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Abstract

As a sequel to the previous two papers of the second author, we investigate the structure of medial
idempotent groupoids by pn -sequences. To complete the series of research, this paper has three purposes.
First, we summarize some results in the previous papers so that this paper can cover the materials
presented there. Secondly, using earlier results, we prove a few theorems which show the importance of
the medial law in controlling the growth of pn -sequences of groupoids. Finally, we state some problems
and conjectures raised during the series of research.

2000 Mathematics subject classification: primary 08A40, 20N02.

1. Introduction

In the class of groupoids, the idempotent law and the medial law have received a
special attention because they appear very naturally in most branches of mathematics,
and many authors have studied medial idempotent groupoids with many different
approaches, sometimes under different names [26]. Especially, the medial law has
received about ten different names in many different areas [1], and much research has
been done on this identity by Jezek and Kepka in their monograph [19].

In this paper, as in the earlier papers of this series [10, 12], we approach medial
idempotent groupoids by means of the number of essential term functions. Charac-
terizing the structure of a groupoid or any algebra in general by its pn -sequence has
been an active research problem for many years, and it turned out that the pn-sequence
gives much information about an algebra, especially when the algebra is idempotent.
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It is also true that the pn -sequence is very hard to determine without the idempotent
law. Many results on pn-sequences of algebras are collected in the valuable survey
article of Gratzer and Kisielewicz [17] with a detailed history, references and open
problems. It is shown in [1] that the variety of medial idempotent groupoids and
the variety of commutative idempotent groupoids are generated by affine spaces over
prime fields, and so it is not surprising that affine spaces play a very important role in
characterizing those groupoids in this way.

For an algebra A, we denote by pn (A) the number of essentially n-ary term functions
(or simply 'terms') of A for all n > 1. Note that po(A) is the number of all constant
unary terms of A. The sequence (po(A), pi(A), P2(A),...) is called the pn-sequence
of the algebra A. Two algebras with the same set of term functions are said to be term
equivalent and it is clear that term equivalent algebras have the same pn-sequence. In
this paper, we will treat term equivalent algebras as the same algebras.

A groupoid is called proper if the fundamental operation is essentially binary. A
groupoid is called an n-polynomial groupoid if pn(G, •) = n for all n, and these
groupoids are completely characterized in [24].

For further concepts and terminology not defined in this paper, we refer the readers
to [10, 16], especially for the definition of a Plonka sum of algebras. We will say a
Plonka sum of algebras is proper if the semilattice ordered system for the sum is not
trivial and the algebras involved in the sum are not all trivial.

For simplicity, we use xy" for the term (• • • ((xy)y) • • • )y with v repeated n times,
and use x\x2 • • -xn for (• • • ((x\x2)x3) • • • )xn. We also use the following notations.

Vt : the variety of all idempotent groupoids,
Vci : the variety of all commutative idempotent groupoids,
Vmi: the variety of all medial idempotent groupoids,

Vmci: the variety of all medial commutative idempotent groupoids,
SL : the variety of all semilattices,

DSQ : the variety of all distributive Steiner quasigroups,
NG : the class of all n-polynomial groupoids,
RB : the class of all proper rectangular bands,

Aff(q): the class of all nontrivial affine spaces over GF(^),
PA(<7): the class of all proper Ptonka sums of affine spaces over GF(^),

where GF(q) is the Galois field with q elements.

Affine spaces are introduced in [22], and it is proved in [25] that, for a prime number
p, if (A, F) 6 Aff(p) then (A, F) is term equivalent to the algebra (A , / ) for any
essentially n-ary operation/ in F with n > 2. Thus, we regard Aff(p) as the class of
groupoids (G, ((p + l)/2)(x + y)), where (G, +) is an Abelian group of exponent p
(see also [10]). Then it is clear to see that Aff(p) c Vmci. By [23], it also follows that
PA(p) c V™.
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2. Some characterization of affine spaces

In this section, we summarize the main results of the previous two papers of this
series of research and some other results related to them so that this paper can be used
as a reference in the future.

The following are the main results of the previous two papers of this series of
research.

THEOREM 2.1 ([10, 12]). Let (G, •) be a nontrivial groupoid in V^. Then,

(i) p2(G, •) = 0 if and only if(G, •) satisfies xy = x or xy — y;
(ii) p2(G, •) = 1 if and only if(G, •) € SL U Aff(3);

(iii) p2(G, -) = 2 if and only if(G, ) e NG U RB U Aff(4);
(iv) p2(G, 0 = 3 if and only if(G, •) 6 Aff (5) U PA(3);
(v) p2(G, 0 = 5 if and only if(G, •) e Aff (7) U PA(5).

In the proof of the Theorem 2.1, the following result was critical.

THEOREM 2.2 ([10]). If(G, •) € Vmiandp3(G, ) = 3then (G, ) is term equivalent
to a groupoid in V^,-

The next two theorems give more results related to Theorem 2.1 and explain some
results of the theorem in more detail.

THEOREM 2.3. Let (G, ) be a nontrivial groupoid in Vmci. Then,

(i) (G, 0 ^ SL if and only if either xy2 € {xy, yx2, xy3} or xy2x € [yx2y,yx2,
xy3,yx3}([6, 12]);

(ii) (G, 0 € Aff (3) if and only ifxy2x = x (equivalently xy2 = x) ([10, 18]);
(iii) (G, 0 6 Aff (5) if and only ifxy2x = y ([10, 18]);
(iv) (G, 0 e Aff (5) if and only ifxy3 = yx2 and p2(G, 0 = 3 ([10]);
(v) (G, 0 € Aff (7) if and only ifitxy3 = x ([12]);

(vi) (G, 0 e PA(3) if and only if(G, •) £ SL and either xy2x = xy2, xy3 = yx3

or xy3 = xy ([12]);
(vii) (G, 0 is an affine module over ~ld with d | 2" — 1 if and only ifxy" = x ([4]);

(viii) (G, •) is a Plonka sum of affine modules over TLd with d | 2" — 1 j/anrf only if
xy»+l = xy ([6]).

THEOREM 2.4 ([10, 12]). Let (G, 0 be a nontrivial groupoid in Vmi. Then,

(i) ifxy3 = yx1, then (G, 0 € Aff(5) i/a/u/ only ifp2(G, ) = 3;
(ii) ifxy2 = x orxy2 = yx2, then (G, 0 € Aff(7) if and only ifp2(G, •) = 5;

(iii) ifxy3 = xy, then (G, 0 € PA(3) if and only ifp2(G, •) = 3;
(iv) ifxy2 = yx, then (G, 0 6 PA(5) i/anrf on/y i/p2(G, 0 = 5.
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3. pn -sequences and the medial law

In this section, we present a few theorems which show how easily the medial law
is implied even by a relatively loose restriction on the growth of pn -sequences. First,
we recall some known results for the later use.

LEMMA 3.1. (i) Let (G, •) e V-- Then p2(G, •) < 6 if and only if (G, •) e
SL U DSQ U RB U NG ([7]).

(ii) If(G, •) e Vd and (G, •) i Aff(3) U SL, then pn(G, •) > 3""1 for all n > 4
([8]).

(hi) NG c Vmi ([13]).
(iv) If(G, •) € ViondiG,-) <£ Aff(2) USLURB, thenpn+l(G, •) >pn(G,-) + l

for all n > 2 ([20]).

THEOREM 3.1. If (G, •) is a nontrivial groupoid in V{ such that pn(G, •) < n for
some n > 4, then (G, •) is medial.

PROOF. Suppose that pn(G, •) < n for some n > 4. We claim that p$(G, •) < 6.
Assumep3(G, •) > 6. Then (G, •) £ SLURBUAff(2), sincep3(G, •) < 2otherwise.
Thus, by Lemma 3.1(iv), we have that pn+i(G, •) > pn(G, •) + 1 for all n > 2.
Then, for all n > 3, we have that pn(G, •) > pn-i(G, •) + 1 > pn-2(G, •) + 2 >
• • • > P3(G, •) + (« — 3) > 6 + (n — 3) = n + 3, which is a contradiction to our
hypothesis. Thus, p^{G, •) < 6 as we claimed. Now, by Lemma 3.1(i), (G, •) ^
SL U RB U NG U DSQ. Obviously, (G, •) is medial if (G, •) 6 SL U RB. By
Lemma 3.1(iii), (G, •) is medial if (G, •) e NG. Now suppose (G, •) € DSQ and
(G, •) £ SL. Then (G, •) € Aff(3) by Lemma 3.1(ii) and so (G, •) is medial. •

REMARK 3.1. We note that the bound n > 4 in the above theorem is the best
possible. In fact, a distributive Steiner quasigroup has only three ternary terms,
namely (xy)z, (yz)x and (zx)y, but there exist nonmedial distributive Steiner quasi-
groups [27].

Following [15], we say that a sequence a = (OQ, a\, a2,...) has a subexponential
growth if there exists a positive constant c such that an < c* for all n, and that a has a
subpolynomial growth if there exists a polynomial <p(;c) in Z[x] such that an < <p(n)
for all n.

An identity is called regular if both sides of the identity involve the same variables.

THEOREM 3.2. If(G, •) € VCi and the pn-sequence of(G, •) has a subexponential
growth, then (G, •) is medial.
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PROOF. Assume that (G, •) € Vci and there is a constant c such that pn(G, •) < c"
for all n. Using [15, Theorem 3], we can deduce that (G, •) is a semilattice, an
affine space over 1d or a Plonka sum of affine spaces over 1d for some odd integer
d. A semilattice is obviously medial. An affine space over ld is term equivalent to a
groupoid (G, (_{d + 1)/2)(JC + v)) for some Abelian group (G, +) of exponent d (see
[6]), which is certainly medial. Note that a Plonka sum of groupoids preserves regular
identities common to all groupoids involved in the sum (see [23]). Since affine spaces
are medial and the medial law is a regular identity, Ptonka sums of affine modules are
also medial. •

THEOREM 3.3. If(G, •) e Vci and the pn-sequence of (G, •) has a subpolynomial
growth, then (G, •) is a semilattice {and hence medial).

PROOF. Assume that (G, •) € Vci and pn(G, •) < <p(n) for some polynomial <p(x)
in Z[x] and for all n. Then there exist a positive integer k and a constant c such that
pn{G, •) < cnk for all n. Then, by [15, Theorem 2], (G, •) is a semilattice and hence
medial. •

REMARK 3.2. Theorem 3.3 is not true in general if the groupoid is not commutative.
In fact, we find in [3] noncommutative idempotent nonmedial groupoids (G, •) with
pn(G, •) = «2foralln.

Now we introduce some earlier results which are useful to prove the next theorem.

LEMMA 3.2. (i) 7/(G, •) 6 Vci then xyn ± y in (G, -)for all n ([5]).
(ii) If(G, •) e Vi,then(G, •) € SL ifand only if(G, •) is a distributive commutative

groupoid satisfying xy2 = yx2 ([6]).
(iii) If(G, •) e Vmci, xy2 is essentially binary andxy2 ^ yx2, then pn{G, •) > 3""1

foralln>\ ([8]).

THEOREM 3.4. If(G, •) e Vci andp2(G, •) > 1, then xy2 is essentially binary and
Pn(G, •) > 3"-' for all n > 4. If, in addition, (G, •) is medial, then xy2 ^ yx2 and
Pn(G,-) > 3"-' for all n > 1.

PROOF. Suppose (G, •) e Vci and p2(G, •) > 1. Since p2(G, •) > 1, we infer
that (G, •) is not a semilattice and (G, •) £ Aff(3) by Theorem 2.1. Then, by
Lemma 3.1(iii), we obtain that pn{G, •) > 3""1 for all n > 4. If xy2 = x then
(G, •) is a Steiner quasigroup and so pi{G, •) < 1, a contradiction. By Lemma 3.2(i),
we have xyk ^ y for all k, and hence xy2 ^ y. Thus xy2 is essentially binary.
Suppose, furthermore, that (G, •) is medial. Then (G, •) is distributive by the medial
law and the idempotent law. If xy2 = yx2 then (G, •) € SL by Lemma 3.2(ii) and so
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p2(G, •) = 1, a contradiction. Hence xy2 ^ yx2. Then, by Lemma 3.2(iii), we obtain
that pn(G, •) > 3"~' for all n > 1, which completes the proof. D

4. The medial law and minimal clones

A set of term functions of an algebra is called a clone of the algebra if it contains
all projections and is closed under taking compositions. A clone is called minimal if
it properly contains only the trivial clone, that is, the clone consisting of projections
only.

LEMMA 4.1. Let (G, •) e Vci satisfy xy" = x for some n > 2. Then the clone of
(G,-) is minimal if and only if (G, •) € Aff(p) for some prime p dividing 2" — 1
(compare with Theorem 2.3(vii)).

THEOREM 4.1. Let (G, •) e Vci.

(i) If(G,-) satisfies xy" = x for some n > 1 and the clone of (G, •) is minimal
then (G, •) is medial.

(ii) If (G, •) is a cancellative groupoid and p2(G, •) is finite, then the clone of
(G, •) is minimal ifand only if(G', •) e Aff(p) for some prime p > 3.

PROOF, (i) follows from the Lemma 4.1, since any affine space over GF(p) with
p > 3 is term equivalent to the medial groupoid (G, ((p + l)/2)(x+3'))byLemma3.1,
where (G, +) is an Abelian group of exponent p. (ii) Since pi(G, •) is finite, we see
that the mapping k t-*- xyk is not injective. Thus xy' = xyj for some distinct integers
i and j , say j > /. Then, by the cancellativity, we have that xyj~' = x and the
conclusion follows by Lemma 4.1. •

THEOREM 4.2. Let A be an algebra with p2{Pi) = 3. Then the following statements
are equivalent.

(i) A e Aff (5).
(ii) The clone of A is minimal.

(iii) A € Vmci and A satisfies xy2x = y .
(iv) A is a groupoid with pn(A) = (4" - (-l)")/5 for all n.
(v) A € Vmi and A satisfies a nonregular identity.

PROOF, (i) is equivalent to (ii) by [9]. (i) is equivalent to (iii) by Theorem 2.3(iii).
(i) is equivalent to (iv) by [2] and [11]. Clearly (iii) implies (v). It remains only to
show (v) implies (i). By Theorem 2.1, A € PA(3) or A e Aff (5). Since a Plonka sum
satisfies only regular identities (see [23]), we have the latter case. •
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THEOREM 4.3. Let A be an algebra with p2(A) = 5. Then the following statements
are equivalent.

(i) AeAff(7).
(ii) The clone of Pi. is minimal.

(iii) A € VmCj and A satisfies xy3 = x.
(iv) A € Vmi and A satisfies a nonregular identity.

PROOF, (i) is equivalent to (ii) by [14] and (i) is equivalent to (iii) by Theorem 2.3(v).
Clearly (iii) implies (iv). We prove (iv) implies (i). By Theorem 2.1, A £ PA(5) or
A e Aff(7). Since a Plonka sum satisfies only regular identities, A e Aff(7). •

5. Problems and conjectures

We present here some problems and conjectures.

PROBLEM 5.1. Characterize all medial idempotent groupoids (G, )withp2(G, •) =
Id — 1 for some d > 1. Is it true that if p2(G, •) = Id - 1, then (G, •) is a medial
idempotent groupoid if and only if (G, •) is an affine module over Z2rf+i or a proper
Plonka sum of affine modules over Z2d_i (see Theorem 2.3 (vii) and (viii))? Note that
the problem is solved in the positive for d — 2, 3 ([10, 12]). In these cases, the affine
modules in question are simply affine spaces.

PROBLEM 5.2. Characterize medial idempotent groupoids (G, •) with/?2(G, •) = 4.
Note that all medial idempotent groupoids with /?2(G, •) 6 {0, 1, 2, 3, 5} were classi-
fied (Theorem 2.1).

PROBLEM 5.3. Characterize medial idempotent groupoids (G, •) satisfying a non-
regular identity and p2(G, •) = p for a prime number p. Are these groupoids affine
spaces over GF(/?)? (See theorems in Section 4.)

CONJECTURE 5.4. For a prime number p > 3, the following statements are equiv-
alent for a nontrivial groupoid (G, •)•

(i) (G, •) is a nontrivial affine space over GF(p).
(ii) pn(G, •) = ((p - 1)» - (- l)")/p for all n.

(iii) The sequence (0, 1, p - 2, p2 - 3p + 3, (p - 2)(p2 - 2p + 2)) determines
the /7,,-sequence of (G, •) in the class of all groupoids.

In [14], it was conjectured that the statement (i) of Conjecture 5.4 is equivalent to
the following.

(iv) The clone of (G, •) is minimal and p2(G, •) = p — 2 for all p > 5.
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However, Levai and Palfy [21] showed that this conjecture is not true for prime
numbers of the form 3k + 2 with k > 2. Note that the equivalence of (i) and (iv) is
true for p = 5 and p = 7 . For p = 3, the equivalence of all the above statements is
true [12, 18].
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