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A GENERAL ASYMPTOTIC RESULT FOR PARTITIONS 

BRUCE RICHMOND 

§ 1. In this paper we are concerned with part i t ion functions py{n) t ha t have 
generating functions of the form 

£ Py(n)xn = fl[ (1 - xTyW 

n=0 rc=l 

where y(n) ^ 0. We shall obtain an asymptot ic relation for py(n) under 
suitable restrictions on y (see Theorem 1.1). These restrictions are weaker 
than those of Brigham [2] who considered this problem previously. 

We have considered this problem when y(n) is 0 or 1 previously in [7] and 
[8]. Wright [13] has treated the case y{n) = n when py(n) is the number of 
plane part i t ions of n. Various other plane parti t ion functions and their asymp­
totic expansions have been considered by Gordon and H ou ten [5] and Gordon 
[4]. 

In § 3 we apply our asymptot ic result to a certain weighted parti t ion func­
tion involving primes and powers of primes. We derive under no unproven 
hypothesis a result of Brigham [3] obtained previously under the assumption 
of the Riemann hypothesis. We also show tha t for n sufficiently large, the kth 
difference of this particular weighted function is positive, thus proving the 
monotonicity of this function which was left undecided in [3]. Finally, we 
examine a connection between the zeros of the Riemann zeta function and the 
error term in the approximation of this parti t ion function by elementary 
functions. 

First of all, we require a series of definitions which are very similar to those 
of [7]. 

We define the function fy for real x > 0 by 

oo 

A(*) = E y(m)e~xm. 

We say tha t y has property (I) if with e > 0 an arbi t rary constant and y. fixed 

£ y(m){xmYe-xm = 0{fy
1+e(x)} 

and 

/ 7 ( x ) / / 7 ( x ( l - / T - ( 1 + f ) / 3 ( x ) ) ) = 0 { 1 } 

as x —-> 0. 
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1084 BRUCE RICHMOND 

Let 

Fy(%) = Z ) 7 ( w ) . 
m^x 

We say y has proper ty ( I I ) if there exists some constant rj with | > rj > 0 
such t ha t 

^(*-y7-ô(*))/iog/7(x)^oo 
and 

as x —» 0. 
We shall see t ha t 7 has properties (I) and ( I I ) when either 

3 t 

log x / / \ ^ log x / " 2 ' 

or with c an arbi t rary positive constant 

(ii) log Fy(x) ^ £ log log x (x —> 00 ) 
or 

(iii) Fy(2x) = 0{Fy(x)}. 

For each fixed positive integer n, we define a throughout this paper to be 
the unique solution of 

00 

(1.1) « = E y(m)m(eam- 1)~\ 

Throughou t this paper any equations or est imates involving a may only hold 
for a. sufficiently small or equivalently n sufficiently large. 

We define B, = B,(n) (M = 2, 3, . . .) by 

ra=l 

where gM(x) is a certain polynomial (the same as in [7] or the gM* of Roth and 
Szekeres [11]) of degree ^ JLX — 1 and in part icular g\{x) = 1 and gi{x) = x. 

Dp = Dp(n)(p = 1, 2, . . .) is defined by 

00 00 

Dp = B2 2^ • • • Z ^ ^M1M2...M5 A l ^ M 2 • • • ^ M 5 , 
Ml = 2 M 5 p = 2 

the summat ion being subject to 

Ml + M2 + • • • + M5P = 12p, 

where the d's are certain numerical constants . 
Let us say t ha t 7 is a P-function if the integers / such tha t y (I) ^ 0 do not 

have a common factor > 1 for all sufficiently large n. 
Our first result can now be s tated. 
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T H E O R E M 1.1. Let y have properties (I) and (II). Suppose that y is a P-
function and that 

min y (I) > 0. 
7(0^0 

Suppose furthermore that 

lim]pg_^M>0. 
z-oo l o g l o g X 

Let m be any fixed integer ^ 2. Then 

py{n) = ( 2 ^ 2 ) 1 / 2 e x p {an - £ 7 ( / ) log (1 - e~"1) 
\ 1=1 

X [ 1 + § Z J p + 4'H,""1(f l )} 
§2 . The proof of Theorem 1.1 is similar to the proof of Theorem 1.1 of [7], 

hence we shall only consider those differences which are significant and sketch 
the proof. 

First of all, let us show tha t when one of Equat ions (i), (ii) or (iii) holds, 
then y has properties (I) and ( I I ) . 

T h a t (iii) is sufficient follows from minor changes in the proof of Lemma 2.5 
of [7] and in par t b) of the proof of Lemma 3.3 of [7]. 

If (i) holds, it follows readily from 

ç 
= x I 

J o 

(2.1) fy(x) = x I Fy(u)e~xudu 
J o 

with 

/ = lim log Fy (x) / log x 

L = lim log Fy(x)/\og x 
Z->oo 

t ha t for e > 0 an arbi t rary constant x —> 0 

(2.2) x*-1 <fy(x) < x*-L . 

Clearly then, (i) is sufficient for property ( I I ) . Next we show tha t if (i) holds, 
then 

(23) x \ Fy(u){xuYe-xudu = 0{fy1+€(x)}. 
J o 

However, from (2.2) it follows tha t 

(2.4) x J Fy(u)(uxYe-uxdu = 0{xl-e'L exp ( - / 7
€ / / » / 2 ) } . 
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I t follows from this and (2.2) t ha t (2.3) holds. Let 9 be the operator defined by 

6 = x d/dx. 

We can differentiate under the integral sign in 2.1 and since 

9"fy(x) = £ y(m)(xmYe-am 

the first pa r t of proper ty (I) follows from (2.3). Now let 

y = x ( l - / T - ( 1 + f , / 3 ( x ) ) . 

Since fy(x) —» GO a s x - ^ 0 we have y ~ x as x —» 0 and it follows from (2.4) 
tha t with constant rj, 0 < t\ < § 

/

•x-ifyiix) 
Fy(u)e-^du + 0{l}; 

0 

however 

e-yu/e-xu = exp ( a * / r ( 1 + ° ' * ( * ) ) = Ofexp (/y ,- ( 1 + e ) / 8(*))} = 0{1\. 

I t readily follows t ha t 

fy(y) = 0{fy(x)\ 

and the second par t of property ( I I ) holds. 
If (ii) holds, then it follows as above tha t 

(2.o) logfy(x) ~ c log log (1/x) ~ log Fy{l/x) 

and proper ty ( I I ) follows. Fur thermore we obtain t ha t 

log x I Fy(u)(xiiYe~xudu ~ c log log ( - ) ~ log Fy\- I 

and thus the first par t of proper ty (I) holds. The second par t follows readily 
from (2.5). 

The proof of Theorem 1.1 uses a saddle-point technique along the lines of 
Roth and Szekeres [11]. Using Cauchy ' s theorem, we express py(n) as a 
contour integral over the circle of radius exp (—an) centred a t the origin. 
The point exp (—an) is a saddlepoint and the integration along the smaller 
arc of the circle from exp (—an — id0) to exp (—an + i90) where 0O = «/7

(1+,?)rs(a) 
gives the dominant par t of the integral. The asymptot ic behaviour of this 
integral is obtained as in § 2 of [7]. T h e proof t ha t the integral over the re­
maining arc is negligible is very similar to § 3 of [7]. Note however t h a t it is 
necessary t ha t log fy(x)/log 1/x = 0{1} for Theorem 3.1 of [7] to give a 
negligible order of magni tude and this is where the condition 

min y(m) > 0 
T(m)^0 

is used. 
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If y is not a P-function, the asymptot ic result is rather cumbersome to s ta te 
and corresponds to Theorem 1.1 of [8J. For the sake of completeness, we give a 
result in this direction. 

Let A be the set of monotonically increasing integers A = {n\y(n) ^ 0}. 
Let us say as do Bateman and Erdôs [1] tha t A has property Pk if, when we 
remove an arbi t rary subset of k elements from A, the remaining elements have 
greatest common divisor unity. If A has property Pk bu t not Pk+i, let Â 
denote a set of k + 1 elements of A such tha t A — Â has greatest common 
divisor greater than one. 

The proof of Theorem 1.1 of [8] gives: 

T H E O R E M 2.1. Let y have properties (I) and (II). Let y have property Pk but 
not Pk+\. Let A and Â be defined as above. Suppose that 

I = min y(n) > 0. 

Suppose furthermore that 

l j m b g ^ M > 0 . 
s-x» lOg log X 

Let m be any fixed integer ^ 2. Then 

py(n) = ( 2 ^ 2 ) - 1 / 2 e x p \an - f j y (I) log {1 - e~al\} 

X 
m— 2 2 y(a) 

1 + E D> + 0{/7
1~(2w/8)(«)} + 0{aaeA B2

1/2\ 

§ 3 . In this section we consider the weighted parti t ion function p\(n) of 
Brigham obtained by choosing y(m) = A(m) where A(pb) = log p, p prime, 
and A(w) = 0 for all other values of n. Asymptotic results of the type obtained 
by Brigham have been obtained for the number of parti t ions of n into primes 
and distinct primes (see, for example [11]); however, Brigham's function can 
be approximated more accurately by elementary functions and is interesting 
for its own sake. We consider the function itself instead of the summatory 
function. 

I t is well-known tha t 

X 

E A(w) ^ x 

and since A is a P-function, the conditions of Theorem 1.1 are satisfied. We 
denote the Riemann zeta function and the gamma function as usual. In [3] 
it is shown tha t 

g(a) = exp ( - £ A(m) log (1 - e ^ ) ) 
(3.1) - 1 7 / 2 v 

= Ka10^ exp [^ + Z(a) + 0(a)) 
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/here 

K-expf- .+fj+Ç-!,) 

and 

^(27r)pf(-p) _ ^ f ( l + p ) r ( p ) 
z(a) = 2: J^m=£2 = _ £ 

p 

pap sin 4 
the summations being taken over the complex zeros of f (s) counted according 
to their multiplicities. 

Recall that 

CO 

(3.2) n = E wA(m)(eam - l ) " 1 

ra=l 

CO CO 

= £ «AW £ e-am( 

= ±- r + , " a - r ( 5 ) r ( 5 ) Ê ^ d „ «r > 2 
27Ti J a-iœ m=l m 

— 1 f***30 f'(c - I) 

= ^ I «"T(5)f(5) 9 f - r f *, cr > 2. 
It is shown in the same way in [3] that 

(3.3) logg(«) = =± f ' + t o «—r(5) f ( l +s)£&ds, a> 1. 

Note that 

-£ { £ A(m) log (1 - <T™)} = £,(«), 
a a I m==i J 

hence the first term of the asymptotic expansion of pkin) obtained from 
Theorem 1.1 is a times the asymptotic formula obtained for the summatory 
function in [3]. A lore generally, if we consider the &th difference p7

(k) (n) 
defined by 

Ë PyM(n)xn= (l-x)kf: py(n)xn, 

then the proof of Theorem 5.1 of [9] is easily modified to show that under the 
assumptions of Theorem 1.1 

py™(n)~[aik)]Wpy(n) 

where a{k) is defined by an equation corresponding to (1.1). However, the 
proof of Theorem 5.2 of [10] shows that the same a, in particular the a of 
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equation (1.1), may be used for all k. In our case, we have 

pA{k)(n)~akpA(n) 

which shows that the &th differences are positive for n sufficiently large. 
We have verified Brigham's result and furthermore shown that all the &th 

differences of p \(n) are positive for n sufficiently large. 
Let us determine as far as seems possible the asymptotic estimation of pk{n) 

in terms of elementary functions. From (3.2) 

(3.4) n = f - J / ' + < V ' r ( l + s)f(l + s) ( - &f) ds, y , - , * > 1. 

n = £? + °U 2exp \-clo%â) \ loglogâ) / 

Furthermore 

(3.5) T(l + S)f (1 + 5) ( - ^ ) = j ^ \ + b0 + b,(s - 1) + 1 • • 

in a neighbourhood of 1. From [12, p. 114] there exists a constant c > 0 such 
that f '(s)/f (s) has no singularities in the region s = a -\- it 

( 7 ^ 1 - C(l0g k | ) - 3 / 4 (k)g log \s\)~*!\ 

We may estimate the integral in (3.4) much as in [6, pp. 77-81] to obtain 

2 

r_ 
6a 

for some constant c > 0. 
Let us temporarily assume n to be a continuous variable in Equation (1.1) 

in order to derive relations which shall hold for all n (in particular integral n) 

T -1 /2 / \ 

Since a —> 0 as n —> oo it follows that 

n = n g~2(n) + o{n g~2(n)} 

g*(n) = 1 + 0(1) 

and since a > 0 we conclude that g(n) ~ 1 as n —> oo . Now let g(n) = 1 + fin) 
where f(n) = 0(1), 

log (a) = 1 ° g [ v w l / 2 ( 1 - / W + ° f /2W}] L 7T 

= (1/2) log» + 0{1}. 
Thus 

, 4 / 7 
, 4 / 7 (log -J ~ ((1/2) log nYrt as » -> oo 

/ l \~3 / 7 _3/7 

I log log - I ~ (log log w) as n —> oo 
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and we conclude tha t there is a constant C\ > 0 such tha t 

- 3 / 7 

exp ( - C ( l o g i ) ( log log i ) ) 

0{exp ( —Ci(logw) (log log «) )} 

Now we write 

« = ^ n - 1 / S ( l + / ( * ) ) 

and obtain 

n = w(l - 2/(») + 0\P{n)}) + O j n e x p ( -Ci ( log n)"11 

(log log n)" 3 ' 7 )} 

from which it follows t ha t the last O-term is an est imate ior }(n). T h u s for 
some constant c > 0, 

7T _ l / 2 
(3.6) « = _ ^ » - 1 " [ l + Ojexp ( - c d o g n ) 4 " (log log » ) -«" )} ] 

We now revert to assuming n integral. 
Finally, we conclude from (3.1), (3.6) and Theorem 1.1 tha t : 

T H E O R E M 3.1. There exists a constant c > 0 such that 

log PA(n) = *ty\nx,\\ + 0{exp ( - c ( log«)4 / 7( log log w)"3 '7)}]. 

Define 0 to be the least upper bound of the real par t s of the imaginary zeros 
of the Riemann zeta function. 

T H E O R E M 3.2. With 6 define as above 

log pk(n) = iry^n1/2 + 0{n6/2}. 

Proof. Applying the a rgument of [3, pp. 194-197] to (3-4) one obtains 

-2 7T2 _! V f ( l + p ) r ( l + p) 

O o OL 

Now assuming 0 < a < 1, 

< ry~e 

Fur thermore since N(T), the number of zeros of f (s) in the region 0 ^ <r ^ 1, 
0 < / ^ T, satisfies the relation [12, p. 178] 

N(T + 1) - N(T) = O(log T) 
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it follows from Stirling's formula and the fact that f (s) is a function of finite 
order that 

£ |r(i + p)r(i + P)| = 0{i} 
p 

and we have that 
2 

W = a — + 0{a: }. 

Now with c = w/\^ 
2 2 2 I r^ 1-0 

y n — c n\ Da \ 
an + c -\/n Cy/n 

r\ \a n — c n\ Da n f 2v( i -0) /2 ^ ^ 0/2 

and 

7T 1/2 « ^ ( 0/2) 

cm = ""7̂ ^ + 0\n J. 

Similarly from (3.1) 

\oggia) = -jj? n1/2 + 0{n/2\ 

thus the theorem follows from Theorem 1.1. 

We are greatly indebted to the referee for pointing out much ambiguous 
notation and suggesting several improvements. 
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