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This paper is the second part of a two-part research effort to find the optimal detector and
estimator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring
(RAIM). Part 1 shows that for realistic navigation requirements, the solution separation
RAIM method can approach the optimal detection region when using a least-squares estima-
tor. This paper constitutes Part 2. It presents new methods to design Non-Least-Squares
(NLS) estimators, which, in exchange for a slight increase in nominal positioning error, can
substantially lower the integrity risk. A first method is formulated as a multi-dimensional
minimisation problem, which directly minimises integrity risk, but can only be solved using
a time-consuming iterative process. Parity space representations are then exploited to
develop a computationally-efficient, near-optimal NLS-estimator-design method. Performance
analyses for an example multi-constellation Advanced RAIM (ARAIM) application show
that this new method enables significant integrity risk reduction in real-time implementations
where computational resources are limited.
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1. INTRODUCTION. Receiver Autonomous Integrity Monitoring (RAIM) (Lee,
1986; Parkinson and Axelrad, 1988) is implemented in Global Navigation Satellite
Systems (GNSS) to protect users against potential integrity threats caused, for
example, by satellite failures. RAIM not only aims at detecting faults but also at evalu-
ating the integrity risk, which is the probability of undetected faults causing unaccept-
ably large errors in the estimated position (RTCA Special Committee 159, 2004).
Hence, both the detector and the estimator influence RAIM performance. This two-
part research work describes the design, analysis and evaluation of new methods to de-
termine the optimal detector and estimator, which minimize the integrity risk in
RAIM. Part 1 focused on optimal detection methods (Joerger et al., 2015). Part 2 is
presented in this paper, and addresses estimator design for integrity risk minimisation.
The core principle of RAIM is to exploit redundant measurements to achieve self-

contained fault detection at the user receiver. With the modernisation of the Global
Positioning System (GPS), the full deployment of GLONASS, and the emergence of
Galileo and BeiDou, an increased number of redundant ranging signals becomes
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available, which has recently drawn a renewed interest in RAIM. In particular, RAIM
can help alleviate requirements on ground monitors. For example, researchers in the
European Union and in the United States are investigating Advanced RAIM
(ARAIM) for worldwide vertical guidance of aircraft (EU-US Cooperation on
Satellite Navigation, 2012).
One of the primary tasks in RAIM is to evaluate the integrity risk, or alternatively, a

protection level, which is an integrity bound on the positioning error. Integrity risk
evaluation is needed when designing a navigation system to meet predefined integrity
requirements, and it is needed operationally to inform the user whether to abort or to
pursue a mission. Integrity risk evaluation involves both assessing the fault-detection
capability and quantifying the impact of undetected faults on position estimation
errors.
Both the RAIM detector and the estimator have been investigated in the literature.

With regard to fault detection, multiple RAIM algorithms have been devised and
implemented over the past 25 years, including Solution Separation (SS) RAIM
(Brenner, 1996; Blanch et al., 2007). In parallel, with regard to estimation, researchers
have explored the potential of replacing the conventional Least-Squares (LS) process
with a Non-Least-Squares (NLS) estimator to lower the integrity risk in exchange for a
slight increase in nominal positioning error (Hwang and Brown, 2006; Lee, 2008;
Blanch et al., 2012). The resulting methods show promising reductions in integrity
risk, but are computationally expensive for real-time implementations.
In response, this two-part research effort provides new methods to determine the

optimal detector and estimator in RAIM, which minimise integrity risk. Optimal
design of the detector and of the estimator is respectively tackled in Part 1 (i.e., in
Joerger et al. (2015)) and in Part 2 (i.e., in this paper). Of particular concern is the
fact that the new methods may be implemented in applications where processing
resources are limited. In this perspective, computationally-efficient, near-optimal algo-
rithms are developed, and the trade-off between increasing computation time and
decreasing integrity risk is quantified.
The detectors in RAIM were analysed in Part 1 using parity space representations

(Joerger et al., 2015). The parity vector is the simplest, most fundamental expression of
detection capability (Potter and Suman, 1977). Part 1 showed for different examples
that, assuming realistic navigation requirements, the SS RAIM detection boundary
can approach the optimal region, which minimises integrity risk when using a LS es-
timator. LS SS test statistics, which are differences between full-set and subset LS pos-
ition estimates, are also convenient in that they enable computationally-efficient
implementations.
In this paper, new methods are established to design NLS estimators. The first algo-

rithm aims at directly minimising integrity risk, subject to a false alarm constraint,
using a LS SS detector, and regardless of computation load. The method avoids
making conservative assumptions used in Blanch et al. (2012) (which are discussed
in this paper), and instead resorts to Direct Integrity Risk Evaluation (DIRE),
thereby providing the means to quantify the highest-achievable integrity performance
when using a LS SS detector. In this case, the NLS estimator design process is formu-
lated as a Multi-Dimensional Optimisation (MDO) problem, which is solved using a
time-consuming iterative procedure.
This ‘DIREMDO’ is then exploited to develop a second method, with the objective

of reducing the processing time while still providing lower integrity risk than
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conventional LS-based RAIM. To achieve this, the NLS estimator is established based
on an ‘estimator modifier vector’, which is fully defined in Sections 2 and 3 of this
paper. An analytical expression is given for a close approximation of the estimator
modifier vector’s optimal direction. Given the modifier vector direction, the only par-
ameter left to define is the vector norm. This norm is determined using a One-
Dimensional Optimisation (ODO) process, which is solved by a straightforward
line-search algorithm.
To further reduce the processing time, a new Integrity risk Bounding method (IB) is

derived. On the one hand, the integrity risk increases slightly due to conservative
bounding assumptions; in the process, the detector is modified to no longer be
based on LS SS test statistics, but instead on NLS SS. On the other hand, the consid-
erable simplifications from MDO to ODO, and from DIRE to IB result in a compu-
tationally-efficient ‘IB ODO’ method.
To quantify the drop in processing time fromDIREMDO to IB ODO, a performance

analysis is carried out. Worldwide availability maps are established for an example air-
craft approach application using Advanced RAIM (ARAIM) with dual-frequency GPS
and Galileo satellite measurements. The results show that availability using a NLS esti-
mator is much higher than using the LS estimator. The IB ODO NLS-estimator-design
method does not quite match the highest-achievable availability performance given by
DIRE MDO, but it still provides a substantial improvement as compared to a conven-
tional LS-based RAIM method. In parallel, the processing time increases by a factor of
about 2000 for DIREMDO as compared to LS RAIM, while this factor remains below
three for IB ODO, which can thus be suitable for real-time implementations.

2. NON-LEAST-SQUARES ESTIMATORDESIGNTOMINIMISE INTEGRITY
RISK. This section describes a method to find the optimal estimator that minimises in-
tegrity risk when using a LS SS detector. This method is computationally expensive, but
provides the means to develop graphical representations, which will be used in Section 3
to establish an estimator design method requiring much shorter processing times.

2.1. Background on Solution Separation RAIM. The notations used in the fol-
lowing derivations are all defined in detail in Part 1 (Joerger et al., 2015). As a remind-
er, let n and m respectively be the number of measurements and number of parameters
to be estimated (i.e., the ‘states’). Following a straightforward normalisation step
described in Part 1, the measurement equation can be written as:

z ¼ Hxþ vþ f ð1Þ
where z is n× 1 the normalised measurement vector, H is the n ×m normalised obser-
vation matrix, x is the m× 1 state vector and f is the n× 1 normalised fault vector. v is
the n× 1 normalised measurement noise vector composed of zero-mean, unit-variance
independent and identically distributed (i.i.d.) random variables.
We use the notation: v ∼ Nð0n×1; InÞ, where 0a×b is an a × bmatrix of zeros and In is

an n × n identity matrix.
The LS estimate for the state of interest (e.g., for the vertical position coordinate,

which is of primary interest in aircraft approach navigation) obtained using all avail-
able measurements is also referred to as full-set solution. It is defined as:

x̂0 ≡ sT0 z ð2Þ
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where s0 is the n × 1 vector of LS coefficients. The full-set estimate error is noted ɛ0:
ε0 ≡ x� x̂0, where x is the true value of the state of interest.
It follows from Part 1 that a multiple-hypothesis SS RAIM method is adopted for

detection of f. A set of mutually exclusive, exhaustive hypotheses Hi, for i ¼ 0; . . . ; n
is considered. H0 is the fault-free case, and the remaining n hypotheses designate
single-measurement faults. The fault-free subset solution, which excludes the faulted
measurement under Hi is written as: x̂i ≡ sTi z, where si is the n × 1 vector of the
subset solution’s LS coefficients with a zero for the element corresponding to
the faulted measurement. SS test statistics are defined as: Δi ≡ x̂0 � x̂i ¼ sTΔiz, for
i ¼ 1; . . . ; n, where Δi ∼ N sTΔif; σ

2
Δi

� �
, and sΔi ¼ s0 � si. The normalised SS statistics

are given by:

qi ≡ Δi=σΔi ¼ sTΔi�z; for i ¼ 1; . . . ; n ð3Þ

where sΔi� ¼ sΔi=σΔi. Finally, the parity vector is written as:

p ≡ Qz ¼ Q vþ fð Þ ð4Þ

where Q is the ðn�mÞ × n parity matrix defined as QQT ¼ In�m and QH ¼ 0ðn�mÞ×m.
Of particular significance in this work is the fact that for single-measurement faults, qi
can be written in terms of p as (Joerger et al., 2014):

qi ¼ sTΔi�z ¼ uTi p ð5Þ

where ui ≡ QAiðAT
i Q

TQAiÞ�1=2, with AT
i ¼ ½ 0Tði�1Þ×1 1 0Tðn�iÞ×1 �, i.e., QAi is the i

th

column of Q and ui is the unit direction vector of QAi, which is the direction of the ith

‘fault line’ in parity space. Parity space representations are introduced in Part 1.
2.2. Direct Integrity Risk Evaluation (DIRE) Using a Non-Least-Squares (NLS)

Estimator. As mentioned in Section 1, three main research efforts have investigated
the possibility of using Non-Least-Squares (NLS) estimators in RAIM (Hwang and
Brown, 2006; Lee, 2008; Blanch et al., 2012). The first two references pioneered the
use of NLS estimators in RAIM, but employed heuristic approaches to reduce integ-
rity risk. This section builds upon the work by Blanch et al. (2012) who first cast the
NLS estimator design into an optimisation problem. However, in contrast with
Blanch et al. (2012), the method described here enables DIRE instead of using
Protection Level (PL) equations. DIRE provides tighter integrity risk bounds than
PL (Joerger et al., 2014).
The NLS estimate for the state of interest x̂NLS can be written as a sum of two

orthogonal components of the measurement vector z:

x̂NLS ≡ sT0 zþ βTQz ð6Þ

where sT0 z is the state estimate in Equation (2), which lies in the column space of H,
βTQz lies in the left null space of H and β is the ðn�mÞ × 1 design parameter
vector also called ‘estimator modifier’.
This section presents a method to determine the vector β that minimizes integrity

risk. Substituting Equation (1) into Equation (6), and using the definition of Q,
shows that the estimator is unbiased, so that the NLS state estimate error can be
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written independently of x as:

εNLS ≡ x̂NLS � x ¼ sT0 þ βTQ
� �

vþ fð Þ ð7Þ

The estimate error εNLS and the LS SS test statistic qi can be arranged in a bivariate
normally distributed random vector defined as:

ηi ≡ εNLS qi½ �T and ηi ∼ N μηi; Pηi

� �
ð8Þ

where

μηi ¼ sT0 þ βTQ
uTi Q

� �
f and Pηi ¼ σ20 þ βTβ βTui

uTi β 1

� �
ð9Þ

and where Equations (4) and (5) were used to express the test statistic qi.
The impact of β for the newRAIMmethod is best illustrated in a ‘failure mode plot’,

in Figure 1, where the estimate error ɛ is displayed versus test statistic qi. The notation
‘ɛ’designates both ε0 for the LS estimator (i.e., for β ¼ 0ðn�mÞ×1), and εNLS for the NLS
estimator. The conventional RAIM method using a LS estimator is represented using
dashed lines, whereas dark-grey colour and solid lines are employed for the new
method using the NLS estimator.
Let ℓ be the alert limit and Ti the detection threshold for qi. ℓ is a predefined require-

ment, and, as explained in Part 1, Ti is set to limit the probability of false alarms, for
example, following the equation: Ti ¼ Q�1fCREQ=ð2nPH0Þg where CREQ is the con-
tinuity risk requirement, and the function Q−1{} is the inverse tail probability of the
standard normal distribution. Both ℓ and CREQ are specified for an example aviation
application in RCTA Special Committee 159 (2004).

Figure 1. Failure Mode Plot illustrating the new NLS-Estimator-based method versus
LS-Estimator-based RAIM.
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In Figure 1, ℓ and Ti define the boundaries of the HMI area in the upper left-hand
quadrant (shadowed in light grey). One single fault hypothesis Hi is first considered.
Under Hi, the probability of being in the HMI area is the integrity risk. Lines of con-
stant joint probability density are ellipses because ɛ and qi are normally distributed. As
the fault magnitude varies, the means of ɛ and of qi describe a ‘fault mode line’ passing
through the origin, with slope g0,i for the LS estimator, and gNLS,i for the NLS
estimator.
For the LS estimator, ε0 and qi are statistically independent, so that the major axis of

the dashed ellipse is either horizontal or vertical. In contrast, using a NLS estimator
provides the means to move the dark ellipse away from the HMI area, hence reducing
the integrity risk. The influence of the estimator modifier vector β is threefold.

. The fact that β impacts the mean of εNLS (in Equations (7) and (9)) enables reduc-
tion of the failure mode slope from g0;i to gNLS;i, which lowers the integrity risk.

. Off-diagonal components of the covariance matrix Pηi also vary with β so that
the dark ellipse’s orientation can be modified, and again, integrity risk can be
reduced.

. However, β causes the diagonal element of Pηi corresponding to εNLS to increase,
which means that the dark ellipse is inflated along the ɛ-axis in Figure 1. This
negative impact will be accounted for in the integrity risk evaluation. The increase
in variance of εNLS also explains that lowering integrity risk comes at the cost of a
decrease in accuracy performance.

Figure 1 only considers one fault hypothesis. But, the estimator modifier vector β
must be determined to minimise the overall integrity risk, considering all hypotheses
Hi, for i ¼ 0; . . . ; n as defined in Part 1 of this work, and as expressed again below.
To simplify the calculations in the upcoming derivation, a tight integrity risk bound
is given by:

PHMI ¼
Xn
i¼0

max
fi

P jεNLS j> ‘; jq1j< T1; . . . ; jqhj< Ti

��fi� �
PHi

�
Xn
i¼0

max
fi

P jεNLS j> ‘; jqij< Ti

��fi� �
PHi ≡ �PHMI

ð10Þ

where, as defined in Part 1, PHi is the prior probability of occurrence of hypothesis Hi

(i.e., fault on measurement subset i), and fi is the single-Satellite Vehicle (SV) fault
magnitude under Hi. Determining the worst-case fi is achieved using a line-search
process, also implemented in Lee (1995), Milner and Ochieng (2010) and Jiang and
Wang (2014). The line search can be avoided using the alternative approach given in
Section 3.
The integrity risk bound �PHMI in Equation (10) remains relatively tight because,

under Hi it uses the test ‘jqij< Ti’, which is specifically designed to detect Hi. To
avoid changing notations for the fault-free case (i= 0), the following identity is
defined: fjεNLS j> ‘; jq0j< T0g ≡ fjεNLS j> ‘g.
Because the estimate error εNLS is not derived from a LS estimator, εNLS and qi in

Equation (10) are correlated. In this case, the integrity risk cannot be evaluated as a
product of probabilities, but must be treated as a joint probability. Fortunately,
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numerical methods are available to compute joint probabilities for multi-variate nor-
mally distributed random vectors (Drezner and Wesolowsky, 1989).

2.3. Multi-Dimensional Optimisation (MDO). The problem of finding the ðn�
mÞ × 1 vector β that minimises the overall integrity risk can be mathematically formu-
lated using the bound �PHMI defined in Equation (10) as: min

β
�PHMI . An equivalent ex-

pression using notations used in Equation (8) is given by:

min
β

Xn
i¼0

max
fi

∫
�‘

�∞ ∫
Ti

�Ti
fηi εNLS; qið Þ d qi dεNLS þ ∫

þ∞
‘ ∫

Ti

�Ti
fηi εNLS ; qið Þd qi dεNLS

h i
PHi

ð11Þ

where fηi εNLS ; qið Þ ¼ 1
2π detðPηiÞ exp � 1

2
ðηi � μηiÞTP�1

ηi ðηi � μηiÞ
	 


This MDO problem can be solved numerically using a modified Newton method
(e.g., see (Luenberger and Ye, 2008)). The n scalar search processes to find the
worst-case fault magnitude fi, for i = 1, …, n, are performed at each iteration of the
Newton method. Also, the gradient and Hessian of the objective function in
Equation (11) can be established numerically using procedures given in Luenberger
and Ye (2008). This process is computationally intensive, and is not intended for
real time implementation. Computational efficiency will be addressed in Section 3.
The minimisation process outputs an estimator modifier vector β, which is analysed

in comparison with the LS estimator for the six-satellite geometry displayed in
Figure 2. In this illustrative example, the two methods are evaluated assuming uncor-
related ranging measurements with a one metre standard deviation, and a prior prob-
ability of fault PHi of 10

−4. Example navigation requirements include an integrity risk
requirement IREQ of 10−7, a continuity risk requirement CREQ of 8·10−6, and an alert
limit ℓ of 15 m.
Figures 3 and 4 present failure mode plots similar to the one introduced earlier in

Figure 1. The same colour code as in Figure 1 is employed: failure mode lines and

Figure 2. Azimuth-elevation Sky Plot for an example satellite geometry.
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ellipses of constant joint probability density are represented using solid lines and dark
grey areas for the new NLS-estimator-based method versus dashed lines when using
the LS estimator. The ellipses are labelled in terms of � log10 fηiðε; qiÞ, where
fηiðε; qiÞ is defined in Equation (11), and ɛ stands for either ε0 or εNLS. The 10−2

joint probability density level is emphasised for illustration purposes.
Figure 3 shows joint probability distributions for the hypothesis of a single-satellite

fault on SV4 (in this case, the test statistic on the horizontal axis is q4). This is the fault
mode for which the highest fault slope g0;i was observed using the LS estimator.
Because of the large value of g0;i, the dashed ellipse for the 10−2 density level overlaps
the HMI area. In contrast, using the newmethod, the black, solid fault mode line has a
gentler slope gNLS;i, so that the grey-shadowed ellipse avoids penetrating the HMI area.

Figure 3. Failure mode plot for the single-SV fault hypothesis on SV4 (worst slope using LS).

Figure 4. Failure mode plot for the single-SV fault hypothesis on SV2 (worst slope using NLS).
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Figure 4 presents the case of a single-SV fault on SV2, for which the highest fault
slope gNLS;i using the NLS estimator was observed. The fault slope gNLS,i (solid
line) is higher than the original slope g0;i using the LS estimator (dashed line).
However, the grey-shadowed ellipse’s orientation was modified so that the ellipse
does not extend over the HMI area.
Figures 3 and 4 show two mechanisms through which the new algorithm using the

NLS estimator avoids penetrating the HMI area. The new method reduces the integ-
rity risk under H4 in Figure 3, but it does the opposite under H2 in Figure 4. This is
because β is determined in Equation (11) such that the total integrity risk is minimised
over all hypotheses. The ellipses corresponding to all six single-SV fault hypotheses are
represented in Figure 5, with solid black lines for the LS estimator (labelled DIRE LS
for Direct Integrity Risk Evaluation using LS estimator), and with grey shadowed
areas for the NLS estimator (labelled DIRE MDO because β is obtained from a
MDO process). Figure 5 shows one ellipse for the DIRE LS overlapping the HMI
area, whereas none of the grey-shadowed ellipses for DIRE MDO does.
In this example, the integrity risk decreases from 4·7·10−6 for the LS estimator to

3·6·10−8 using the DIRE MDO method. The price to pay for this integrity risk reduc-
tion is an increase in the vertical position estimate standard deviation from 1·49 m
using DIRE LS to 2·02 m using DIRE MDO (further analysis of the positioning
standard deviation is carried out in Section 4 of this paper).
These results show that using a NLS estimator in RAIM can dramatically reduce the

integrity risk. However, the MDO process used to determine the optimal β vector is
extremely time intensive. In Section 3, the DIRE MDO method is further analysed
to reduce the computation load.

3. PRACTICAL APPROACH TO NON-LEAST-SQUARES ESTIMATOR
DESIGN. This section uses a parity space representation to establish an approxima-
tion of the optimal estimator modifier vector β using a One-Dimensional Optimisation
(ODO) process instead of the Multi-Dimensional Optimisation (MDO) procedure

Figure 5. Failure mode plot displaying all single-SV fault hypotheses.
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described in Section 2. Further reduction in computation load is accomplished using
an Integrity risk Bound (IB) or using Protection Levels (PL) rather than performing
Direct Integrity Risk Evaluation (DIRE).

3.1. One-Dimensional Optimization (ODO). Under a single-SV fault hypothesis
Hi, the fault vector is expressed as: f i ¼ Aifi, where fi is the fault magnitude, and Ai is
defined under Equation (5). Substituting the above expression of f i for f into Equation
(9), and using the expression of qi in terms of p in Equation (5), Equation (9) becomes:

μηi ¼
g0;i þ β ρβ;i

1

� �
fi� and Pηi ¼ σ20 þ β2 β ρβ;i

β ρβ;i 1

� �
ð12Þ

where

β2 ¼ βTβ; ρβ;i ¼ uTβ ui with uβ ¼ ββ�1 ð13Þ
fi� ¼ ðAT

i Q
TQAiÞ1=2fi and g0;i ¼ sT0 AiðAT

i Q
TQAiÞ�1=2 ¼ σΔi ð14Þ

In the above equations, β and uβ respectively designate the magnitude and unit direc-
tion vector of β. Also, it was shown in Joerger et al. (2014) that g0; i can be written as:
g0; i ¼ σΔi, where σΔi is defined in the paragraph above Equation (3).
The optimal (n−m) × 1 vector β obtained using the DIRE MDO method is dis-

played in parity space in Figure 6(a) for the example six-SV geometry introduced in
Figure 2. In this example, the dimension of the parity space is ðn�mÞ ¼ 2 because
the number of measurements n is six, and the number of states m is four. Single-SV
fault lines are represented in grey. In parallel, consider the maximum single-SV fault
mode slope max

i¼1;...:;n
fg0;ig for the LS estimator. In Figure 6, the fault line corresponding

to the maximum failure mode slope max
i¼1;...:;n

fg0;ig is represented in black.

Let uj be the unit direction vector in parity space of the fault line corresponding to
max

i¼1;...:;n
fg0;ig. Figure 6(a) shows that the direction of the optimal β vector in parity space

Figure 6. Comparison of DIREMDO vector β versus worst-case fault line directions in parity space.
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is very close to that of uj. The same observation is made for many other satellite geom-
etries, including the examples in Figure 6(b) and (c). Conversely, Figure 6(d) shows one
of the few examples where the optimal β direction does not match uj. For this example,
the failure mode plot (not represented here) would show that there is a second failure
mode whose slope approaches max

i¼1;...:;n
fg0;ig. Thus, the optimal β-direction is somewhere

between the directions of the two fault lines for these two dominating fault modes. For
most other geometries, the maximum fault slope is an outlier-slope, i.e., is much larger
than the other n− 1 single-SV slopes. Therefore, in the vast majority of cases, the dir-
ection of the optimal β vector in parity space matches the direction of uj.
It follows from the analysis in Figure 6, that a reasonable simplification relative to

MDO is to approximate the optimal β vector as: β=−βuj, where j ¼ arg max
i¼1;...:;n

g0;i.

(The minus sign is included so that only positive values of β need to be considered.)
The estimator modifier vector β can now be determined by finding the value of β,
which minimises the integrity risk, i.e., by solving Equation (11) over the scalar param-
eter β instead of over vector β. This is an ODO process that can be performed using a
straightforward line search routine.
It is worth noting that an approximation of the optimal β-direction is sufficient to

guarantee that the NLS estimator will perform equally or better than the LS estimator,
because the search over β includes the value β= 0, for which LS and NLS estimators are
identical. Moreover, the search over β can be limited to ensure that the accuracy require-
ment is satisfied: accuracy is directly related to the variance σ2NLS of εNLS (in Equation
(12), σ2NLS ¼ σ20 þ β2). For example, if the accuracy limit is noted ℓACC, then the 95%

accuracy criterion is: 2σNLS < ‘ACC , which is equivalent to: β< ð‘2ACC=4� σ20Þ1=2.
With this choice of uβ (as uβ ¼ �uj), an equivalent expression for the NLS estimator

is obtained using Equation (5) (as a reminder, Equation (5) is sTΔj�z ¼ uTj Qz):

x̂NLS ≡ sT0 z� βsTΔj�z; or equivalently; x̂NLS ¼ sT0 z� β�sTΔjz where

β� ¼ β=σΔj
ð15Þ

Thus the minimisation problem in Equation (11) can fully be expressed in terms of
scalars and vectors already used in SS RAIM: matrixQ does not need to be computed.
For example, ρβ,i in Equation (13) becomes ρβ;i ¼ �sTΔjsΔi=ðσΔjσΔiÞ, and using Equation

(14), fi* can be written in terms of: ðAT
i Q

TQAiÞ1=2 ¼ σΔi=sT0 Ai.
The ODO estimator design process can be summarised with the following three

steps.

. Find j such that j ¼ arg max
i¼1;...;n

σΔi.

. Given that the NLS state estimate is expressed as: x̂NLS ¼ ðsT0 � β�s
T
ΔjÞz, find the

mean and covariance of ηi, for i = 1,…, n, as a function of β� using Equations (12)
to (15).

. Vary β� (β� � 0) until the minimum integrity risk is found (i.e., solve Equation
(11) over β*), or, to speed up the process, until the integrity risk drops below IREQ.

Figure 7 shows that, for the example used in Figures 2 to 6(a), DIRE ODO matches
DIREMDO very closely. The integrity risk only increases from 3·6 × 10−8 to 5·1 × 10−8

forMDO versus ODO, which is still a dramatic reduction as compared to the 4·7 × 10−6
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value obtained using DIRELS. In addition, DIREODO is computationally muchmore
efficient than DIRE MDO. Despite this improvement in run time, the DIRE method is
still not fit for real time implementations, mainly because the process involves integration
in Equation (11) of the bivariate normal density functions of ηi, for i ¼ 1; . . . ; n (run-
time will be quantified in Section 4). In response, an IB is derived.

3.2. Integrity Risk Bounding Method (IB). In parallel to the minimisation
problem over the estimator modifier β, the DIRE method includes two other time-
consuming steps: (a) the integration of the bivariate normal distribution of vector ηi ¼
½ εNLS qi �T in Equation (11), and (b) the scalar search over fi expressed in Equation
(10). Both points are addressed using IB, which are looser than using DIRE, but are
much faster to evaluate. IB are also more robust than DIRE because they do not
require that the correlation between estimate error and test statistic be accurately mod-
elled. And, IB provide a convenient means to deal with nominal measurement error
distributions with unknown, bounded, non-zero mean (Blanch et al., 2013), which
DIRE does not.
The IB, once converted into protection levels, take the same form as conventional SS

RAIM approaches (Brenner, 1996; Blanch et al., 2007). In this work, the IB are imple-
mented assuming a NLS estimator. The following paragraphs are a step-by-step deriv-
ation from Equation (10) to a protection level equation. For analytical purposes in
Section 4, the IB-based estimator design process is derived both using MDO and ODO.
First, it is worth remembering that the integration of bivariate normal distributions

was needed to evaluate the integrity risk because εNLS and qi are correlated. To avoid
dealing with bivariate normal distributions, a bound on the integrity risk in Equation
(10) is established using conditional probabilities as follows:

�PHMI �
Xn
i¼0

P jεNLS j> ‘j Hi; jqij< Tið ÞP jqij< TijHið ÞPHi

�
Xn
i¼0

P jεNLS j> ‘j Hi; jqij< Tið ÞPHi

ð16Þ

Figure 7. Failure mode plot comparing DIRE MDO versus DIRE ODO.
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where, in anticipation of the next steps of the derivation, the condition is expressed in
terms Hi as in Part 1 (Joerger et al, 2015), instead of fi.
It was shown in (Joerger et al., 2014) that the bound Pðjqij< Tij HiÞ ¼ 1 in the last

inequality could be loose. This upper bound is conventionally used in SS RAIM, and is
the price to pay to significantly reduce the processing time.
Second, in order to evaluate the above expression independently of fault magnitude

(which impacts εNLS and qi), the estimation error for x̂NLS in Equation (15) is expressed
as:

εNLS ¼ sT0 � β�s
T
Δj

� �
z ¼ sTi vþ sTΔi � β�s

T
Δj

� �
vþ f ið Þ ð17Þ

where s0 is written as: s0 ¼ si þ s0 � si; sΔi is defined above Equation (3) as:
sΔi ¼ s0 � si
fi is defined above Equation (12), β� is defined in Equation (15) and sTi f i ¼ 0 under

Hi.
The term ðsTΔi � β�s

T
ΔjÞðvþ f iÞ is a function of the fault magnitude. To eliminate this

dependency, a new detection test statistic is considered:

ΔNLSi ≡ sTΔi � β�s
T
Δj

� �
z ¼ sTΔi � β�s

T
Δj

� �
vþ f i
� �

for i ¼ 1; . . . ; h ð18Þ

with variance σ2ΔNLSi ¼ σ2Δi � 2sTΔjsΔiβ� þ β2�σ
2
Δj. The associated threshold is given by:

TΔNLSi ¼ TiσΔNLSi: ð19Þ
Using ΔNLSi instead of qi, substituting Equation (18) into Equation (17) and the result
into Equation (16), and using the condition in Equation (16) (which is rewritten as
jΔNLSij < TΔNLSi), the following integrity risk bound is obtained:

PHMI � P jεNLS j> ‘jH0ð ÞPH0 þ
Xn
i¼1

P jεij þ TΔNLSi > ‘ j Hið ÞPHi ≡ PHMI ð20Þ

Equation (20) is then exploited for the integrity risk bounding process using one-di-
mensional optimisation, also called the ‘IB ODO’ method. The scalar β� is found by

solving min
β�

fPHMIg. If required, and as described in the paragraph above Equation

(15), the search over β� can be limited by the accuracy criterion to the values:

0 � β� < ð‘2ACC=4� σ20Þ1=2=σΔj .
It is worth noting that Equation (20) can be evaluated for both single-SV and multi-

SV faults, since SS RAIM variables and parameters, including εi and TΔNLSi can all be
defined assuming subsets of one or more measurements being simultaneously faulted
(see multi-SV SS RAIM implementations in Blanch et al. (2012) and Joerger et al.
(2014)).
In addition, for analytical purposes in Section 4, integrity monitoring performance

will also be evaluated using IB but without making the assumption in Section 3.1, in a
process labelled ‘IB MDO’ (which stands for integrity risk bounding method, using
multi-dimensional optimisation). In this case, the direction of β is not fixed a priori,
and must be determined together with its magnitude. The problem is formulated
similar to the above IB ODO, but by replacing �β�sΔj in Equations (17) to (18) with
β. The variance σ2ΔNLSi can then be expressed as σ2ΔNLSi ¼ σ2Δi þ 2ρβ;iβσΔi þ β2, and β
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is found by solving min
β

fPHMIg. In this case, a Newton method is implemented: the

gradient vector and Hessian matrix of PHMI are expressed analytically in Appendix,
following a derivation similar to the one given by Blanch et al. (2012) for a PL-
based method.
Given β, the new detection test statistic ΔNLSi departs from the solution separation

statistic qi (or equivalently from Δi ¼ qiσΔi). In Figure 8, the detection boundaries
derived from ΔNLSi (represented with a thick black contour) and qi (grey shadowed
area) are compared in parity space, for the example satellite geometry presented in
Figure 2. (β in Figure 8 was obtained using the IB MDO method.) In LS SS
RAIM, projections of the parity vector p onto the fault lines (represented with thin
black lines intersecting at the origin), i.e., along ui, define the test statistics qi, as
expressed in Equation (5). Projections of p onto lines in the direction of ui þ β (thin
grey lines) define the new statistics ΔNLSi.
Figure 8 shows only a small change between the LS SS detection boundary and that

of the NLS SS obtained using IBMDO.When considering realistic system parameters
and requirements, this modification is not expected to cause a dramatic increase or de-
crease in integrity risk. Practical implementations of multiple SS RAIM implementa-
tions in Blanch et al. (2007) and of chi-squared residual based RAIM in Joerger et al.
(2014) show little sensitivity of PHMI to such changes in the detector as compared to
the impact of the bounding process in Equations (16) and (20).
Finally, the same MDO and ODO processes can be applied to PL equations. The

protection level pL can be solved iteratively using the following equation (Blanch
et al., 2007; Blanch et al., 2012).

P jεNLS j> pL j H0ð ÞPH0 þ
Xn
i¼0

P jεij þ TNLS;Δi > pL j Hi
� �

PHi ¼ IREQ � PNM ð21Þ

Aside from the additional step in Equation (21) (which makes PL determination more
computationally intensive than IB), the PL approach is almost identical to the IB
method. The PLMDO process is described in detail in (Blanch et al., 2012). It requires

Figure 8. Detection region for LS SS versus the Integrity risk Bounding (IB) method.
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significantly more computation resources than when applying the proposed ODO
method to PL equations. This comparison is quantified in Section 4.

4. AVAILABILITYANDCOMPUTATION TIME EVALUATION. This section
aims to analyse the integrity risk reduction and rise in processing time generated when
implementing a NLS estimator as compared to using a LS estimator in SS RAIM. The
algorithms derived in Sections 2 and 3 are evaluated in an example Advanced RAIM
(ARAIM) application for vertical guidance of aircraft using dual-frequency GPS and
Galileo. The simulation parameters, which include ARAIM measurement error
models, and LPV-200 navigation requirements (to support localiser precision vertical
aircraft approach operations down to 200 feet above the ground), are listed in Table 1
and described in detail in (EU-US Cooperation on Satellite Navigation, 2012). In this
analysis, two major differences with respect to the ARAIM error models are that con-
stellation-wide faults are not accounted for, and that fault-free measurement biases are
assumed to be zero. These biases introduce application-specific complications whose
treatment is not relevant to this paper. Also to simplify the analysis, accuracy require-
ments were not included in the availability assessment (but can easily be incorporated
in the β-determination process as described in Section 3).
Examplenavigation requirements includean integrity risk requirement IREQ of 10−7, and

a continuity risk requirement CREQ of 10−6. The prior probability of satellite fault PHi is
assumed to be 10−5. The alert limit ℓ is reduced from 35 m in ARAIM (EU-US
Cooperation on Satellite Navigation, 2012) to 10 m in this performance evaluation. A
‘24-1’ GPS satellite constellation and a ‘27-1’ Galileo constellation are assumed, which
are nominal constellations with one spacecraft removed to account for outages; these
example constellations are also described in EU-US Cooperation on Satellite Navigation
(2012). Moreover, this analysis focuses on the vertical position coordinate, for which the
aircraft approach navigation requirements are often the most difficult to fulfil.
Figure 9 displays availability maps for a 10° × 10° latitude-longitude grid of loca-

tions, for GPS/Galileo satellite geometries simulated at regular five minute intervals
over a 24 hour period. Availability is computed at each location as the fraction of
time where the PHMI bound (derived using either DIRE or IB) meets the integrity
risk requirement IREQ. In the figures, availability is colour-coded: white colour corre-
sponds to a value of 100%, black represents 80%. Constant availability contours are
also displayed. The worldwide availability metric given in the figure caption is the
average over all grid points of the availability weighted by the cosine of the latitude,

Table 1. Simulation Parameters.

Description (standard deviations) Value

SV clock and orbit error (URA) 0·75 m (0·957 m for Galileo)
Residual tropospheric error*

0�12 1 � 001
ð0�002001þ sin2 ξÞ1=2

m
Smoothed code multipath*

0�13þ 0�53e�ξ=10 m (lookup table for Galileo in
(EU-US Cooperation on Satellite Navigation, 2012)

Smoothed code receiver noise* 0�15þ 0�43e�ξ=6�9 m

* : ξ is the satellite elevation angle in degrees.
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because grid point locations near the equator represent larger areas than near the
poles.
Figure 9(a) presents availability for the IB method using a LS estimator, i.e., using a

conventional SS RAIM method. Then Figure 9(b) shows the availability that can po-
tentially be achieved using a NLS estimator derived from aMDOmethod. In practice,
if computational resources are too limited to solve the MDO problem, then the ODO
process can be implemented, and the corresponding availability map is shown in
Figure 9(c). Average availability using ODO is 96·7% versus 97·4% using MDO, but
it is still much higher than the 92·6% value obtained using a LS estimator in
Figure 9(a).
In addition, Figure 9(d) displays the availability provided by direct integrity risk

evaluation (DIRE) using ODO to determine the NLS estimator. The DIRE MDO
method would probably have generated slightly higher availability, but the computa-
tion time to generate an availability map would have exceeded several months. Thus,
the 98·1% worldwide average availability value for DIRE ODO is our closest approxi-
mation of the best availability that can be reached using a NLS estimator and a LS SS
detector.
Average availability numbers are listed in Table 2 for the DIRE, IB and PL methods

(PL given in parentheses), using a LS estimator, or using the MDO or ODO processes
to determine a NLS estimator. The third column of Table 2 shows the inflation of the
vertical position estimate standard deviation caused by the use of a NLS estimator
rather than a LS estimator. This factor σNLS=σ0 can cause the accuracy performance

Figure 9. Availability Maps for: (a) Integrity Risk Bounding Method (IB) Using Least Squares
Estimator: Worldwide Weighted Average Availability (WWAA) is 92·6%; (b) IB Using Multi-
Dimensional Optimisation (MDO): WWAA is 97·4%; (c) IB Using One-Dimensional
Optimisation (ODO): WWAA is 96·7%; (d) Direct Integrity Risk Evaluation (DIRE) Using
ODO: WWAA is 98·1%.
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to diminish, but for all algorithms, the inflation factor averaged over all locations and
satellite geometries remains lower than 1·04. Also, as mentioned in Section 3, the ac-
curacy requirement can be built into the NLS estimator design algorithm to ensure
that the accuracy criterion remains satisfied when it is initially met for the LS
estimator.
The fourth column in Table 2 gives the inflation in computation time for each algo-

rithm as compared to the IB LS computation time. The reference IB LS run time is 0·8
ms per geometry. These numbers were generated on a computer equipped with a 3·40
GHz Intel(R) Core(TM) i7-2600 processor and 8 GB RAM. Computation times can
be analysed in parallel with worldwide average availability results in the second column
of Table 2. The IBMDO achieves 97·4% availability, but the run time inflation factor is
20. The IB ODOmethod accomplishes an effective compromise between run time and
availability performance: availability using IB ODO increases from 92·6% to 96·7%
with respect to IB LS, but the run time is only about twice that of IB LS.
Availability results using the PL equations are identical to the IBmethod since the two

methods make the same assumptions. However, the run times are longer using PL
because an extra iterative process must be implemented to solve for pL in Equation (21).
Finally, the DIRE ODOmethod provides 98·1% average availability. This number is

higher than for any other algorithm, but the computation time is almost 2000 times
larger than for a more conventional IB LS method that would probably be impractical
for most real time applications. In years to come, improvements in embedded process-
ing and computing technology may enable real-time implementation of DIRE ODO,
which would then provide a significant increase in availability.

5. CONCLUSION. This paper is Part 2 of a two-part research effort, which
describes new methods to minimise the integrity risk by design of the RAIM detector
and estimator, for applications in future multi-constellation GNSS-based navigation.
Part 1 shows illustrative examples suggesting that, using a Least-Squares (LS) esti-

mator and for realistic navigation requirements, the optimal detection region
approaches the SS detection boundary. Therefore, the new RAIM methods are
devised using test statistics derived from SS RAIM.
This paper (i.e., Part 2) investigates the potential of reducing the integrity risk using

a Non-Least-Squares (NLS) estimator. The first method, labelled DIRE (which stands
for Direct Integrity Risk Evaluation), aims at minimising integrity risk regardless of
computation load, and provides a measure of the best achievable integrity perform-
ance. This method is computationally expensive. As an alternative, a second method
labelled IB ODO (for integrity risk bounding, using One-Dimensional Optimisation)
is developed using parity space representations and failure mode plots. Despite

Table 2. Simulation Results.

Average availability Average σNLS=σ0 Run time Inflation w.r.t. IB LS

DIRE LS 96·6% 1 16
DIRE ODO 98·1% 1·01 1889
IB LS (PL LS) 92·6% (92·6%) 1 (1) 1 (1·6)
IB MDO (PL MDO) 97·4% (97·4%) 1·04 (1·04) 20 (22)
IB ODO (PL ODO) 96·7% (96·7%) 1·03 (1·03) 2·4 (9)
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conservative assumptions in the integrity risk bounding process, IB ODO still signifi-
cantly lowers integrity risk as compared to using a LS estimator, but also considerably
reduces processing load with respect to other NLS estimator design methods.
Performance analyses are carried out for an example aircraft approach application

using multi-constellation Advanced RAIM. For a given set of navigation system para-
meters, the worldwide average availability provided by IB ODO is slightly lower than
the best achievable performance (evaluated using DIRE), but is substantially higher
than using a LS estimator. In addition, IB ODO does not significantly degrade the ac-
curacy performance as compared to a LS estimator. Finally, the IB ODO processing
time is only about twice that of a conventional LS SS RAIM algorithm, and is five
to ten times shorter than for the other NLS estimator design methods, which may
enable real time implementation in applications where computation resources are
limited.
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APPENDIX. GRADIENTANDHESSIANDERIVATION FORTHE OPTIMAL
ESTIMATORUSING THE ‘IB MDO’METHOD. This appendix presents a deriv-
ation of the gradient vector and Hessian matrix for IB MDO method, i.e., to solve the
minimisation problem ‘minfPHMIg’ over the (n−m) × 1 vector β. The derivation is
similar to the one given in Blanch et al. (2012), but differences exist because the object-

ive function in Blanch et al. (2012) is different from PHMI , which is defined in equation

(20). PHMI can be further bounded as:

PHMI � �PHMI� βð Þ where

�PHMI� βð Þ ¼ 2Q ‘σ�1
NLS βð Þ� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�PHMI ;0

þ
Xn
i¼1

Q ‘� TΔNLSiðβÞð Þσ�1
i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�PHMI ;i

PHi
ðA1Þ

The main reason for using Equation (A1) rather than Equation (20) is to lighten nota-
tions. It is worth noting that the terms �PHMI ;i only account for the side of the Gaussian
distribution where most of the probability density is concentrated. The other side of
the distribution corresponds to a much smaller probability (amounting to
Qð�ð‘þ TΔNLSiÞ=σ iÞ), which is conservatively accounted for in a subtle way, by multi-
plying �PHMI ;0 by 1 instead of PH0.
The following notations are used in the derivation. First, Equation (19) is rewritten

as: TΔNLSiðβÞ ¼ TiσΔNLSiðβÞ. Then, the standard deviation of the NLS estimate error is
expressed as:

σ2NLS ¼ σ20 þ β2 ¼ ksT0 þ βTQk2 ¼ kr0k2 where r0 ¼ Qs0 þ β ðA2Þ

and where krk is the 2-norm of vector r: rj j2¼ rT r. The (n−m) × 1 gradient vector and
(n−m) × (n−m) Hessian matrix of PHMI� in Equation (A1) are respectively given by:

∇�PHMI� ¼ ∂
∂β

�PHMI� ¼ ∇�PHMI ;0 þ
Xn
i¼1

∇�PHMI ;iPHi ðA3Þ

H �PHMI�f g ¼ ∇ ∇�PHMI�f g ¼ H �PHMI ;0
� 
þ

Xn
i¼1

H �PHMI ;i
� 


PHi ðA4Þ

The rest of this appendix gives a derivation for each term in Equations (A3) and (A4).

Fault-Free Terms:
Substituting Equation (A2) into (A1), the (n−m) × 1 gradient vector ∇�PHMI ;0 can be
expressed as:∇�PHMI ;0 ¼ 2∇Qð‘kr0k�1Þ. Using the chain rule, and the fact that ∂Q(y)/
∂y=−ϕ(y), where ϕ(y) is the probability density function of a standard normal
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distribution, ∇�PHMI ;0 can be written as:

∇�PHMI ;0 ¼ 2‘kr0k�3f ‘kr0k�1
� �

r0 ¼ 2‘σ�3
NLSf ‘σ�1

NLS

� �
r0 ðA5Þ

where we used Equation (A2) and the following result: ∇kr0k ¼ r0=kr0k.
Then, the (n−m) × (n−m) Hessian matrix H �PHMI ;0

� 

is the gradient of the

product in Equation (A5), and is expressed as:

H �PHMI ;0
� 
 ¼ ∇ 2‘f ‘kr0k�1

� �n o
r0kr0k�3 þ 2‘f ‘kr0k�1

� �
∇ r0kr0k�3
n o

ðA6Þ

Using ∂ϕ(y)/∂y=−yϕ(y) and using the chain rule, the following equation is established:

∇ 2‘f ‘kr0k�1
� �n o

¼ ‘2kr0k�12‘kr0k�3f ‘kr0k�1
� �

r0 ¼ ‘2kr0k�1∇�PHMI ;0 ðA7Þ

In parallel, the following result is derived:

∇ r0kr0k�3
n o

¼ kr0k�3 In�m � 3r0rT0 kr0k�2
� �

ðA8Þ

Finally, substituting Equations (A7) and (A8) into Equation (A6), and substituting
Equation (A2) into the resulting equation, yields the following expression:

H �PHMI ;0
� 
 ¼ ‘2σ�4

NLSr0∇PT
HMI ;0 þ 2‘σ�3

NLSf ‘σ�1
NLS

� �
In�m � 3r0rT0 σ

�2
NLS

� � ðA9Þ
Terms Corresponding to Fault Hypotheses:
First, similar to Equation (A2), the variance of the NLS solution separation for subset
i is given by: σ2ΔNLSi ¼ krik2, where ri ¼ QsΔi þ β. Substituting σ2ΔNLSi into the above
expression of TΔNLSiðβÞ, and the result into (A1), and following the same steps as in
Equations (A3) to (A5), the (n−m) × 1 gradient vector ∇�PHMI ;i can be expressed as:

∇�PHMI ;i ¼ ∇Q ð‘� TikrikÞσ�1
i

� � ¼ f ð‘� TΔNLSiÞσ�1
i

� �
TΔNLSiσ

�1
i σ�2

ΔNLSiri ðA10Þ
Then, following the same steps as in Equations (A6) to (A9), H �PHMI ;i

� 

is given by:

H �PHMI ;i
� 
 ¼ TΔNLSi

σ2i σ
2
ΔNLSi

‘� TΔNLSi

σ2ΔNLSi

	 

ri∇PT

HMI ;i þ f
‘� TΔNLSi

σ i

	 

In�m � rirTi

σ2ΔNLSi

	 
� �

ðA11Þ
Finally, ∇�PHMI� and H �PHMI�f g are respectively obtained by substituting Equations
(A5) and (A10) into Equation (A3), and by substituting Equations (A9) and (A11)
into Equation (A4).
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