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Abstract

Let f be a probability density function on (a, b) ⊂ (0, ∞), and consider the class Cf of all
probability density functions of the form Pf , where P is a polynomial. Assume that if X

has its density in Cf then the equilibrium probability density x �→ P(X > x)/ E(X) also
belongs to Cf : this happens, for instance, when f (x) = Ce−λx or f (x) = C(b−x)λ−1.
We show in the present paper that these two cases are the only possibilities. This surprising
result is achieved with an unusual tool in renewal theory, by using ideals of polynomials.
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1. Introduction: equilibrium distribution

Let X1, X2, . . . be a sequence of nonnegative independent random variables with a common
distribution F , with probability density function (PDF) f and Laplace–Stieltjes transform
(LST) φ. Letting µ = E(Xi), it is assumed that 0 < µ < ∞. The random variable Xi denotes
the interoccurrence time between the (i −1)th and ith events in some probability problem. The
counting process {N(t), t ≥ 0}, where N(t) = max{n ≥ 0 : X1 + · · · + Xn ≤ t}, is called the
renewal process generated by the interoccurrence times X1, X2, . . . (cf. the classical textbooks
[3], [5], and [6]). An important role in renewal theory is played by the backward recurrence
time At (the time since the last renewal before t) and the forward recurrence time Bt (the time
until the first renewal after t). If the Xi are interpreted as lifetimes then At is the past lifetime
at t and Bt is the residual or excess lifetime at t . It is well known that the limiting distributions
of At and Bt for t → ∞ are given by (with X a generic random variable with distribution F )

lim
t→∞ P(At ≤ x) = lim

t→∞ P(Bt ≤ x) =
∫ x

y=0

P(X > y)

µ
dy. (1.1)

Denote this limiting or equilibrium excess lifetime distribution by Fe, and its PDF by fe(x) =
P(X > x)/µ = ∫ ∞

x
(f (y)/µ) dy. Its LST is given by ϕe(s) = (1 − ϕ(s))/sµ. Excess lifetimes

play an extremely important role in applied probability. They arise in a host of real-life problems,
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ranging from reliability theory to inventory and queueing theory. In many queueing problems
we need to know the time until completion of the ongoing service (residual service time);
e.g. the residual service time plays a key role in the celebrated Pollaczek–Khintchine formula
for the steady-state waiting time distribution in the M/G/1 first-come–first-served queue (see
[1, Chapter VIII]). In reliability and maintenance problems, we need to know the time until
breakdown of a machine, or until an ongoing repair is completed, etc. We refer the reader to
Chapter 1 of [6] for a host of other examples, which confirm the importance of obtaining insight
into the characteristics of the distribution of the residual lifetime.

A related important random variable is XN(t)+1, the length of the renewal interval seen by an
outside observer at t . Denote by X̂ a random variable with distribution the limiting distribution
of XN(t)+1. Its steady-state PDF is yf (y)/µ and P(X̂ > x) = ∫ ∞

x
(yf (y)/µ) dy.

In a recent report [2], it is shown that the class of distributions on the positive reals with
a rational LST, also known as matrix-exponential distributions, is closed under formation of
moment distributions (distributions with density yif (y)/

∫ ∞
0 xif (x) dx). In Section 2 we

also observe that, for the classes of exponential, Erlang, and hyperexponential distributions, the
PDF fe, and also the PDF of X̂, are again exponential, Erlang, hyperexponential, or mixtures of
those. The beta distribution has a similar closure property. This has led us to study a much more
general question: which PDFs have the property that, for any polynomial P ,

∫ b

x
P (t)f (t) dt

can be written in the form of a product of another polynomial and f (x)? This question is
answered in our main result, Proposition 3.1 in Section 3. But first, in Section 2, we provide
several examples where we demonstrate the property of Proposition 3.1. In considering these
examples, it should be realized that P(t)f (t) is also a PDF, up to a multiplicative constant.

2. Examples

In this section we consider two examples. One is related to the exponential distribution, the
other to the beta distribution.

Example 2.1. (i) If X ∼ exp(λ), i.e. ϕ(s) = λ/(λ+ s), then ϕe(s) = ϕ(s), and fe(x) = f (x):
the residual lifetime is again exponential. Of course, this is the familiar memoryless property.

(ii) If F is a hyperexponential distribution, i.e. a mixture of exponential distributions, then Fe
is also hyperexponential. If F is Erlang(n) then Fe is a mixture of Erlang(i) with weights 1/n.
If F is a mixture of Erlang(i) with weights pi, i = 1, . . . , n, then Fe is also a mixture of
Erlang(i), i = 1, . . . , n, with different weights

p∗
i =

n∑
j=i

pj∑n
k=1 kpk

, i = 1, . . . , n.

In the above example Fe is either a mixture of exponential distributions or a mixture of
convolutions of exponential distributions; or, equivalently, the related PDF fe has the form

fe(x) =
n∑

i=1

Pi(x)e−λix,

where n ∈ N, Pi(x) is a polynomial in x, and λi > 0. A similar statement holds for

P(X̂ > x) = 1

µ

∫ ∞

x

tf (t) dt.
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It should be further noted that in Example 2.1(i) and (ii), we have a PDF of the form P(t)f (t)

with P a polynomial and f an exponential; furthermore,
∫ b

x
P (t)f (t) dt has the form of the

product of another polynomial and f .

Example 2.2. Now consider the beta PDF

f (x) =
(

x − a

b − a

)ζ−1(
b − x

b − a

)λ−1 1

(b − a)B(ζ, λ)
,

where B(ζ, λ) = ∫ 1
0 xζ−1(1 − x)λ−1 dx is the beta function. If ζ = 1 then

fe(x) = (b − x)λ

(b − a)λ
,

which is again a (special) beta PDF with ζ = 1. We see here a similar closure property as in the
previous example. We could also have taken a weighted sum of special beta PDFs multiplied
by polynomials, and it is easily seen that taking the integration

∫ b

x
with respect to such a sum

results in other polynomials multiplied by special beta PDFs.

This raises the following question. For which PDFs f (or, equivalently, LSTs ϕ) is the
equilibrium PDF in (1.1) a PDF in the same ‘class’ of PDFs as f , or a polynomial multiplied
with f ? In the next section we introduce such a closure property in a more general setting,
and we prove a characterization result. If f is concentrated on 0 ≤ a < b ≤ ∞ then which
PDFs f have the property that, for any polynomial P ,

∫ b

x
P (t)f (t) dt can be written in the

form of a product of another polynomial and f (x)? We show in Proposition 3.1, below, that
a necessary and sufficient condition for this to hold is that either b = ∞ and f (x) = Ce−λx ,
where λ > 0 and 1/C = ∫ b

a
(t − a)f (t) dt , or b is finite and f (x) = C(b − x)λ−1, i.e. f is

either exponential or of beta type.

3. The main result

Let f be a PDF on (a, b) with 0 ≤ a < b ≤ ∞ such that 1/C = ∫ b

a
(t − a)f (t) dt < ∞.

Consider the new PDF on (a, b) defined by T (f )(x) = C
∫ b

x
f (t) dt . Note that, up to a

multiplicative constant, this is fe(x). For instance, if (a, b) = (0, ∞), consider the class F of
the PDFs of the form

f (x) =
n∑

i=1

Pi(x)e−λix,

where Pi(x) is a polynomial and λi > 0. Because of the formula

∫ ∞

x

λn tn−1

(n − 1)!e−λt dt =
n−1∑
k=0

λk xk

k! e−λx, (3.1)

clearly T (f ) is also in F . A similar situation occurs when considering a bounded interval
(a, b) and the class G of PDFs on (a, b) which are polynomials P multiplied by the function
f (x) = (b − x)λ−1, where λ > 0. Here, G is stable by T , meaning that T (G) ⊂ G (write
P(x)f (x) in the form

∑n
k=0 pk(b − x)k+λ−1 to be convinced of this fact). Of course, choosing

a class C of PDFs on (a, b) having all their moments implies that the class of PDFs defined by

C1 =
∞⋃

n=0

T n(C)
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is stable by T . But we are going to show that the classes F and G above are unique in the
following sense.

Proposition 3.1. Let f be a positive measurable function on (a, b) with 0 ≤ a < b ≤ ∞ such
that

∫ b

a
tnf (t) dt < ∞ for any nonnegative integer n. Suppose that, for any polynomial P ,

there exists a polynomial A(P ) such that, for all x ∈ (a, b), we have

∫ b

x

P (t)f (t)dt = A(P )(x)f (x). (3.2)

Then there exist C, λ > 0 such that either b is infinite and f (x) = Ce−λx , or b is finite and
f (x) = C(b − x)λ−1.

Remarks. The statement of Proposition 3.1 describes the few functions f on (a, b) such that
the class Cf of PDFs of the form P(x)f (x) is stable by the operation T described above, with
T (Pf ) = A(P )f . Note that in both cases a is not necessarily 0. For instance, if f (x) = e−λx

on (a, b) = (a, ∞) and P(x) = λnxn−1/(n − 1)!, we have (cf. (3.1))

A(P )(x) =
n−1∑
k=0

λkxk

k! . (3.3)

Note that A(1) = 1/λ. Since A is a linear operator, these formulae describe A completely.
Similarly, if f is (b − x)λ−1 on the bounded interval (a, b) and if P(x) = (b − x)n, we have

A(P )(x) = (b − x)n+1

n + λ
. (3.4)

For instance, A(1) = (b − x)/λ.

Let us also insist on the fact that the proposition describes the only two possibilities. We
could be tempted if f satisfies (3.2) to coin the new function f1(x) = R(x)f (x), where R is
a nonconstant polynomial which is positive on (a, b), and to observe that, for all polynomials
P , we have ∫ b

x

P (t)f1(t) dt = A(PR)(x)

R(x)
f1(x).

A consequence of the proposition is that it is impossible that R divides A(PR) for all polyno-
mials P .

3.1. Proof of Proposition 3.1

For P ≡ 1, we define Q(x) = A(1)(x). Writing
∫ b

x
f (t) dt = Q(x)f (x) shows that the

polynomial Q must be positive on (a, b). Since f is integrable, writing

f (x) = 1

Q(x)

∫ b

x

f (t) dt

shows that f must be continuous and differentiable, and, thus, infinitely differentiable. Now
taking the derivative in x of

∫ b

x
P (t)f (t) dt = A(P )(x)f (x) gives the differential equation

−P(x)f (x) = A(P )′(x)f (x) + A(P )(x)f ′(x),
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which we rewrite as
f ′(x)

f (x)
= −P(x) + A(P )′(x)

A(P )(x)
.

Note that, since the left-hand side of this equation does not depend on P , we can get information
on A(P ) by replacing P with 1, giving the following differential equation in A(P ):

P(x) + A(P )′(x)

A(P )(x)
= 1 + Q′(x)

Q(x)
.

As a consequence, all information on f and A(P ) is actually given by the polynomial Q.
Case 1: Q of degree 0. If Q is the nonzero constant 1/λ, the equation f ′/f = −(1+Q′)/Q

gives f (x) = e−λx on (a, b). If b = ∞, we have already seen that, if λ > 0, the identity∫ b

x
P (t)f (t) dt = A(P )(x)f (x) holds for a suitable operator A defined by (3.3). If λ ≤ 0, the

condition
∫ b

a
tnf (t) dt < ∞ is not fulfilled. If b < ∞ then

∫ b

x
P (t)f (t) dt = A(P )(x)f (x)

does not hold since, for P = λ, we obtain
∫ b

x

λe−λt dt = e−λx − e−λb,

which is not of the desired form of a polynomial multiplied by e−λx .
Case 2: Q of degree 1. If Q is a first-degree polynomial, we write it as Q(x) = (b1 − x)/λ,

where b1 is a real number and λ is a nonzero number. From the equation f ′/f = −(1+Q′)/Q
on (a, b) and the fact that ( d/dt) log |t | = 1/t , we find that f (x) = C|b1 − x|λ−1 for some
positive number C. Suppose that b = ∞. Clearly,

∫ ∞
a

tnf (t) dt < ∞ is impossible if n is large
enough. Thus, b < ∞. Now, for all x in (a, b), we have

∫ b

x

|b1 − t |λ−1 dt = |b1 − x|λ−1 b1 − x

λ
= |b1 − x|λ

|λ| .

Since the left-hand side must converge to 0 when x → b, this would imply that b = b1 and
that λ > 0.

Case 3: Q of degree greater than or equal to 2. We now claim that Q has necessarily degree
less than or equal to 1, a more difficult part of the proof. Suppose that Q has degree greater
than or equal to 2, and suppose that the differential equation QP = (1 + Q′)Y − QY ′ always
has a polynomial solution Y = A(P ) for any polynomial P.

To reach a contradiction, we introduce the following notation. We denote by A the algebra
of polynomials with real coefficients. If A ∈ A, we denote by IA the ideal generated by A,
that is, the set of polynomials divisible by A:

IA = {AP ; P ∈ A}.
Recall that in general an ideal of A is a linear subspace I of A such that PB is in I for any
B ∈ I and any P ∈ A. The important result is that in this algebra A of polynomials, for any
ideal I, there exists an A ∈ A such that I = IA: this is called the principal ideal property;
see, e.g. [4, p. 105].

Finally, we introduce the notation for the linear application ϕ of A into itself, defined by

Y �→ ϕ(Y ) = (1 + Q′)Y − QY ′.

Assuming that QP = ϕ(Y ) has a solution Y in A for each P ∈ A is equivalent to saying that
the image ϕ(A) of ϕ contains the ideal IQ.
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Lemma 3.1. Let B0 and C0 be two polynomials, and consider the linear application ϕ0 of A
into itself, defined by

ϕ0(Y ) = B0Y − C0Y
′.

We assume that ϕ0(A) ⊃ IC0 . Then there exist A1, B1, C1 ∈ A such that ϕ0(A) = IA1 ,

B0 = A1B1, and C0 = A1C1. Furthermore, if ϕ1(Y ) = B1Y − C1Y
′, we have ϕ1(A) ⊃ IC1 .

Proof. We show that ϕ0(A) is an ideal. Since ϕ0 is linear, the set ϕ0(A) is a linear subspace
of A. Thus, we want to show that if B = ϕ(Y0) and P are arbitrary elements of ϕ0(A) and
A, respectively, then the polynomial Pϕ0(Y0) is in ϕ0(A). Since ϕ0(A) ⊃ IC0 , there exists
Y1 ∈ A such that ϕ0(Y1) = C0P

′Y0. Thus,

ϕ0(PY0 + Y1) = ϕ0(PY0) + ϕ0(Y1)

= B0PY0 − C0PY ′
0 − C0P

′Y0 + ϕ0(Y1)

= B0PY0 − C0PY ′
0

= Pϕ0(Y0).

Equality Pϕ0(Y0) = ϕ0(PY0 +Y1) shows that ϕ0(A) is an ideal of A. From the principal ideal
property, there exists A1 such that ϕ0(A) = IA1 . Since IA1 ⊃ IC0 , A1 divides C0. Thus, there
exists C1 such that C0 = A1C1. Since ϕ0(Y ) = B0Y − C0Y

′ = B0Y − A1C1Y
′ is a multiple

of A1 for any Y , then B0 = ϕ0(1) = A1B1 is also a multiple of A1. Finally, since, for each P ,
there exists Y such that

ϕ0(Y ) = B0Y − C0Y
′ = C0P = A1B1Y − A1C1Y

′ = A1C1P,

this implies that the same Y satisfies ϕ1(Y ) = B1Y −C1Y
′ = C1P , showing that ϕ1(A) ⊃ IC1 .

This completes the proof of Lemma 3.1.

We now iterate Lemma 3.1. For each n = 1, 2, . . ., there exist An, Bn, and Cn such that

B0 = A1A2 · · · AnBn, C0 = A1A2 · · · AnCn,

and such that if we define ϕn(Y ) = BnY −CnY
′, we have ϕn(A) = IAn+1 ⊃ ICn . In particular,∑n

k=1 deg Ak ≤ deg C0 implies that, for large enough n, deg An+1 = 0. As a consequence,
An+1 must be a constant polynomial, which is equivalent to saying that ϕn is surjective.

We now apply the above considerations to the particular case where B0 = 1 + Q′ and
C0 = Q, where Q is a polynomial of degree d0 ≥ 2. Thus, ϕ = ϕ0 in the lemma. With
this choice of (B0, C0), we show that whatever n is, the map ϕn cannot be surjective when the
degree of Q is greater than or equal to 2. Write

Q(x) = C0(x) = c0x
d0 + lower-degree terms,

and, more generally,

Cn(x) = cnx
dn + lower-degree terms, Bn(x) = bnx

dn−1 + lower-degree terms.

We show by induction on n that bn = d0cn. This is obvious for n = 0 since B0 = 1 + Q′ and
d0 ≥ 2. Suppose that it is true for n − 1. Since Bn−1 = AnBn and Cn−1 = AnCn, and if the
term of maximum degree of An is anx

m, then dn−1 = dn +m, bn−1 = anbn, and cn−1 = ancn.

Since, by definition, an 
= 0, the equality bn = d0cn holds.
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We finally use this fact to prove that ϕn cannot be surjective, by showing that there is no Y

such that
ϕn(Y )(x) = Bn(x)Y (x) − Cn(x)Y ′(x) = xd0+dn−1

holds. Suppose that there exists such a Y, with highest degree term αxm. The highest degree
term of BnY −CnY

′ is (d0 −m)αcnx
dn+m−1 if m 
= d0, which cannot be equal to xd0+dn−1. If

m = d0, the highest degree term of BnY − CnY
′ has degree less than d0 + dn − 1. We obtain

the desired contradiction. This completes the proof of Proposition 3.1.

Remark. As observed by the referee about the statement of Proposition 3.1, positivity of f

can be replaced by a slightly weaker hypothesis: (i) nonnegativity of f ; (ii) if G(x0) is the
Lebesgue measure of the set {x0 ≤ x < b; f (x) > 0} then G(x0) > 0 for all x0 ∈ (a, b). The
equality

∫ b

x
f (t) dt = Q(x)f (x) shows that this weaker hypothesis implies the positivity of f .
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