω)

cW (ϕ ◦ π), (5.14)

where

cW (ϕ ◦ π) := sup

{
α> 0 :

∫
Ω̃
e−αϕ◦π−W dV <+∞

}
is the twisted complex singularity exponent. It then remains to estimate cW (ϕ ◦ π) for a fixed
ϕ∈F1(Ω). As π∗dμp = eU−WdV , Hölder inequality yields∫

Ω̃
e−αϕ◦π−W dV ≤

( ∫
Ω̃
e−p

′αϕ◦ππ∗ dμp

)1/p′(∫
Ω̃
e(1−q

′)U−W dV

)1/q′
. (5.15)

Set A := (maxi ai)+ > 0. The second factor on the right-hand side of (5.15) is finite for any
q′ < ((A+ 1)/A), while the first factor on the right-hand side gives the condition p′α< α̃=

v̂ol(X, p)1/n. We infer cW (ϕ ◦ π)≥ (v̂ol(X, p)1/n)/(1 +A), which concludes the proof.

As the proof shows, the main obstruction to proving the equality α(X, μp) = α̃(X, μp) =

v̂ol(X, p)1/n is the lack of a Demailly–Kollàr result on complex spaces. Resolving the singularities,
one ends up with a twisted version of Demailly and Kollàr’s problem on a smooth manifold. It
is known that the general form of such a problem has a negative answer [Pha14, Remark 1.3].

6. Ricci inverse iteration

In this section, we prove Theorem C from the introduction. The strategy is similar to that of
[GKY13, Theorem 1], with a singular twist.

We fix γ < γcrit(X, p) and consider, for j ∈N, the sequence of functions ϕj ∈ PSH(Ω) defined
by induction as follows: pick ϕ0 ∈ T ∞

φ (Ω) a smooth initial data, and let ϕj+1 ∈ PSH(Ω)∩ C0(Ω)∩
C∞(Ω \ {p}) be the unique solution to

(ddcϕj+1)
n =

e−γϕjμp∫
Ω e

−γϕjμp

with boundary values ϕj+1|∂Ω = φ. The existence and regularity of ϕj off the singular locus

follows from [Fu23, Theorem 1.4], while the continuity of ϕj near p is a consequence of [GGZ23,
Theorem A].

We are going to establish uniform a priori estimates on arbitrary derivatives of the ϕj in
Ω \ {p}, thus (ϕj) admits ‘smooth’ cluster values. We show that the functional Fγ is constant on
the set K of these cluster points, so that any such ψ is a solution of the Monge–Ampère equation

(ddcψ)n =
e−γψμp∫
Ω e

−γψμp

with boundary values ψ|∂Ω = φ.

6.1 Uniform estimates

Proposition 6.1. There exists C0 > 0 such that ‖ϕj‖L∞(Ω) ≤C0 for all j ∈N.

This uniform estimate relies crucially on a technique introduced by Kolodziej in [Kol98],
which has been extended to this singular setting in [GGZ23].
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Kähler–Einstein metrics near a log terminal singularity

Proof. We assume without loss of generality that φ0 is the maximal psh extension of φ in Ω.
In particular, ϕj ≤ φ0 for all j ∈N, and Eφ(ϕj)≤Eφ(φ0) = 0. Our task is to establish a uniform
lower bound ϕj ≥−C0.

The assumption γ < γcrit(X, p) ensures, by Lemma 3.13, that the functional Fγ is coercive,
and in particular there exist 0<a< 1 and 0< b such that

Fγ(ϕj)≤ aEφ(ϕj) + b

for all j ∈N. It follows from [GKY13, Proposition 12] (exactly the same proof applies here) that
j �→ Fγ(ϕj) is increasing, hence

Fγ(ϕ0)≤ Fγ(ϕj)≤ aEφ(ϕj) + b≤ b,
showing that the energies (Eφ(ϕj)) are uniformly bounded, −b′ ≤Eφ(ϕj)≤ 0.

The corresponding family Gb′ of psh functions with φ-boundary values and energy bounded
by b′ is compact, and all its members have zero Lelong number at all points in Ω (see
Theorem 3.7). Passing through a resolution, one can thus invoke Skoda’s uniform integrability
theorem [GZ17, Theorem 2.50] to conclude that the densities e−γϕj are uniformly in Lr(dVX) for
any r > 1.

Now μp = fdVX with f ∈L1+ε for some ε > 0 since (X, p) is log terminal. Hölder inequality
thus ensures that the densities gj := e−γϕjf/

∫
Ω e

−γϕj dμp are uniformly in L1+ε′(dVX) for some
0< ε′ < ε.

It therefore follows from [GGZ23, Proposition 1.8] (an extension of the main result of [Kol98]
to the setting of pseudoconvex subsets of a singular complex space) that the ϕj are uniformly
bounded.

6.2 C2-estimates

In this section we establish the following a priori estimates.

Proposition 6.2. For any compact subset K of Ω \ {p}, there exists a constant C2(K)> 0 such
that for all j ∈N,

0≤ sup
K

ΔωX
ϕj ≤C2(K).

Here ΔωX
h := n((ddch∧ ωn−1

X )/ωnX) denotes the Laplace operator with respect to the Kähler
form ωX . Such an estimate goes back to the regularity theory developed in [CKNS85]. The
strategy of the proof is similar to that of [GKY13, Theorem 15], with a twist due to the presence
of the singular point p.

Proof. To obtain these estimates, one considers a resolution of the singularity π : Ω̃→Ω. We let
E =

⋃m

=1 E
 denote the exceptional divisor and let:

– s
 denote a holomorphic section of O(E
) such that E
 = (s
 = 0);
– b
 be positive rational numbers such that −

∑

 b
E
 is π-ample;

– h
 denote a smooth hermitian metric of O(E
) and K� 1 such that

β :=Kddcρ ◦ π−
m∑

=1

b
Θh�
is a Kähler form on Ω̃.

Observe that the function ρ′ :=Kρ ◦ π+
∑m


=1 b
 log |s
|2h�
is strictly psh in Ω̃, with ddcρ′ ≥ β

and ρ′(z)→−∞ as z→E.
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V. Guedj, A. Trusiani and S. Boucksom

Recall that π∗μp = Πm

=1|s
|2a�dVΩ̃ with a
 >−1, and set |s|2 = Πm


=1|s
|2b� . We are going to
show that there exist uniform constants C2 > 0, m∈N such that

0≤ |s|2m|Δβϕj |(z)≤C2 (6.1)

for all j ∈N, z ∈Ω, from which Proposition 6.2 follows. Slightly abusing notation, we still denote
here by ϕj the function ϕj ◦ π.

We approximate ϕj by the smooth solutions ϕj,ε of the Dirichlet problem⎧⎪⎨
⎪⎩

(εβ + ddcϕj+1,ε)
n =

e−γϕj,ε
∏m
l=1(|sl|2hl

+ ε2)al

cj
dVΩ̃,

ϕj+1,ε|∂Ω̃ = φ,

(6.2)

with ϕ0,ε =ϕ0 and cj =
∫
Ω e

−γϕj dμp. We are going to establish a priori estimates on these
smooth approximants, whose existence is guaranteed by [GL10, Theorem 1.1]. We then show
that ϕj,ε converges to ϕj as ε decreases to zero.

Step 1. We first claim that for all j, ε,

sup
∂Ω̃

|∇ϕj+1,ε| ≤A1,j,ε, (6.3)

where A1,j,ε > 0 only depends on an upper-bound on ‖ϕj,ε‖L∞(Ω̃).

Let Φ− be a smooth psh extension of−φ to a neighborhood of Ω. Observe that ϕj+1,ε + Φ− ◦ π
is β-psh in Ω̃, with zero boundary values. Thus, ϕj+1,ε + Φ− ◦ π≤ u, where u is the smooth
solution in Ω̃ to the Laplace equation Δβu=−n with zero boundary values. We infer ϕj+1,ε ≤
ψ1 := u−Φ− ◦ π in Ω̃.

We now construct a psh function ψ2 ≤ϕj+1,ε with φ-boundary values and such that sup∂Ω̃ |ψ2|
is controlled from above by ‖ϕj,ε‖L∞(Ω̃). The upper bound on sup∂Ω̃ |∇ϕj+1,ε| thus follows from
the inequalities ψ2 ≤ϕj,ε ≤ ψ1.

Recall that π∗μp = Πm

=1|s
|2a�dVΩ̃. We let P ⊂ [1, m] denote the subset of indices such that

−1<a
 < 0. For δ > 0 small enough, we observe that v := ρ′ + δ
∑


∈P |s
|2δ is strictly psh in Ω̃

and satisfies, in Ω̃ \E,

ddcv≥ c
{
β +

∑

∈P

i ds
 ∧ ds

|s
|2(1−δ)

}

for some c > 0, hence (ddcv)n ≥ c′π∗μp. Replacing v by λj,εv, we obtain

(εβ + ddcλj,εv)n ≥ λnj,ε(ddcv)n ≥
e−γϕj,ε

∏m
l=1(|sl|2hl

+ ε2)al

cj
dVΩ̃,

for some λj,ε > 0 which only depends on an upper bound on ‖ϕj,ε‖L∞(Ω̃). In other words, λj,εv

is a subsolution to the Monge–Ampère equation in Ω̃ \E.
We modify λj,εv near ∂Ω̃ to produce a subsolution with the right boundary values. Let

χ be a cut-off function which is 1 near E and has compact support in Ω̃. The function
ψ2 = χλj,εv+ (1− χ)φ0 +Aρ ◦ π satisfies all our requirements for A> 0 large enough. Note,
however, that it is only locally bounded in Ω̃ \E.

Finally, consider max(ψ2, ϕj,ε). This is a subsolution of the Dirichlet problem which is globally
bounded in Ω̃. It follows from the maximum principle that max(ψ2, ϕj,ε)≤ϕj,ε, hence ψ2 ≤
max(ψ2, ϕj,ε)≤ϕj,ε.
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Kähler–Einstein metrics near a log terminal singularity

Step 2. We next claim that there exist constants A2, A3,j+1,ε > 0 such that

sup
Ω̃

[|s|2A2

h |∇ϕj+1,ε|2β]≤A3,j+1,ε, (6.4)

where A3,j+1,ε only depends on an upper bound on ‖ϕk,ε‖L∞(Ω̃) for k≤ j + 1.

Proof. The proof is a variant of [DFS23, Proposition 2.2], which itself relies on previous estimates
due to Blocki and Phong-Sturm.

As we work in Ω̃ \ Supp(E), we identify β with ddc(Kρ ◦ π+ log|s|2h). Replacing ϕj+1,ε by
ϕ̃j+1,ε :=ϕj+1,ε − (Kρ ◦ π+ log|s|2h), (6.2) becomes⎧⎪⎨

⎪⎩
((1 + ε)β + ddcϕ̃j+1,ε)

n = c−1
j e−γϕj,ε

m∏
l=1

(|sl|2hl
+ ε2)al dVΩ̃,

ϕ̃j+1,ε|∂Ω̃ = φ− log|s|2h.
(6.5)

As

||∇ϕj,ε|β − |∇ϕ̃j,ε|β | ≤
|∇|s|2h|β
|s|h

+C,

to get the estimate (6.4) for ϕ̃j,ε it is enough to prove by induction that there exists positive
constants B2, B3,j+1,ε such that

sup
Ω̃

[|s|2B2

h |∇ϕ̃j+1,ε|2β ]≤max

{
sup
Ω̃

[|s|2B2

h |∇ϕ̃j,ε|
2
β ], B3,j+1,ε

}
, (6.6)

where B2 is uniform in j, ε while B3,j+1,ε only depends on upper bounds on
‖ϕj+1,ε‖L∞(Ω̃), ‖ϕj,ε‖L∞(Ω̃), and where ϕ̃0,ε :=−(Kρ ◦ π+ log|s|2h). To lighten notation we rewrite
the equation ⎧⎪⎨

⎪⎩
(βε + ddcu)n = e−v

m∏
l=1

(|sl|2hl
+ ε2)alβnε ,

u|∂Ω̃ = φ̃,

(6.7)

where βε := (1 + ε)β is a non-degenerate smooth family of Kähler forms. Note that (6.6) becomes

sup
Ω̃

[|s|2B2

h |∇u|
2
β]≤max

{
sup
Ω̃

[|s|2B2

h |∇(v/γ − log|s|2h − fε)|2β ], B3,j+1,ε

}
, (6.8)

where {fε}ε>0 is a non-degenerate smooth family. In the estimates that follow we indicate with Ci
all the constants under control, i.e. that depend on a upper bound on ‖ϕj+1,ε‖L∞(Ω̃), ‖ϕj,ε‖L∞(Ω).

Observe that ‖u+ log|s|2h‖L∞(Ω̃), ‖v‖L∞(Ω̃) and sup∂Ω̃|∇u| are under control. The constant

B3,j+1,ε in (6.8) will clearly depend on the Ci. We indicate with Di all the constants uniform in
j, ε, which will be used to determine the uniform constant B2 in (6.8).

We denote by Δε and Δ′
ε the Laplacian operators with respect to βε and to ηε := βε + ddcu,

respectively. Consider

H := log|∇u|2βε
+ log|s|2kh −G(u),

where G(x) =Ax−B/(x+C + 1) for C chosen so that u≥−C, while A> 0, B > 0 to be deter-
mined later. The constants A, k are chosen to be uniform in j, ε while B is under control. If H
reaches its maximum at xM , then

|∇u|2βε
|s|2(k+A)h ≤C1(|∇u|2βε

|s|2(k+A)h )(xM ) (6.9)

for a constant C1 under control.
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As u+ log|s|2h is smooth on Ω̃, we ensure that H(x)� (k+A− 1) log|s|2h→−∞ as x→
Supp(Ej) by imposing k≥ 1. If H reaches its maximum on ∂Ω̃, then we are done since sup∂Ω̃|∇u|
is under control. From now on we thus suppose that H reaches its maximum in Ω̃ \ {s= 0}.
A direct computation [PSS12, (5.11) and (5.20)] yields

Δ′
ε log|∇u|2βε

≥
2Re〈∇v+

∑m
l=1 al∇ log(|sl|2hl

+ ε2),∇u〉βε

|∇u|2βε

−Λtrηεβε

+ 2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
ηε

− 2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
βε

, (6.10)

where Λ denotes a (uniform in ε) lower bound on the holomorphic bisectional curvature of βε.
At the point where H reaches its maximum we obtain

∇|∇u|2βε

|∇u|2βε

=∇ log|∇u|2βε
=−∇(log|s|2kh −G(u)) =−k∇|s|

2
h

|s|2h
+G′(u)∇u,

hence

2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
ηε

− 2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
βε

= 2kRe

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
βε

− 2kRe

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
ηε

+ 2G′(u)
|∇u|2ηε
|∇u|2βε

− 2G′(u)

≥ 2kRe

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
βε

− 2kRe

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
ηε

− 2G′(u),

using the monotonicity of G(x) in the last inequality. By (6.9) and asking k≥ 2, we can assume
that |s|2h|∇u|βε

≥ 1 at xM . Thus,∣∣∣∣2Re

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
βε

∣∣∣∣≤ 2

∣∣∣∣Re

〈
∇|s|2h,

∇u
|∇u|βε

〉
βε

∣∣∣∣≤D1

and ∣∣∣∣2Re

〈∇|s|2h
|s|2h

,
∇u
|∇u|2βε

〉
ηε

∣∣∣∣≤ 2

∣∣∣∣Re

〈
∇|s|2h,

∇u
|∇u|βε

〉
ηε

∣∣∣∣≤ |∇|s|2h|2ηε +
|s|4h|∇u|2ηε
|s|4h|∇u|2βε

≤ |∇|s|2h|2βε
trηεβε + |s|4h|∇u|2ηε .

We infer that at x= xM ,

2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
ηε

− 2Re

〈∇|∇u|2βε

|∇u|2βε

,
∇u
|∇u|2βε

〉
βε

≥−kD1 − k|∇|s|2h|2βε
trηεβε − k|s|4h|∇u|2ηε − 2G′(u)

≥−kD1 − kD2trηεβε − k|s|4h|∇u|2ηε − 2G′(u),

which is the first estimate of the right-hand side in (6.10).
Next, as we want to prove (6.8), as a consequence of (6.9) and of |∇u|2β ≤D3|∇u|2βε

in the
estimate that follows we can assume that

D3C1|∇u|2βε
≥max{|∇(v/γ − log|s|2h − fε)|2β , 1}
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at the point xM . We deduce∣∣∣∣2Re〈∇v +
∑m

l=1∇al log(|sl|2hl
+ ε2),∇u〉βε

|∇u|2βε

∣∣∣∣
≤D4 +

|∇(v− γ log|s|2h − γfε)|2βε

|∇u|2βε

+
D5

|∇u|2βε

|s|−2
h +

D6

|∇u|2βε

m∑
l=1

|sl|−2
hl
≤C2 +C3|s|−2M

h

for M := 1/minl bl so that Mbl ≥ 1 for any l. The previous inequalities yield

Δ′
ε log|∇u|2βε

≥−kD1 −C2 −C3|s|−2M
h − (kD2 + Λ)trηεβε − k|s|4h|∇u|2ηε − 2G′(u). (6.11)

Moreover,

−Δ′
εG(u) =−G′(u)Δ′

εu−G′′(u)|∇u|2ηε =G′(u)trηεβε − nG′(u)−G′′(u)|∇u|2ηε
and Δ′

ε log|s|2kh ≥−kD7trηεβε. Together with (6.11) we obtain

Δ′
εH ≥ (G′ − kD2 −Λ− kD7)trηεβε − (n+ 2)G′ − (G′′ + k|s|4h)|∇u|2ηε − kD1 −C2 −C3|s|−2M

h .

Taking k=M(n+ 1) + 1, this can be rewritten

Δ′
εH ≥ (G′ −D8)trηεβε − (n+ 2)G′ − (G′′ +D9|s|4h)|∇u|2ηε −C4|s|−2M

h . (6.12)

We now define G(x) := (D8 + 1)x−B/(x+C + 1), where B > 0 is so large that

2B

(u+C + 1)3
−D9|s|4h ≥ |s|2h

at xM . Note that B can be chosen such that it only depends on C,D9 and on ‖u+ log|s|2h‖L∞(Ω̃),

i.e. it is under control. From (6.12) we deduce at xM

0≥Δ′
εH ≥ trηεβε + |s|2h|∇u|2ηε −C5|s|−2M

h .

This yields trηεβε ≤C5|s|−2M
h and |∇u|2ηε ≤C5|s|−2M−2

h , hence

|∇u|2βε
≤ |∇u|2ηεtrβε

ηε ≤ |∇u|2ηε(trηεβε)
n−1

(
ηnε
βnε

)
≤C6|s|−2M

h |∇u|2ηε(trηεβε)
n−1 ≤C7|s|−2k

h ,

where we also used [GZ17, Lemma 14.4], the Monge–Ampère equation (6.7) and the fact that∏m
l=1(|sl|2hl

+ ε2)al ≤D10|s|−2M
h as al >−1. From (6.9) we deduce |∇u|2βε

|s|2(k+D8+1)
h ≤C8. As

{βε}ε>0 is a non-degenerate continuous family of Kähler forms converging to β as ε→ 0, we get

|s|2(k+D8+1)
h |∇u|2β ≤max

{
sup
Ω̃

[|s|2(k+D8+1)
h |∇(v/γ − log|s|2 − fε)|2β ], C9

}
,

i.e. (6.8), which concludes the proof by setting B2 := k+D8 + 1, B3,j+1,ε :=C9.

Step 3. Fix V a small neighborhood of ∂Ω̃ (intersected with Ω̃). We claim that

sup
∂Ω̃

|Δβϕj,ε| ≤CV [1 + sup
V
|∇ϕj,ε|2], (6.13)

for some uniform constant CV independent of j, ε. This follows from a long series of esti-
mates established in [GKY13, Lemma 18] (which itself was adapting the technique developed
by [CKNS85]) when μp and Ω are smooth. The statement of [GKY13, Lemma 18] mentions
supΩ̃ |∇ϕj |2; however, the arguments only involve:

– local reasonings in a small fixed neighborhood of the boundary;
– smoothness of μp in this neighborhood and pseudoconvexity of ∂Ω̃.
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Step 4. We now show that there exist constants m,B3,j,ε > 0 such that

sup
Ω̃

|s|2m|Δβϕj,ε| ≤B3,j,ε

[
1 + sup

∂Ω̃

|Δβϕj,ε|
]
, (6.14)

where B3,j,ε only depends on an upper bound on ‖ϕk,ε‖L∞(Ω̃), for k≤ j. This is a variant of

[GKY13, Lemma 17], for which we provide a detailed proof.
We set ωj := εβ + ddcϕj,ε and observe that

ωnj = eψε−ϕj−1,ε−c′j−1βn,

where ψε is a difference of quasi-psh functions in Ω̃ such that eψε ≤ c1|s|−2a and ddcψε ≥
−c1|s|−2β in Ω̃, for some uniform constants a, c1 > 0. We consider

Hj := log Trβ(ωj) +ϕj−1,ε −Aϕj,ε +Aρ′,

where A> 0 is chosen below. We use here the classical notation

Trη(ω) := n
ω ∧ ηn−1

ηn
and Δη(h) := n

ddch∧ ηn−1

ηn
.

Either Hj reaches its maximum on ∂Ω̃ and we are done, or it reaches its maximum at some
point xj ∈ Ω̃ \E since ρ→−∞ along E. We are going to estimate Δωj

Hj from below and use
the fact that 0≥Δωj

Hj(xj).
It follows from [Siu87] that

Δωj
log Trβ(ωj)≥−

Trβ(Ric(ωj))

Trβ(ωj)
−BTrωj

(β),

where −B is a lower bound on the holomorphic bisectional curvature of β. Now

−Ric(ωj) =−Ric(β) + ddc(ψε −ϕj−1,ε)≥−ωj−1 −
A1

|s|2β

in Ω̃ \E. Moreover, Trβ(ωj−1)≤Trβ(ωj)Trωj
(ωj−1), hence

Δωj
log Trβ(ωj)≥−Trωj

(ωj−1)−
nA1

|s|2Trβ(ωj)
−BTrωj

(β).

Using that ddcρ′ ≥ β, we obtain

Δωj
Hj ≥−An+ (A−B)Trωj

(β)− nA1

|s|2Trβ(ωj)
.

Using the classical inequality n[Trωj
(β)]n−1 ≥ (βn/ωnj )Trβ(ωj), we infer

Δωj
Hj ≥−An+ c(A−B)e−ψε/(n−1)[Trβ(ωj)]

1/(n−1) − nA1

|s|2Trβ(ωj)
. (6.15)

Let us stress that the constant c depends here on an upper bound on ‖ϕj−1,ε‖L∞(Ω̃).

We fix A so large that A>B and ψε +Aρ′ ≤ c′1 − a log |s|2 +Aρ′ is bounded from above. At
the point xj we obtain 0≥Δωj

Hj , therefore:

– either |s|2Trβ(ωj)≤ 1, hence Hj(xj)≤ (ϕj−1,ε −Aϕj,ε +Aρ′)(xj)≤C;
– or |s|2Trβ(ωj)≥ 1 and (6.15) yields Trβ(ωj)≤C ′eψε(xj), hence

Hj(xj)≤ ψε(xj) +Aρ′(xj) +C ′′ ≤C ′′′.

Thus, Hj is uniformly bounded from above in both cases, and (6.14) follows (we use here an
upper bound on ‖ϕj−1,ε‖L∞(Ω̃) and ‖ϕj,ε‖L∞(Ω̃)).
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Kähler–Einstein metrics near a log terminal singularity

Step 5. We finally show by induction on j that ϕj,ε uniformly converges towards ϕj as ε decreases
to 0. There is nothing to prove for j = 0 since ϕ0,ε =ϕ0.

For j = 1, it follows from (a slight generalization of) [GGZ23, Proposition 1.8] that
‖ϕ1,ε‖L∞(Ω̃) ≤C1 is bounded uniformly in ε > 0. Proceeding by induction, we similarly obtain
that for all j ∈N,

‖ϕj,ε‖L∞(Ω̃) ≤Cj

is bounded uniformly in ε > 0. By previous steps, the family (ϕj,ε)ε is relatively compact in C1,α
for all 0<α< 1. Any cluster point ψj , as ε→ 0, is a solution of

(ddcψj+1)
n =

e−γψjμp
cj

with boundary values ψj+1|∂Ω = φ, hence ψj =ϕj by uniqueness. Thus, ϕj,ε converges to ϕj as ε

decreases to zero, and the convergence is moreover uniform on Ω̃ by [GGZ23, Proposition 1.8].
We can thus let ε tend to zero in previous inequalities. Now ‖ϕj,ε‖L∞(Ω̃)→‖ϕj‖L∞(Ω), and

the latter is uniformly bounded in j by Proposition 6.1. For ε= 0, (6.3), (6.4), (6.13) and (6.14)
thus provide uniform bounds in j, and conclude the proof of (6.1). The proof of Proposition 6.2
is thus complete.

6.3 Higher-order estimates and convergence

Once the uniform C2-estimate is established (Proposition 6.2), one can then linearize the com-
plex Monge–Ampère equation and apply standard elliptic theory (Evans–Krylov method and
Schauder bootstrapping) to derive higher-order estimates.

Proposition 6.3. Given K a compact subset of Ω \ {p} and α> 0, �∈N, there exists
C(K, �, α)> 0 such that for all j ∈N, ‖ϕj‖C�,α(K) ≤C(K, �, α).

It follows that the sequence (ϕj) is relatively compact in C∞(Ω \ {p}). We let K denote the
set of cluster values of the sequence (ϕj). Any function ψ ∈K is:

– psh in Ω and smooth in Ω \ {p}, with ψ|∂Ω = φ;

– uniformly bounded in Ω (Proposition 6.1);
– continuous on Ω, as the uniform limit of (ϕjk) (see [GGZ23, Proposition 1.8]);

The set K is invariant under the action of Tγ :ϕ∈ Tφ(Ω) �→ψ ∈ Tφ(Ω), which associates, to a
given ϕ∈ Tφ(Ω), the unique solution ψ ∈ Tφ(Ω) to the complex Monge–Ampère equation

(ddcψ)n =
e−γϕμp∫

Ω e
−γϕ dμp

.

It follows from [GKY13, Proposition 12] that the functional Fγ is constant on K and that
K is pointwise invariant under the action of Tγ . Thus, a cluster value of (ϕj) provides a desired
solution to Theorem C.

Appendix A.

Sèbastien Boucksom

The purpose of this appendix is to provide an alternative approach to Proposition 5.8,
emphasizing the role of b-divisors. We use [BdFF12] as a main reference for what follows.
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A.1 Nef b-divisors over a point

Consider for the moment any normal singularity (X, p), and set n := dimX.
In what follows, a birational model means a projective birational morphism π : Xπ→X with

Xπ normal. A b-divisor over p is defined as a collection B = (Bπ)π of R-divisors Bπ on Xπ for
all birational models π, compatible under push-forward, and such that each Bπ has support in
π−1(p). The R-vector space of b-divisors over p can thus be written as the projective limit

Divb(X, p) := lim←−
π

Divp(Xπ),

where Divp(Xπ) denotes the (finite-dimensional) R-vector space of divisors on Xπ with support
in π−1(p), and we endow Divb(X, p) with the projective limit topology.

A b-divisor B ∈Divb(X, p) is said to be Cartier if it is determined by some birational model
π, in the sense that Bπ′ is the pullback of Bπ for any higher birational model π′. There is a
symmetric, multilinear intersection pairing

(B1, . . . , Bn) �→ (B1 · · · · ·Bn)∈R (A.1)

for Cartier b-divisors Bi, defined as the intersection number (B1,π · · · · ·Bn,π) computed on Xπ

for any choice of common determination π of the Bi (the result being independent of the choice
of π, by the projection formula).

A valuation centered at p is a valuation v : OX,p→R≥0 such that v(mp)> 0 on the maximal
ideal mp ⊂OX,p. It is further divisorial if it can be written as v= cordE for a prime divisor
E ⊂ π−1(p) on some birational model Xπ and c∈Q>0. Given a b-divisor B over p∈X, we
then set v(B) := c ordE(Bπ). The function v �→ v(B) so defined on the space DivVal(X, p) of
divisorial valuations centered at p is homogeneous with respect to the scaling of Q>0, and this
yields a topological vector space isomorphism between Divb(X, p) and the space of homogeneous
functions on DivVal(X, p), endowed with the topology of pointwise convergence.

Pick a b-divisor B over p. If B is Cartier, we say that B is (relatively) nef if Bπ is π-nef for
some (hence, any) determination π. In the general case, we say that B is nef if it can be written
as a limit of nef Cartier b-divisors. By the negativity lemma, any nef b-divisor B ∈Divb(X, p) is
automatically antieffective, i.e. v(B)≤ 0 for all v ∈DivVal(X, p). By [BdFF12, Lemma 2.10], we
further have the following result.

Lemma A.1. A b-divisor B over p is nef if and only if, for each birational model π, the numerical
class of Bπ in N1(Xπ/X) is nef in codimension 1 (also known as movable).

Example A.2. Consider an ideal a⊂OX,p, and assume that a is primary, i.e. containing some
power of the maximal ideal. Then a determines a nef Cartier b-divisor Z(a), defined by v(Z(a)) =
−v(a) for each v ∈DivVal(X, p), and determined on the normalized blow-up of a. For any tuple
of primary ideals a1, . . . , an,

e(a1, . . . , an) =−(Z(a1) · · · · ·Z(an))

further coincides with the mixed multiplicity of the ai.

Example A.3. For any valuation v centered at p, the valuation ideals

am(v) := {f ∈OX,p | v(f)≥m}
define a graded sequence of primary ideals a•(v), and hence a nef b-divisor over p

Z(v) :=Z(a•(v)) = lim
m
m−1Z(am(v)),

(see [BdFF12, Lemma 2.11]), which is not Cartier in general.
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Lemma A.4. If B ∈Divb(X, p) is nef, then B ≤−v(B)Z(v) for all v ∈DivVal(X, p),

Proof. Write v= c ordE for a prime divisor E on Xπ and c∈Q>0. Then Z(v) coincides
with Envπ(−c−1E) (see [BdFF12, Definition 2.3]), and the result thus follows from [BdFF12,
Proposition 2.12].

A.2 Normalized volume and b-divisors

From now on, we assume that the normal singularity p∈X is further isolated.
By [BdFF12, Theorem 4.14], the intersection pairing (A.1) then extends to arbitrary tuples

of nef b-divisors over p. This extended pairing takes values in R∪ {−∞}, and is symmetric,
additive and non-decreasing in each variable, and continuous along decreasing nets.

Definition A.5. For any nef b-divisor B over p, we define the Hilbert–Samuel multiplicity of
B as

e(B) :=−Bn ∈ [0,+∞].

When (X, p) is further klt, we define the log canonical threshold of B as

lct(B) := inf
v∈DivVal(X,p)

AX(v)

−v(B)
∈ [0,+∞),

where AX(v)≥ 0 denotes the log discrepancy of v.

Example A.6. For any primary ideal a⊂OX,p, the associated nef Cartier b-divisor B :=Z(a)
(see Example A.2) satisfies e(B) = e(a), and lct(B) = lct(a) when (X, p) is klt.

Example A.7. Pick any valuation v centered at p, with associated nef b-divisor Z(v) (see
Example A.3). Then it follows from [BdFF12, Remark 4.17] that the volume Vol(v) :=
limm→∞(n!/mn) dimOX,p/am(v) satisfies

Vol(v) = e(Z(v)). (A.2)

Lemma A.8. For each nef b-divisor B over p, we have e(B) = supC≥B e(C), where C ranges over
all nef Cartier b-divisors of the form C =m−1Z(a) for a primary ideal a⊂OX,p and m∈Z>0,
and such that C ≥B.

Proof. Since B is the limit of the decreasing net (Envπ(Bπ)) (see [BdFF12, Remark 2.17]), it
is enough to prove the result when B = Envπ(Bπ), by continuity of the intersection pairing
along decreasing nets. By [BdFF12, Theorem 4.11], we can then write B as the limit of a
decreasing sequence (Ci) of nef Cartier b-divisors of the desired form, and we are done since
e(Ci)→ e(B).

Consider now a psh function ϕ on X. The collection of its Lelong numbers on all birational
models defines a homogeneous function v �→ v(ϕ) on DivVal(X, p), and hence an antieffective
b-divisor Z(ϕ) over p, such that v(Z(ϕ)) =−v(ϕ).

Proposition A.9. The b-divisor Z(ϕ) is nef. Furthermore:

(i) if ϕ is locally bounded outside p, then

e(Z(ϕ))≤ e(ϕ) := (ddcϕ)n({p});
(ii) if (X, p) is klt, then lct(Z(ϕ)) = lct(ϕ).

Proof. Consider the closed positive (1, 1)-current T := ddcϕ, and pick a log resolution π : Xπ→X
of (X, p). The Siu decomposition of π�T = ddcπ�ϕ shows that π�T + [Z(ϕ)π] is a positive current
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with zero generic Lelong numbers along each component of π−1(p). By Demailly regularization,
it follows that the class of Z(ϕ)π in N1(Xπ/X) is nef in codimension 1, and hence that Z(ϕ) is
nef (see Lemma A.1).

Assume next that ϕ is locally bounded outside p, and pick a primary ideal a⊂OX,p and
m∈Z>0 such that C :=m−1Z(a)≥Z(ϕ). Choose a finite set of local generators (fi) of a, and
consider the psh function ψ :=m−1 log

∑
i |fi|. Then Z(ϕ)≤C =Z(ψ) and, hence, ϕ≤ ψ+O(1)

(to see this, pull back ϕ and ψ to a log resolution of a, and use the Siu decomposition). By
Demailly’s comparison theorem, it follows that e(C) = e(ψ)≤ e(ϕ), and taking the supremum
over C yields part (i), by Lemma A.8.

Finally, part (ii) is a rather simple consequence of [BBJ21, Theorem B.5] applied to the
pullback of ϕ to a log resolution of (X, p).

We can now state the following variant of Proposition 5.8.

Theorem A.10. Let (X, p) be an isolated klt singularity. Then

v̂ol(X, p) = inf
B
e(B) lct(B)n = inf

ϕ
e(ϕ) lct(ϕ)n,

where B runs over all nef b-divisors over p, and ϕ runs over all psh functions on X that are
locally bounded outside p.

Proof. By Theorem 2.16 we have v̂ol(X, p) = infa e(a) lct(a)n, where a⊂OX,p runs over all

primary divisors, and hence v̂ol(X, p)≥ infB e(B) lct(B)n, by Example A.6. Conversely, pick
a nef b-divisor B over p. For any v ∈DivVal(X, p), Lemma A.4 yields B ≤−v(B)Z(v). By
monotonicity and homogeneity of the intersection pairing, this yields Bn ≤ (−v(B))nZ(v)n,
i.e. e(B)≥ (−v(B))nVol(v), by (A.2). Thus,

e(B)

(
AX(v)

−v(B)

)n
≥AX(v)nVol(v)≥ v̂ol(X, p).

Taking the infimum over v yields e(B) lct(B)n ≥ v̂ol(X, p) for any nef b-divisor B over p,

and hence also e(ϕ) lct(ϕ)n ≥ v̂ol(X, p) for any psh function ϕ locally bounded outside p, by
Proposition A.9.
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variétés algébriques affines , Mém. Soc. Math. Fr. (N.S.) 19 (1985).

Dem09 J.-P. Demailly, Estimates on Monge–Ampère operators derived from a local algebra
inequality, in Complex analysis and digital geometry (Uppsala Universitet, Uppsala,
2009), 131–143.

Dem12 J.-P. Demailly, Analytic methods in algebraic geometry , Surveys of Modern
Mathematics, vol. 1 (International Press–Higher Education Press, Beijing, 2012).
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