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We establish the consistency and asymptotic normality for a class of estimators that
are linear combinations of a set of

√
n-consistent nonlinear estimators whose car-

dinality increases with sample size. The method can be compared with the usual
approaches of combining the moment conditions (GMM) and combining the instru-
ments (IV), and achieves similar objectives of aggregating the available information.
One advantage of aggregating the estimators rather than the moment conditions is
that it yields robustness to certain types of parameter heterogeneity in the sense
that it delivers consistent estimates of the mean effect in that case. We discuss the
question of optimal weighting of the estimators.

1. INTRODUCTION

In this paper we derive the properties of an estimator formed by taking linear
combinations of an increasing number of

√
n-consistent estimators obtained from

a sequence of moment restrictions. The usual approach here is to combine the mo-
ment restrictions into a single objective function, either by combining the instru-
ments or by stacking all the moment conditions together (see Han and Phillips,
2006, for a recent contribution); our proposal involves estimating the parame-
ters several times from subsets of the moment conditions and then combining
the resulting estimators in a linear fashion. The proposed methodology has the
advantage that one can see how much variation there is in the parameter estimates
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(which are presumably in an interpretable scale unlike moment conditions, say),
and how much weight an optimal combination would place on them. In cases
where there is truly little variation, the practitioner can presumably do with very
simple inference rules. This estimator is also possibly useful in high-dimensional
models where there is a larger set of instruments than sample observations. A final
advantage of the method of combining estimators rather than combining moment
conditions arises under random coefficient type parameter heterogeneity. In that
case, combining estimators can provide consistent estimates of the mean effect,
whereas combining moment conditions produces an estimator of a parameter that
is not so easy to interpret.

The idea of combining estimates is not new, and has been used to improve
finite sample properties of estimators and forecasts. Granger and Jeon (2004)
provide an useful discussion. For example, Sawa (1973) considered combining
k-class estimators in simultaneous equations systems, for the reason of reducing
bias. Breiman (1996, 1999) introduced the idea of bagging, which is based on us-
ing bootstrap resamples to compute a large(ish) sample of subsample estimators
and then combining them. Watson (2003) and Stock and Watson (1999) propose
various methods for combining large numbers of predictors to improve forecast-
ing performance. More recent developments in these settings can be found in
Hansen (2007, 2008, 2009, 2010) and Hansen and Racine (2012). In the nonpara-
metric literature, Gray and Schucany (1972) and Bierens (1987) have proposed
jackknife estimators that combine different kernel smoothers in order to reduce
bias. Similarly, Kotlyarova and Zinde-Walsh (2006, 2007) and Schafgans and
Zinde-Walsh (2010) have proposed combining kernel smoothers calculated with
different bandwidths and kernel functions to construct robust estimators of
densities and density-weighted average derivatives respectively. In additive non-
parametric regression, integration, or averaging, has been shown to improve
rates of convergence and to eliminate nuisance parameters (see e.g., Linton and
Nielsen, 1995). Similarly, in high frequency econometrics, the TSRV (Two Scales
Realized Volatility) estimator combines linearly a large number of subsample
based estimators (i.e., Zhang, Mykland, and Ait-Sahalia, 2005).

Our method is in effect a generalization of the classical method of minimum
chi-squared or minimum distance discussed in Malinvaud (1966) and Rothen-
berg (1973), which was conceived as a way of imposing equality restrictions in
estimation via first estimating an unrestricted model and then finding the best
combination of the unrestricted estimators that imposes the restrictions, to the
case where the number of estimators and the number of restrictions increase at
the same rate. In a number of cases this strategy is preferable to solving the con-
strained estimation problem directly. In our case, the best combination is linear
with weights that add up to one.

There is a vast literature on estimating models defined through conditional mo-
ment restrictions. We just mention one paper that is particularly relevant to our
study, Koenker and Machado (1999). They considered a similar problem albeit
restricted to certain linear models and to a rather specific estimator. They proved
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that a sufficient condition for the usual asymptotics for generalized method of mo-
ments estimation (GMM) to be valid when the number of unconditional moment
equations τ increases with n is that τ 3/n → 0.1 Their results can be interpreted
as a warning not to include too many moment conditions in GMM: that the con-
sequences of doing so are not just that no improvement is made, but that the
distributional approximation can potentially break down. Our objective is quite
different, and we deal with nonlinear models.

In linear models and with efficiency in mind, the proposed method can also
be viewed as an alternative to choosing a subset of instruments among a large
class of valid instruments (see e.g., Donald and Newey, 2001; Kuersteiner and
Okui, 2010). For example, consider the case where an unknown but fixed num-
ber of instruments yields nonidentified (Lobato and Dominguez, 2004) or weakly
identified (Stock and Wright, 2000) unconditional moment restrictions, then a
simple averaging of the resulting estimates would make their contributions to the
resulting average bias and variance vanish with sample size. On the other hand,
if efficiency is not of primary importance, knowledge of the quality of instru-
ments can be readily incorporated into the proposed estimator via the weighting
scheme.

We first establish consistency and
√

n-asymptotic normality of a class of
estimators that involve finite linear combinations of an infinite dimensional set of
estimators, where the cardinality of the linear combinations increases with sam-
ple size. The class of estimators considered is allowed to include those computed
from discontinuous criterion functions that are nonlinear in the parameters and
data. We also establish that a member of our class of estimators achieves the
semiparametric efficiency bound for the conditional moment model. We propose
a scheme for estimating the optimal weights and show that this is consistent. We
conclude by presenting results of two Monte Carlo experiments showing how our
procedure works in practice.

2. THE MODEL FRAMEWORK AND ESTIMATION

We observe an independent and identically distributed (i.i.d.) sample {Zi }n
i=1 ∈

R
d . We suppose that there are a set of moment conditions gj for j ∈ J , where
J is some set (of possibly infinite cardinality) with gj ∈ Rq such that there is a
unique θ0 ∈�, where� is a compact subset of Rp, for which

E[gj (Zi , θ0)] = 0. (2.1)

For simplicity, we shall assume that q = p so that each considered moment con-
dition yields exact identification. Each moment condition itself can be used for
estimation through the sample equivalent

Gnj (θ) = 1

n

n∑
i=1

gj (Zi , θ).
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There are three ways of aggregating the information in the moment condi-
tions (2.1).

First, consider the objective function

Qn(θ) =
∑
j∈J

Gnj (θ)
�Wnj Gnj (θ), (2.2)

where Wnj are weights. This corresponds to a GMM objective function with
block-diagonal weighting matrix. Then minimize Qn(θ) with respect to θ .
Second, combine the moment functions before averaging over the sample, i.e., let

Mn(θ)= 1

n

n∑
i=1

⎛⎝∑
j∈J

Wnj gj (Zi , θ)

⎞⎠ , (2.3)

where Wnj are weights. Then find a zero of the function Mn(θ).
Both approaches are widely used and studied when J has finite cardinality

(see e.g., Hansen, 1982; Newey, 1990; Chamberlain, 1992). In each case there
is a question about the optimal choice of weighting sequence Wnj , and in each
case this issue is resolved, and one can broadly achieve the same results by either
approach.

We consider a third approach based on combining individual estimators. We
define the estimators θ̂j , j ∈ J as any sequence that satisfies

Gnj
(
θ̂j
) = 1

n

n∑
i=1

gj
(
Zi , θ̂j

) = op

(
n−1/2

)
. (2.4)

For each j ∈ J , this problem is parametric and will result in a
√

n-consistent
and asymptotically normal estimator θ̂j (under standard conditions). We combine
these estimators in a linear fashion to produce a new estimator

θ̂ =
∑
j∈J

Wnj θ̂j , (2.5)

where Wnj are some matrix weights, possibly stochastic, that sum to the iden-
tity. This defines a class of estimators E indexed by the weighting matrices
{Wnj , j ∈ J }. In the finite dimensional J case, the estimator (2.5) is a mem-
ber of the class of minimum distance estimators (see Rothenberg, 1973; Newey
and McFadden, 1994). Specifically, suppose that j = 1, . . .τ, and consider the
optimization problem⎡⎢⎣
⎛⎜⎝ θ̂1
...

θ̂τ

⎞⎟⎠− Rθ

⎤⎥⎦
�

�

⎡⎢⎣
⎛⎜⎝ θ̂1
...

θ̂τ

⎞⎟⎠− Rθ

⎤⎥⎦ (2.6)
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for some τp × τp weighting matrix � and τp × τ known vector R (e.g.,
R = iτ ⊗ Ip , where iτ is a τ × 1 vector of ones). This yields an estimator of the
form (2.5), where Wnj = [R��R]−1[R��]j and [R��]j represents the j th block
of R��. In this case, the optimal weighting is known,� should be proportional to
the inverse of the asymptotic variance matrix of the unrestricted estimators. The
paradigm based on combining estimators can also benefit from the interpretation
of (2.5) as a portfolio of estimators, and the large amount of work that is currently
being done on estimation of inverse covariance matrices may be useful in finding
optimal combinations.

We make one further remark comparing the combining estimators approach
with the combining moment conditions approach. Suppose that there is param-
eter heterogeneity so that for each j there is a unique θj ∈ � ⊆ R

p for which
E[gj (Zi , θj )] = 0 and

θj = θ0 + vj , (2.7)

where vj are i.i.d. mean zero random variables (and independent of the data)
(e.g., Chesher, 1984). In this case, the average of the estimators consistently esti-
mates θ0 (see, for example, Pesaran, 2006), whereas first combining the moment
conditions will not generally yield consistent estimators of the parameter θ0, ex-
cept when g is linear in θ . So our method is robust to parameter heterogeneity
in this sense (although the asymptotic variance of our estimator is different under
those conditions). We do not focus on this case, but rather mention it as a possible
further motivation for why averaging estimators may be preferable to averaging
moment conditions.

We suppose that J may have infinite cardinality, or it may have a cardinality
that is increasing with sample size n. Han and Phillips (2006) consider a similar
setup except that they combine the moment conditions in the classical GMM way,
i.e., (2.2), using identity weighting; they also allow for the possibility that some of
their moment conditions provide only weak identification. Lee (2010) considers
the case where τ is fixed but each estimator may have a different rate of conver-
gence (see also Antoine and Renault, 2012). We work with a situation where each
estimator is

√
n-consistent, however, in our case the asymptotic variance Vj j of

the j th estimator may increase to infinity with j , which essentially reflects the
same phenomenon of different precision across the estimators.

The key issue we address here is to determine the asymptotic distribution of
the estimators in E . We also determine the optimal weighting and show that we
can achieve efficiency within this class of estimators. In some special cases we
can show that the resulting estimator will achieve a semiparametric efficiency
bound where the moment conditions themselves completely reflect all the model
information.

Even though each criterion function Gnj is a nonlinear function of θ , the over-
all computational costs of (2.5) may not be so great, since one can use the esti-
mates θ̂j for some j as starting values for computing other estimates θ̂k for k 	= j .
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Additional computational issues arise in connection with the weights Wnj but
these are discussed below.

3. EXAMPLES

We give a number of examples. Some are very well studied, but they are included
here just to clarify some concepts.

Example 1 (Classical two stage least squares in simultaneous equations)
Suppose that2

y1i = θy2i +εi ; y2i = π�
2 Xi +ui ,

where (εi ,ui)
� are i.i.d. error terms, E[εi |Xi ] = 0, E[ui |Xi ] = 0, and Xi ∈ Rk .

Consider the moment conditions

gj (Zi , θ)= (y1i − θy2i )X ji ,

for j = 1, . . .,k. Then let θ̂j be the corresponding estimator that solves (2.4).
In fact

θ̂j =
∑n

i=1 X ji y1i∑n
i=1 X ji y2i

=
∑n

i=1 ŷ j
2i y1i∑n

i=1 ŷ j
2i y2i

, (3.1)

where ŷ j
2i = π̂2 j X ji , and π̂2 j are the least squares estimates obtained from the

reduced form regression of y2i on the single instrument X ji for j = 1, . . . ,k. Our
estimator is

θ̂ =
k∑

j=1

Wnj θ̂j , (3.2)

where Wnj are scalar weights that satisfy
∑k

j=1 Wnj = 1.
For comparison, the two stage least squares (2SLS) estimator is

θ̃ =
∑n

i=1 ŷ2i y1i∑n
i=1 (̂y2i)2

=
∑n

i=1 ŷ2i y1i∑n
i=1 ŷ2i y2i

, (3.3)

where ŷ2i = π̂�
2 Xi and π̂2 is the vector of least squares estimates obtained from

the reduced form regression of y2i on all the instruments Xi = (X1i , . . ., Xki )
�.

We note that there is a choice of Wnj that makes θ̂ asymptotically equivalent to the
2SLS estimator θ̃ (see below). It is worth noting that a related result can be found
in Swamy (1970) for random coefficient panel data models, namely a particular
weighted average of the individual specific slope estimators is equivalent to the
optimal GLS estimator.
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The classical minimum distance estimator (generalized indirect least squares)
exploits the relationship between the reduced form coefficients and the structural
parameter, i.e., π1 j/π2 j = θ , where π�j = E(y�i X ji)/E(X 2

j i ) are the parameters
of the reduced form of y�i on X ji for � = 1,2 and j = 1, . . .,k (the estimator is
a linear combination of π̂1 j/π̂2 j , where π̂�j are the corresponding reduced form
estimators) (see Rothenberg, 1973).3

Now suppose that k = ∞, i.e.,

y2i =
∞∑

j=1

π2 j X ji +ui . (3.4)

This allows for the possibility that all of the infinite number of instruments matter
in the reduced form. In order for the right hand side of (3.4) to be well defined,
we may either assume that: (a)

∑∞
j=1π

2
2 j < ∞ and sup1≥ j E X 2

j i < ∞, or (b)

sup1≥ j |π2 j |<∞ and
∑∞

k=1 E X 2
ki <∞. Let σ 2

j = E(X 2
j i ), then (b) requires that

σ 2
j goes to zero at a rate faster than j −1 as j → ∞. By changing variables to

X ji/σj the parameters become π2 j · σj and we are in case (a). In the sequel we
shall restrict attention to case (a) as this seems more common in applications.
This case is consistent with the process where X ji = ϕj (Xi ) where Xi is some
observed common covariate of fixed dimension and ϕj are known basis functions.
It is also consistent with the case that X ji are separate covariates. We do not
impose a sparsity property (see e.g., Belloni, Chen, Chernozhukov, and Hansen,
2012), i.e., we allow all the π2 j to be nonzero.

The (approximate) 2SLS estimator is computed by truncating the sum to length
τ and then regressing y2i on the covariates X1i , . . . , Xτ i . This may run into prac-
tical issues when τ is even moderately large. Instead, our procedure involves
computing (3.1) for all j = 1,2, . . ., and compute (3.2) with k replaced by the
truncation parameter τ . The individual regressions are very easy to compute.
Furthermore, τ can be taken to be (much) larger than sample size (provided the
weights are chosen appropriately). An issue arises only when trying to combine
many estimators in an optimal way where the optimal weighting scheme may be
hard to estimate (in the same way that the optimal instrument is hard to estimate).

Example 1P (Pathological case)
This example was suggested by a referee. Suppose that

gj (Zi , θ)= (yi − θXi )X j−1
i ,

where E[εi |Xi ] = 0 with εi = yi − θ0 Xi . In this case,

EGnj (θ) = (θ0 − θ) E(X j
i ). (3.5)

If Xi are symmetrically distributed around zero with well defined moment gen-
erating function, then E(X 2 j−1

i ) = 0 for all j = 1, . . ., that is, EGnj (θ) = 0 for
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all θ for odd j , although EGnj (θ) = 0 if and only if θ = θ0 for even j . In this
pathological case, θ̂2 j−1, j = 1,2, . . . are inconsistent while θ̂2 j , j = 1,2, . . . are
consistent.

Example 2 (An infinite number of instruments)
This is a straightforward generalization of the linear case considered above.
Specifically, suppose that Yi ∈ RD , Xi ∈ R∞, and Aj (Xi) ∈ Rp, j = 1,2, . . ..
Then suppose that

E[Aj (Xi )ρ(Yi , θ0)] = 0,

where ρ(y, θ) is a potentially nonlinear “residual” vector, and θ ∈Rp . This model
includes many others as special cases. For estimation we may solve

Gnj (̂θj )= op(n
−1/2),

Gnj (θ) = 1

n

n∑
i=1

Aj (Xi )ρ(Yi , θ), (3.6)

for each j to yield estimators θ̂j that are
√

n-consistent under some conditions.
In general, this is a nonlinear system of equations for each j , but we may use
θ̂1 as starting values for subsequent j , and even compute linearized estimators.
We propose to combine these estimators using some weighting sequence Wnj as
in (2.5).

There are two generally different settings where this arises. In the first case, Xi

is genuinely large dimensional. In the second case, Xi is actually finite dimen-
sional but the functions Aj vary.

Example 3 (Semiparametric instrumental variables)
Suppose that Z�

i = (Y �
i , X�

i ), and that there is a unique θ0 ∈�⊆ Rp satisfying
the conditional moment conditions

E[ρ(Zi , θ0) |Xi ] = 0, (3.7)

with probability one, where ρ(z, θ) is a scalar residual function. This implies the
unconditional moment conditions

E[Aj (Xi )ρ(Zi , θ0)] = 0, (3.8)

for any p × 1 measurable vector Aj (Xi ) (for which the expectation exists).
Suppose that E[ρ(Zi , θ0)

2 |Xi ] = σ 2(Xi) is positive with probability one, and
that D0(Xi ) = (∂E [ρ(Zi , θ)|Xi ]/∂θ)θ=θ0 exists with probability one. In this
case, the optimal (instrumental variables) matrix is proportional to Aoiv(Xi ) =
D0(Xi )σ

−2(Xi ), and the resulting optimal instrumental variables (oiv)—or opti-
mal GMM—estimator θ̃oiv has asymptotic variance
oiv = {E[σ−2(Xi )D0(Xi )×
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D0(Xi )
�]}−1—see, for example, Hansen (1985), Chamberlain (1987), and

Newey (1990, 1993) for smooth ρ and Chen and Pouzo (2009) for nonsmooth ρ.
Suppose that the optimal matrix Aoiv(·) can be represented, in an L2 sense, by the
series expansion Aoiv(x) = ∑∞

j=1βj0 Aj (x), where Aj (·) are known basis func-
tions chosen by the practitioner, while βj0 are unknown coefficients determined
uniquely by the basis. For notational convenience we shall allow Aj to be p × 1
vectors; in general, βj0 depends on θ0 and is a p × p matrix. A common approach
here is to estimate the coefficients βj0 (by say series approximation, see e.g.,

Newey, 1990) and then to let Âθ (x) = ∑τ (n)
j=1 β̂j (θ)Aj (x), where τ(n) is some

truncation sequence that goes to infinity with sample size but at a slow rate. Then
let θ̃oiv be any sequence that satisfies n−1∑n

i=1 Âθ̃oiv
(Xi)ρ(Zi , θ̃oiv)= op(n−1/2).

In current parlance this would be called a continuously updated oiv estimator. An
alternative method is to use some preliminary consistent estimator of θ0 to first
construct a consistent estimator of Aoiv, and then to solve a similar first order
condition with the estimated instrument. Newey (1990, 1993) worked with lin-
earized two-step estimators that approximate such solutions. He showed that such
estimators are asymptotically equivalent to the instrumental variable procedure
based on knowing the optimal instrument function Aoiv and computing solutions
θ̃oiv to

1

n

n∑
i=1

Aoiv(Xi )ρ(Zi , θ̃oiv)= op(n
−1/2).

See Newey and McFadden (1994) for discussion. There have been a number of
alternative suggestions made more recently with a view to improving small sam-
ple performance. Newey and Smith (2004) contains an excellent review of this
literature.

We can approach this estimation problem from our perspective: instead of com-
bining instruments by preliminary estimation, we combine the estimators.

Example 4 (Maximum likelihood)
Suppose that Xi ∼ F(.; θ0), where θ0 is an unknown scalar parameter. When F
has a density f , one can use maximum likelihood estimation (MLE); specifically,
choose θ to maximize the log likelihood function

n∑
i=1

log f (Xi ; θ).

An alternative approach to estimation of θ can be based on the cdf F such as the
minimum distance estimator (e.g., Koul and Stute, 1999), which involves min-
imizing

∫
[Fn(x)− F(x ; θ)]2 dw(x) with respect to θ , where w is a weighting

function. Instead consider the estimators that solve

Fn(xj )− F(xj ; θ̂j )= op(n
−1/2)
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for points xj , j = 1,2, . . .,which can be cast in the form of (2.4). We then combine
these estimators linearly according to (2.5). In this case, it is natural to think of
J as being isomorphic to the real line but the weights can only pick out a finite
number of estimators. In some special cases of interest these estimators can be
expressed in closed form. For example, suppose that θ is a location parameter and
F(x ; θ)= F(x −θ), where F is strictly monotonic. Then, θ̂j = xj − F−1(Fn(xj )),
which can then be plugged into (2.5). Suppose that we take some τ <∞ and let
xj = F−1

n ( j/τ), j = 1, . . ., τ, then θ̂j = F−1
n ( j/τ)− F−1( j/τ). Then, let θ̂ =∑τ

j=1 Wnj θ̂j for some weighting sequence {Wnj }. Zhao and Xiao (forthcoming)
have pursued this estimation scheme in quantile regression.

4. LARGE SAMPLE PROPERTIES

We begin by defining the sample and population first order conditions. For j ∈J ,
let

Gnj (θ) ≡ 1

n

n∑
i=1

gj (Zi , θ) and Gj (θ)≡ EGnj (θ). (4.1)

We do not assume that the functions Gnj (θ) are differentiable or even contin-
uous, although smoothness conditions are imposed on the expectation Gj (θ).
On the one hand, this level of generality allows the cases of quantile regression
estimators (e.g., Koenker and Gilbert, 1978), Huber’s (1967) M-estimators, and
simulation-based estimators (e.g., McFadden, 1989; Pakes and Pollard, 1989) to
be covered by our theory, and on the other hand, for some of the arguments, we
are only able to provide high level conditions on the sample and population first
order conditions. In this sense, our results can apply more generally to any linear
combination of estimators that have appropriate expansions. We will restrict our
attention to the case where J is isomorphic to the set of positive integers, and we
shall further consider the sample moment conditions to be from a finite subset Jn

whose cardinality, τ = τ(n), is allowed to grow with sample size. We will take
pathwise asymptotics throughout so that τ(n) as n → ∞, but we will be working
with cases where the sequential limits (first n → ∞, then τ → ∞) will yield the
same limits (see e.g., Phillips and Moon, 1999). These sequential limit arguments
are easier to understand.

4.1. Consistency

In this subsection we give our consistency result for the estimator (2.5). For sim-
plicity, we let J = Jn = {1,2, . . ., τ (n)}. We shall accommodate the case where
some or even many of the moment conditions are not identified at all (i.e., the in-
struments are irrelevant), since in practice it may be hard to know whether a given
instrument is relevant or not. We also allow a more mundane type of weak iden-
tification that occurs naturally as τ → ∞. To this end, let J ∗

n = {1,2, . . ., τ ∗(n)}
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with τ ∗(n) ≤ τ(n). Implicit here is that there is an ordering of the estimating
equations or at least a classification into two categories: leading ones (strong)
and nonleading ones (weak or even irrelevant). We do not require this classifi-
cation to be known a priori, although the knowledge of this classification would
allow for a weakening of other conditions. In practice, this classification could
be based on individual t or F statistics associated with each estimator sequence.
See Fan and Lv (2008) and Fan, Feng, and Song (2011) for alternative screening
approaches in related problems. Let λmin(A) and λmax(A) denote the smallest and
largest eigenvalues of a real symmetric matrix A and ‖A‖ = (tr(A� A))1/2 for any
matrix A.

Assumption A. Let θ0 ∈� satisfy model (2.1).

(A1) The triangular array {Wnj }j∈Jn , n = 1, . . ., satisfies∑
j∈Jn

Wnj = Ip and sup
n≥1

∑
j∈Jn

∥∥Wnj
∥∥<∞ w.p.1. (4.2)

Here, τ(n) satisfies τ(n)→ ∞ as n → ∞. Furthermore, for τ ∗(n)→ ∞
with τ ∗(n) ≤ τ(n)

sup
n≥1

τ (n)∑
j=τ ∗(n)+1

||Wnj || → 0. (4.3)

(A2) For all δ > 0 and n ≥ 1, there is an εn(δ) > 0 (with possibly εn(δ)→ 0 as
n → ∞) such that

min
j∈J ∗

n

inf‖θ−θ0‖>δ
‖Gj (θ)‖ ≥ εn(δ) > 0.

(A3) For the sequences εn(δ), τ(n), and τ(n)∗ defined above, there exists a pos-
itive sequence ε1n = o(1) with supn(ε1n/εn(δ)) <∞ such that

max
j∈J ∗

n

(
‖Gnj (̂θj )‖− inf

θ∈�‖Gnj (θ)‖
)

= op(ε1n).

(A4) For the sequences εn(δ), τ(n), and τ(n)∗ defined above, there exists a pos-
itive sequence ε2n = o(1) with supn(ε2n/εn(δ)) <∞ such that

max
j∈J ∗

n

sup
θ∈�

‖Gnj (θ)− Gj (θ)‖ = op(ε2n).

The assumptions on the weights are quite weak and are satisfied by many
suitable weighting sequences both random and nonrandom. For example, equal
weighting Wnj = 1/τ(n)Ip satisfies Assumption 1, where Ip represents a p × p
identity matrix. There are no explicit conditions on the truncation sequences τ(n)
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and τ ∗(n) here, but Assumptions 2–4 may implicitly require some restrictions
on the rate at which τ ∗(n) increases with n. Condition (4.3) is a sparse-
ness condition on the weights that requires most weight to be put on a rel-
atively small set of estimators. Conditions A2–A4 are natural extensions of
Pakes and Pollard (1989) to the case where the number of moment condi-
tions is allowed to grow. Assumption 3 is just a definition of the estimators
θ̂j with error controlled uniformly over j ; as usual when the objective func-
tion is smooth and the parameter space is compact, this condition is redun-
dant. Assumption 2 ensures that each estimator from the ‘strong’ set of mo-
ment conditions is identified, but the strength of even that identification is al-
lowed to decrease. The rate at which εn(δ) declines is determined by the se-
quence τ ∗(n). For example, in the IV case, this is determined by the sequence
Aj , in particular the rate at which ‖E[Aj (X)]‖ decreases. By choosing τ ∗(n) to
grow very slowly we can compensate for a rapid decline in the moments of the
instruments.

The uniform convergence Assumption 4 is easy to verify, although it requires
one to extend standard arguments to accommodate the maximum over j . This
factor usually costs little extra, see Lemma 1 in the Appendix and the subsequent
discussion. Since we must have εn(δ) of larger order than n−1/2 in the case of
i.i.d. data this puts an upper limit on the rate at which τ ∗(n) can grow, but no
lower limit. If τ ∗(n) only increases very slowly, say like logn, the stated rate is
easy to achieve. The sequences ε1n and ε2n are needed because εn tends to zero
and we require the error on the right hand side of A3 and A4 to be of smaller
order than εn . Our conditions require that each member θ̂j of the class indexed
by J ∗

n be consistent and further imply that maxj∈J ∗
n

|̂θj − θ0| = op(1), which is a
stronger condition.

For clarification we consider two cases. First, there is no knowledge of the clas-
sification into strong and weak moment conditions, that is, we have included in
our basket estimators with some potential problems, but we do not know which
ones they are. In this situation, we might take equal weighting Wnj = 1/τ(n)Ip

and we will need that τ ∗(n)/τ (n) → 1. That is, we can include an increasing
number of inconsistent estimators, but we must have a larger fraction of consis-
tent ones. This rules out the pathological Example 1P, where there are as many
inconsistent estimators as consistent ones. We acknowledge that the usual diago-
nal weighted GMM will manage this situation better. In that case, we minimize
the objective function Qn(θ) = ∑τ

j=1 G2
nj (θ)/τ with respect to θ . In this setting,

E Qn(θ) = ∑τ
j=1 EG2

nj (θ)/τ , and we can allow EG2
nj (θ) ≡ 0 for j with cardi-

nality λτ for any λ with λ < 1. In the second case, we suppose there is knowl-
edge of the classification into strong and weak moment conditions, as would be
the case in, say Example 3, but also perhaps in Example 1P after some pre-
liminary screening method has been applied. In that case, we can effectively
take τ(n) as large as we like and just ensure that the weighting on the weak
moments is small. The optimal weighting method discussed below effectively
achieves this.
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THEOREM 1 (i). Suppose that Assumptions 1–4 hold. Then θ̂ − θ0 = op(1).

For the purpose of obtaining
√

n-asymptotic normality of θ̂ in the next sub-
section, we need to first establish that θ̂ − θ0 = op(n−1/4) under the following
stronger version of Assumption A:

Assumption A∗. Let θ0 ∈� satisfy model (2.1).

(A*1) A1 holds with

sup
n≥1

n1/4
τ (n)∑

j=τ ∗(n)+1

||Wnj || → 0.

(A*2) For some δ > 0 and all θ ∈� such that ‖θ − θ0‖< δ, there is a positive
sequence {γj , j ∈ J ∗

n } such that

‖Gj (θ)‖ ≥ γj ||θ − θ0||,
where minj∈J ∗

n
γj ≥ εn > 0 with possibly εn → 0 as n → ∞.

(A*3) For all δn = o(1) and n ≥ 1,

max
j∈J ∗

n

(
‖Gnj (̂θj )‖− inf‖θ−θ0‖≤δn

‖Gnj (θ)‖
)

= op

(
εnn−1/4

)
.

(A*4) For all δn = o(1) and n ≥ 1,

max
j∈J ∗

n

sup
‖θ−θ0‖≤δn

‖Gnj (θ)− Gj (θ)‖ = op

(
εnn−1/4

)
.

Assumption A*2 is standard as in Pakes and Pollard (1989), except that we
require the lower bounds to decay at a rate under our control. The sequence εn

depends on the sequence of moment conditions but also on the set J ∗
n : If this

set contains few elements, then it is possible to make εn decay very slowly.
Assumption A*3 again defines the estimators θ̂j and is not needed in the case
where the objective function is smooth and the parameter space is compact.
Assumption A*4 strengthens the uniform convergence rate in A4. Both assump-
tions are similar to those often found in the estimation literature with nonsmooth
objective functions (see Newey and McFadden, 1994, Sect. 7), with the excep-
tion that we are taking a maximum over an increasing number of first order con-
ditions. However, these conditions can be verified in most problems. The uni-
formity across θ is usually satisfied, indeed we can expect in many cases that
supθ∈� ‖Gnj (θ)− Gj (θ)‖ = Op(1/

√
n) for any compact parameter set �. In the

Appendix we provide a lemma (namely Lemma 1) that can be used to verify the
uniform convergence across j and may be useful elsewhere.

THEOREM 1 (ii). Suppose that Assumptions A*1–A*4 hold. Then θ̂ − θ0 =
op(n−1/4).
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4.2. Asymptotic Normality

In this subsection we derive the asymptotic distribution of our estimator θ̂ , un-
der additional conditions. We strengthen the conditions of Pakes and Pollard
(1989) and Newey and McFadden (1994) to accommodate our more general set-
up, but again we do not require smoothness conditions on the moment conditions
gj (Zi , θ). Define

�j = ∂

∂θ� Gj (θ0)= ∂

∂θ� E[gj (Zi , θ)] |θ=θ0 (4.4)

for each j. In the IV example, if D0(Xi )={∂E[ρ(Zi , θ)|Xi ]/∂θ}|θ=θ0 exists with
probability one, then we have �j = E[Aj (Xi )D0(Xi )

�]. Further define

�jl (θ) = E[gj (Zi , θ)gl (Zi , θ)
�], (4.5)

Vjl = �−1
j �jl�

−1�
l , (4.6)

where �jl = �jl (θ0). Under our conditions below, we have for each fixed j as
n → ∞,
√

n(̂θj − θ0)=⇒ N(0,Vj j ),

where Vj j is nonsingular and finite for each j . In our setting, we may have
Vj j → ∞ as j → ∞. This could arise because �j → 0 or �j j → ∞ or both. In
many cases we have examined the source of asymptotic over-variability is from
declining �j (while �j j stays bounded). This is another way of describing the
‘different rate’ phenomenon in Lee (2010) and Han and Phillips (2006). We may
have Vj j bounded as j → ∞, but in that case the τ ∗ p × τ ∗ p matrix V = (Vjl),
which represents the joint asymptotic covariance matrix between the leading esti-
mators, may be close to being singular (if this were not the case, then our estimator
θ̂ could obtain a rate improvement, i.e., converge faster than

√
n, an interesting

case, but one not treated here)

Assumption B. Let θ0 ∈� satisfy model (2.1). A1 holds with

sup
n≥1

n1/2
τ (n)∑

j=τ ∗(n)+1

||Wnj || → 0. (4.7)

(B1) maxj∈J ∗
n
(‖Gnj (̂θj )‖ − inf‖θ−θ0‖≤δn ‖Gnj (θ)‖) = op(1/

√
n) for any δn =

o(n−1/4).

(B2) The matrix �j exists and is of full column rank for each j ∈ J ∗
n , i.e., γn =

minj∈J ∗
n
λmin(�j ) > 0. Furthermore, there exists a finite constant C such

that for any θ such that ‖θ − θ0‖ ≤ δn , where δn = o(n−1/4), we have

max
j∈J ∗

n

∥∥Gj (θ)−�j (θ − θ0)
∥∥ ≤ C‖θ − θ0‖2.
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(B3) (a) maxj∈J ∗
n
‖√

n[Gnj (θ0)− Gj (θ0)]‖ = Op(1).

(b) For any δn = o(n−1/4),

max
j∈J ∗

n

sup
‖θ−θ0‖≤δn

‖[Gnj (θ)− Gj (θ)] − [Gnj (θ0)− Gj (θ0)]‖ = op(1/
√

n).

(B4) There exists a deterministic sequence of matrices W 0
nj satisfying: (a)∑

j∈J ∗
n

||(Wnj −W 0
nj )�

−1
j || = op(1); (b) limsupn

∑
j∈J ∗

n

∥∥∥W 0
nj�

−1
j

∥∥∥<∞.

(B5) (a) The matrix 
n = ∑
j∈J ∗

n

∑
l∈J ∗

n
W 0

nj Vjl W 0�
nl has a finite positive defi-

nite limit
; (b) The triangular array of random variables
fn (Zi )= n−1/2∑

j∈J ∗
n

c�W 0
nj�

−1
j gj (Zi , θ0) satisfies n E | fn(Zi )|2+κ → 0

for all c ∈ Rp and some κ > 0.

(B6) θ0 is in the interior of �.

(B7) maxj∈J ∗
n

||̂θj − θ0|| = op(n−1/4).

We next discuss the assumptions. Assumption B1 again defines the estimators
θ̂j and is not needed in the case where the objective function is smooth and the
parameter space is compact. Assumption B2 requires essentially two uniformly
continuous derivatives for the population moment function at θ = θ0, and that the
first derivative matrix be of full rank uniformly over j ≤ τ ∗(n).

Although Assumption B3(a) looks a bit strong, we show that it generically
holds in Example 1 under certain conditions. Specifically, in that case

√
nGnj (θ0)= 1√

n

n∑
i=1

X jiεi . (4.8)

Suppose that X ji are independent of εi and that εi is standard normal (the
argument holds more generally but is longer without these properties). Then√

nGnj (θ0) is normally distributed (conditional on X j1, . . ., X jn) with mean zero
and variance

∑n
i=1 X 2

j i/n, that is,

max
j∈J ∗

n

∥∥√nGnj (θ0)]
∥∥ = max

j∈J ∗
n

∣∣∣∣∣ 1√
n

n∑
i=1

X jiεi

∣∣∣∣∣
≤ |Z |× max

j∈J ∗
n

∣∣∣∣∣1

n

n∑
i=1

X 2
j i

∣∣∣∣∣ , (4.9)

where Z is a standard normal random variable. Provided the second moment of
the covariates is uniformly bounded (which we have assumed anyway), the right
hand side of (4.9) is bounded in probability and the condition is satisfied. The
essential reason for this is that εi are not varying with j and so the maximum over
j ∈ J ∗

n does not penalize (4.8) in terms of rate.
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Regarding Assumption B3(b), consider Example 1. In that case we have

max
j∈J ∗

n

sup
‖θ−θ0‖≤δn

‖[Gnj (θ)− Gj (θ)] − [Gnj (θ0)− Gj (θ0)]‖

≤ δn max
j∈J ∗

n

∣∣∣∣∣ 1

n

n∑
i=1

[
X ji y2i − E(X ji y2i)

]∣∣∣∣∣ ,
and we may apply Lemma 1 (in the Appendix) to the right hand side to establish
the result.

In B4, we require that if the weights are random that they can be well approxi-
mated by some nonrandom sequence with certain summability properties (specif-
ically, that they decline sufficiently quickly to counteract the growth of �−1

j ). This
condition entails some restrictions on the rate of growth of τ ∗, and these restric-
tions can be as much as requiring that τ ∗3/n → 0 (see Koenker and Machado,
1999). The restrictions are not so stringent in special cases and really arise out of
the nonlinearity of the estimating equation rather combined with the large number
of parameters. Consider (4.8) in Example 1, and for simplicity, suppose that the
regressors are mutually orthogonal and have mean zero and unit variance, then
�j = π2 j → 0 as j → ∞. This makes it clear how the weights should decline
with j .

Assumption B5 allows us to apply the Liapunov’s central limit theorem for
triangular arrays to the leading term. This condition is satisfied for a variety of
problems, and it implicitly imposes restrictions on how fast τ ∗(n) could grow
with sample size n and some restrictions on the weighting sequence. B5(a) is the
requirement that the weighted average of the elements of Vjl is positive and finite.
In the scalar parameter case we have by crude bounding
n ≤ λmax(V )

∑τ
j=1 W 2

nj
for large n and under equal weighting we could allow λmax(V ) to grow but no
faster than τ , while if λmax(V ) were uniformly bounded we could allow more
down-weighting such that

∑τ ∗
j=1 W 2

nj remains bounded away from zero. In the
special case of Example 1 where the covariates are mutually independent we have
Vj j = 1/π2

2 j → ∞ and Vjl = 0, so that provided Wnj ≤ C|π2 j | for some constant
C, the conditions will be satisfied. Suppose now that the covariates in Example 1
are not mutually independent, then in this more general case,

Vjl = K
corr(X j , Xl)

corr(X j , y2)corr(Xl , y2)
, (4.10)

where the generic constant K does not depend on j, l. We next try to under-
stand how the matrix (Vjl ) behaves for large n in this case. There are of course
many different models that describe the behavior of such large matrices (see e.g.,
Bickel and Levina, 2008), we here just consider one simple case. Suppose that
Rni = (y2i , X1i , . . ., Xτ ∗(n)i )∈Rτ ∗+1 are normally distributed with mean zero and
correlation matrix � . For example, � could be the correlation matrix of a Gaus-
sian process with y2 taking the role of the 0th observation. Then �rs =ψ(|r −s|)
for some decreasing function ψ, which implies that Vjl ∝ ψ(| j − l|)/ψ( j )ψ(l).
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For example, ψ(u) = u−κ for some κ > 0 leads to Vjl ∝ j κlκ /| j − l|κ and
Vj j ∝ j 2κ. In this case, for B5(a) it suffices that Wnj = o

(
j −κ ′)

for some κ ′ > κ.
We give more discussion of this issue below.

Notice that Assumption B5(b) is simply: for some κ > 0 and for all c,

E

⎛⎜⎝
∣∣∣∣∣∣
∑

j∈J ∗
n

c�W 0
nj�

−1
j gj (Zi , θ0)

∣∣∣∣∣∣
2+κ⎞⎟⎠ = o

(
nκ/2

)
.

For example, suppose we only require that gj (Zi , θ0) have uniformly bounded
fourth moments. In B2 we defined the sequence γn . It follows by the Cauchy–
Schwarz inequality that

n E
[

fn(Zi )
4
]

= 1

n

∑
j,k,l,m∈J ∗

n

E[ϕj iϕkiϕliϕmi ] ≤ 1

nγ 4
n

⎛⎝sup
n

∑
j∈J ∗

n

∥∥∥W 0
nj

∥∥∥
⎞⎠4

,

where ϕj i = c�W 0
nj�

−1
j gj (Zi , θ0). It suffices in this case that nγ 4

n → ∞. Now
suppose that in fact, the scalar gj (Zi , θ0) are normally distributed with mean
zero and variance �j and mutually independent, and that the weights are equal,
i.e., W 0

nj = 1/τ ∗(n)Ip for each j . Then

n E
[

fn(Zi )
4
]

= 1

nτ 4

⎛⎝∑
j∈J ∗

n

3�−2
j +3

∑
j 	=k∈J ∗

n

�−1
j �−1

k

⎞⎠ ≤ 3

nτ 2γ 2
n

,

which goes to zero provided nτ 2γ 2
n → ∞. These conditions can be weakened

considerably in special cases.
Notice that we can replace Assumptions B3(a) and B5 by the condition that{

Gnj (θ0)− Gj (θ0) : j ∈ J ∗
n

}
is a Donsker class, i.e., it satisfies the uniform

central limit theorem. This kind of assumption has been used in Portnoy (1984)
for example.

The condition B7 that maxj∈J ∗
n
||̂θj − θ0|| = op(n−1/4) follows from our The-

orem 1(ii). It is not necessary in for example linear cases. It may be possible to
prove our general result below without a sup-norm convergence result like this,
although we have not been able to find a proof based on other convergence cri-
terions like L p. The usual proofs in other semiparametric estimation problems
typically make use of similar results about the convergence of nuisance parame-
ters (see e.g., Newey and McFadden, 1994).

THEOREM 2. Suppose that Assumptions 1 and B1–B7 hold. Then
√

n(̂θ −
θ0)=⇒ N(0,
).

The asymptotic variance matrix
 depends on the weighting scheme and on the
class of estimators considered and, of course, on the underlying distribution of the
data. We discuss the nature of the asymptotic variance more in the next section.
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To construct consistent estimates of 
, we compute


̂ =
∑

j∈J ∗
n

∑
l∈J ∗

n

Wnj V̂jl W �
nl , (4.11)

V̂jl = �̂−1
j

1

n

n∑
i=1

gj (Zi , θ̂)gl (Zi , θ̂)
��̂−1�

l . (4.12)

Note that there we do not impose any ordering on the covariance matrices Vjl ,
and we have no need of a bandwidth parameter here since the cardinality of J ∗

n
is small compared with n. The estimation of �j is straightforward when Gnj are
differentiable. In this case, for each j

�̂j = 1

n

n∑
i=1

∂gj (Zi , θ̂)

∂θ
→p �j (4.13)

under some mild regularity conditions. When Gnj are not differentiable, as for
example in the Least Absolute Deviation (LAD) case, this method is not feasible.
In some cases, one might be able to estimate directly the quantity�j . For example,
in the LAD case (with errors independent of covariates), �j is proportional to the
density of the errors evaluated at their median. This quantity can be estimated by
a variety of nonparametric methods. A general strategy for estimating �j is to use
‘numerical derivatives’, that is, let

�̂j ;lk = 1

n

n∑
i=1

gjl (Zi , θ̂+ δek)− gjl (Zi , θ̂)

δ
, (4.14)

where ek is a vector of zeros with one in the kth position, while δ is a small
constant. If we let δ(n) go to zero at a certain rate as sample size increases, we
can show that �̂j ;lk →p �j ;lk (see, for example, Pakes and Pollard, 1989). The
actual derivative (4.13) makes δ go to zero before n, but our modified estimator
(4.14) allows δ to go to zero with n and indeed slower than n. Under stronger
conditions, including maxj∈J ∗

n
‖�̂j −�j ‖ →p 0 and maxj,l∈J ∗

n
‖V̂jl −Vjl‖ →p 0,

we can obtain 
̂→p
. Provided that τ(n)→ ∞ slowly as n → ∞, the additional
conditions are not particularly onerous. The estimation of optimal weights also
requires estimation of V and we discuss this further below.

5. OPTIMAL WEIGHTS

We now discuss the question of optimal weights in the sense of minimizing
asymptotic variance within our class of estimators. We also comment on the more
general question about optimality given the information expressed through the
moment conditions (2.1), which is a more difficult question. For simplicity, we
restrict attention to a simple leading case where τ = τ ∗ and Jn = J ∗

n . We first
consider the case where τ is fixed and then turn to the case where it is increasing.
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5.1. Case 1: Fixed τ

We can consider the optimal weights to be those that minimize the asymptotic
variance matrix of Theorem 2 in the special case where τ is fixed, i.e., minimize


τ =
τ∑

j=1

τ∑
l=1

Wnj Vjl W
�
nl

with respect to p × p matrices Wn1, . . .,Wnτ subject to the restriction that∑τ
j=1 Wnj = Ip . The solution to this can be found explicitly. Following Rothen-

berg (1973), we take �= V −1 in (2.6), where V = [
Vj,l

]
, in which case

W opt
0 j = [(iτ ⊗ Ip)

�V −1(iτ ⊗ Ip)]−1[(iτ ⊗ Ip)
�V −1]j . (5.1)

The corresponding estimator θ̂opt = ∑
j∈J ∗

n
W opt

0 j θ̂j has asymptotic (as n → ∞
and τ fixed) variance


τopt =
τ∑

j=1

τ∑
l=1

W opt
0 j Vjl W

opt�
l =

[
(iτ ⊗ Ip)

�V −1(iτ ⊗ Ip)
]−1

,

which is the smallest amongst our class of estimators. We require here that the
matrix V be nonsingular, which seems like a reasonable requirement for fixed τ .
In the scalar case, W opt

0 j = (i�k V −1ik )−1[i�k V −1]j and 
τopt = (i�k V −1ik )−1, and
W opt

0 j are known as the global minimum variance portfolio weights (see e.g.,
Campbell, Lo, and Mackinlay, 1997).

Example 1 (Classical two stage least squares in simultaneous equations)
Recall the optimal GMM estimator in this model (i.e., under homoskedasticity,
etc.) is simply the two stage least squares estimator

θ̃ = (Y �
2 PX Y2)

−1Y �
2 PX Y1,

where PX = X (X� X)−1 X�, Y1 = (y11, . . ., y1n)
�, Y2 = (y21, . . ., y2n)

�, X =
(X�

1 , . . ., X�
n ), Xi = (X1i , . . ., Xki )

�. Within our class of estimators E , the opti-
mal estimator is

θ̂ =
k∑

j=1

W opt
nj θ̂j = (i�k V −1ik )

−1i�k V −1

⎡⎢⎣ θ̂1
...

θ̂k

⎤⎥⎦ ,

where θ̂j = (Y �
2 Pj Y2)

−1Y �
2 Pj Y1 for j = 1, . . .,k, where Pj = X j (X�

j X j )
−1 X�

j
and V is the k ×k covariance matrix defined for general estimators in (4.6). In the
homoskedastic error case (and treating the regressors as fixed for simplicity),

Vjl = σ 2
ε

(
π�

2 X�X j X�
j Xπ2/n

)−1

×
(
π�

2 X�X j X�
j Xl X�

l Xπ2/n
)(
π
ᵀ
2 X� Xl X�

l Xπ2/n
)−1 = σ 2

ε

Mjl

M◦ j M◦l
,

where Mjl = X�
j Xl/n and M◦ j = π�

2 X�X j/n.
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Suppose that the instruments are mutually orthogonal, then it is easy to see that
θ̂ is identically equal to θ̃ .4 This gives yet another interpretation to 2SLS as being,
in this case, the optimal combination of exactly identified instrumental variables
estimators.5 In general, the two estimators are asymptotically equivalent, but not
identical.

Example 2 (Semiparametric instrumental variable)
Suppose that the moment conditions are of the form

E
[
Aj (Xi)ρ(Zi , θ0)

] = 0, j = 1, . . ., τ , (5.2)

where τ is fixed, and Aj ∈ Rp. This is a standard unconditional moments estima-
tion problem, and the optimal estimator (smallest variance) can be arrived at by
several routes: (1) through the optimal combination of the sample moment con-
ditions (GMM); (2) or through the optimal combination of the instruments into a
single estimating equation. The asymptotic variance of the efficient estimator is
given by


τoiv =
(

E
[

Aτ (X)D0(X)
�]� [

E
(
σ 2

0 (X)A
τ (X)Aτ (X)�

)]−1

× E
[

Aτ (X)D0(X)
�])−1

(5.3)

≡
(
�τ��−1

τ �τ
)−1

,

where Aτ = (A�
1 , . . ., A�

τ )
� ∈Rτ p.

We can show the equivalence between the optimal minimum distance estimator,
as defined above, and the optimal instrumental variable estimator in the following
proposition.

PROPOSITION 1. For each fixed τ , θ̂opt is asymptotically efficient for (5.2)
with
τopt = 
τoiv. Moreover the optimal weighting is

W opt
0 j = −

⎛⎝ τ∑
j=1

αj�
�
j

⎞⎠−1

αj�
�
j for j = 1, . . ., τ , with (α1, . . .,ατ )

= �τ��−1
τ . (5.4)

This says that the optimal IV estimator has the same asymptotic expansion to
order n−1/2 as the member of our class E that has weights given in (5.4). That is,
our best estimator achieves the same efficiency as optimal GMM in the case with
a finite number of unconditional moments.
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Chamberlain (1987) considered a sequence of models with unconditional mo-
ment restrictions (where the distribution of X is multinomial with τ support
points). He showed that for each τ


τoiv =
(

E[σ−2
0 (X)D0(X)D0(X)

�]
)−1

.

5.2. Case 2: Increasing τ

We now consider the case where τ increases with sample size. A key issue here
is around the behavior of the τp × τp covariance matrix V as its dimensions
increase. If V were diagonal with bounded elements, then equal weighted-like av-
eraging could improve the rate of convergence. The latter setting applies to panel
data where there is an additional source of variation, but not when this additional
variation is not present. We focus on the case where this rate improvement is not
possible, either because the largest diagonal element of V is increasing with the
dimensions and/or the covariance matrix V is becoming singular.

We show that our efficiency properties carry over to the increasing τ case. In our
proofs of Theorem 2 we obtain the stochastic expansion (uniformly in τ ≤ τ(n))
√

n(̂θ(W (τ ))− θ0)= L(W (τ ))+op(1), (5.5)

where the random variable L is a linear term with mean zero and finite variance,
i.e., L = n−1/2∑n

i=1 ξi with E[ξi ] = 0 and E[ξiξ
�
i ] <∞; we use the notation

W (τ ) to denote the weighting sequence {Wnj } for τ(n) and we include W (τ )
as an argument of θ̂ and L to emphasize their dependency on these matrices.
Provided V is nonsingular for each τ, we can define the optimal weights (5.1)
for each τ and the expansion (5.5) holds for the optimal weighting sequence. We
have var[L(W opt(τ ))] ≤var[L(W (τ ))] for any other weighting sequence for all τ
and in this sense the estimator θ̂ (W opt(τn)) is efficient.

There are two questions we address. First, whether

lim
τ→∞

[
(iτ ⊗ Ip)

�V −1(iτ ⊗ Ip)
]−1 = 
∞

opt, (5.6)

where
∞
opt is finite and positive definite. Second, whether there exists an estimator

of θ with a smaller asymptotic variance.
If B5 is satisfied for the optimal weighting sequence, then (5.6) is satisfied. We

next discuss how to verify Assumption B5 for the optimal weighting sequence.
This condition is clearly not always satisfied: it depends on the underlying es-
timator sequences and their relationship. It is a common assumption that V (or
matrices equivalent to V ) is finite and invertible for finite τ , the question is
whether the implications of this property are maintained as τ → ∞.

In Example 1, when the errors are independent of the instruments, we
have (4.10), and there are a variety of schemes for the covariance matrix of
(y2, X1, . . ., Xτ (n)) that would support the assumption (i.e., (5.6) holds) for the
optimal weighting sequence.
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We look at the issue in the general scalar parameter case, in which case

τopt = (i�V −1i)−1 . By crude bounding we obtain

i�V −1i =
(

i�i
) i�V −1i

i�i
∈
[
τλmin

(
V −1), τλmax

(
V −1)]

= [τ/λmax(V ), τ/λmin(V )],

which implies that (i�V −1i)−1 ≤ λmax(V )/τ. Provided limsupτ→∞λmax(V )/
τ < ∞, we have limsupτ→∞(i�V −1i)−1 < ∞ and we can expect (5.6) to
hold. However, this condition is much stronger than necessary, as can be seen
from the diagonal case where a variety of rates can be assumed on the ele-
ments of V = diag{v1, . . ., vτ } to ensure that i�V −1i = ∑τ

j=1 v
−1
j converges

to a finite positive number. For example, suppose that vj = cj α for α > 1, then
λmax(V )/τ = cτα−1 → ∞ but

∑τ
j=1 v

−1
j converges to a finite positive number.

This can also hold in nondiagonal cases. For example, consider the equicorrelated
case where

V =�1/2(I +ρτ ii�)�1/2, (5.7)

where � = diag{σ 2
1 , . . ., σ

2
τ } and ρτ > 0. This corresponds to a situation where

each estimator is correlated with each other by the same positive amount ρτ . In
this case,

V −1 =�−1/2(I − cτ ii�)�−1/2,

where cτ = ρτ /(ρτ τ −1). Then

i�V −1i =
τ∑

j=1

σ−2
j − ρτ

ρτ τ −1

⎛⎝ τ∑
j=1

σ−1
j

⎞⎠2

.

We can suppose that σj → ∞ as j → ∞, so that if
∑∞

j=1σ
−1
j < ∞, then∑∞

j=1σ
−2
j <∞. Provided ρτ >> 1/τ, i�V −1i →∑∞

j=1σ
−2
j ∈ (0,∞). This case

corresponds to the single factor model used in the portfolio choice problem with
many assets; see e.g., Fan, Li, and Yu (2012) for more general structures that also
broadly fit into this framework.

Although we can provide a number of situations where 
∞
opt is finite and posi-

tive definite, without further structure we are unable to address the second ques-
tion, namely whether the optimal estimator within our class is efficient amongst
all regular estimators, i.e., we do not generally have a semiparametric efficiency
bound to compare with. So we next turn to two special cases where a semi-
parametric efficiency standard is known against which we may compare our
procedure.
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Example 3 (Semiparametric instrumental variables)
Let 
oiv be the asymptotic variance of the optimal instrumental variable (oiv)
estimator, which is the semiparametric efficiency bound (defined above). Then,
for certain choices of A1, . . ., Aτ , we have

lim
τ→∞


τ
oiv = 
oiv (5.8)

and the GMM estimator based on the moment conditions (5.2) achieves the
semiparametric efficiency bound. For example, Chamberlain’s (1987) estimator
sequence achieves this efficiency bound. Since our optimal estimator (combining
the estimators from each moment condition Aj ) is at least as efficient as the op-
timal GMM estimator for each τ , in such cases where (5.8) holds our estimator
will also achieve the efficiency bound (the information contained in A1, . . ., Aτ
is equivalently expressed through the optimal GMM procedure or through our
minimum distance method).

Example 4 (Maximum likelihood)
For the estimators θ̂j = F−1

n ( j/τ)− F−1( j/τ), we have

Vj,l = min{j/τ, l/τ }− ( j/τ)(l/τ)

f (F−1( j/τ)) f (F−1(l/τ))
,

where f is the density function. In the standard uniform case (F(x) = x) it is
known that the eigenvalues of the τ × τ matrix V lie between a/τ and cτ for
positive finite constants a,c, (Shorack and Wellner, 2009, p. 222). In this case, the
optimal weighting is going to put positive weight only on the first estimator (in
this ordering) and will result in a superconsistency. If f is standard Gaussian, then
f (F−1(1/τ)) ∝ 1/τ and a more regular averaging of the estimators is expected.
In the Gaussian case, the MLE is the sample mean and this can be expressed as
the average of all quantiles. Therefore, if we take τ = n and let Wnj = 1/n, then θ̂
is exactly the sample mean. Hence, full efficiency can be achieved by our method
in this special case.

6. ESTIMATION OF OPTIMAL WEIGHTS

In this section, we consider estimation of the optimal weights and construction of
a feasible asymptotically optimal estimator (in the sense of minimizing asymp-
totic variance within our class of procedures). In particular, we shall estimate the
optimal weights defined in (5.1). Recall that V is the τp × τp asymptotic (as
n → ∞ with τ fixed) covariance matrix of the vector of estimators θ̂j , j ∈ J ∗

n .
We estimate the optimal weights as follows

Ŵ opt
0 j =

⎛⎝τ (n)∑
l=1

B̂l

⎞⎠−1

B̂j = [(iτ ⊗ Ip)
�V̂ −1(iτ ⊗ Ip)]−1[(iτ ⊗ Ip)

�V̂ −1]j , (6.1)
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where (B̂1, . . ., B̂τ ) = (iτ ⊗ Ip)
�V̂ −1, and V̂ has ( j, l) submatrix calculated

using formulas (4.12) and (4.13) for j , l = 2, . . ., τ based on a preliminary
√

n-
consistent estimator of θ , denoted θ̂ . The resulting feasible estimator is then de-
fined as

θ̂† =
∑
j∈Jn

Ŵ opt
0 j θ̂j . (6.2)

We now provide a consistency result for this feasible estimator defined in (6.2).
The strategy is to verify condition B4(a) of Theorem 2 for the estimated weights;
we are implicitly assuming that B4(b) and B5 hold, so that the infeasible optimal
weights are well defined. If the other conditions of Theorem 2 are satisfied, which
are about the moment conditions, then the estimator based on (6.1) is consistent
with Theorem 2. We shall restrict attention to the case where gj are all differen-
tiable. Define for each θ in a neighborhood of θ0:

�nj (θ)= 1

n

n∑
i=1

∂gj

∂θ
(Zi , θ); �njl (θ) = 1

n

n∑
i=1

gj (Zi , θ)gl(Zi , θ)
�,

where �j (θ) = E�nj (θ), �jl (θ) = E�njl (θ), Vjl = �−1
j (θ0)�jl (θ0)�

−1
l (θ0)

�
were defined above. We shall assume the following high level conditions.

Assumption D.

(D1) The τp × τp matrix V satisfies λmin(V )= O(τ−ρ) for some ρ ≥ 0.

(D2) For some ρ1 ≥ 0, minj∈Jn λmin(�j )= o(τ−ρ1).

(D3) For some sequence δn → 0 and some η > 0:

max
j∈Jn

sup
‖θ−θ0‖≤δn

√
n
‖�nj (θ)−�j (θ)‖ = op(n

−η);

max
j,l∈Jn

sup
‖θ−θ0‖≤δn

√
n
‖�njl (θ)−�jl (θ)‖ = op(n

−η).

As we discussed above Assumption D1 can be verified in a number of different
cases. It allows the τp × τp matrix V to become asymptotically singular, but at
a rate that is controlled by ρ. Similar comments apply to D2 in the sense that
it is easy to find a variety of examples consistent with this assumption for some
small ρ1.

Note that we do not have a lower bound on the rate that τ(n)→ ∞—this is
because we are combining estimators that are already root-n consistent and so
we do not need to average a lot of them so as to achieve rate improvement. The
uniform laws of large numbers in D3 can be verified under some primitive con-
ditions, along the lines of the discussion around Theorem 2. These conditions are
extensions of standard conditions for standard error estimation to the case where
τ(n) → ∞. We will need the estimation error in V̂ to be small relative to the
dimensions of τ .
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THEOREM 3. Suppose that 
∞
opt exists and is positive definite. Suppose that

Assumptions D holds and that τ(n)= nc for some c such that (2+ρ+2ρ1)c < η.
Then conditions B4(a) of Theorem 2 hold for the weighting sequence (6.1). There-
fore, provided the other conditions of Theorem 2 are satisfied, then

√
n(̂θ† − θ0)

is asymptotically normal with mean zero and variance matrix
∞
opt.

For further issues surrounding estimating the optimal weights for similar esti-
mation problems, we refer the reader to Newey (1990) and Koenker and Machado
(1999). We note that the problem of estimating large covariance matrices is very
well studied as it arises naturally in for example portfolio choice problems (see
e.g., Ledoit and Wolf, 2004). Cai, Liu, and Zhou (forthcoming) consider estima-
tion of functionals of the inverse of a large covariance matrix and give optimal
rates of convergence for this endeavor for certain classes of sparsity structure. We
have not imposed sparsity in our estimation strategy for V , which is why we may
allow only a relatively slow rate of expansion for τ .

7. MONTE CARLO

As to demonstrate how the proposed alternative procedure of combining estima-
tors works in practice, we consider two data generating processes (DGPs). The
first one (DGP 1) corresponds to the framework of Example 3, and it is adapted
from Newey (1990) who consider an endogenous dummy variable model with the
following specification:

Yi = β10 +β20si +εi ;

DGP1: si = 1 (α10 +α20 Xi +ηi > 0) ,

Xi ∼ N(0,1); α10 = α20 = β10 = β20 = 1,

where the errors εi and ηi are generated as[
εi

ηi

]
∼ N

([
0
0

]
,

[
1 ϕ
ϕ 1

])
, (7.1)

in which ϕ ∈ {0.2,0.5,0.8} indicate weak, medium, and strong endogeneity re-
spectively. The optimal instrument for s is π(x)= Pr[s = 1|X = x], which makes
D(x)= (1,π(x))� .

Tables 1 and 2 report results for two estimators of β20. The first estimator
corresponds to Newey’s (1990) and the second is ours. To obtain both esti-
mators, we follow Newey (1990) and use the polynomials Aj (x) = x j−1 and
Aj (x)= [x/ (1 +|x|)] j−1 as basis. Newey estimator becomes

β̃ =
(
β̃10
β̃20

)
=

(
n

∑n
i=1 si∑n

i=1 π̂ (Xi)
∑n

i=1 π̂(Xi )si

)−1( ∑n
i=1 Yi∑n

i=1 π̂(Xi )Yi

)
,

π̂(x)=
τ∑

j=1

γ̂j Aj (x).
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TABLE 1. DGP 1: Aj (x) = x j−1, j = 2, . . .,5

(A) (B) (A) (B)

τ Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

ϕ = 0.2, n = 100 ϕ = 0.2, n = 200
2 0.004 0.489 0.488 0.004 0.489 0.488 −0.014 0.319 0.319 −0.014 0.319 0.319
3 0.008 0.451 0.451 0.002 0.487 0.487 −0.009 0.300 0.300 −0.022 0.314 0.314
4 0.007 0.442 0.442 0.019 0.523 0.524 −0.009 0.299 0.299 0.012 0.361 0.361
5 0.008 0.438 0.437 0.012 0.669 0.669 −0.003 0.297 0.297 −0.020 0.449 0.449

ϕ = 0.5, n = 100 ϕ = 0.5, n = 200
2 0.014 0.470 0.470 0.014 0.470 0.470 0.000 0.327 0.327 0.000 0.327 0.327
3 0.027 0.442 0.441 0.011 0.465 0.465 −0.001 0.309 0.309 0.001 0.324 0.324
4 0.042 0.431 0.431 0.033 0.515 0.514 0.003 0.302 0.302 0.000 0.371 0.371
5 0.057 0.422 0.423 0.010 0.643 0.644 0.006 0.296 0.296 0.009 0.471 0.471

ϕ = 0.8, n = 100 ϕ = 0.8, n = 200
2 −0.014 0.503 0.504 −0.014 0.503 0.504 0.001 0.354 0.355 0.001 0.354 0.355
3 0.006 0.473 0.473 0.028 0.493 0.493 0.007 0.337 0.337 0.019 0.317 0.317
4 0.025 0.460 0.460 0.026 0.532 0.533 0.013 0.331 0.331 0.026 0.374 0.374
5 0.047 0.443 0.444 0.027 0.669 0.670 0.028 0.326 0.326 0.040 0.459 0.459

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and Root Mean Square Error (RMSE) based on 5,000 replications. (A) = β̃20 and (B) = β̂20.
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TABLE 2. DGP 1: Aj (x) = [x/(1 +|x|)] j−1, j = 2, . . .,5

(A) (B) (A) (B)

τ Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

ϕ = 0.2, n = 100 ϕ = 0.2, n = 200
2 −0.014 0.493 0.494 −0.014 0.493 0.494 −0.017 0.328 0.328 −0.017 0.328 0.328
3 0.005 0.458 0.458 −0.005 0.383 0.383 −0.015 0.304 0.304 −0.012 0.252 0.252
4 0.002 0.448 0.448 0.028 0.384 0.384 −0.002 0.297 0.297 −0.001 0.244 0.244
5 0.022 0.440 0.440 0.023 0.405 0.405 −0.001 0.298 0.298 0.001 0.246 0.246

ϕ = 0.5, n = 100 ϕ = 0.5, n = 200
2 0.029 0.485 0.485 0.029 0.485 0.485 −0.001 0.333 0.333 −0.001 0.333 0.333
3 0.034 0.451 0.451 0.052 0.375 0.376 −0.003 0.309 0.309 −0.001 0.258 0.258
4 0.047 0.427 0.427 0.040 0.365 0.365 0.012 0.299 0.299 −0.002 0.252 0.252
5 0.074 0.417 0.419 0.026 0.394 0.394 0.013 0.296 0.296 −0.009 0.259 0.259

ϕ = 0.8, n = 100 ϕ = 0.8, n = 200
2 −0.009 0.511 0.513 −0.009 0.511 0.513 −0.001 0.358 0.359 −0.001 0.358 0.359
3 0.014 0.474 0.474 0.023 0.384 0.384 0.004 0.337 0.338 0.012 0.263 0.263
4 0.048 0.454 0.454 0.023 0.386 0.387 0.026 0.330 0.329 0.014 0.258 0.258
5 0.058 0.442 0.443 0.017 0.410 0.410 0.037 0.325 0.325 0.008 0.271 0.271

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and Root Mean Square Error (RMSE) based on 5,000 replications. (A) = β̃20 and (B) = β̂20.
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for series-based estimated weights γ̂j . Using the same bases, our estimator
becomes

β̂ =
τ∑

j=2

Ŵ opt
0 j β̂j , where (7.2)

β̂j =
(
β̂10; j

β̂20; j

)
=

(
n

∑n
i=1 si∑n

i=1 Aj (Xi )
∑n

i=1 Aj (Xi )si

)−1( ∑n
i=1 Yi∑n

i=1 Aj (Xi )Yi

)
(7.3)

and Ŵ opt
0 j calculated as in (6.1).6 We consider two samples sizes: n = 100, 200,

and 5,000 replications. Simulated bias, standard deviation (Std. Dev.), and Root
Mean Squared Error (RMSE) are reported for each estimator in Tables 1 and 2.

We observe that for each sample size and endogeneity parameter value (ϕ)
under consideration, the RMSE associated with the proposed estimator of β20 is
roughly comparable to that of Newey (1990) for low values of τ . While biases
are small for both sets of estimates, their variance behave quite differently with
relation to τ . In particular, the precision of β̃20 increases with τ , while that of β̂20
actually decreases. This might be caused by the estimation error in Ŵ opt

0 j . Table 2
shows that the proposed estimator outperforms Newey’s (1990) for τ = 2 and 3
when n = 100 and 200 respectively.

The next scenario is adapted from Example 1 in the main text where k > n and
the Monte Carlo design in Okui (2011). In this data generating process (DGP 2),
we consider a high-dimensional problem involving a two-equation system with
the following specification:

Yi = β10 +β20si +εi ;

DGP2: si =
k∑

l=1

αl;0 Xli +ηi ,

Xi ∼ N(0, Ik); β10 = β20 = 1,

where Xi = (X1i , . . .Xki )
� and (εi ,ηi)

� are generated as in (7.1). We try three
different specifications of α0 = (α1;0, . . . ,αk;0)� in Okui (2011), namely Model

(a): αl;0 =
√

R2
f /[k(1 − R2

f )], ∀l; Model (b): α1;0 = c(k), αl;0 = c(k)/
√

k −1,

∀l = 2, . . .,k; and Model (c): αl;0 = c(k)[1− l/(k +1)]4, where the constant c(k)
is chosen to satisfy α�

0 α0 = R2
f /(1− R2

f ) with R2
f representing the theoretical R2

of the first stage regression. In Model (a), all instruments are equally important but
they are also weak, while in Model (b), the first instrument is strong but others are
weak. Finally, in Model (c), the strength of the instruments decreases moderately
in l = 1, . . .,K . We set k = 30 and assess the performance of the ‘optimal’ estima-
tor here in another set of 5,000 replications, i.e., weights determined by (6.1) and
τ = k, with undersized samples of n = 15 and 25. Tables 3 and 4 show the results
for R2

f = 0.01 and R2
f = 0.1 respectively. These tables report the Monte Carlo bias

(Bias), standard deviations (Std. Dev), and Root Mean Squared Error (RMSE) of
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TABLE 3. DGP 2: High-dimensional inference with R2
f = 0.01

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8

n Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

Model (a)
15 0.2011 0.3077 0.3676 0.4890 0.2783 0.5626 0.7898 0.1918 0.8128

0.2014 0.2772 0.3426 0.4920 0.2495 0.5517 0.7927 0.1714 0.8110
25 0.2035 0.2441 0.3178 0.4858 0.2240 0.5349 0.7871 0.1548 0.8022

0.2030 0.2062 0.2893 0.4925 0.1829 0.5253 0.7920 0.1259 0.8020
50 0.2011 0.1980 0.2822 0.4851 0.1768 0.5163 0.7817 0.1253 0.7916

0.2010 0.1838 0.2724 0.4889 0.1634 0.5155 0.7832 0.1147 0.7915
Model (b)

15 0.2002 0.3074 0.3668 0.4892 0.2792 0.5633 0.7900 0.1918 0.8129
0.2008 0.2770 0.3421 0.4919 0.2496 0.5516 0.7929 0.1713 0.8112

25 0.2032 0.2442 0.3177 0.4861 0.2240 0.5352 0.7869 0.1547 0.8020
0.2028 0.2063 0.2893 0.4925 0.1831 0.5254 0.7918 0.1258 0.8018

50 0.2004 0.1982 0.2818 0.4852 0.1762 0.5162 0.7816 0.1253 0.7915
0.2006 0.1840 0.2722 0.4890 0.1632 0.5155 0.7831 0.1146 0.7915

Model (c)
15 0.2003 0.3060 0.3657 0.4892 0.2783 0.5628 0.7898 0.1921 0.8129

0.2009 0.2763 0.3416 0.4918 0.2493 0.5514 0.7926 0.1715 0.8110
25 0.2038 0.2444 0.3183 0.4860 0.2245 0.5353 0.7871 0.1552 0.8022

0.2030 0.2062 0.2893 0.4926 0.1832 0.5255 0.7917 0.1259 0.8017
50 0.2006 0.1985 0.2822 0.4852 0.1760 0.5161 0.7813 0.1261 0.7914

0.2006 0.1842 0.2723 0.4890 0.1632 0.5155 0.7829 0.1150 0.7913

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and Root Mean Square Error (RMSE) of the averaging
estimator are reported in the first row for each sample size. Results for the OLS estimator are displayed in the
successive second rows for sample sizes n = 15 and 25, while results for the 2SLS estimator are shown in the
successive second row for sample size n = 50.

various estimators of β20. In particular, the new estimator constructed with fea-
sible optimal weights is compared against generic 2SLS (with a fixed number of
instruments). Notice that for these sample sizes generic 2SLS with as many in-
struments as the sample size is equivalent to Ordinary Least Squares (OLS), i.e.,
for n = 15 and n = 25.7

The results are qualitatively the same across models for R2
f = 0.01 and R2

f =
0.1 (even with weak instruments, i.e., Model (a)). For a low first stage R2, the
proposed estimator has roughly the same bias but considerably larger variance
than the OLS and 2SLS estimators when the level of endogeneity is low, resulting
in larger RMSE in these cases. Although the proposed estimator displays smaller
biases than the OLS and 2SLS estimators when ϕ = 0.5 and ϕ = 0.8, their RMSE
are larger than the OLS estimator, but they are similar to the 2SLS ones. On the
other hand, all estimators perform better when R2

f = 0.1. In particular, Table 4
shows that the proposed estimator has better bias performance across models,

https://doi.org/10.1017/S0266466614000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000851


AVERAGING OF MOMENT CONDITION ESTIMATORS 59

TABLE 4. DGP 2: High-dimensional inference with R2
f = 0.1

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8

n Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

Model (a)
15 0.1805 0.2933 0.3444 0.4320 0.2723 0.5106 0.7011 0.2024 0.7298

0.1843 0.2652 0.3230 0.4465 0.2419 0.5078 0.7205 0.1764 0.7418
25 0.1782 0.2341 0.2942 0.4220 0.2160 0.4740 0.6883 0.1647 0.7078

0.1853 0.1969 0.2704 0.4472 0.1768 0.4808 0.7214 0.1303 0.7331
50 0.1685 0.1870 0.2517 0.4044 0.1693 0.4384 0.6534 0.1327 0.6668

0.1731 0.1718 0.2439 0.4202 0.1559 0.4482 0.6748 0.1178 0.6850
Model (b)

15 0.1782 0.2935 0.3433 0.4322 0.2736 0.5115 0.7015 0.2023 0.7301
0.1831 0.2643 0.3215 0.4462 0.2424 0.5078 0.7213 0.1761 0.7425

25 0.1768 0.2354 0.2944 0.4217 0.2160 0.4738 0.6880 0.1649 0.7075
0.1848 0.1974 0.2704 0.4472 0.1776 0.4812 0.7211 0.1306 0.7328

50 0.1650 0.1875 0.2498 0.4018 0.1684 0.4357 0.6538 0.1341 0.6674
0.1719 0.1722 0.2433 0.4203 0.1553 0.4481 0.6746 0.1175 0.6847

Model (c)
15 0.1785 0.2906 0.3410 0.4325 0.2725 0.5111 0.7013 0.2037 0.7303

0.1833 0.2626 0.3203 0.4465 0.2416 0.5077 0.7204 0.1764 0.7417
25 0.1789 0.2336 0.2942 0.4220 0.2162 0.4741 0.6877 0.1649 0.7072

0.1850 0.1970 0.2702 0.4476 0.1775 0.4815 0.7206 0.1304 0.7323
50 0.1665 0.1874 0.2507 0.4032 0.1681 0.4369 0.6525 0.1355 0.6665

0.1716 0.1723 0.2432 0.4203 0.1553 0.4481 0.6739 0.1181 0.6842

Note: Monte Carlo bias (Bias), standard deviation (Std. Dev.), and Root Mean Square Error (RMSE) of the averaging
estimator are reported in the first row for each sample size. Results for the OLS estimator are displayed in the
successive second rows for sample sizes n = 15 and 25, while results for the 2SLS estimator are shown in the
successive second row for sample size n = 50.

endogeneity parameter and sample sizes, with smaller RMSE than the OLS and
the 2SLS counterparts for ϕ = 0.8.

Practical Choice of Weights, Jn and τ

We have shown how to compute an optimal estimator for a given choice of
Jn. The theoretical analysis of methods for determining Jn is quite complex and
would justify a separate paper, since it involves a higher order theory. In theory,
the larger is Jn the better in terms of variance, but in practice there is a tradeoff.
Let θ̂ (Jn) be the feasible optimal estimator as computed in the previous section,
and let 
̂opt(Jn) be a consistent estimator of its asymptotic variance. Along the
lines of Politis and Romano (1992), one could choose Jn to be the place where
the standard errors (a scalar function of the covariance matrix) are relatively stable
and do not vary wildly as Jn varies close by. In practice, we have found it useful
to plot the input estimators against their marginal standard errors as an informal
device to select reasonable estimators.
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We now conclude by describing how one would select the set Jn in a given
application with finite sample n. There are a number of informal methods
a practitioner can use. For example, for given τ one could compute the
t-statistic (in the scalar case, otherwise a chi-squared statistic) for each estima-
tor and retain only those estimators with the largest τ such values. Alternatively,
one could choose to retain only those estimators with t-statistic, say, that exceeds
some predetermined level like one. Alternatively, if Gnj is continuously differ-
entiable with respect to θ , one could also use results in Rilstone, Srivastava, and
Ullah (1996); Rilstone and Ullah (2005) to estimate Jn and the weights by means
of minimizing an estimate of the proposed estimator’s mean square error (see e.g.,
Schafgans and Zinde-Walsh, 2010). The theoretical justification of the latter is left
for future research.

8. CONCLUSIONS AND FINAL REMARKS

This paper provides the asymptotic theory of an estimator obtained by taking lin-
ear combinations of

√
n-consistent estimators, where the cardinality of the linear

combination increases with sample size. The principle of averaging estimators is
very general and has found applications in nonparametric estimation (i.e., Lin-
ton and Nielsen, 1995) and semiparametric estimation (i.e., Härdle and Stoker,
1989), where averaging can improve convergence rates. In random coefficient
panel data models, estimation of average values usually proceeds in this way
by averagingindividual specific or time specific based estimators (i.e., Swamy,
1970). In the parametric case, the main purpose is to improve efficiency. The tra-
ditional approach of combining moment conditions before estimation can achieve
this purpose, but the approach of averaging estimators can achieve broadly the
same benefits. There are two main advantages of this latter approach. First, it has
some additional benefits in graphical diagnostics since one has a ‘distribution’ of
estimators of the same quantity and one can view the range of values that the es-
timators take, which is more interpretable than the corresponding set of moment
conditions. Second, it is robust in a certain sense to parameter heterogeneity. In
that case, our average estimator can be interpreted as an estimator of the average
parameter, while the average the moment condition procedure would generally
be estimating some nonlinear functional of the parameter distribution (see e.g.,
Pesaran, 2006). The ‘estimator selection’ issue is important in cases where infor-
mation about identification strength is limited, and in that case without some
effective screening method our method is less robust than the corresponding
GMM estimator. We do not wish to oversell our approach, but just to point out it
is a feasible alternative with some modest benefits and costs.

NOTES

1. Also related is work by Donald, Imbens, and Newey (2003) who transform conditional mo-
ment restriction into increasing number of unconditional moment equations, and obtain efficiency and
consistent asymptotic variance estimation under τ2/n → 0 instead.
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2. For this particular linear model, a closely related paper to ours is Lee and Zhou (2011).
3. It may be that the moments of θ̂ j defined in this way do not exist in finite samples (see e.g.,

Phillips, 1983). To avoid this issue, one could divide the instruments into groups with two or more
members, estimate the individual 2SLS within the group, and then average as before.

4. We are grateful to Tom Rothenberg for pointing this out to us.
5. Interpreting 2SLS in various ways has a long history in econometrics; see Rothenberg (1974)

for an early example.
6. Monte Carlo results based on other bases such as Hermite, Laguerre, or Legendre polynomials

and different weighting schemes can be found in the working paper version of this paper (i.e., Chen,
Jacho-Chávez, and Linton, 2009).

7. Although alternative methods that rely on choosing a subset of instruments are readily available,
see e.g., Donald and Newey (2001) and Kuersteiner and Okui (2010).
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APPENDIX A: Proofs

We start with a result that is useful to aid the discussion of Assumption A*4.

LEMMA A.1. Let Uji be a triangular array of random variables, i = 1, . . . ,n,
j = 1, . . . ,τ(n), i.i.d. across i for each j with E(Uji ) = 0 and E[|Uji |κ ] = cj < ∞ for

https://doi.org/10.1017/S0266466614000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000851


64 XIAOHONG CHEN ET AL.

some κ ≥ 2. Let s2
nj = ∑n

i=1 var(Uji )= nσ 2
j , where σ 2

j → ∞ as j → ∞, and let

an =
(

max
1≤ j≤τ (n)σ

2
j

)
logτ(n)+

⎛⎝τ (n)∑
j=1

c2
j

σ 2κ
j

⎞⎠1/κ

. (A.1)

Then we have for δn = an�n for any increasing sequence �n that

max
1≤ j≤τ (n)

∣∣∣∣∣∣ 1√
n

n∑
i=1

Uji

∣∣∣∣∣∣ = op(δn).

For example, if we take κ = 2, then an = (max1≤ j≤τ (n) σ 2
j ) logτ(n) + √

τ(n). One

application of this lemma is when n−1/2 ∑n
i=1 Uji is the leading term of the estimator

θ̂j , in which case, σ 2
j would be �−1

j (under homoskedasticity) as defined in (4.4) below.

Therefore, the corresponding an is of order �−1
τ (n) logτ(n)+√

τ(n). Provided τ(n) does

not increase too rapidly, this is less than n1/4 as would be required by Assumption A*4.
Furthermore, it implies that max1≤ j≤τ (n)

∥∥θ̂j − θ0
∥∥ goes to zero no slower in probability

than
(
�−1
τ (n) logτ(n)+√

τ(n)
)
/
√

n.

Proof of Lemma A.1. We show that

Pr

⎡⎣ max
1≤ j≤τ (n)

∣∣∣∣∣∣
n∑

i=1

Uji

∣∣∣∣∣∣ ≥ λn

⎤⎦ → 0

for any λn = δn
√

n. For an array χnj → ∞ as n → ∞ for each j , write

Uji = Uji 1(|Uji | ≤ χnj )+Uji 1(|Uji |> χnj )

= Ũj i + ˜̃U ji .

We shall assume for simplicity that Uji is symmetric about zero so that E(Ũj i )= 0. There-
fore, Ũj i are i.i.d. for each j with mean zero and are bounded from above by χnj . By the
Bonferroni and Bernstein inequalities

Pr

⎡⎣ max
1≤ j≤τ (n)

∣∣∣∣∣∣
n∑

i=1

Ũj i

∣∣∣∣∣∣ ≥ λn

⎤⎦ ≤
τ (n)∑
j=1

Pr

⎡⎣∣∣∣∣∣∣
n∑

i=1

Ũj i

∣∣∣∣∣∣ ≥ λn

⎤⎦

≤
τ (n)∑
j=1

exp

(
−λ2

n

s2
nj +2λnχnj

)
. (A.2)

We shall choose λn and χnj below to make this term vanish.
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By the Bonferroni and Markov inequalities

Pr

⎡⎣ max
1≤ j≤τ (n)

∣∣∣∣∣∣
n∑

i=1

˜̃U ji

∣∣∣∣∣∣ ≥ λn

⎤⎦ ≤
τ (n)∑
j=1

Pr

⎡⎣∣∣∣∣∣∣
n∑

i=1

˜̃U ji

∣∣∣∣∣∣ ≥ λn

⎤⎦

≤
τ (n)∑
j=1

E
(∣∣∣∑n

i=1
˜̃U ji

∣∣∣κ)
λκn

≤
τ (n)∑
j=1

nκ E
(∣∣Uji

∣∣κ)Pr
[|Uji |> χnj

]
λκn

≤
τ (n)∑
j=1

nκ [E
(∣∣Uji

∣∣κ)]2
λκnχ

κ
nj

= o(1)

provided
∑τ (n)

j=1 nκχ−κ
nj λ

−κ
n c2

j → 0.

Letting λn = δn
√

n and χnj = σ 2
j
√

n we need to show that:

τ (n)∑
j=1

exp

(
−δn
σ 2

j

)
→ 0 and

1

δκn

τ (n)∑
j=1

c2
j

σ 2κ
j

→ 0.

For the first condition it suffices that

δn

max1≤ j≤τ (n) σ 2
j logτ(n)

→ ∞.

For the second condition it certainly suffices if

δn(∑τ (n)
j=1 c2

j σ
−2κ
j

)1/κ
→ ∞. n

Proof of Theorem 1 (i). By the triangle inequality∥∥θ̂−θ0
∥∥ ≤�

∑
j∈Jn/J ∗

n

∥∥Wnj
∥∥+

∑
j∈J ∗

n

∥∥Wnj
∥∥ max

j∈J ∗
n

∥∥θ̂j −θ0
∥∥ , (A.3)

where � is the finite radius of �. Therefore, it suffices that (4.2) holds, that θ̂j are uni-
formly consistent over the class J ∗

n , and that
∑

j∈Jn/J ∗
n

∥∥Wnj
∥∥ → 0, which is condi-

tion (4.3).
From A2, if maxj∈J ∗

n

∥∥θ̂j −θ0
∥∥> δ, then

∥∥Gj (θ̂j )
∥∥ ≥ εn (δ) for some j . Consequently

Pr

(
max
j∈J ∗

n

||̂θj −θ0 ||> δ
)

≤ Pr

(
max
j∈J ∗

n

‖Gj (θ̂j )‖ ≥ εn (δ)
)

, (A.4)
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and it is sufficient to prove that for the given εn (δ) > 0, the latter probability goes to zero.
But

max
j∈J ∗

n

‖Gj (θ̂j )‖ ≤ max
j∈J ∗

n

‖Gj (θ̂j )− Gnj (θ̂j )‖+ max
j∈J ∗

n

‖Gnj (θ̂j )‖ by the Triangle Inequality,

≤ max
j∈J ∗

n

sup
θ∈�

‖Gj (θ)− Gnj (θ)‖+ max
j∈J ∗

n

‖Gnj (θ̂j )‖ by set inclusion,

= op(ε2n)+ max
j∈J ∗

n

‖Gnj (θ̂j )‖ by A4,

≤ op(ε2n)+ max
j∈J ∗

n

(
‖Gnj (θ̂j )‖− inf

θ∈�‖Gnj (θ)‖
)

+ max
j∈J ∗

n

inf
θ∈�‖Gnj (θ)‖,

≤ op(ε2n)+ max
j∈J ∗

n

(
‖Gnj (θ̂j )‖− inf

θ∈�‖Gnj (θ)‖
)

+ max
j∈J ∗

n

‖Gnj (θ0)‖,

= op(ε2n)+op(ε1n)= op(εn (δ))

by A3, A4, and the definition of θ0. We conclude that maxj∈J ∗
n

||̂θj − θ0|| = op(1)
by A1. n

Proof of Theorem 1 (ii). By (A.3) and condition A*1, we need only consider the set
J ∗

n . Consistency Theorem 1 (i) implies that for every ε > 0 there exists a sequence {δn }
with δn → 0, and an N such that for all n ≥ N , Pr{maxj∈J ∗

n
||̂θj −θ0 ||> δn } ≤ ε. Using

the same proof as that of Theorem 1(i), we have under our stronger Assumption A*4 that
with probability approaching 1 (wpa1)

max
j∈J ∗

n

‖Gj (θ̂j )‖ ≤ max
j∈J ∗

n

‖Gj (θ̂j )− Gnj (θ̂j )‖+ max
j∈J ∗

n

‖Gnj (θ̂j )‖

≤ max
j∈J ∗

n

sup
‖θ−θ0‖≤δn

‖Gj (θ)− Gnj (θ)‖+ max
j∈J ∗

n

‖Gnj (θ̂j )‖

= op(εnn−1/4)+ max
j∈J ∗

n

‖Gnj (θ̂j )‖ by A*4,

= op(εnn−1/4) by A*3, A*4, and the definition of θ0.

Therefore, by A*2

max
j∈J ∗

n

||̂θj −θ0 || ≤ 1

minj∈Jn γj
max
j∈J ∗

n

‖Gj (θ̂j )‖ = o(n−1/4).

Hence

max
j∈J ∗

n

||̂θj −θ0 || = op(n
−1/4),

which implies that

||̂θ−θ0 || ≤�
∑

j∈Jn/J ∗
n

∥∥Wnj
∥∥+

∑
j∈J ∗

n

∥∥Wnj
∥∥× max

j∈J ∗
n

||̂θj −θ0 || = op(n
−1/4)

as required, since
∑

j∈J ∗
n

∥∥Wnj
∥∥ is uniformly bounded by A1. n
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Proof of Theorem 2. By (A.3) and condition (4.7), we need only consider the set J ∗
n .

Let

Lnj (θ)= Gnj (θ0)+�j (θ−θ0)
for each j = 1,2, . . . Then define θ∗

j as the minimizer of ‖Lnj (θ)‖ over θ ∈ Rp. (Note

that θ∗
j minimizes over Rp , and not over �. We ignore this difference below because θ∗

j
will eventually be in � w.p.1.) The solution satisfies
√

n(θ∗
j −θ0)= −�−1

j
√

nGnj (θ0) (A.5)

for each j. Therefore,
√

n
∑

j∈J ∗
n

Wnj (θ
∗
j −θ0) = √

n
∑

j∈J ∗
n

W 0
nj (θ

∗
j −θ0)+

√
n

∑
j∈J ∗

n

(Wnj − W 0
nj )(θ

∗
j −θ0)

=
n∑

i=1

Tin + Rn ,

where Rn = √
n
∑

j∈J ∗
n
(Wnj −W 0

nj )(θ
∗
j −θ0) and Tin = −1√

n

∑
j∈J ∗

n
W 0

nj �
−1
j gj (Zi ,θ0).

The result follows after we establish:

(i)
∑n

i=1 c�Tin =⇒ N(0,c�
c) for any c ∈ Rp with ||c|| = 1;

(ii) The remainder term Rn = op(1);

(iii)
√

n
∑

j∈J ∗
n

Wnj (θ
∗
j − θ̂j ) = op(1).

For (i), the triangular array of random variables c�Tin is mean zero and independentacross
i for each n. By B5(a) we have:

n∑
i=1

E[c�Tin ]2 = E

⎡⎢⎣
⎛⎝ ∑

j∈J ∗
n

c�W 0
nj�

−1
j gj (Zi ,θ0)

⎞⎠2
⎤⎥⎦

=
∑

j∈J ∗
n

∑
l∈J ∗

n

c�W 0
nj �

−1
j E

[
gj (Zi ,θ0)gl (Zi ,θ0)

�]
�−1�

l W 0�
nl c

→ c�
c .

Similarly, by B5(b) we have for some κ > 0,

n∑
i=1

E|c�Tin |2+κ → 0.

Hence we obtain (i) by applying the Liapunov’s triangular array central limit theorem.
For (ii), notice that Assumption B3(a) and (A.5) imply that maxj∈J ∗

n
‖�j

√
n(θ∗

j −
θ0)‖ = Op (1). This together with Assumption B4(a) implies (ii) because∥∥∥∥∥∥√

n
∑

j∈J ∗
n

(Wnj − W 0
nj )(θ

∗
j −θ0)

∥∥∥∥∥∥ ≤ √
n max

j∈J ∗
n

∥∥∥�j (θ
∗
j −θ0)

∥∥∥ ∑
j∈J ∗

n

∥∥∥(Wnj − W 0
nj )�

−1
j

∥∥∥
= Op(1)×op(1).
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For (iii), by the n1/4-consistency result, there exists a positive sequence ηn → 0 such
that Pr[n1/4 ||̂θ−θ0 ||> ηn ] → 0. For each j we have

Gnj (θ)= Gnj (θ0)+ Gj (θ)+ Gnj (θ)− Gj (θ)− Gnj (θ0)

= Lnj (θ)+ O(||θ−θ0 ||2)+ [Gnj (θ)− Gj (θ)]− Gnj (θ0) by B2.

Therefore, for the above ηn and constants a and C we have

max
j∈J ∗

n

sup
||θ−θ0||≤aηn/n1/4

√
n‖Gnj (θ)− Lnj (θ)‖

≤ C ×η2
na

2 + max
j∈J ∗

n

sup
||θ−θ0||≤aηn/n1/4

√
n‖[Gnj (θ)−Gj (θ)]− Gnj (θ0)‖

= Op
(
η2

n
)+op(1)= op(1) by B3(b).

Therefore,

max
j∈J ∗

n

‖√
n[Lnj (θ

∗
j )− Gnj (θ

∗
j )]‖ = op(1), and max

j∈J ∗
n

‖√
n[Lnj (θ̂j )− Gnj (θ̂j )]‖ = op(1)

because θ∗
j is

√
n-consistent and θ̂j is o(n−1/4)-consistent. It now follows from the defini-

tion of θ∗
j and Assumption B1 and the triangular inequality that

max
j∈J ∗

n

∣∣∣√n‖Lnj (θ
∗
j )‖−√

n‖Lnj (θ̂j )‖
∣∣∣ = op(1). (A.6)

This implies that maxj∈J ∗
n

‖�j
√

n(θ∗
j − θ̂j )‖ = op(1), because of the properties of least

squares residuals. Then we have

√
n

∑
j∈J ∗

n

Wnj (θ
∗
j − θ̂j )≤

∑
j∈J ∗

n

∥∥∥Wnj�
−1
j

∥∥∥× max
j∈J ∗

n

‖�j
√

n(θ∗
j − θ̂j )‖

≤ Op(1)×op(1)= op(1),

where the last inequality is due to Assumption B4(a) and (b) since∑
j∈J ∗

n

∥∥∥Wnj �
−1
j

∥∥∥ ≤
∑

j∈J ∗
n

∥∥∥W 0
nj�

−1
j

∥∥∥+
∑

j∈J ∗
n

∥∥∥(Wnj − W 0
nj )�

−1
j

∥∥∥
= O(1)+op(1)= Op (1),

the result (iii) follows. n

Proof of Proposition 1. On the one hand, by the results in Hansen (1982), the optimal
GMM (oiv) estimator is asymptotically efficient among all regular

√
n-asymptotic normal

estimators for the moment restrictions (5.2), hence
τoiv ≤
τopt in the positive semidefinite
matrix sense. On the other hand, we notice that the oiv (optimal GMM) estimator has the
expansion
√

n(θ̃τoiv −θ0)= −(�τ��−1
τ �τ )−1�τ��−1

τ

√
nGτn(θ0)+op(1),
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which can be rewritten as

√
n(θ̃τoiv −θ0)= −

⎛⎝ τ∑
j=1

αj�
�
j

⎞⎠−1
τ∑

j=1

αj
√

nGnj (θ0)+op(1), (A.7)

where �τ��−1
τ = (α1, . . . ,ατ ) with αj ∈ R p×p, and �τ = (��

1 , . . . ,�
�
τ )

� with �j =
E[Aj (X)D0(X)

�], and Gnj (θ) = 1
n
∑n

i=1 Aj (Xi )ρ(Zi ,θ) for j = 1, . . . ,τ . That is, the
optimal GMM (oiv) estimator θ̃ τoiv belongs to the class of linear combinations of the θ̂j ,
j = 1, . . . ,τ with

θ̃ τoiv =
τ∑

j=1

W oiv
0 j θ̂j +op(n

−1/2),

and

W oiv
0 j = −

⎛⎝ τ∑
j=1

αj�
�
j

⎞⎠−1

αj�
�
j for j = 1, . . . ,τ .

However, by the results in Rothenberg (1973), θ̂ τopt = ∑τ
j=1 W opt

0 j θ̂j is asymptotically effi-

cient among the regular class of estimators of the form
∑τ

j=1 W0 j θ̂j with
∑τ

j=1 W0 j = Ip ,
hence 
τopt ≤ 
τoiv in the positive semidefinite matrix sense. Therefore 
τopt = 
τoiv
in (5.3). n

Proof of Theorem 3. We have∑
j∈Jn

||(Ŵ opt
0 j − W

opt
0 j )�

−1
j || ≤ τ(n)1+ρ1 max

j∈Jn

||(Ŵ opt
0 j − W

opt
0 j )||,

where

Ŵ opt
0 j − W opt

0 j =
[
(iτ ⊗ Ip )

�V̂ −1(iτ ⊗ Ip )
]−1

B̂j −
[
(iτ ⊗ Ip )

�V −1(iτ ⊗ Ip )
]−1

Bj

=
[
(iτ ⊗ Ip )

�V −1(iτ ⊗ Ip )
]−1 [

B̂j − Bj
]

+
{[
(iτ ⊗ Ip)

�V̂ −1(iτ ⊗ Ip)
]−1 −

[
(iτ ⊗ Ip )

�V −1(iτ ⊗ Ip )
]−1

}
Bj

+
{[
(iτ ⊗ Ip)

�V̂ −1(iτ ⊗ Ip)
]−1−

[
(iτ ⊗ Ip)

�V −1(iτ ⊗ Ip)
]−1

}[
B̂j − Bj

]
.

Therefore, it suffices to prove that ||V̂ −1 − V −1|| = op(n−γ ), for some γ > 0. Since the
preliminary estimator is

√
n-consistent we can restrict our attention to the set {θ : ‖θ −

θ0‖ ≤ δn√
n} for some sequence δn → 0. It follows that

max
j,l∈Jn

∥∥V̂jl − Vjl
∥∥ ≤

(
max

j,l∈Jn

∥∥�̂jl −�jl
∥∥+ max

j∈Jn

∥∥�̂j −�j
∥∥)(

min
j∈Jn

λmin(�j )

)−2

= Op

(
n−ητ2ρ1

)
by D3.

https://doi.org/10.1017/S0266466614000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000851


70 XIAOHONG CHEN ET AL.

We use the following standard matrix results. Suppose that A is a nonsingular m by m
matrix, and E is an arbitrary matrix of the same dimensions. If λmax(A−1E)≡ ρ < 1, then
A+ E is nonsingular and

λmax

(
(A+ E)−1 − A−1

)
≤ λmax(E)∗λ2

max (A
−1)

1−ρ .

We take A = V and E = V̂ − V . We further use the relation max |ai, j | ≤ λmax(A) ≤
m max |ai, j | for any square m by m matrix A.

It then follows that∥∥∥V̂ −1 − V −1
∥∥∥ ≤ τ(n)λmax (V̂

−1 − V −1)

≤ τ(n)
λmax (V̂ − V )λmax

(
V −1

)
1−λmax(V −1(V̂ − V ))

≤ τ2(n) max
j,l∈Jn

∥∥V̂jl − Vjl
∥∥× 1

λmin(V )

× 1

1−τλ−1
min(V )maxj,l∈Jn

∥∥V̂jl − Vjl
∥∥

= op(n
−ητ2+ρ+2ρ1 ).

Provided (2+ρ+2ρ1)c< η this will be op(1). n
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