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ASYMPTOTIC EXPANSIONS OF RECURSION
COEFFICIENTS OF ORTHOGONAL POLYNOMIALS
WITH TRUNCATED EXPONENTIAL WEIGHTS

HAEWON JOUNG

Abstract. Let 8 > 0 and Ws(z) = exp(—|z|?), = € R. For ¢ > 0, define
Waen(z) = Wp(z) if 2| < /P a2, and Wp,en(x) = 0 if 2| > ¢/? a2y, where
az2n denotes Mhaskar-Rahmanov-Saff number for Ws. Let v, (W3.cn) be the
leading coefficient of the nth orthonormal polynomial corresponding to Wg,cp
and write an(Wa,en) = Yn—1(Wa,en)/n(Wg,en). It is shown that if ¢ > 1 and
(3 is a positive even integer then a, (Wp,cn)/n'/? has an asymptotic expansion.
Also when 0 < ¢ < 1, asymptotic expansions of recursion coefficients of the
truncated Hermite weights are given.

81. Introduction
Let 3 > 0. Let Ws(z) = exp(—|z|?), z € R, and let v, = 7, (W5) > 0
denote the leading coefficient of nth orthonormal polynomial p,, correspond-

ing to Wj. The leading coefficients ~y, have the following minimum property.
Denoting by P, the set of all polynomials of degree at most n we have

o0
(1.1) W) = min [ @) PWile) da
q€EP, 1 —00
Since W3 is even, the recursion formula of the orthonormal polynomials has
the form
(1'2) .Cl?pn_1($) = anpn(x) + an—lpn—2($) ,
n = 1,2,3,---, where a9 = 0 and a,, = Y—1/7n, n > 1. Associated

with the weight function Wj, there are Mhaskar-Rahmanov-Saff numbers
an = a,(W3), which is a positive solution of the equation

n=(2/7) /01 ant@ (ant)(1 —t2)" Y2 dt |
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n=1,2,3,---, where Q(z) = |z|® (cf. [4]). Explicitly,

(1.3) an = an(Wg) = (n/Xg)?, n=1,2,3---,
where
22701(B)

M= TR

Using Mhaskar-Rahmanov-Saff numbers a,, = a,,(Wp), we define the trun-
cated exponential weights Wg ¢, , ¢ >0, n=1,2,3,---, by

Wa(z) if |z] < P ag,, .
1.4 p—
(1.4) Wﬂ,cn(fﬁ) { 0 it |z > /B o -

Our purpose in this paper is to prove the followings.

THEOREM 1.1. Let ¢ > 1 and B be a positive real number. Then
(1.5) an(Waen)/an(Wg) ~1 as n— oo.

In other words,
an(Waen)/an(Wg) =1+ o(n™%),
for every integer k > 1 asn — oo .

Combining a result of M&té, Nevai and Zaslavsky [6, Theorem 1, p. 496]
and Theorem 1.1 we have

THEOREM 1.2. Let ¢ > 1 and (B be a positive even integer. Then
an(Wp.en)/n'? has an asymptotic expansion

1.6 an(Wg en n'/B ~ Cok n2* as n— o0,
( ﬁ7
k=0

where the constants cop’s are independent on c.
Theorems 1.1 and 1.2 depend on infinite-finite range inequality (2.1).

When 0 < ¢ < 1, (2.1) is not true any more. Using the recurrence equation,
we obtain following result for the truncated Hermite weights.
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THEOREM 1.3. If 0 < ¢ < 1, then a2(Waem)/n has an asymptotic
exrpansion

[e.e]
(1.7) a2 (Waen)/n ~ Z dopn™* as n — oo,
k=0

2 3 2
d4 17¢*+c and d6 _ 1126¢°+196¢“4-c .

where dy = c/2, da = 3 = 32(1=c)’ = T 128(1-¢)8

Of course if ¢ > 1, then
Q2(Waen)/n~1/2 as n— oo,
as a consequence of Theorem 1.1 and o2 (W) = n/2.

§2. Proof of Theorems 1.1 and 1.2

To prove Theorem 1.1 we need following infinite-finite range inequality,
which is a special case of [3, formula (3. 19) in Lemma 3.3, p. 32].

LEmMMA 2.1. Let 3 >0 and c > 1. Then there exist a positive constant
Cy and a positive integer ng such that, for n > ng, and for P € P, ,

(2.1) / " P2a) Wila) do < (14 eCom) /_ " P2a) Wi () da

— 00

Proof of Theorem 1.1. Since Wg(x) > Wg cn(x), %a(W35) < (W3 en)s
hence, in view of (2.1) and (1.1), we have

1< ’YTQL(Wﬁ,cn)/%%(Wﬁ) <14e %" forall n>ng,
and
1< A2 (Waen) /721 (W) < 1+e " forall n>ng,
which implies Theorem 1.1.

Proof of Theorem 1.2. Maté, Nevai and Zaslavsky [6, Theorem 1, p.496]
showed that, if § is a positive even integer, a,,(Wp3)/ n'/8 has an asymptotic

expansion
o

(2.2) an(Wg)/nl/ﬁ ~ Zc%n_% as mn— oo.
k=0

Thus Theorem 1.2 follows from (2.2) and Theorem 1.1.

https://doi.org/10.1017/50027763000008151 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008151

82 H. JOUNG

83. Proof of Theorem 1.3

Instead of dealing with the weights W5 ., , we consider the weights w,, ,
m > 0, defined by

(3.1) w () = { eXp(—meQ) if |z[ <1,

0 if |z|>1.

Let pp(x) = ypz™ 4+ -+, 7 > 0, denote the orthonormal polynomials cor-
responding to w,, . Since w,, is even, the recursion formula becomes

(3'2) :cpnfl(x) = Oznpn(SU) + O‘nflpan(SU) 5

n=1,2,3,---, where oy = 0 and o,, = Vp—1/Vn, n > 1, and p,, is even if n
is even and odd if n is odd. Observe that

n 1
=~ [ @@ de, 0> 1.

Qp

Integrating by parts the right hand side of the above equation, we obtain
n
— —dmay, = 2pp(1)pp—1()wp,(1).
Qn

Squaring both sides, we have

n2

(3.3) —5 —8nm+ 16m2a? = 4p2(1)p2_;(D)w?,(1).
n

We remark'that (3.3) can be obtained by equating leading terms in

p;z(x) = An(x)pn—l(x) - Bn(x)pn(x)a

where
QW 2 o (—1)p2 (—
1 ./ —U/
e /_ . %_y(y)pi(y)wm(y)dy,
By(z) = Oznwm(l)lpi(;)pn—l(l) N anwm(—l)g;ni—ll)pn_l(_g
1./ —U/
Hon /1 %_y(y)pn(y)]%1(y)wm(y)dy7

We thank the referee for this remark.
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and v(z) = 2ma? (cf. [1], [2]).
Also note that

1

(34) 1+2n = /_l[xpi(x)]'wm(:c) dr = 2p2 (V) wm (1) +4m(aZ; +a2).

From (3.3) and (3.4), we obtain the recurrence equation

L o
5) - =a? |14 — -
(35)4 a”[+2n

n 2n n

+2ma% B 4m?a
n n?

L 2oy col)] L 2l vy

n=1,23,---, where ap =0 and a3 = 9/ . Since

1
1Pn(@) P (@) wm () da

0<an= [ ep@pat) @ < [

-1 —

([ o) ([ 2@ @) -1,
_1 -1

(3.6) lim o2 (w,,) = 1/4

n—oo

follows from (3.5). Now we show that a2 (w,,) has an asymptotic expansion.

LEMMA 3.1. Let m > 0. Then o2(w,,) has an asymptotic expansion

(3.7) a ~ Zrk n* as n— oo,
k=0
that 1is,
j .
(3.8) a2 = Z ren® +o(n77),
k=0

for every integer j > 0 as n — oo, where ro =1/4.
Proof of Lemma 3.1. Let

(3.9) H(z,y,zw)=[y+ (1/4)][1 - (1/2)(2m — 1)w — 2mw(y + 2)]
11— (1/2)(1 + 2m)w — 2mw(z + y)]
+ 2myw — 4m?y*w? — (1/4).
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Then
H H H
(3.10) 0H(0,0,0,0) _ 0H(0,0,0,0) 0. 0H(0,0,0,0) 1
ox 0z oy
Putting
(3.11) yn = ap — (1/4),
we have
(3.12) H(Yn-1,Yn,Yn+1,1/n) =0 by (3.5).

By (3.10), (3.11), (3.6), and (3.12), the conditions of the theorem of Mdté
and Nevai [5, Theorem in p. 423] are satisfied, hence,

oo
aiw g rknfk as n — oo,
k=0

where 79 = 1/4 by (3.6). 0

Once we know (3.8) is true, we expand a2_; and a2, in terms of n=F
using the binomial theorem, and then, putting them into (3.5), we find
r1=0,7ry=1/16, and r3 =m/8.

Rewriting (3.7) as

(3.13) o2 (wp) ~ 1/4+ Z ern *2 as n— oo,
k=0
where eg = 1/16 and e; = m/8, next we show

LEMMA 3.2. The coefficient ey, in (3.13) is a polynomial in m of degree
k with the leading coefficient (k + 1)/16, and ey is even, if k is even, and
odd, if k is odd.

Proof of Lemma 3.2. When k = 0,1, the lemma is true according to
(3.13). Using induction on k, we may assume that the lemma is true for
€op,€1,€3, -+, and ex_1. Let

k
(3.14) a% = 1/4+ Z e n—0+2) 4 O(nfkfz) .
j=0
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Writing (n41)™7 = n~7 (14£1/n)77, and then, using the binomial expan-
sion for (14 1/n)™7, we obtain

1 2 1/4 S (741 —(j+2) k-2
(815)  any /+Z[Z(z—|—1) ] +o(n™"7),

§j=0 i=0

and

(3.16) a2,, = 1/4+Z[i i <i1—:11>6] G4 4 o2

=0

Now, expanding (3.5) yields

2 1 4 4m? 4m?a8
(3.17)0—04[1+—m——]—04[m m}+ mn
n

4n? n n? n2
2/ 2 2
+man(an+1 - an—l)
n2
2 2,4 2.2 2 2
o2, + o )[_Qman+4m } dmagag as ;1
n+1 n—1 n ng n2 4

Substituting (3.14), (3.15), and (3.16) into (3.17) yields

k
S G 4o(nE?) = 0,
j=0

which implies C; = 0, for j = 0,1,2,---, k. In particular from C} = 0, we

can express e in terms of eg,eq,e9, -, ex_1 as follows. Setting
L (j+1 d i (i+1
sj_z<i+1> e;, and tj_z(_l)]z(i—i—l) €
=0 =0
for j=0,1,2,---,k—1, and let
-2
fi =sj+t;j, g =1t; —sj, and h; Sji_tj —i—JZ:sitj_g_i,
i=0

for j =0,1,2,---,k — 1. Since t; is alternating, it follows by the induction
hypothesis that

(3.18) fj is a polynomial in m of degree j, and is odd, if j is odd,

and even, if j is even,
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for j =0,1,2,--, k—1,
(3.19) go =0 and
g; is a polynomial in m of degree j — 1, and is odd, if j is even,
and even, if j is odd,

for j=1,2,3,---,k—1, and

(3.20) h; is a polynomial in m of degree j, and is odd, if j is odd,
and even, if j is even,

for j=0,1,2,--- k—1.

Now we have

e
(3.21) e = %4 4‘7n[€k 1 +*1%53'—’g5—2'+“4252636k 3—j

k—3 k—4
+2 Z ej fr—3—j — Z €j 9k747j}
; =

- ﬂﬁl 2 4 hy—o +2eg (ep—a + fr—a)
k-4 k-4

+2e1 (ex—5 + frs) — > _€jera—j +4> ejhpa
=0 =0

k—6—1

k—6
+Zez +fz <2€k 4— z+4 Z €5 €k—6—i— J>:|
=0

Since the coefficient of m/ in f; is (j + 1)/8 and the coefficient of m? in h;
is (j+1)/32,j=0,1,2,---,k — 1, Lemma 3.2 follows from (3.18), (3.19),
(3.20), and (3.21) and the induction hypothesis. 0

By Lemma 3.2 we write

(3.22) e = ek(m) = bk70 mF + bk,l mb—2
+ bk‘,2 mk74 N bk,[k/Q} mk*?[k/Q] ’
where [-] denotes the integer part. Note that by, is the constant term in

€2p and bgp7p = b2p_27p_1/4 by (3.21). Since b0,0 = 1/16,

(3.23) bap.p p=0,1,2,--- .

1
= iz
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We need more information about by, as k — oo, that is, we want that
for each p = 0,1,2,--+, bgpyr,p can not grow too fast as k — oo so that
Y reo baptkp c* converges provided 0 < ¢ < 1. In fact we show that for
each p = 0,1,2,---, bapyrp is a polynomial in & whose degree depends
only on p. For p =0,

(3.24) bpo=(k+1)/16, k=0,1,2,---,
by Lemma 3.2. When p = 1, we find

(325)  baks = (5o ) (b4 4k +3)(k+2)(k +1)

(o) (B3 + 2k + 1),

for k = 0,1,2,---, as follows. Note that by, 1 is the coefficient of mF in
eatr - Comparing the coefficient of m* in both sides of (3.21) with 2 + k
replacing k, we obtain

(3.26)  bagr,1 — 2bar(k—1)1 + bt —2)1

b kE+1)(k+2)b_ k+1)b,_
k,0+( )( )k1,0+( )bk—1.0

4 2 2

k—1
k(k 4+ 1)by_
# — 6(bo,0bk—2,0 + b1,0br—3,0) + 8 Z bjobk—1—j,0

=0

k—2 k—4
—2 " bjobk—2-jo—6Y_ bjobk-2jo -
=0 j=0

Substituting (3.24) into (3.26), it follows that
9k* bk 1

6 T3 e
for k =1,2,---. Solving the above difference equation with by; = 1/64 by
(3.23) and by 1 = 0 yields (3.25). When p = 2, similarly as done above, we

have

botk1 — 2bay (k—1),1 +bop(k—2)1 =

21(k+7)(k +6)(k +5) - (k+1)

(327) b4+k72 -

20480
17(k+6)(k+5)--- (k+1)
B 1280
+%Nk+®@H4ﬂk+$%+&ﬂk+U

15360 ’
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for K = 0,1,2,---. Now using induction on p we assume that bg; 4y, is
a polynomial in k£ for ¢ = 0,1,2,---,p — 1. Replacing k£ by 2p + k£ in
(3.21) and then comparing the coefficient of m* in both sides we find that
bop+k,p—2b2ps (k—1),pHb2ps(k—2),p can be expressed in terms of k and ba;+j; ,
1=0,1,2,---,p—1,5=0,1,2,--- , k. Using the induction hypothesis yields

boptkp — 2b2py (k—1),p + b2py(k—2)p = a polynomial in k.
Then the following lemma follows by solving the above difference equation.

LEMMA 3.3. For each p = 0,1,2,---, bopiky is a polynomial in k
whose degree depends only on p.

Recall the definitions of we, in (3.1). Now we prove

LEMMA 3.4. Let 0 < ¢ < 1. Then o?(we,) has an asymptotic expan-
sion

1 (o]
(3.28) A2 (Wen) ~ 1 + Z Sopn 72 a5 n— o0,
p=0
_ 1 _ _17c+1 _ 1126¢2+196¢+1
where do = T6(1—0)2 ’ 0y = 64(1Cfc)5 » and 04 = 2506(17c)§ :

Proof of Lemma 3.4. From Lemma 3.1 and (3.13)

o0
ex(m
o2 (W) ~ 1/4—1—2 ;l§+2) as n — oo,
k=0

for each fixed m > 0. If we replace m by cn, then, with the notations in

(3.22),

ek(cn) B [k/Q] bk}p Ck—2p

nkt2 Z n2r+2 -

p=0

Since Y17 baptkp c* converges for each p =0,1,2,---, by Lemma 3.3, we
have

1 o

ai(wcn) ~ 2 + Z 52pn_2p_2 as n — oo,
p=0

where 89, = 372 boprkpct . From (3.24), (3.25), and (3.27), we obtain
do, 02, and d4, completing the proof of Lemma 3.4. O
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Proof of Theorem 1.3. Since

a2 (W
O‘i(wcn) = n(2672l,cn) )

Theorem 1.3 follows from Lemma 3.4. []
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