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Abstract

Let A and B be (not necessarily bounded) linear operators on a Banach lattice £ such that \(s — B)~!x\ <
(s — A)"1 \x | for all x in E and sufficiently large 5 e IR. The main purpose of this paper is to investigate
the relation between the spectra o(B) and a(A) of B and A, respectively. We apply our results to study
asymptotic properties of dominated Co-semigroups.
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1. Introduction

A linear operator A with domain @(A) on a Banach lattice E is called resolvent-
positive if the resolvent R(s, A) := (s — A)'1 of A at s is positive for sufficiently
large s € OS. Resolvent-positive operators were studied in detail by Arendt [4]. In
particular, he showed that positivity of the resolvent has a strong influence on the
existence and uniqueness of solutions of the associated Cauchy problem

u(t)=Au(t), t>0,

u(0) = x.
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On the other hand, it is well-known that there is a close connection between properties
of the spectrum a (A) of an operator A and the asymptotic behaviour of solutions of
(CP)A. In [12,13] (see also [19]) Greiner showed that the spectrum of most resolvent-
positive operators exhibits a particular symmetry. Especially for well-posed Cauchy
problems, that is, if A generates a C0-semigroup (T(t)),>0 of operators on E, this
has far-reaching consequences concerning the asymptotic behaviour of the semigroup
(7\O),>o (see [12,13,19]).

In applications as well as for theoretical reasons it is often important to replace
(CP)A by a perturbed Cauchy problem:

it(t) = Bu(t), t > 0,

In many such situations it happens that the resolvents of A and B are comparable for
the order induced by the Banach lattice E (see for example [4,6,7,12,13,19,26]).

The present paper is the continuation of our investigations in [22]. We consider
operators A and B on a Banach lattice E such that the resolvent of B is dominated by
the resolvent of A, that is,

\R(s,B)x\<R(s,A)\x\

for x e E and sufficiently large s e R. Our aim is to show that in such a situation
certain spectral properties of A are inherited by B. This allows to deduce asymptotic
properties of the solutions of (CP)B from asymptotic properties of the solutions of
(CP)A. Our approach is very general and based on pseudo-resolvents. In Section 2
we first recall some basic facts on pseudo-resolvents and discuss special properties
of positive and dominated pseudo-resolvents. Section 3, Section 4 and Section 5 are
devoted to the inheritance of spectral properties of dominated pseudo-resolvents. The
special case of dominated resolvents and dominated C0-semigroups is discussed in
Section 6. Applications to the asymptotic behaviour of dominated semigroups are
given in Section 7.

We point out that often resolvent-positivity and domination between resolvents
can be verified without any knowledge of the resolvents themselves. For instance,
resolvent-positivity of a densely defined operator (A, @(A)) on a Banach lattice E is
closely connected with the Kato inequality

(K) Re(sg(x)Ax,<p) <(\x\,A'<p), x e ®(A), 0 < cp e 2){A'),

(see [3,4,9,19,24] and the references therein). If (A, 9{A)) and (B, 9{B)) are
densely defined operators on a Banach lattice E and A is resolvent-positive, then the
resolvent of B is dominated by the resolvent of A if the generalized Kato inequality

(GK) Re{sg(x)Bx,<p) <(\x\,A'<p), x e ®(B), 0 < <p e
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holds. If A and B are generators of strongly continuous semigroups this has been
shown by Arendt and Schep (see [4,19,24]), and an easy modification of the proof in
[19, C-II.4.2] yields the general case.

Our notation is standard and follows mainly the books [23] and [19]. Unexplained
notions can be found there. Throughout the whole paper we consider spaces over the
complex field C. If r e K we set Cr := {A. e C : Re A. > r). For a given Banach
space E we denote by ^C(E) the space of bounded linear operators on E and by £" the
(topological) dual of E. If A is a linear operator on E with domain @(A), then a (A)
denotes the spectrum, CTP(A) the point spectrum, r(A) := sup{|A.| : A. e <r(A)} the
spectral radius, s (A) := sup{Re X: Ae a (A)} the spectral bound, p (A) := C\CT(A)

the resolvent set and R(-, A) = (• - A)"1 : p(A) -+ 5£(E) the resolvent of A. We
call an{A) := a (A) D (s(A) + M) the peripheral spectrum and au(A) := a {A) D iR
the unitary spectrum of A. Analogously, the peripheral point spectrum aPiW(A) and
the unitary point spectrum apu (A) is defined.

If £ is a complex Banach lattice with modulus | • |, then E+ :— [x e E : x = |x|}
is the set of positive elements in E. The dual E' is again a Banach lattice and x' € £"
is positive if and only if (x', x) > 0 for all x e E+. For operators S, T e _Sf (E) we
write 5 < T if (T - S)E+ c E+ and T is called positive if 0 < 7\ We say that 5 is
dominated by 7 if |5JC| < T\x\ for* e £ .

2. Pseudo-resolvents

2.1. Elementary results on pseudo-resolvents In this section we introduce pseudo-
resolvents on Banach spaces and collect their most important properties. In the
following E always denotes a Banach space.

DEFINITION 2.1. Let 0 ^ D c C. A mapping 0f, : D -» S£{E) is called a

pseudo-resolvent onEiiBH satisfies the resolvent equation

(1) S f \ \ ) - S f \ i i ) = - ( X - n ) & ( X . ) & ( j i ) f o r k , n € D .

We give some examples of pseudo-resolvents.

EXAMPLE 2.2. (a) Let (A, f^(A)) be an operator on E with non-empty resolvent
set p(A). Then the resolvent 3?.A = /?(•, A) : p(A) - • S£(E) is a pseudo-resolvent.
Note that not every pseudo-resolvent is the restriction of the resolvent of an operator,
(b) Let (T(t))l>0 be a locally integrable semigroup in -Sf(£), that is, T(-)x is inte-

grable for all x € E on every finite subinterval of (0, oo). In this case & = (T(t))l>0

is strongly continuous and the growth bound co(&) = lmv,.,*, \/t log ||7\0ll is fi-
nite (see [14, Theorem 10.2.3 and page 306]). For Re A. > co(^) and x e E
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the Bochner integral @{X)x := /0°° T(t)x dt exists and Sf\X) e S£(£). Then the
mapping @ : Q , ^ ) -> S£(E) is a pseudo-resolvent (see [14, Theorem 18.4.1]).

The following extension property of pseudo-resolvents is well-known (see [14,
Theorem 5.8.6]).

PROPOSITION 2.3. Let 0f. : D ->• .i?(E) be a pseudo-resolvent. Then @ has a
unique maximal extension 3&mta : Dmax -> Sf(E) to a pseudo-resolvent. Moreover,
the following assertions hold:

(a) Dmax <= C is open.
(b) For fixed Xo e D we have X G Dmax \ {*<>} if and only if(X0 - X)"1 €

and ^max is given by

(2)
— A \ Ao — A

Note that (2) implies that ^?max : Dmax ->• ^f (E) is analytic, and hence every
pseudo-resolvent is the restriction of an analytic S£(£)-valued function. The previous
proposition has the following immediate consequence.

COROLLARY 2.4. Let Sf, : D -> S£{E) be a pseudo-resolvent with maximal exten-

sion ^mM : Dmax —*• £'(E)andletX0 6 D. Then the following assertions hold:

(a) p(&(X0)) = {(Ao - A)"1 : A G Dmax \ {Ao}} and Dmax = {Ao - l / / i : /* e
p(R(X0))} U {Ao}.
(b) J?max(A) - En>o(Ao - Xr@(X0)

n+l for \X - Ao| < r(<%(X0)y
l.

(c) If 3$(X0) = R(X0, A) for some operator (A, D(A)) on E, then DmM = p(A)
and&m!lx(X) = R(X,A)forX € Dmax-

We now define the singular set of a pseudo-resolvent.

DEFINITION 2.5. Let 3% : D - • ££(E) be a pseudo-resolvent on the Banach space
E with maximal extension ^?max : Dmax -> 3f(E).

(a) The set s ing(^) := C \ Dmax is called the singular set or set of singular values
of St.
(b) By s{@) := M{r e l : Cr c Dmax} we denote the singular bound oiSf,.
(c) We call sing^GS?) := sing(^) D (s(&) + /K) the peripheral singular set and

singH(^) := s ing(^) D jR the unitary singular set of 3?.
(d) A complex number A is said to be a pole of ^ if A € Dmax and A is a pole of

^ m a x . If the associated residuum is of finite rank r, then A is called a Riesz point of
order r.
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If 0t is (the restriction of) the resolvent of an operator A on E, then sir
coincides with o(A) and the singular bound s{3P,) is exactly the spectral bound s{A)
of A.

Note that for a pseudo-resolvent 3f, : D -* ££(E) and X € D Corollary 2.4 yields

: /i. G sing(^) | and(3) a{0f\X)) \ {0} =

(4) sing(^) =

X — \

X

Next we define eigenvalues and eigenvectors of a pseudo-resolvent 3f. : D

DEFINITION 2.6. Let a e C and 0 ^ z e E. Then a is called an eigenvalue
with corresponding eigenvector z if

(5) (X - a)#(A.)z = z

for all A. e £>. We denote by singp(^?) the set of eigenvalues of 3?., by singp

singp(.S?) D (s(3?,) + iR) the set of peripheral eigenvalues, and by singPil((^?) :=
n /R the set of unitary eigenvalues.

Note that (3) implies singp(^) c sing(^?). If Sf. = &A is the resolvent of an
operator A, then singp(^M) is exactly the point spectrum op(A) of A. Equation (1)
leads to the following observation (see [19, C-III.2.6]).

LEMMA 2.7. Let Sf. : D -> -Sf(£") fee a pseudo-resolvent on the Banach space
E and let z 6 E, Xo e £> anJ a e C s«c/i r/ia/ (A.o - a)3?,(X0)z = z. 77ien
(X - a)^(A.)z = z/or a// X € D.

Equation (2) is an identity between holomorphic functions. Thus we obtain the
following proposition (see [19, A-III.2.5]).

PROPOSITION 2.8. LetSZ : D -> 3f(E) be a pseudo-resolvent on the Banach space
X, XQ e D and /x0 e C \ D. Then fio is a pole offfi if and only if(X0 — Mo)"1 is a pole
of the resolvent of&(X0). Moreover, the pole orders and the corresponding residues
at fio and (Xo — /xo)"1, respectively, coincide. In particular, every pole of £?. is an
eigenvalue of 3?..

2.2. Pseudo-resolvents on subspaces and quotients Let 2? : D -± ^f(E) be a
pseudo-resolvent on the Banach space E and let F be a closed ^-invariant subspace
of E, that is, &,(X)F c F for all X e D. Denote by 3f,\(X) e Jf(F) the restriction
of @(X) to F and by &,{k) e 3f(E/F) the operator on E/F induced by 3t.(X). The
following result is shown in [9, Proposition A.3.10].
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PROPOSITION 2.9. Under the above assumptions the following holds:

(a) S&\;D-+ Sf(F) andSf,; : D -> JC(E/F) are pseudo-resolvents.
(b) For k0 e D \ D the following assertions are equivalent:

(i) k0 $ sing(^);
(ii) k0 i sing(^) U sing(^).

(c) 3£ has a pole atko€~D\D if and only if both Sf,x and <%t have a pole at k0. If
p, p\ and pi are the respective orders, then max{/j|, p/} < p < P\ + P/.

2.3. Pseudo-resolvents on Banach lattices In the following we are mainly in-
terested in pseudo-resolvents on Banach lattices. First we introduce the notion of a
positive and a dominated pseudo-resolvent, respectively.

DEFINITION 2.10. L e t ^ : D(^ ) -+ ^f(£) and £ : D(£l) -> S£(E) be pseudo-
resolvents on the Banach lattice E. Then £1 is dominated by &?, if there exists
r e K such that (r, oo) C D(BH) n D(£l) and \£(s)x\ < SZ(s)\x\ for s e (r, oo) and
x € E. The pseudo-resolvent .3? is called positive if ̂ dominates the pseudo-resolvent
identically zero.

In the next proposition we collect some particular properties of dominated and
positive pseudo-resolvents. A similar result has been shown for the resolvent of the
generator of a positive C0-semigroup (see [19, C-III.1.1, C-III.1.3]).

PROPOSITION 2.11. LetST, : D{@) -* 5?{E)and£ : D(«2) -+ %'(£) be pseudo-
resolvents on the Banach lattice E such that £! is dominated by 3$ and let r € 1 be
such that (r, oo) C D(3?)nD(g)and\£!(s)x\ < &!(s)\x\for s e (r,oo)andx & E.
Denote by &mu : D(^max) -> ££(E) and <0max : D^^) -+ S£{E) the maximal
extensions of 3?, and 2, respectively. Then the following holds:

(a) Cr C D C ^ ^ ) n D(^max) and s(£) < s(&) < r < oo.
(b) Either s(3$) = -oo or s{!%) e sing(^).
(c) \Sm,AX)x\ < ^max(Re k)\x\ and | ^ m a x ( ^ l < ^max(Re X)\x\for k e €,<«,

andx e E.
(d) r(^ma,(5)) = (s - l

PROOF. (I) siM) < oo.

Let s e (r, oo). Then @,{s) > 0, and hence r(@(s)) e o(@(s)) (see [23, V.4.1]).
On the other hand by Corollary 2.4 (a) we have ((s - r )~\ oo) c p(@(s)). Thus
r(3?(s)) < (5 - r)"1. Another application of Corollary 2.4 (a) yields Bs_r(s) := {k e
€ : \k - s\ < s — r] c. D(@max). Since this is true for every s e (r, oo) we obtain
Cr c D(^max), and hence s(&Z) < r < oo.

(II) Either s{@) = -oo or s (^ ) 6 sing(^?).
Suppose s (M) > -ooands(,5?) ^sing(^). Then there exist e > 0andX0 e sing(^)
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such that s(3?)-e < Re koand[s(&)-e, oo)nsing(^?) = 0. Chooses > r such that
k0 e Bs.isia).s)(s). Then @(s) > 0, and hence r(3?(s)) e o(8?,(s)). By (4) we have
j - r (# (5) ) - ' e sing(^) and (3) implies r(&{s)) > \s-ko\~

l > (s-(s(&)-e))-1.
Thus s — r(0R(s))~* e [s(&) — s, oo) D sing(J?) which is a contradiction.

(III) ^max(s) > 0 and r ^ j ) ) = (s - *(#))-' for s e (*(#), oo).
Fix s0 e (r, oo). As in (I) we obtain r(3?(s0)) < (s0 - s(@))~\ (II) and equation (3)
imply (s0 - s(@))-x e a{3f,{sQ)), and hence r(&(s0)) = (s0 - s(@))~l. By Corol-
lary 2.4 (b) we have #„„(*) = £n>o(*o - sy&mix(s0)

n+l > 0 for s e (s(O), s0].
Since Sf\s) > 0 for every s e (r, oo) we obtain ^m^is) > 0 for s € (s(^) , oo).

(IV) j(j2) < *(«).

Fix s G (r, oo). From |^(s)x| < &(s)\x\, x e £ , w e obtain r(^(s)) < r(&(s)) =
(s - s(3t))~l. Corollary 2.4 (a) then implies Bs-.s(at)(s) c D ^ ^ ) . This holds for
every s e (r, oo), and hence CJ(^) c DiJ^n^). In particular, s(<S) < s(38).

(V) l^n,.,(X)x I < ^max(Re A.) |JC | and \&max(X)x | < ^ ^ ( R e X) |x | for A e C , w

and^: e £ (see also [19, proof of C-III.2.7]).
Fix A. 6 Ci(^) and x € E. Choose r > r such that X € BJ_i(^)(s) for all s e [r, oo).
Since r(£(s)) < r(&(s)) = (s - s ^ ) ) " 1 Corollary 2.4 (b) implies

n>0 n>0

= £ ( s - (s - \s -\\))nms)n+'\x\ =M{s - \s-X\)\x\

for s e [t, oo). Notice that limJ_oo(5 — \s — k\) = Re X. Thus \^max(k)x\ <
•̂ max (Re X) |x |. If we replace £1 by 32 we obtain |^?max (A.)* | < ^ ^ (Re k) \x |. D

In our later results we frequently impose the following growth conditions on a
pseudo-resolvent (see [19, C-III.2.8]).

DEFINITION 2.12. Let 3t : D -*• 3f(E) be a positive pseudo-resolvent on the
Banach lattice E such that s(0£) > -oo and let 3?,^ : D^ -*• ££(E) be the
maximal extension of 0f,.

(a) 3P. satisfies the growth condition (G) if

(6) limsup ||(r - s(&)W>™*{r)\\ < oo.

(b) We say that Sf. is (G) -solvable if there are closed ideals (0) = / , c / 2 c . . . c
/„ = E such that

(0 ^max(A.)/t c / t for k € A™ and 1 < it < n, and
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(ii) the pseudo-resolvents 3ftk : Dmax -» J?(Ik/Ik_i), 1 < k < n, induced by ^?max

satisfy

limsup ||(r - s(3ft))3ftk(r)\\ < oo.

Note that a positive pseudo-resolvent 3? : D -*• Jjf (£) is (G)-solvable provided
that s (^ ) > — oo is a pole of 3ft. This is an immediate consequence of Proposition 2.8
and [23, V.4, Example 4], applied to 3ft(s) for some s > s(3$).

The above growth conditions have strong influence on the structure of the singular
set of a pseudo-resolvent. The following result is due to Greiner (see [19, C-III.2.10,

PROPOSITION 2.13. Let 3ft : D -+ i f (£) be a positive pseudo-resolvent on the
Banach lattice E such that 3ft is (G) -solvable. Then the peripheral singular set
sing,,^) is imaginary additively cyclic, that is, if s(3ft) + ia e sing(^?), a e R, then
s(3ft) + iku e sing(3ft) for all k € 1. In particular, this holds if s(3ft) > —oo is a
pole of 3ft.

2.4. Pseudo-resolvents on ultrapowers We need the following construction de-
scribed in [23, V.I], in detail. For a Banach space E denote by l°°(E) the space of
bounded E-valued sequences endowed with the sup-norm. Let & be a free ultrafilter
on N and consider the closed linear subspace <%(£•) := {(*„) e l°°(E) : lim^ ||A:n|| =
0}. The quotient space E<& := l°°(E)/c^(E) is called ultrapower or %-power of
E. Instead of (xn) + c^(E) € E& we also write (xn). The space E is isometri-
cally embedded into E<% by means of x i-» (x, x,...)". Every operator T e S£(E)
has a canonical extension T^ e JSf (E<%) given by T^(xn) :— (Txn). The mapping
T' i-> T<% from 3f(E) into S£(E<v) is an isometric Banach algebra homomorphism
and

(7) a(Tw) = o-(T) for T € i f (£).

If E is a Banach lattice, then E<% is also a Banach lattice and | (xn) | = (|jcn |). Moreover,
if T € i f (E) is positive, then 7V is positive as well.

The ultrapower extension of a pseudo-resolvent has the following properties.

PROPOSITION 2.14. Let 3ft : D -> i f ( £ ) be a pseudo-resolvent on the Banach
space E and set ^^(X) := £ft(X)w € SC(E^), X e D. Then the following
holds:

(a) 3ft<ti : D - • S£(E<u) is a pseudo-resolvent and | |^(A.) | | = \\3ft(X)\\forX € D;
(b) Dm!lx(3ft) = Dmax(<^W), anJ s i n g ( ^ ) = sing(^);
(c) sing(^) n 3D c singp(^^);
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(d) A-o € C is a pole of0f, if and only if it is a pole of3?,<y, and then the orders of the
poles are equal;
(e) If E is a Banach lattice and Sf, is a positive pseudo-resolvent, then 3?,<% is

positive.

PROOF, (a) and (d) follow immediately from the fact that 7 H 7^ is an isometric
algebra homomorphism from S£(E) into ^f(E^).

(b) follows from (7) and (3) applied to Bt(\) for fixed k e D.
In order to prove (c) fix (i e sing(^?) D 3D and Xo e D. From (3) we obtain that

(A-o — fi)~l is in the boundary of o-(3&(\.0)), hence it is an approximate eigenvalue
of ^(A.o). An application of [23, V.1.4] shows that (A.o — fi)~l is an eigenvalue of
^ (^ •o ) , that is, /A € s i n g p ( ^ ) by Lemma 2.7.

Finally, (e) follows from the fact that for positive T e S£(E) also T& e S£(E&)
is positive. •

3. The peripheral singular set of a positive dominated pseudo-resolvent

In this section we show that for positive pseudo-resolvents 2 and Sf, on a Banach
lattice E such that £1 is dominated by ^? we always have

(8) sing(«g) n (s(#) + iR) c sing,,

provided that St. satisfies the growth condition (G) or, more general, is (G)-solvable. In
view of Proposition 2.11 it suffices to consider pseudo-resolvents,^, £1 : Co ->• -£?(£)
and to show

(9) singu(^) c singu(^).

At first we present a condition under which a unitary eigenvalue of £! is also an
eigenvalue of 3K.

LEMMA 3.1. Let E be a Banach lattice and let «S, 3K : Co -*• J?(E) be positive
pseudo-resolvents such that £1 is dominated by 3R. Suppose that there exist z €
E, r0 > 0 and fi € K such that (r0 - iP)£}(ro)z = z and ro^(ro)|z| = |z|.
(r0 - ip)&(ro)z = Z.

PROOF. By Lemma 2.7 we have r0J2(r0 + ifi)z = z and from Proposition 2.11 (c)
we obtain \ro£(ro + ip)z\ < ro£(ro)\z\. Then \z\ = \rQ£(.r0 + ifi)z\ < ro^(ro)|z| <
ro£{r0)\z\ = \z\, and hence |z| = ro^(ro)|z| = ro&(ro)\z\ = \z\. Thus

0 < |(r0 - ip)(R(ro)z - Q(ro)z)\ < In, - ^ l ^ " ' ^ ^ ^ ) - ro^(ro))|z| = 0.

This implies (r0 - iP)&(ro)z = (r0 - ip)£(ro)z = z. D
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We now come to the main result of this section. Note that a pseudo-resolvent !% :
Co -+ ^f(E) satisfies the growth condition (G) if and only if on every ultrapower E<y
the induced pseudo-resolvent^?^ : Co -> Jz?(Ew) satisfies (G) (see Proposition 2.14
(a))-

THEOREM 3.2. Let E be a Banach lattice and let £1,2% : Co -> _£?(£) be pos-
itive pseudo-resolvents such that £1 is dominated by !% and @. satisfies (G). Then

PROOF. Let ifi e singu(i2)- By passing to an ultrapower we may assume ifi e
singp(i?) (see Proposition 2.14). Thus, by Lemma 2.7 there exists 0 ^ z € E such
that kJ2{k + ifi)z = z for all k e Co. Proposition 2.11 yields

\z\ = \k£2{k + iP)z\ < k)\z\ for X e Co.

Since ^ satisfies (G) the function p(x) := limsupr i0 ||r^(r)|jr|||, x € £\ is a
continuous lattice seminorm on £\ In particular, / := kerp is a closed ideal in
E. For k € Co and * e £ we have @(r)\&!{X)x\ < ^ ( r ) ^ (Re A.)|^|, and hence
/?(^(A)A:) < ||^(Re A.)||p(;c). Thus^(A)/ c y f o r U Co. Moreover, £(k) J c 7,
A e Co, since i? is dominated by 3?.. Consider now the positive pseudo-resolvents Bt,
3?.l : Co —• Jif(E/J) induced by £2. and ̂ , respectively. Clearly, £}/ is dominated
by 3?.j. From r3?.(f)\z\ > \z\ for r > 0 we obtain p(z) > ||z|| > 0, and hence
z := z + J e £ /y is non-zero. Moreover, k£>/{k + ifi)z = z for A e Co. Since ̂ ?
satisfies (G) we have

z\ - \z\) = lim sup I

= lim sup
rlO

= lim sup

= 0

z| - r&(r)\z\\\

rSf\r)\z\ s®(s)\z\ - r&(r)\z\
s — r s — r

- s&(s)\z\)
s — r

for 5 € (0, co). Hence s^,(s)\z\ = \z\ for s G (0, co) and Lemma 3.1 yields
s3t/(s + iP)z = z. Thus \\M(s + ifi)\\ > \\3?/(s + //3)|| > s~l -> oo as J -> 0, and
we obtain //? e sing(^). D

We can extend Theorem 3.2 to pseudo-resolvents 3?, which are (G)-solvable. In
fact, Proposition 2.9 permits to reduce this more general situation to pseudo-resolvents
satisfying (G).
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COROLLARY 3.3. Let E be a Banach lattice and let £!, M : Co - • _Sf (£) be
positive pseudo-resolvents such that £H is dominated by St. and 3#, is (G)-solvable.
Then singH(i2) C singH(^). In particular, this holds ifO is a pole

4. Peripheral eigenvalues of dominated positive pseudo-resolvents

In this section we investigate under which conditions the inclusion

(10) singp(^) n (s(O) + iK) c si

holds, where 2 and 8% are positive pseudo-resolvents on a Banach lattice E such
that £b is dominated by 0Z. As in the previous section it suffices to consider pseudo-
resolvents 3H, £ : Co -> -£"(£) and to ask if

(ID s i n g , , . ^ c singp>11(#)

holds. It turns out that ergodicity properties of the dominating pseudo-resolvent play
a central role. We recall the following result of Yosida ([29, VIII.4, Theorem 2]).

PROPOSITION 4.1. Let 0f- : Co - • -£?(£) be a pseudo-resolvent on the Banach
space E and assume that BP, satisfies the growth condition (G). Then for x G £ the
following assertions are equivalent:

(a) lim^os0t.(s)x exists in £;
(b) (S3$(S)X)S>Q has a weak cluster point as s —> 0.

In this case y := lim^o sSf\s)x satisfies "kSf-OOy — y for all X e Co.

A pseudo-resolvent ^? : Co —> ^C(E) is called Abel-ergodic if Pgx := lim^o
sSf\s)x exists for all x e E. Then Pa e S£{E) is a projection, P&E - Fix
and ker P<g = (I - k&(k))E for A. G Co (see [29, VIII.4]). Note that by the principle
of uniform boundedness an Abel-ergodic pseudo-resolvent with s(Si) — 0 always
satisfies (G).

In the following we use the following construction (see [23, II.8, Example 1]).
Let £ be a Banach lattice and y' e E'+. Then p : E -> R+ : x H> (y', |JC|) is a
lattice seminorm with kernel kerp = N(y') := {x e E : (y1, \x\) = 0}. The induced
norm on E/ kerp is a lattice norm and the completion (£, y') of E/ kerp is a Banach
lattice. Moreover, (£, y') is an AL-space, that is, the norm is additive on (£, y')+»
and the mapping j y , : £ - * • ( £ , y') induced by the quotient map q : E -*• £ / kerp is
a lattice homomorphism. If Sf. : D - • ^f (£) is a positive pseudo-resolvent such that
s&(s)'y' < y' for s > 0, then k&(k)N(y') c Af(y') for A. G Q . Hence @(k) induces
an operator @{k)/ on £/kerp which is a positive contraction. Thus ^(A.)/ has a
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unique contractive positive extension S9\\) e -£?((£, / ) ) and i? : Co -> -£?((£, y'))
is a pseudo-resolvent.

Now we can state the following inheritance result on unitary eigenvalues.

THEOREM 4.2. Let E be a Banach lattice and let £}, 39, : Co -> i f (£) be positive
pseudo-resolvents such that £! is dominated by 39,and&a := 3?(- + ia) is Abel-ergodic
for all a e R. 77zen singp K(^) C singp

PROOF. Let i/3 e singp u (^ ) and 0 7̂  JC € £ such that (A - i0)£!(k)x = x for
A 6 Co. Then |JC| < \s£!(s + ifi)x\ < s3?(s)\x\ for s > 0. Since J? is Abel-ergodic
y := Iim54.o^< '̂(5)|jc| exists and 0 < |JC| < y = s3#(s)y, s > 0. Choose x' e E^
such that (JC', pc|) > 0. Another application of the Abel-ergodicity of & implies that
y' : = a(E', E) - l i m J i 0 ^ ( * ) ' * ' exists and 0 < s&{s)'y' < s&(s)'y' = y',s > 0.

Moreover, ( / , \x\) = \im,l0{sM(s)'x\ \x\) = {x',y) > (x\ \x\) > 0. In particular,

x:=jyxe(E,y')\{0}.

Now let 3?,, i? : Co —>• 3?((E, y')) be the positive pseudo-resolvents on (E, y')
induced by St. and ^.respectively. Then^isdominatedby^and(A.-/^)^(A.)i = x
for A. e Co, that is, ifi e singPill(«2). Moreover, jjc| < sJ2(s)\x\ < sM(s)\x\, s > 0.
From s3t(s)'y' — y' it follows that s&(s) is a contraction on (E,y'). Hence the
strict monotonicity of the norm on (E, y') yields s&{s)\x\ = \x\, s > 0. Lemma 3.1
implies (s — ifi)Mx = x, s > 0. Since 39.p is Abel-ergodic z := lim.V|os39,(s + ifi)x
exists in E and (5 — ifi)3?.(s)z = z, s > 0. Moreover,

y\z

Thus z ^ 0 and this shows i/J e singp u ( ^ ) . D

If the Banach lattice £ has order continuous norm we can relax the conditions on
the pseudo-resolvent $. Note that order continuity of the norm of E is equivalent to
the fact that for every relatively weakly compact set C c. E+ the solid hull so C :=
{y e E : |_y| < x for some x e C} is relatively weakly compact (see [1, 13.8]).
Examples of such spaces are c0, V, 1 < p < 00, and all reflexive Banach lattices.

COROLLARY 4.3. Let E be a Banach lattice with order continuous norm and let
£}, 3f. : Co —*• _5f (£) be positive pseudo-resolvents such that i? is dominated by 3#
and 3$ is Abel-ergodic. Then singp H(J?) c singp U(0R).

PROOF. Let u e 1. For A, € Co and x 6 E we have \XM(X + ia)x\ <
|A.|̂ ?(Re k)\x\. Since 39. is Abel-ergodic, 39. and hence 0?,a = 3?(- + ia) satisfies
the growth condition (G). Moreover, {s39{s + ia)x : 0 < s < 1} is contained in the
solid hull of {s3Z(s)\x\ : 0 < s < 1}. Thus {s3?,(s + iu)x : 0 < s < 1} is relatively
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weakly compact and Proposition 4.1 implies that 3&a is Abel-ergodic. The assertion
now follows from Theorem 4.2. •

If £ is a KB-space, that is, £ is a (projection) band in its bidual, we can even
skip the ergodicity condition on 0Z. Note that in a ^TB-space every norm bounded
increasing sequence in £ + converges in norm (see [23, II.5.15]) and every ATB-space
has order continuous norm (see [23, II.5, Example 7]). Examples of KB-spaces are
Lp, 1 < p < oo, and all reflexive Banach lattices.

THEOREM 4.4. Let E be a KB-space and let B, Sf, : Co ->• S£{E) be posi-
tive pseudo-resolvents such that «S is dominated by 3$ and Sf, satisfies (G). Then
singp J,£l) c singpp J,£l) c singp

PROOF. Let iB e singp u(£!) and choose 0 ^ x e E such that (X - iB)£?(X)x =
x, X € Co. Lemma 2.7 and Proposition 2.11 yield |JC| = \X\\£!(X + iB)x\ <
|X|^(Re X)\x\ for X e Co. In particular, &(l)\x\ > |x|, and hence (@(l)n\x\) is
an increasing sequence in E. On the other hand, the power series expansion of
&(-)\x\ at 1 yields (see Corollary 2.4)

&t(s)\x\ =
n>0

for 0 < s < 1 and m e N. Thus s&(s)\x\ > (1 - s)m&(l)m+l\x\ > 0. Letting
s I 0 and using the fact that & satisfies (G) we obtain that the sequence (^(l)"\x\)
is bounded. Since £ is a KB-space y := limn3&(l)"\x\ exists in E and y > |JC|.
Clearly, 8t(\)y = y and by Lemma 2.7

(12) X^(X)y = y, Xe Co.

Let F be the closed ideal in E generated by y. From (12) and Proposition 2.11
we obtain @{X)F c F and ^(X)F c F. Let « , , £x : Co -^ JSf(F) be the
pseudo-resolvents defined by restricting 3P,(X) and i?(A.) to F. Since * € F we
have iB e singp „(,£}{). On the other hand F as a closed ideal of £ is a £S-space.
In particular, F has order continuous norm. Clearly, {s&\(s)y : 0 < s < 1}, and
hence (5^(5)2 : 0 < s < 1} is relatively weakly compact for all z € F (note
that ^ and hence 0?.\ satisfies the growth condition). Proposition 4.1 implies that
3?.\ is Abel-ergodic. Now an application of Corollary 4.3 yields iB e singp u(^\) c

D

The following example shows that in Corollary 4.3 the condition on £#. (Abel-
ergodicity) and in Theorem 4.4 the condition on £ (^Tfi-space) cannot be omitted.
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EXAMPLE 4.5. In [22, Example 2.7] we constructed contractions 0 < 5 < T on
E = co(= space of sequences converging to 0) such that 1 e ap (5) and 1 & ap (T). For
X € Coset,^(A) := fl(l+A., 7)and<S(A.) := R(l+k, S). Then£,3?: Co

are pseudo-resolvents such that 0 < £H < 3?,, 0 € singp(i2) and 0

5. The essential singular set of a dominated pseudo-resolvent

In analogy with the definition of the essential spectrum of an operator we introduce
the following notion.

DEFINITION 5.1. Let ^ be a pseudo-resolvent on the Banach space E. Then

singess(^?) := {A. e sing(J?) : A is not a Riesz point of 31}

is called the essential singular set of 3?- and singess u(3&) :— singess(^) n iU. is the
unitary part of the essential singular set. The pseudo-resolvent is said to be quasi-
compact if the essential singular bound

^ ) := sup{Re A. : A. e singess(^)}

is negative and sing(^?) D €r is finite for some sess(3&) < r < 0.

We have the following result on the essential singular set of a dominated pseudo-
resolvent.

THEOREM 5.2. Let E be a Banach lattice and let =2, Sf, : Co - • 3f(E) be pseudo-

resolvents such that £1 is dominated by 3$. Then the following holds:

(a) JessG )̂ < 0 if and only ifs(3t) <0or0isa Riesz point of 3$.

(b) IfO is a Riesz point of3£, then there exists S > 0 (only dependent on 3£) such
that sing(i2) D C_s contains only Riesz points, that is, sess(J2) < —S. In particular,

< S.

PROOF. Let 0 be a Riesz point of 3fc. Proposition 2.8 and Proposition 2.11 imply
that 1 is a Riesz point of T := 3P\\) > 0 and that r(T) = 1. By [21, Corollary 1.6]
there exists 0 < c < 1 such that every operator 5 € ££(E) dominated by T satisfies

(13) ress(5) < c.

Now fix S > 0 such that (1 + 8)'1 > c and let a + ifi e sing(^) n C_j, a, $ € K.
From (3) we obtain (1 - a)"1 6 CT(«S(1 + i0)) and |(1 - a)~l\ > (1 + 8)~l > c.
Proposition 2.11 implies that <S(1 + /y3) is dominated by ̂ ?(1), and hence ress(i2(l +
i/3)) < cby(13). Thus(l-a)-'isaRieszpointof«2(l-(-^)andfromProposition2.8
it follows that a + ifi is a Riesz point of «S. This proves sess(£?) < -S. Now the
remaining assertions are obvious. •

https://doi.org/10.1017/S1446788700001944 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001944


[15] Resolvent-dominated operators 195

If the dominating pseudo-resolvent is quasi-compact we obtain the following result.

PROPOSITION 5.3. Let £,&, : <C0 -*• -£?(£) be positive pseudo-resolvents on the
Banach lattice E such that i2 is dominated by 3#. and Sf, is quasi-compact. Then
there exists 8 > 0 (only dependent on £8) such that sess(J2) < —8 and singu(<S) c

C {0}.

PROOF. We only have to prove the second assertion. If singu(^) = 0, then
Proposition 2.11 yields s(£!) < s(0?,) < 0 and the assertion follows. Otherwise 0 is
a Riesz point of 3f,. Proposition 2.13 implies that singu(^) is imaginary additively
cyclic. Since ̂  is quasi-compact, singu(^?) = {0}. Then by Corollary 3.3 we have
singa(i2) c singu(J?) = {0}. •

We do not know if in Proposition 5.3 the pseudo-resolvent «S is even quasi-compact.

6. The spectrum of resolvent-dominated operators and dominated semigroups

In this section we apply the results of Section 3, Section 4 and Section 5 to operators
A and B on a Banach lattice E such that the resolvent of B is dominated by the resolvent
of A, that is,

(14) \R(s,B)x\<R(s,A)\x\

for x e E and 5 e (s0, oo) for some s0 € R. In this case we shortly say that B is
resolvent-dominated or r-dominated \yj A. Recall that A is resolvent-positive, or r-
positive for short, if (s0, oo) c pCA)forsomes0 e IRandflO, A) > Ofors € (s0, oo).
From Section 2 we know that the singular set of the resolvent^ = /?(•, A) coincides
with the spectrum a (A) of A, and the singular bound s(0tA) coincides with the
spectral bound s(A). An r-positive operator A is called (G)-solvable if its resolvent
is (G)-solvable (see Definition 2.12).

Now Theorem 3.2 leads at once to the following result.

THEOREM 6.1. Let Ebea Banach lattice and let A and B be r-positive operators on
E such that B is r-dominatedby A and A is (G)-solvable. Thena(B) D (s(A) + iR) c

If A is the generator of a positive Co-semigroup & = (T(t)),>0 on E, then A is
r-positive (see [19, C-III.1.1]). Moreover, if B is the generator of a C0-semigroup
y = (5(O)/>o such that S" is dominated by &, that is, \S(t)x\ < T(t)\x\ for t > 0
and x € E, then B is r-dominated by A (see [19, C-II.4.1]). The semigroup & is said
to be (G)-solvable if A is (G)-solvable. With these notions Corollary 3.3 yields the
following generalization of [2, Theorem 2.2].
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COROLLARY 6.2. Let E be a Banach lattice and let 8? = (T(t)),>0 and y —
(S(O)r>o be positive Co-semigroups on E with generator A and B, respectively, such
that y is dominated by &. If & is (G)-solvable, then a(B) D (s(A) + iR) c crn(A).
In particular, this holds ifs(A) is a pole of the resolvent /?(-, A).

The results of Section 4 lead to the following assertion on the point spectra.

THEOREM 6.3. Let A and B be r-positive operators on the Banach lattice E such
that B is r-dominated by A. Suppose, in addition, that one of following conditions is
satisfied:

(a) R(- + ia, A) is Abel-ergodic for all a e K.
(b) E has order continuous norm and /?(•, A) is Abel-ergodic.
(c) E is a KB-space and A satisfies (G).

Then op(B) D (s(A) + iR) C opn(A). In particular, this holds if A and B are the
generators of positive Co-semigroups & = (T(t)),>oandy = (S(f))/>o> respectively,
such that y is dominated by £f.

Our next result is a consequence of Theorem 5.2. Note that for an operator A
the essential singular set of the resolvent Sf,A = /?(•, A) coincides with the essential
spectrum cress(A), and hence sess(£%A) and the essential spectral bound sess(A) :=
sup{Re A.: A. e o-ess(A)} are equal. In contrast to the previous results only A has to be
r-positive.

THEOREM 6.4. Let A and B be operators on the Banach lattice E. Suppose that B
is r-dominated by A. Then the following holds:

(a) icss(^) < s{A) if and only ifs(A) is finite and a Riesz point of A.
(b) Ifs (A) is a Riesz point of A, then there exists 8 > 0 (only dependent on A) such

that sess(B) < s(A) — S. In particular, 5ess(A) < —S.

As in the previous cases there is an obvious reformulation of Proposition 5.3 for r-
dominated operators. For dominated semigroups we obtain a slightly different result.
Recall that a C0-semigroup S' = (T(t)),>0 is quasi-compact if there is t0 > 0 such that
ress(T(to)) < 1, where ress(T(r0)) := sup{|X| : X e cress(T(t0))} is the essential spectral
radius of T(t0). Note that for a quasi-compact C0-semigroup & the resolvent of its
generator A is quasi-compact in the sense of Definition 5.1 (see [19, B-IV.2.10]). The
converse is not true in general. The following result generalizes [17, Proposition 3.3],
where the semigroups were assumed to be positive.

THEOREM 6.5. Let E be a Banach lattice and let & = (T(t))t>oandy - (S(t))t>0

be Co-semigroups on E with generator A and B, respectively, such that s(A) < 0 and
y is dominated by 3'. If £? is quasi-compact, then y is quasi-compact.
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PROOF. By the quasi-compactness of 2? there exists fo > 0 such that ress(T(t0)) < 1.
Thus M := a(T(t0)) n {X e C : |A.| > ress(T(t0))} contains only Riesz points, and
hence consists of eigenvalues of T(t0). By the spectral mapping theorem for the point
spectrum (see [19, A-III.6.3]) for each X e M there is an eigenvalue /x of A such that
X = ew. Since s(A) < 0 we have |A.| < 1 for each X e M. Thus r(T(t0)) < 1. By
our assumption 5(?0) is dominated by 7\r0) and then by [22, Theorem 3.1] we have
rCSs(S(to)) < 1, that is, y is quasi-compact. •

7. Asymptotic properties of dominated semigroups

We now use the results of the previous sections to investigate asymptotic properties
for dominated C0-semigroups.

Our first result is a Katznelson-Tzafriri type theorem for dominated semigroups.
Recall that / 6 L'(R) is of spectral synthesis with respect to a closed set F c R
if/ is the limit of a sequence (/„) in L'(K) such that for each n e N the Fourier
transform /„ vanishes in a neighbourhood of F. In the following L'(R+) is always
considered as a subspace of L'(R) (by setting / e L'(R+) identically zero on R_).
For a bounded C0-semigroup & — (T(O)r>o on a Banach space E and/ € L'(K+)
we define f(&) e &(E) by

/•OO

f{S)x := / f(s)T(s)xds, x e E.
Jo

THEOREM 7.1. Let E be a Banach lattice and let 3T = (T(t))t>oandy = (5(O)/>o
be positive bounded Co-semigroups on E with generator A and B, respectively, such
that y is dominated by S?. If f G L'(R+) is of spectral synthesis with respect to
iau(A), then lim^oo | |S(0/(^) | | = 0.

PROOF. From Corollary 6.2 we obtain ou{B) c au{A). Thus / is also of spec-
tral synthesis with respect to iau(B). An application of the Katznelson-Tzafriri
theorem for C0-semigroups (see [11, Theoreme 3.4] and [27, Theorem 3.2]) yields

0. •

As a special case we obtain the following result.

COROLLARY 7.2. Let E be a Banach lattice and let S? = (T(t)),>0 and y =
(S(O)f>o be positive bounded Co-semigroups on E with generator A and B, respec-
tively, such that y is dominated by 3'.

(a) Ifau(A) £ icolforsomeco > 0, thenlim,^ \\(S{t + 2Tt/co)-S(t))f\y)\\ = 0
for all f 6 Ll(R+).

https://doi.org/10.1017/S1446788700001944 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001944


198 Frank Rabiger and Manfred P. H. Wolff [18]

(b) Ifau(A) 9 {0}, then l i m , ^ \\(S(t + s) - S(t))f(y)\\ = Ofor all s > 0 and
f G

PROOF. Let / e L\R+) and set g := fs - f where fs : = / ( • - s) for s > 0.
Then £(f) = (*>'" - 1 )/(*), t € R. Thus |(0) = 0 for every 5 > 0 and gLz = 0 for
s = ^. Since every countable closed set F c R is a set of spectral synthesis, that is,
every function h € L (R) such that /i | f = 0 is of spectral synthesis with respect F
(see [16, 37C]), the assertion follows from Theorem 7.1. •

Next we discuss almost periodicity of dominated Co-semigroups. Recall that a
Co-semigroup & = (T(t)),>0 on a Banach space E is almost periodic if for each
x € E the orbit [T(t)x : t > 0} is relatively compact in E. In this case the
Jacobs-Glicksberg-deLeeuw theorem (see [15, 2.4.4, 2.4.5]) yields a decomposition
E = Eo® Er with ^-invariant spaces Eo = {x G E : lim,̂ oo || T(t)x \\ = 0} and
Er = lin{x € E : there exists X € iR such that Ax = kx], where A is the generator
of 3'. The semigroup Sf is called stable if lim,-^ T(t)x exists for all x e E. In
this case Er = ker A. Finally, we say that & is Abel-ergodic if the resolvent /?(•, A)
is Abel-ergodic. By a theorem of Ljubich and Vu [28, Theorem 2] (see also [8,
Theorem 8]), abounded C0-semigroup with generator A is almost periodic if au{A) is
countable and S?a = (e""T(t)),>0 is Abel-ergodic for all ia 6 ou(A). Together with
Corollary 6.2 this immediately leads to the following result.

THEOREM 7.3. Let E be a Banach lattice and let & = (T(t))t>oandy = (S(f))/>o
be positive bounded Co-semigroups on E with generator A and B, respectively, such
that y is dominated by 2?. Ifou(A) is countable and ya = (e""S(f))<>o is Abel-
ergodic for all ia e cru(A), then y is almost periodic. If, in addition, au(A) c {0} or
f? is stable, then y is stable.

Only recently, on Banach lattices with order continuous norm the following inher-
itance result on almost periodicity and stability of dominated semigroups has been
shown (see [10]).

THEOREM 7.4. Let E be a Banach lattice with order continuous norm and let
& = (T(t)),>0 and y = (S(O);>o be positive C0-semigroups on E with generator A
and B, respectively, such that y is dominated by &. If 07 is almost periodic, then
y is almost periodic, and if 2? is stable, then y is stable.

We now investigate uniform ergodicity of dominated semigroups. The following
spectral characterization of uniformly Abel-ergodic pseudo-resolvents is an immediate
consequence of [14, Theorem 18.8.1].
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LEMMA 7.5. Let £% : Co —>• ^C(E) be a pseudo-resolvent on the Banach space E.
Then the following assertions are equivalent:

(a) ?si, := limJi0 sSf,{s) exists in J?(E), that is, & is uniformly Abel-ergodic.
(b) 0 is a pole of£# of order at most 1.

A Co-semigroup !7 = (7"(?))«>o on a Banach space E with generator A is called
uniformly Abel-ergodic if s(A) < 0 and P& := limsi0 s&(s, A) exists in Jzf (£). The
operator P&- is called the ergodic projection corresponding to S'. We obtain the
following inheritance result on uniform Abel-ergodicity.

THEOREM 7.6. Let E be a Banach lattice andlet & - (T(t)),>oandy = (S(t)),>0

be Co-semigroups on E with generator A and B, respectively, such that 5? is dominated
by 3'. If & is uniformly Abel-ergodic with ergodic projection P& of finite rank, then
5? is uniformly Abel-ergodic with ergodic projection Py of finite rank.

PROOF. Lemma 7.5 implies that 0 is a Riesz point of A. From Theorem 6.4
we know that 0 is a Riesz point of B. In particular, 0 is a pole of the resolvent
/?(•, B). Since /?(-, B) is dominated by /?(•, A) we have limsupii0 \\sR{s, B)\\ <
lim supJi0 \\sR(s, A) || < oo. Thus 0 is a pole of order at most one of /?(•, B), and the
assertion follows from Lemma 7.5. •

We point out that the same result can be shown for dominated pseudo-resolvents
(instead of Theorem 6.4 one has to use Theorem 5.2). An example of Arendt and
Batty (see [5, Example 3.1]) shows that in Theorem 7.6 the rank condition on P?
cannot be omitted.

For a Co-semigroup & = (jT(f))r>o on a Banach space E the Cesaro means
C(t) e 3?(E), t > 0, are defined by C(t)x := (I/O /„' T(s)xds. The semigroup
& is called uniformly ergodic if P*r •= lim,-,.^ C(t) exists in Jif(E). As above we
call P? the ergodic projection corresponding to &. The following result due to Shaw
clarifies the connection between uniform ergodicity and uniform Abel-ergodicity (see
[25, Theorem 4 and Proposition 7]). We set

cox (S) :- inf I r € R : lim / e~ks T(s)x ds exists for all Re X > r and all x e E \ .
[ '-+°° Jo J

PROPOSITION 7.7. Let & = (T(t)),>0 be a C0-semigroup with generator A on the
Banach space E such that (O\(S) < 0. Then the following assertions are equiva-
lent:

(a) & is uniformly ergodic.
(b) lim,.,.^ || T(t) R (1, A) || = 0 and !? is uniformly Abel-ergodic.

Moreover, the corresponding ergodic projections coincide.
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Together with Theorem 7.6 this yields the following inheritance result on uniform
ergodicity which generalizes [20, Theorem 3.4].

THEOREM 7.8. Let E be a Banach lattice andlet & = (T(t)),>oandy = (S(O)r>o
be Co-semigroups on E with generator A and B, respectively, such that y is dominated
by S?'. If 5? is uniformly ergodic with ergodic projection P& of finite rank, then y is
uniformly ergodic with ergodic projection Py of finite rank.

PROOF. The uniform ergodicity of & implies coi(^) < 0 (see [25, Proposi-
tion 8]). Since y is dominated by & we have a>x(y) < coi(^) < 0. Moreover,
R(,B) is dominated by 7?(-, A). Thus \\S(t)R(l, B)\\ < \\T(t)R(l, A)\\, and hence
lim^oo ||S(/)/?(l, B)\\ = 0. Theorem 7.6 implies that y is uniformly Abel-ergodic
with ergodic projection Py of finite rank. Now the assertion follows from Proposi-
tion 7.7. •

We point out that a corresponding result on the inheritance of uniform stability for
dominated positive semigroups has been shown in [20, Theorem 3.6].
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