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NON-DEGENERATE REAL HYPERSURFACES IN COMPLEX
MANIFOLDS ADMITTING LARGE GROUPS OF
PSEUDO-CONFORMAL TRANSFORMATIONS. I

KEIZO YAMAGUCHI

Introduction

Let S (resp. S’) be a (real) hypersurface (i.e. a real analytic sub-
manifold of codimension 1) of an n-dimensional complex manifold M
(resp. M’). A homeomorphism f of S onto S’ is called a pseudo-con-
formal homeomorphism if it can be extended to a holomorphic homeo-
morphism of a neighborhood of S in M onto a neighborhood of S’ in M.
In case such an f exists, we say that S and S’ are pseudo-conformally
equivalent. A hypersurface S is called non-degenerate (index ) if its
Levi-form is non-degenerate (and its index is equal to 7) at each point
of S.

In his paper [6], N. Tanaka has shown that if a hypersurface S is
connected and non-degenerate at a point, then the group A(S) of all
pseudo-conformal transformations of S becomes a Lie transformation
group of S with dim. A(S) < »* + 2n.

The purpose of this paper is to determine, under pseudo-conformal
equivalence, non-degenerate hypersurfaces S for which the groups A(S)
have either the largest dimension n* + 2n or the second largest dimension.

Our main results are stated as follows;

THEOREM 7.2. Let M be a complex manifold of dimension n. Let
S be a connected mon-degenerate (index r) homogeneous hypersurface

(0 <r=s [n ; 1]) Then we have the following classification table:

Q, = {(zo, oo, 20) € PYC) | —v =122,
1

=1 t=7+
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the case of the largest the case of the second largest
dimension dimension
(n,r) dim. A(S) S dim. A(S) S
n=3&r=1 15(=n? 4 2n) @ 11(=n?+2) Q1*(1)
n=5& r=2 35(=n? + 2n) Q. 26(=n?+1) Q2*(2) or Qo*
otherwise n? 4 2n Q- nt+1 Q"

Q;k = {(Zo’ ""zn)eQr]zo:\: 0} ’
QF1 = {(zo, . ‘»zs)te”zo' + |2, — AR O} ’
Q;k(z) = {(zo’ "°,z5)€Q2”z0] + |z1 - z4| + ,zz - zs] X 0} ’

where P(C) is the complex projective space of dimension n with its
homogeneous coordinate (zy, -+, 2y,).

This is a partial generalization of the results of E. Cartan [2] in
the case n = 2.

THEOREM 7.4. Let M be a complex manifold of dimension n. Let
S be a connected hypersurface of M which is non-degenerate of index
r at a point of S. If dim. A(S) = n? + 2n, then S is pseudo-conformally
equivalent to Q,.

Now we will describe the method of proving our theorems. Let S
be a non-degenerate (index 7) hypersurface of a complex manifold, and
let A(S) be the group of all pseudo-conformal transformations of S and
a(S) be its Lie algebra. Then according to N. Tanaka [6], [7] we can
associate with S a principal fibre bundle P(S, G'(r)) together with an in-
finitesimal structure o on it, which is a Cartan connection of type
(G(r), G'(1)), the so-called normal pseudo-conformal connection. Here G(r)
is the group of all projective transformations leaving @, invariant and
G'(r) is the isotropy subgroup of it at a point o of Q, (cf. I). Let g(»)
be the Lie algebra of G(r). If we fix a point p, of S, then the connec-
tion form o induces an injective linear map of a(S) (identified with the
Lie algebra of right invariant vector fields of P leaving the Cartan
connection invariant) into the graded Lie algebra g(r) = > i _,g:(?). So
we can induce a filtration of o(S) at p, via the map w. With respect
to this filtration a(S) = § becomes a filtered Lie algebra. Moreover it
is seen that the associated graded Lie algebra §) of § becomes a graded
subalgebra of g(r) (cf. II). So under the dimension hypothesis of A(S)
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and the homogeneity assumption, we can determine explicitly the pos-
sibilities of §. In fact we determine the graded subalgebras of g(r) of
the minimum codimension satisfying a certain (homogeneity) condition
(cf. IV). Moreover under the dimension hypothesis of A(S) (more pre-
cisely if f) coincides with one of the graded subalgebras of g(r) obtained
in IV) we will see that S is flat, that is, the curvature form of the
connection vanishes identically and that a(S) is isomorphic with § (cf V).
Conversely let g be one of the graded subalgebras of g(r) obtained in IV.
Then we can construct a model space @ corresponding to g as follows;
let G be the analytic subgroup of G(r) corresponding to g. @ is defined
as the orbit of G passing through oec@,. Then @ is a connected non-
degenerate (index r) homogeneous flat hypersurface of P*(C) for which
G is the identity component of A(Q) (cf. VI). On the other hand, the
bundle A(S)(S, 4,,(S)) can be regarded as a subbundle of P(S, G'(r)), if
we assume that S is homogeneous. Moreover the structure equation of
the connection determines the Maurer-Cartan equation of A(S). From
these facts we see that, in order to find a pseudo-conformal homeomor-
phism between two homogeneous hypersurfaces S and S’, we have only
to find a group isomorphism between A(S) and A(S’) which satisfies
certain additional conditions (c¢f. III). So under the dimension hypothesis
we compare A°(S) with the corresponding G satisfying g = a(S). In this
way we see that S is pseudo-conformally equivalent to the corresponding
Q (cf. VII).

The author is grateful to Prof. S. Kaneyuki who kindly read through
the manuscript, and he is also grateful to Prof. N. Tanaka and Prof.
H. Omoto for their constant encouragement and valuable advices during
the preparation of this paper.

Preliminary remarks.

Throughout this paper we always assume the differentiability of
class C°. We use the notations and terminology in S. Kobayashi-K.
Nomizu [5] without special references (e.g. the differential of a mapping,
fundamental vector fields, homomorphisms of fibre bundles).

Let I be a hermitian matrix of degree n. We denote by U() the
unitary group defined by I; U(l) = {s € GL(n,C)|%ls = I}, where ‘c is
the transposed matrix of ¢ and & is the complex conjugate matrix of g.
We denote by u(l) the Lie algebra of U(). Moreover we denote by
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SU(I) the special unitary group defined by I; SU() = {c € U(l)|det e = 1}.
We denote by su(l) the Lie algebra of SU().

I. Pseudo-conformal geometry.

In this section we will review the fundamental concepts of the
pseudo-conformal geometry and state the results of Tanaka, following
N. Tanaka [6], [7], which are necessary for later considerations.

1. The H-structure. Let M and M’ be complex manifolds of dimen-
sion n n=2). Let S (resp. S) be a (real) hypersurface, that is a
(2n — 1)-dimensional real analytic regular submanifold, of M (resp. M’).

DEFINITION 1.1. A homeomorphism f of S onto S’ is called a
pseudo-conformal homeomorphism if it can be extended to a holomorphic
homeomorphism of a neighborhood of S in M onto a neighborhood of
S’ in M.

Let » be an arbitrary point of S We denote by T,(S) the tangent
space to S at p and by J the complex structure of M. We set

D, = T,(8) N J(T,(S)) .

Then D, is a maximal complex vector subspace of T,(M) contained in
T,(S) and dim.; D, =n — 1.

Take the natural base {e;},<;<, 0f the n-dimensional complex number
space C*. We denote by m the (2n — 1)-dimensional real vector subspace
of C* spanned by the 2n — 1 vectors e,, -+, e,, ¥ —1e, -+, 4/ —1e,_, and
by m, the (»n — 1)-dimensional complex vector subspace of C” spanned
by the » — 1 vectors e, ---,¢,_,. We define a closed subgroup H of the
general linear group GL(n,C) by setting

H = {oe GL(n,C)|a(m) = m} .

Each element of H is represented as a matrix of the following form

G )

where a e R\{0}, Be GL(n — 1,C) and Ce C"'. Hence we get
H = {¢ ¢ GL(m)|a(my) = m, and ¢|m, is complex linear}

We denote by L(S) the bundle of linear frames of S. A linear frame
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x at a point p of S is a linear isomorphism of m onto T,(S), where we
identify m with R?*!' through the natural isomorphism. We define a
subbundle F' of L(S) by

F = {x e L(S)|x(my) = Dy, and x|m, is complex linear} ,

where @ is the bundle projection of L(S) onto S. Then F becomes a
principal fibre bundle over S with the structure group H. F(S,H) is
called the pseudo-conformal H-bundle associated with the hypersurface
S (cf. [6]).

Remark 1.2. The “Fundamental theorem” (i.e. Theorem 1 [6]) says
that a C®-homeomorphism f of a hypersurface S onto another hyper-
surface S’ is a pseudo-conformal homeomorphism if and only if f induces
an isomorphism between the corresponding pseudo-conformal H-bundles,
preserving the canonical 1-forms.

2. The Levi-form. Let 6* be the canonical 1-form on F (cf. [5]),

that is,
0F (X)
0¥ (X) = 2~ (w (X)) = emC C* for xeF,Xe T (F),
gx(X)
where 60 ¢ =1,2,.--,n) is the 4-th component of #*. Note that 6F
t=1,---,m — 1) is a C-valued 1-form on F' and 6F is a R-valued 1-form

on F'. We pay attention to ¥, which characterizes the maximal complex
tangent space D, of T,(S). First we notice

LEMMA 1.3. Let x be an arbitrary point of F, and let X and Y
be tangent vectors at x. Then we have

(i) X)=0 if and only if @ (X)e€ Dy,

() dexX,Y) =0 if @ (X) €Dy and @, (Y) =0.

Lemma 1.3 is easily proved from the definition of F' and the following

R*g* = q-6*  for o = <B C) cH
0 a
0*¥(A*) =0 for A cthe Lie algebra of H

where R, is a right action on F' induced by ¢ e H and A* is the funda-
mental vector field corresponding to A (cf. [5]).
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From Lemma 1.3 we can define a skew-symmetric bilinear mapping
K, of D, X D, into R by

K,(X,Y) = —2do3(X* Y*) p»=aw@),X,YeD,,

where X* (resp. Y*) is any vector at = such that @, (X*) = X (resp.
o (Y*) = Y). One should note that we can also write

Ki(X,Y) = 03,([X*, Y*]) ,

where X* (resp. Y*) is any vector field around = such that 6*(X*) =0
(resp. ¥(Y*) = 0) and @, (X¥) = X (resp. @,(Y}) = Y). Hence from the
integrability condition of the complex structure of the ambient space M
we have

LEMMA 1.4. Let x be an arbitrary point of F. Then
K,(X,Y)=K,(J/X,JY) for X,YeD,,,
where J is the complex structure of M. |
Now Lemma 1.3 and Lemma 1.4 imply

LEMMA 1.5 ([6]). There exist a 1-form B and unique C-valued func-
tions Ly (4, =1,2,---,n— 1) on F such that

n—1

agt + > Lijeik/\g}k-i‘ﬂ/\ﬂf:()(Lw‘l‘flﬁ:o),

i,j=1
where 0% is the complex conjugate 1-form of 6F.

For zcF, we set L(x) = (L;;(x)). Then 4 —1L(x) is a hermitian
matrix of degree n — 1. We call +/—1L(x) the Levi-form at x ¢ F. The
Levi-form at z defines a hermitian inner product of D,,. In fact if
we set;

L(X,Y)=K,(JX,Y) + v=1K,(X,Y) for X,YeD,y ,

then we have easily

L(X, V) =23 y=IL, @)%,

i,7=1

where
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& it
X)=1|- |, 2 (Y) =| - ey .

En—l 77n—1

0 0

Now we will define the notion of a non-degenerate hypersurface and
its index. Let p be a point of S. For x e n~'(p), L, is a hermitian inner
product of D,. Let k(x) (resp. I(x)) be the dimension of a maximal sub-
space on which L, is positive definite (resp. negative definite). We define
an integer valued function A(p) on S by A(p) = minimum of k(x) and I(x).
The integer A(p) is well-defined, that is, A(p) is independent of the choise

of merx'(p) ([6]), and satisfies 0 < i(p) < [“'2‘ 1].

DEFINITION 1.6. Let p be a point of S.

(1) S is called non-degenerate at p if the Levi-form is non-degener-
ate at p.

(2) S is called of index 7 at p if A(p) = 7.

S is called a non-degenerate hypersurface if its Levi-form is non-
degenerate at each point of S. Obviously the index of a non-degenerate
hypersurface S is constant on each connected component of S.

3. Quadrics. Let us fix an integer 7 satisfying 0 < r < [n ; 1].

We will give the model space of non-degenerate (index r) hypersurface
([en.

Let P*(C) be the n-dimensional complex projective space, and let
20 %1y +5 2, D& the system of its homogeneous coordinates. We define
the hermitian matrices I, and I, of degree » — 1 and n + 1 by

0 0 v=1
1,=(‘f' EO ) i,=( 0o I 0)
J=1 0 o

where E, is the unit matrix of degree s.
Let Q, be the quadric of P*(C) defined by I,, that is,

Q, = {(zo, ce20) € PYC) | —V =122,
r n-1
- ;zizi ‘+' Z]_ zizi + 4/ "—lznzo = 0} .

i=r+
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It is known [6] that Q, is a connected non-degenerate hypersurface of
P*(C) and its index is 7.

Let P(n,C) be the group of all projective transformations. We con-
sider the subgroup G(r) of P(n,C) which consists of all projective
transformations leaving Q, invariant. G(r) acts effectively and transi-
tively on Q, as a group of pseudo-conformal transformations. Moreover
if we identify P(n,C) with GL(n + 1, C)/GL(1, C), the identity component
of G(r) is UU,)/UQ) = SU(,)/n, where U(1) (resp. n) is the center of

n—1

Ud,) (resp. SU(,)). G(r) is connected in case » and it has

n—1

two connected components in case r = (n: odd integer). We de-

note by G’(r) the isotropy subgroup of G(r) at o = (1,0, --.,0) e Q,.
Now we will explain the graded structure of the Lie algebra g(r)
of G(r). Since the identity component of G(r) is SU(,)/n,g(r) can be
identified with su(l,), that is,
g = {Xegln + 1,0) | XI, + I, X =0, trace X = 0} .
g(r) is isomorphic with 3u(r + 1,7 — 7), and so it is simple. Each ele-
ment X of g(r) can be written explicitly as a matrix of the form

(—n —=1wl, w,

& v w
‘Sn v _1 télr U
where &, w,eR, &, weC* ', veul,), and v — % + trace v =0. For an
10 0
element £, ={0 0 0) of g(n), ad (#) (i.e. ad (E)(X) = [F,, X]) is a
0 0 —1

semi-simple endomorphism of g(r). Its eigenvalues are —2,—1,0,1,
and 2. We set g,(r) = {X e g()|ad (E)X) = kX}. Then g(r) = > ;- _, 6(7),
and g(7) becomes a graded Lie algebra with respect to this decomposi-
tion. More precisely {gi("}.cz satisfies

[9x(1), :(1)] T Gy i(7) ,

where we set g,(r) = {0} for |k| = 3. Moreover if we set
-1
m(r) = kz_z g:(1) ,
2
g = kZJ,gk(r) )
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then we have g(7) = m(r) @ g'(v). m(r) and ¢'(r) are subalgebras of g(r).
It is easily seen that g'(r) coincides with the Lie algebra of G'(r).

Remark 1.7. Let y be the natural homomorphism of GL(n + 1,C)
onto P(n,C) = GL(n + 1,C)/GL(1,C). Setting G = 1" (G(r)), we have

G ={oeGLn + 1,C)|%l,0 = +1,} .

Hence we get

a if rx® - 1 G =vd,),
@ if r=2 - L n: odd integer) ) = UU,) U o U)) ,
where

10 0
00::(0 I* o), I;“:(OE E(;).
0 0 —1 r
In particular the Lie algebra of G is u(d »). Note that the kernel of
1« coincides with the center u(1) of u(f,) and u(l,) = u(l) ® su(,) (direct
sum). Moreover we have y,oAds, (0) = Adg, (@) oxse from yol, =
I, oy (I, is the inner automorphism induced by o). Since we are iden-
tifying g() with 3u(l,), Adg,,, (x(¢)) is identified with the restriction of

Adz, (@) to su,).

4. Pseudo-conformal G'(r)-bundles. First we consider the linear iso-
tropy group of G’'(r). We identify the tangent space at o to Q, =
G /G (r) with m(r) (= g(r)/g'(r)). Moreover we identify m(r) with m via

& 0 0 0 &
ms| »—>($ 0 O)Gm(¢) &LeR E=|: JeC.
$n E" -1 th' 0 gn—l

We consider the linear isotropy representation [; G'(r) — GL(m). Let
G() = UG'(") be the linear isotropy group of G'(r). Then G(r) is a
closed subgroup of H. In fact let z = x(¢) be an element of G’(r), where
o is given by

0 B C

a! —ey/—1a'*CI,B d
g =
0 0 &0,
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(¢= +1l,a,deC, CeC"', ‘BILB=¢l,, +-1ad - ad) =‘CILC).

Then we have

Ue) = (EOB 32}) ’

which is easily seen from the following commutative diagram

o) 2295 )

G'(r)
pl o lp ceG/(r

m(r) ——— m(r)

(p is the projection of g(r) onto m(r) corresponding to g(r) = m(r) @ ¢’(7)).
From this we get easily ([6))

Ger) = {a - (OB g) c Hla“ ‘BI,B = I,} :

Let S be a hypersurface which is non-degenerate of index r at every
point. Then at each point = of F the Levi-form v/ —1L(x) is a hermitian
matrix of signature (v, —r — 1) or (n — r — 1,7), where we say that
a hermitian matrix L is of signature (p, ¢) if L has p negative eigenvalues
and ¢ positive eigenvalues. We set

F={zeF|v=1L@&) =1} .

C) ¢ H (cf. Lemma 4 [6]), F'
a

becomes a principal fibre bundle over S with the structure group G(r).
Obviously F(S,G(r)) is a subbundle of F(S,H) (therefore of L(S)).
F(S, G() is called the pseudo-conformal G(r)-bundle associated with S

(61, [7D.

Then since L(xo) = a ! *BL(x)B for ¢ = ((?

Remark 1.8 (cf. [7]). Let 4,, ---, 8, be the components of the canoni-
cal 1-form § on F. Then from the definition of v —1L(z) (cf. Lemma
1.5), we have

A+ V=15 el AGi=0 modd,,
i=1

where
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1 1<i<r,
& 1 otherwise .

Identifying m with m(r), we write the m(r)-valued 1-form 4 in the form
d=460_, + d_,, where 0, is the g,(r)-component of § (k = —2, —1). Then we
can write

df_, + {0, NG_1=0 modd_,,
where [, ] is the bracket operation of m(r).

5. Tanaka’s theorem. Digressing from hypersurfaces we will now
mention about the Cartan connection and its curvature (cf. [4]).

Let M be a manifold of dimension n. Let G be a Lie group, and
G’ be a closed subgroup of G with dim. G/G’ =n. We denote by g,q’
the Lie algebras of G and G’ respectively.

DEFINITION 1.9. Let M,G and G’ be as above. (P,w) is called a
Cartan connection of type (G, G’) over M if P and o satisfy the following
(1) P is a principal fibre bundle over M with the structure group
G.
(2) o is a g-valued 1-form on P satisfying the following conditions.
(@) Rfo = Ad(¢ Vo for ae ¢,
b)) wld® =A for Aecyg’,
where A* is the fundamental vector field corresponding to A.
() o(X) =0 implies X =0.

From (c) o defines an absolute parallelism on P. Hence for Ueg,
we can define a vector field U* on P by U¥* = o;(U), 2e¢P. For Aeyg
it is obvious from (b) that A* above coincides with the fundamental
vector field corresponding to A.

The curvature form Q2 of a Cartan connection (P, w) is defined by

Q=do+ o N o] .

DEFINITION 1.10. Let S be a non-degenerate (index ) hypersurface,
and let F(S, G(r)) be the corresponding G(r)-bundle over S. A triplet
(P, », 1) is called a pseudo-conformal connection over S if P, w and [ satisfy
the following

(1) (P,w) is a Cartan connection of type (G(r), G'(r)) over S.

(2) 1 is a bundle homomorphism of P(S, G'(r)) onto F(S, G(r)) cor-
responding to !; G’'(r) — G(r), which preserves the base space and satisfies
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I*§ = 9, where § is the canonical 1-form on F and 6 is the m(r)-com-
ponent of w.

Let 2 be the curvature form of a pseudo-conformal connection
(P,w,). Let B be the Killing form of g(#). We have B(g(),g.,(r)) =0
if £+ 1x0. Moreover the bilinear mapping g.(r) X g_x(1)3(X,Y) —
B(X,Y) e R gives a duality between g.(r) and g_,(r). Then the “Ricei”
curvature 2%, which is a g(r)-valued 1-form on P, is defined by

—~1

QFX) = 27 20 Tu®, 2.((ui**, X)1 XeT.(P),
k=-2 1
where {uf}; is a base of gz(r) and {u;*}, is the dual base of {uf},.
Now we state the results of Tanaka.

THEOREM A [7]. Let M and M’ be complex manifolds of dimension
n. Let S (resp. S’) be a non-degenerate (index r) hypersurface of M
(resp. M’). Then there exists a pseudo-conformal connection (P,w,l)
(resp. (P’,o',1)) over S (resp. S, which satisfies

R,=0,=02%*=0 (resp. 2, =2, =02*%=0),

where 2 (resp. 2,) is the g (r)-component of 2 (resp. £2°).

And suppose that f is a pseudo-conformal homeomorphism of S onto
S’.  Then there corresponds a unique bundle isomorphism f of P(S,G'(r))
onto P'(S', G'(r)) which induces the given f on S and satisfies f*o' = o.
Conversely every bundle isomorphism fF of P(S,G'(r)) onto P(S’,G'(r)
satisfying f*o' = o induces a pseudo-conformal homeomorphism of S
onto S’.

The above P(S, G'(r)), whose existence and uniqueness (up to a iso-
morphism commuting with ) are guaranteed in the theorem, is called
the pseudo-conformal G’(r)-bundle associated with S and (P,w) is called
the normal pseudo-conformal connection.

Let S be a non-degenerate (index ) hypersurface, and let P(S, G'(7))
be the corresponding G/(r)-bundle over S. We now consider the Lie
algebra @(S) of all infinitesimal pseudo-conformal transformations of S.
We set a(P) = {X e ¥(P)|Lyw =0, R, X = X for a e G'(r)}, where X(P) is
the Lie algebra of all vector fields on P and Ly is the Lie differentiation
with respect to X. Then the infinitesimal version of Theorem A reads;

THEOREM A’. Let S be a non-degenerate (index r) hypersurface, and
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let P(S,G'(r)) be the corresponding G'(r)-bundle over S. Let n be the
bundle projection of P onto S. Then =, is a Lie algebra isomorphism
of a(P) onto a(S).
II. Filtration of a(S).
First we will examine the filtration of g(r). For g(r) = > ;- _,gx(7),
we set for each integer !
20 =Y a0 (=-2-1,012),
k=1
Lr) =L _|r) l=-3, L =0010=3).

With respect to this filtration g(r) = Z_,(r) becomes a filtered Lie algebra,
that is, {Z(1)}iez satisfy [L(r), Z(1)] T Ly, (7).

LEMMA 2.1. For aec G'(r), Ad (a) preserves this filtration.

Proof. Recall that the Lie algebra of G'(#) coincides with g¢'(r) =
ZLy(1).
n—1

(1) in case G'(r) is connected (i.e. r ) For Xeg'(r) =

Zy(r), ad(X) preserves the filtration. Hence Ad (exp X) = exp ad (X)
preserves the filtration.

(2) in case G'(r) is not connected (i.e. r=1 _2" 1). G’(r) has two

connected components. But in this case we can find an element 7, =
x(e)) of G'(r), which does not belong to the identity component, such
that Ad (z,) preserves the filtration, e.g.

1 0 0
0'0:(0 I* 0), 1;k=(°E E(;).
0 0 -1 "

(In fact Ad(z,) preserves also the grading of g(r).) Q.E.D.

From now on in this section let S be a non-degenerate (index 7)
hypersurface. And let (P,w,l) be the normal pseudo-conformal connec-
tion over S.

Let us fix an arbitrary point z of P. Since each element of a(P)
is an infinitesimal automorphism of the absolute parallelism defined by
(P,w), it is known (cf. [5; p232 Lemma)]) that the linear map w,: a(P)
5 X — 0,X,) e g(r), is injective.
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LEMMA 2.2. For X,Y e T,(P), we have

Q) 0Xez_ () if and only if =, (X)e D, ,

2 o,r) e L) =g @) if and only if 7,(X) =0,

B 2.X,Y)=01i z,(X) =0 or z, (Y) =0,
where 2 is the curvature form of the connection.

Proof. (1) and (2) follow immediately from I(2) (g_,(r)) = D, and
the following commutative diagram which is a direct consequence of the
equality 1% = 6 (= pw);

T,P) > g(r)

x*l lp .

T (S) < wur)

In fact for X e T,(P) we have
10, (X) = 0,(X) = 5,1, X) = U2) vl X) = () z:X) .

In order to prove (3), we have only to show Q(U*,A*) =0 for Ue
g(r) and A eg(r). First we note that [U*, A*] = [U, A]*. In fact from
R, .U* = (Ad (™) U)*, a e G'(r), we have

[U*, A*] = —L 4 U* = (—L,U)* = [U, A]* .
Therefore, from the structure equation, we get 2(U*, A*) =0. Q.E.D.
We set 4,(P) = {X e a(P) |4, (X) = 0}. Then
LEMMA 2.3. For X,Y ca(P), we have
—0,([X, Y]) = [-0,(X), —0,(¥)] — 22,X,Y) .
In particular if either X or Y belongs to 6.,(P), then we have
—0,([X, Y] = [-0,(X), —0.(Y)] .

Proof. From Lyw =0, we have Xw(Z) = o(IX,Z]) for Zc X(P).
Hence the assertion is clear from the structure equation and Lemma
2.2 (3). Q.E.D.

Let A(S) be the group of all pseudo-conformal transformations of S.
We consider the subset a(S) of a(S) consisting of complete vector fields
in a(S). Then a(S) is a subalgebra of a(S) which is naturally isomorphic
with the Lie algebra of A(S). Moreover a(S) can be regarded as a sub-
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algebra Y of a(P) via n,:a(P) — a(S). In fact § coincides with the sub-
algebra a(P) of a(P) which consists of complete vector fields in a(P).

Now let us fix a point p, of S and choose a point z, of the fibre
z~'(p,) over p,. We set for each integer k&

be =5 N 0 (L) .

Then b, = § (K =< —2) and Y, = {0} (k= 3). Note that the above definition
is independent of the choice of 2z, in z=7'(p,), which is easily seen from
Lemma 2.1 and the equalities R¥w = Ad (¢ Do and R, X = X, ac G'(7),
X eda(P). Hence the above defines a filtration of a(S) at p,, From
Lemma 2.2 and Lemma 2.3 we have

PROPOSITION 2.4. With respect to the above filtration, a(S) becomes
a filtered Lie algebra. In particular (a(S))_, and (a(S)), are given by

(a(S))—l = {X € a(S) l Xpo € Dpo} ’
(a(S))y = {X € a(S) | X, = 0} .

Next we will consider the associated graded Lie algebra f) of the
filtered Lie algebra 9. Setting H; = §,/bs,, for each integer k (note
= {0} for |k| = 3), we define §) by

-~ 2 .
H = > B (vector space direct sum) .
k=-2

The bracket operation of f) is defined in a natural manner. Obviously
we have dim. §) = dim. §.

First observe that there exists an injective linear map v% of §, into
g.(r) which satisfies the following commutative diagram

B —2%0 5 0.(1)

L i
vE
i
where p; is the natural projection of §, onto be = Bi/be., and p, is the

projection of g(r) onto g,(7) corresponding to g(») = > i__,g.(r). We define
an injective linear map v, of b into g(») by setting

— =3 -1 2
Vyy = Voo X Vg X v Xy

LEMMA 2.5. Notations being as above, the linear map v, s an
injective homomorphism of % into g(r).

https://doi.org/10.1017/5S0027763000024752 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024752

70 KEIZO YAMAGUCHI
Hence setting §,, = v,,(§), we see that §, is a graded subalgebra of
g(#) which is isomorphic with § and satisfies dim. ),, = dim. a(S).

Proof of Lemma 2.5. It suffices to show v,([X:, ¥.]) = AKX, v, (¥ )]
for X;,eb, and ¥,eH. Choose X,e¥, (resp. Y;e),) such that X, =
m(Xi) (resp. ¥, = p(¥Y,)). Then

([ Xy Vi) = — 0010, ([ X YD) ©

Set —0,(Xp) = 220 Xy Xiegr) (resp. —o,(Y) = 211, Yy, Y;equ(r).
Then from the definition of v,, and the graded structure of g(r), we have

v X =X, v D=7,
and
plc-(-l([—a)zo(ch)) _wzo(Yl)]) = [Xk, ?l]

(1) in case k=0 or [ = 0. From Lemma 2.3 we have —w,([X4, Y;])
= [—w,(Xs), —0,,(Y)]. Hence we get

v ([ X V1)) = [ X, Vi = [, (X, v, (D]

(2) otherwise. Non-trivial case is when k=1= —1. Form the above
we have

v (X Y D) =p_—0,(X_, YD,
(X0, vV D1 = Dol —0,,(X_0), —w, (Y DD «

In this case we have from Lemma 2.3
—0,([X_, Y ) = [—0,(X_ ), —0,(Y_)] — 202,(X_,Y_) .

But, due to Theorem A, the g_,(r)-component 2_, of £ vanishes identi-
cally. Hence we get v,([X_,, ¥_ ) = [, (X_), v, (¥ D] Q.E.D.

Remark 2.6. Clearly the representation y,, of §) into g(») is dependent
on the choice of 2, in #7'(py). Choose another point z, =z, if Ad(a)
preserves the grading of g(r), we get from R¥*w = Ad (¢ ™Mo

Bzoa = Ad (a_l)Bzo °

Moreover if we define a vector subspace J,, of g(r) by b,, = o,(h), we get
similarly

f)zoa = Ad (a_l)f)zo ’ aeG() .
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Remark 2.7. The discussion in this section can be well applied to
a connected hypersurface S which is non-degenerate of index r at a point;
Let S* be the set of all points of S at which S is non-degenerate
of index r. Obviously S* is an open subset of S. Hence S* is a non-
degenerate (index 7) hypersurface. Let P*(S*, G'(r)) be the corresponding
G’(r)-bundle over S*. We consider the restriction map res of a(S) into
@(S*). Since we are considering, exclusively, real analytic hypersurfaces,
each infinitesimal pseudo-conformal transformation of S is a real analytic
vector field on S. Hence the connectedness of S implies that res; a(S)
— @(S*) is an injective homomorphism. On the other hand (=z*), is an
isomorphism of @(P*) onto a(S*). Hence we can define a subalgebra Y
of a(P*) by h= (@*)z'ores (a(S)). Then § is isomorphic with a(S).
Therefore if we fix a point p, of S*, we can define a filltration of j
(and consequently of a(S)) at p, similarly as in this section.

III. Relations between A(S) (S, 4,,(S)) and P(S, G'(»).

Throughout this section we assume that S is a connected non-
degenerate (index 7) homogeneous (i.e. A(S) acts transitively on S) hyper-
surface. Let (P,w,l) be the normal pseudo-conformal connection over
S. We denote by ¢ the connection-preserving bundle isomorphism of
P(S, G'(r)) induced by o¢c A(S). Then from I. Theorem A, A(S) acts
effectively on P as an automorphism group of the Cartan connection
P, w).

Let us fix a point p,e S and take a point z,€ = '(p,). And we define
t; AWS) — P by ¢,(0) = d(z), 0 € A(S). Then it is known ([4]) that ¢, is
an imbedding of A(S) as a closed submanifold of P.

Let A,(S) be the isotropy subgroup of A(S) at p,eS. Obviously
we have

to(Ap(S)) C 77! (py) .

On the other hand the fibre z~'(p,) of P(S,G'(r)) is diffeomorphic with
G'(r) via a diffeomorphism 7 Of G'(r) onto z7'(p,), where 7,(a) = 2z,
a € G'(r). Therefore the composite map g, = 7;;'o¢, is an imbedding of
A, (S) into G'(r) and p,(A,,(S)) is closed in G'(r). Moreover we have

LEMMA 3.1. The map p,; Ap(S) — G'(r) is an injective homo-
morphism. And p,(A,(S) is a closed subgroup of G'(r). Moreover
(020)e = @57 (6,)es Where e is the unit of A, (S).
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Proof. Suppose p,(¢) = a; (¢ =1,2), that is, ¢;(z) = 2,-a;, then
(010 0)) = 6,-6,(2) = 5,(%p- @) = (2p-a )@, = 2,(a,- ) .

Hence we get p,(0,:0) = a,-0, = p,(0): p,,(6). 0,,(4,,(S)) is closed in G'(r)
since 4,,(S) is a closed subgroup of A(S), ., (A(S)) is a closed submanifold
of P and n7'(p,) is closed in P. In order to prove (p,). = @, (e it
suffices to show w,, = (7,,);', where ¢ is the unit element of G’(#), which
is clear from the definition of the fundamental vector field A* corre-
sponding to A and w(4*) = A. Q.E.D.

Since A(S) acts transitively on S, A(S) is a principal 4,,(S)-bundle
over S = A(S)/A,,(S). Then we have

PROPOSITION 3.2. The imbedding ¢, ; A(S) — P is an injective bundle
homomorphism of A(S)S, A, (S) into P(S,G'(r)) corresponding to p,,;
A, (S) — G'(r), which preserves the base space S.

Hence A(S)(S, A,,(S)) can be regarded as a subbundle of P(S, G'(r))
via ¢,.

Proof of Proposition 3.2. Let r be an element of A4,(S). Let ce
A(S). Then we get eagily the following commutative diagram

A©S) 2> P
R’l lRpao(r), ze Ap(S).
A(S) —> P

[£7%

Therefore ¢,, is a bundle homomorphism corresponding to p,,. Moreover
¢, induces the identity transformation of S, which follows from =z-¢ (o)
= 7-6(2,) = o-7(2) = a(py) for e A(S). Q.E.D.

Now we will consider the relation between the Maurer-Cartan form
on A(S) and the normal pseudo-conformal connection form w on P. First
observe

LEMMA 3.3. Let w be the connection form on P and let 2 be its
curvature form. Then o and Q2 are g(r)-valued left invariant forms
on A(S).

Proof. Let.cec A(S). We denote by L, the left translation of A(S)
by ¢. Then we get easily the following commutative diagram.
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A 25 p
L,i l& for oe A(S) .

A@S) 25 P

Therefore fw is left invariant since ¢*o = w, 0 € A(S). From the struc-
ture equation do + ie A 0] = 2, it is obvious that Q2 is also left
invariant. Q.E.D.

In this section we denote by a(S) the Lie algebra of A(S). Then
we have easily

g0(a(S)) = w,(h) =1, ,

where § = a(P) (cf. II).
In case 2 = 0 we have

PROPOSITION 3.4. Suppose that the curvature form 2 of the normal
pseudo-conformal connection vanishes identically. Then the linear map
tw; a(S) — g(r) is a Lie algebra isomorphism of a(S) into g(r). Hence
b, (= Fo(a(S))) is a subalgebra of g(r) which is isomorphic with ofS).
Moreover if we identify a(S) with b,,fw is the Maurer-Cartan form of
A(S).

Proof. From £ = 0 we get difw + ilFo N o]l = 0. Let A, B < a(S).
Then we have

2difw(A,B) = —dgo([A,B)),

since o is left invariant. Hence we get fw([A, B]) = [(fw(4), Fu(B)].
Q.E.D.
Now we will consider an equivalence of two non-degenerate (index 7)
homogeneous hypersurfaces. Let M and M’ be complex manifolds of
dimension n. Let S (resp. S’) be a connected non-degenerate (index )
homogeneous hypersurface of M (resp. M"). And let (P,w,0) (resp. (P,
o', 1)) be the normal pseudo-conformal connection over S (resp. S). We
denote by A%S) the identity component of A(S), and set 4)(S) = A%S)
N A,,(S). Note that the identity component A%S) acts transitively on S.

PROPOSITION 3.5. Notations being as above, let p,e S and pjeS’.
Suppose that for points, z,ex ' (p,), zocn’~'(p}) suitably chosen, there
exists a group isomorphism ¢ of A'S) onto A'S’) satisfying i), ii);
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D (43,08 = A%(S) ,

i) ¢*ge’ = o .

Then the bundle isomorphism ¢ of A%S) (S,45,(S)) onto AYS)
(8, A%,(S") induces a pseudo-conformal homeomorphism of S onto S'.

Proof. From i) it is obvious that ¢ induces a bundle isomorphism
of A%S)(S, 45,(S)) onto A%S)(S’, A},(S). Since AS)(S, A}(S)) (resp.
AYS)(S, A3,(8)) is a subbundle of P (S, G'(r)) (resp. P'(S’, G'(r))), ¢ in-
duces a bundle isomorphism ¢ of P(S,G'(r)) onto P'(S’,G'(r)) which
satisfies the following commutative diagram

A%(S) 2> AYS)

lz“l llzé .

p 2 p

From ii) we get (¢p*w’ = ¢¥w. Moreover, since ¢ is a bundle isomorphism,
we have ¢*o’ = w. Therefore, from I. Theorem A, ¢ induces a pseudo-
conformal homeomorphism of S onto S’. Q.E.D.

IV. Graded subalgebras of g(r).

First we will go into details about the structure of the graded Lie
algebra g(r) = 2.2 gu(r).

Identifying g(r) with 3u(/,) we represent each element X of g(r) as
a matrix of the following form

& v w

sn ‘V—ltgl'r u

where &,,w, e R, ue C (and % is the complex conjugate of w), & we C* ™},
veul,) and u — % -+ trace v =0. For £eC*!, we define an element
£eg_,(r) and an element £eg,(r) by

0 0 0 0 ——1&I, 0
0 —=1°%I, 0 0 0 0

—u —v—=1'wl, w,
X:( |

Moreover for a € R, we define an element g € g_,(+) and an element a e g7
by
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00 0 00 a
a={0 0 o), a=[0 o of.
a 00 000

For &, weC™ !, we set (&, w) =*%Iw. {,) is an indefinite hermitian
inner product of C*! of type (r,n — r — 1). Then for d ¢ g,(r), W € g,(7),

—u 0 0

§eg.y(r) and X, = ( 0 v O) € gy(r), we have
0 0 u
@.1) [¢,d] = a& e g,(r)
v =-XKw, & 0 0
4.2) [§ w]= ( 0 —v =1 W + w ), 0 ) € go(7)
0 0 V=1, w)
—~————

4.3) [X,, W] = vw — uw € g,(v)
4.9 (@), w,] = & — 1wy, w» — {wy, Wy)) € G(7) .

From the above we easily obtain
LEMMA 4.1.
[g_,(1), g.(M] = g,(v) , [8:(1), 5:(N] = g(r) , [g_,(1), 6:(1)] = go(7) .

Now we will consider a graded subalgebra { = > i__,{; of g(r) which
satisfies

f,=g.01) and f,=g,1).
First we have
LEMMA 4.2. If {, % {0}, then t = g().

Proof. Since dim. g,() =1, we have ¥, = g,(r). Hence from {_, =
g_(1), £_,(r) = g_,(+), and Lemma 4.1 we get { = g(v). Q.E.D.

Therefore from now on we further assume f, = {0}. Let 4, be a
linear isomorphism of C”~! onto g,(r) defined by 5,(8) = &, £ C*~'. Then
we have

LEMMA 4.3. f, is an abelian subalgebra of g(r); 6;*(t) is a complex
isotropic vector subspace of the (indefinite) hermitian space (C*7*, { >).
In particular dim. ¥, = 2s < 2r.

https://doi.org/10.1017/50027763000024752 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024752

76 KEIZO YAMAGUCHI

Proof. Let wef, and §ef_, =g.,(r). Then we have from (4.2) and
4.3)

ad () = [, [, &T] = — /= 1w, wdE — 2/ —IE, wiw e §; .

Moreover from (4.4) we have

ad (0)*(§) = —3(& w)y + <w, )X w, wyetl,.

Since {, > is a non-degenerate hermitian form, we can find & eC*™!
such that (&,w> = —}. Hence from f, = {0}, we have

=
ad (0)(§) = 3w, w) =0 (.e. <w,w) =0) for any wef, .

Moreover we have ad (#)*(§) = v —1lwef,. Therefore 4;'(f) is a complex
vector subspace of C*~*.  On the other hand let w,, w, € é;'(f). Then from

o~ /\—/
{wl + W, = w, + w,etl;,
[wu wz] =« —1(<w2s w1> - <w1, 'w2>) € f2 ’

we get [, @,] = 0 (i.e. {wy, w,y = (W, w,)) and {w, + w,, w; + w,> = 0.
Hence we get {w, w,> = 0. Q.E.D.

Let {e}<i<n—: be the natural base of C"'. Setting w; =¢; + €,_;
t=1,2,-..,8), we consider a complex vector subspace of C*~! spanned
by the s vectors w,, ---,w,. This subspace is an s-dimensional complex
isotropic subspace of the (indefinite) hermitian space (C*', <, >). We
denote by c,(r) its image under §,. Then c¢,(r) is an abelian subalgebra
of g(#) of dimension 2s contained in g, (7).

Now recall the following which is a direct consequence of Witt’s
theorem (cf. [1, p. 121]).

LEMMA B. Let V, and V, be s-dimensional complex isotropic vector
subspaces of the indefinite hermitian space (C*™', <, >). Then there exists
an element ¢ of U(l,) which sends V, onto V,.

Then we have

LEMMA 4.4. Let s be the complex dimension of 6;'(t). Then there
exists 7, € G'(r) such that Ad (z,) preserves the grading of g(r) and satisfies
Ad (z)f, = (7).
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Proof. 6;%(t) and o;%c,(r)) are s-dimensional complex isotropic sub-
spaces of (C*%, {,>). Hence from Lemma B we can find g, € U(I,) such

1 0 0
that ¢,(6;1(f)) = 6;%(cs(1)). Set o] = (0 g, 0), then ¢, belongs to U(,)
0 01
c G(r). Hence 7, = x(d7) is an element of G'(r). In fact 7, belongs to
the analytic subgroup of G’(r) corresponding to the subalgebrg g1 of
g’(r). In particular Ad (r,) preserves the grading of g(#). On the other
hand

Ad (z)w = 3-1\13 for weg(r),

so we can conclude Ad (z)f;, = ¢ (7). Q.E.D.
Next we will consider f,, We define a subalgebra b,(r) of g,(r) by

by(r) = {X e go(r) |ad (X)(cs(1)) C (1)} .
Then we have

LEMMA 4.5. Notations being the same as in Lemma 4.4, we have
(i) Ad (z)f, C b(r) and [g_,(1), cs(1)] C by(7)
(ii) dim. b (r) = dim. go(r) — s(2(n — 1) — 3s).

Proof. (i) is clear from Ad (z)f, = c¢,(v), [f,f,] C t, (4.2) and (4.3).
In order to prove (ii) we first note that g,(#) can be decomposed into the
direct sum of {{E}>r and u(l,), where ({E}>, is the line spanned by

10 0
E,=|0 0 0
00 —1

and u(l,) is identified with the subalgebra of g,(») which consists of
matrices of the form

—4tracev 0 0
0 v 0 with @I, +I,v =0.
0 0 —%tracew
—u 0 0
For X = 0 v 0}eg)(r), we have from (4.3)
0 0 u

—_—
ad (X)() = vw — uw wecr).
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Since 6;7%(c,(r)) is a complex vector subspace of C"!, we have
@ecs('r). Hence X belongs to b,(r) if and only if v(9;(c,(7)) < d;%(cs(1)).
Obviously E, belongs to b,(r). Therefore in order to calculate the dim-
ension of b,(r), we have only to calculate the dimension of a subalgebra
of u(Z,) which consists of all elements leaving the subspace 67(c (7)) in-
variant. A direct computation shows the above equality (ii). Q.E.D.

We set g*(r,8) = g_(r) @ g_,(r) D b,(r) D c(r). In the case s =0, we
write g*(r) instead of g*(r, 0), that is, g*(r) = g_,(r) ® g_,(r) @ g«(r). Then
from the above lemmas we have

PROPOSITION 4.6. Let  be a proper graded subalgebra of g(r) satis-
fying ¥_, = g_,(r) and ¥_, = g_,(r). Then there exists e G'(r) such that
Ad () preserves the grading of g(r) and Ad (o) C g*(r,s), where 2s =
dim. £,(£27).

From this we obtain dim. f < dim. g*(»,8) = n? + 1 — s(2(n — 2) — 3s).
Since s is an integer satisfying 0 < s < r, from the above considerations
we obtain

PROPOSITION 4.7. Let  be a proper graded subalgebra of g(r) satis-
fying t_, =g_,(») and t_, = g_,(r). Then we have

(1) The case n =38 and r=1

We have dim.f < n*+ 2=11. The equality holds if and only if
there exists =€ G'(1) such that Ad () preserves the grading of g(1) and

Ad ) = ¢g*1,1) .

) The case n=5 and r =2
We hove dim.f < n*+ 1=26. The equality holds if and only if
there exists v e G'(2) such that Ad (z) preserves the grading of g(2) and

Ad (o) = g*2,2) or g*Q).

(8) Otherwise
We have dim. ¥ < n®* + 1. The equality holds if and only if there
exists t € G'(r) such that Ad (z) preserves the grading of g(r) and

Ad (D) = g*(r) .

Remark 4.8. Let D(r) be an (n — 2)-dimensional complex vector sub-
space of C"! spanned by the » — 2 vectors w,, e, - - -, and e,_,, where w,
=e + €,_;. We set d'(r) = {feg()|&eDm)}, b7'(r) = {{eg.,(1)|E e D)},
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e(r) = {X e gy() |ad (X)(@*(r) C () i = 1,2}, F(r) = {§ € g_,(r)|& € 6;7(cs(7))}
and b¥(r) = {X e gy(m) |ad (X)(cF () C (1)} (=by(r)). Moreover we set

{Q“(T) =g_,(r) + D7) + e(r) + D'(») + g1,
g**(r, 8) = c¥(r) + b¥() + a.(r) + g,(») .

Then without the homogeneity assumption we have

PROPOSITION 4.9. Let t be a proper graded subalgebra of g(r).
Then we have

(1) The case n =3 and r=1; dim.t <n*+ 2=11. The equality
holds if and only if there exists v € G'(1) such that Ad (z) preserves the
grading of g(1) and

Ad (o)f = g*1,1) or g**(1,1).

2) The case n =5 and r=2; dim.f <n*+ 1 =26. The equality
holds if and only if there exists v e G'(2) such that Ad (c) preserves the
grading of g(2) and

Ad (DF = ¢*%(2,2), g**(2,2), 6%(2), g'(2) , or ¢2).

B) The case n =2 and r = 0; dim. f < n®+ 1, the equality holds
if and only if there exists v € G'(0) such that Ad (z) preserves the grad-
iwng of g(0) and

Ad (@)t =g*(0) or ¢(0).

(4) Otherwise; dim. f < n® + 1. The equality holds if and only if
there exists ¢ e G'(r) such that Ad (z) preserves the grading of g(r) and

Ad () = g*(n), g'(r) or ().

V. Determination of (a(S), a,,(S)).

Throughout this section we assume that S is a connected non-
degenerate (index 7) homogeneous hypersurface. Let (P,w,l) be the
normal pseudo-conformal connection over S. Moreover we naturally
identify the Lie algebra a(S) of A(S) with the Lie algebra of all infini-
tesimal pseudo-conformal transformations of S which generate (global)
1l-parameter groups of pseudo-conformal transformations.

Now let us fix a point p, of S. As in the section II, we introduce
the filtration of a(S) at p, through the connection form . Notations
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being as in the section II, we first consider the associated graded Lie
algebra § of Y.

LEMMA 5.1. Let z,en '(p,). Suppose that A(S) has the largest
dimension n* 4+ 2n, then v, ;) — g(r) is a Lie algebra isomorphism of §
onto g(r).

This lemma is clear from Lemma 2.5 and dim. g(r) = dim. §) (=n?
+ 2n).

Let z be an arbitrary point of n~'(p,)). Since A(S) acts transitively
on S,§, = v,(h) satisfies (§,)_, = g_,(») and (§,)_, = g_,(#). Therefore from
Proposition 4.7 and Remark 2.6 we get

LEMMA 5.2. Suppose that A(S) has the second largest dimension,
then there exists z, e n ' (p,) such that

1) b, =g*1,1) fn=3and r=1,
@ b,=9%2,2 org*@ ifn=>5andr=2,
@) b, =g*( otherwise .

As for §, = w,(§), we have

LEMMA 5.3. Let z,en"'(p,). Suppose that A(S) has the largest
dimension n* + 2n, then —a,;H— g(r) is a linear isomorphism of Y) onto
g(r).

This lemma is also clear from dim. g(r) = dim. }.

LEMMA 5.4. Suppose that A(S) has the second largest dimension,
then there exists z,c x~'(p,) such that

® 5,=g¢*1,1) if n=238and r =1,
@) b, =g*2,2) or g*2 if n=>5and r =2,
3 b, =g*( otherwise,

as vector subspaces of g(r).

In order to prove Lemma 5.4, it suffices to show the following
lemma. (Note that g*(r, s)(0 < s < r) contains E).

1 0 0
LEMMA 5.5. If B, contains E, = (0 0 O) for some point z, of
0 0 —1

n~%(py), then there exists a point z, of = '(p,) such that Y, coincides with
b, as a vector subspace of g(r).
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Proof. Since the filtration of §, is given by (5,), = §, N L,(r) (L:(r)
= > 1., 8(r), we have the following commutative diagram

B ——=> (5,), C g(r)

"

B ——> (B) C ge®)

where p, is the projection of g(r) onto g(r) corresponding to the de-
composition g(r) = >2__,a:(r). From the assumption (§,), contains E,.
Hence there exists F e(},), such that p(E) = E,. Since E belongs to
L) = 330 8x(r), there exist w,eg(r) and ¢, eg,(r) such that E = E, +
W, + £ Now we set A, = @, + 16, Then A, belongs to Z,(r) and
satisfies Ad (exp A)(E) = E,. Moreover a,=exp 4, is an element of
G'(r). Set z, = za;, then from Remark 2.6 we have §),, = Ad (¢pY,,- In
particular §,, contains E,.

~First we will see that §,, coincides with §,,. From the above diagram
we have (5,)r = pi(h,, N () (= 0,1). For Xeh, N L), Ad (a)(X)
= exp ad (4)(X) lies in §,, N Z,(r). This is obvious from 5, = Ad (apY,,
and Lemma 2.1. Moreover, since A,ec Z,(r), we have ad (4)(Z:(r) C
ZLpa(r). Hence we get pr(Ad (a)(X)) = pr(X). Therefore (5,)r = (§,)z-

Next we will see that §,, coincides with f, as a vector subspace of
g(»). First one should note that Lemma 2.3 implies [(8,) ;] C b,, and
that b, contains E,. Let X be an arbitrary element of 1,, and X,
(k= -2, -1,---,2) be the g,(r)-component of X. From [(},), b,,] C b,
and (9,),> E,, we obtain

—X_, + X, = g(ad (F)’X) — ad (E)(X)) e b,
X, + X, = f(ad (E)'(X) — ad (E)*(X)) € b,

—X_; + X, = 3dad (B)(X) — ad (E)*(X)) e b,
X, + X, = 3(dad (E)*(X) — ad (E)'(X)) e, .

Hence we get X_,, X_,,X,,X,€Y,. Therefore X, (k = —2, —1,0,1,2) lies
in Y,, that is, §,, decomposes as follows

b= 35 B, N g:(0) -

In other words, b, is a graded subspace of g(r). Then from the con-
struction of the assoicated graded Lie algebra, we have (5,); = 5,, N gx(?).
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Therefore we obtain b, = §,,. Q.E.D.

Next we will see that the curvature form £2 of the normal pseudo-
conformal connection of S vanishes identically if A(S) has either the
largest dimension n* 4+ 2n or the second largest dimension. First we
will show the following proposition.

1 0 0
PROPOSITION 5.6. If b, contains E, = (O 0 0) for some point
00 -1

2, of 77Dy, then 2, =0 for any zex '(p,).

Proof. The proof is quite analogous to that of IV. Theorem 3.2
of [4]. Recall that ) =a(P) = {XeX(P)|Lyo =0, R, X = X, a e G'(v),
and X is complete} (see II). Since §,, = o,(a(P)), there exists X,e a(P)
such that (X)),, = o (E,) = (F)¥. First we know

LEMMA C (cf. [6; p. 233]). For the curvature form £ = do +
3o A o], we have
@) A*QE* 799)) = —[A, %, 5] + 24, £1*%, »*) + 2%, [4, 7]%)
for &,neg(r), Aeg'(r),
(2) Lx2 =0 and X(QE*,79*) =0 for X ea(P), & peg(.
Applying the above lemma to (X)), = (Ey)}, we obtain
6.1 [Ey, 2,,6%, 78] = Q,([E\, §1*, %) + 2,,(§%, [Ey, 9]*) .

Since 2(U*,A*) =0 for Ueg(r) and Aeg(r) (cf. II. Lemma 2.2), we
have only to show Q(&*,7*) =0 for &,9pem(r) = g_(r) Dg_(r). For the
sake of simplicity we show the above equality in the case &,peg_/(m.
Let 2, (k= —-2,-1,---,2) be the gi(r)-component of 2. From I.
Theorem A, we have £_, =0 and £_, =0. Hence from (5.1) we get

(20.6%, 7*) + 2(29). (%, 7*) = —2(2) + 21 + 2,679 , §,mega(n) .

From this it follows (24),,(6*,9*) =0 (k¥ =0,1,2). Therefore we obtain

2,,=0. For any zen'(p,), there exists aecG'(r) such that z, = za.

Then from Rfe = Ad (¢ ')w, we have 2, = Ad (@)R¥2, = 0. Q.E.D.
From Lemma 5.3, Lemma 5.4 and Proposition 5.6 we get

PROPOSITION 5.7. Let S be a mnon-degenerate homogeneous hyper-
surface. If A(S) has either the largest dimension n® + 2n or the second
largest dimension, then S is flat, that is, the curvature form of the
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normal pseudo-conformal connection vanishes identically.

Hence from Proposition 3.4, 0w is a Lie algebra isomorphism of
a(S) into g(r) for any zeP.
Summarizing the results of this section we obtain.

THEOREM 5.8. Let M be a complex manifold of dimension wn. Let
S be a connected non-degenerate (index r) homogeneous hypersurface of
M. Let p, be an ardbitrary point of S.

1) If dim. A(S) = n* + 2n, then o is a Lie algebra isomorphism
of a(S) onto g(r) for any z,c x~'(p,).

2 If dim. A(S) < n? + 2n, we have the following three cases.

(i) The case n =3 and r=1; We have dim. A(S) < n* + 2 = 11.
The equality holds if and only if there exists z,€ n~'(p,) such that w is
a Lie algebra isomorphism of a(S) onto g*(1,1).

(ii) The case n =5 and r =2; We have dim. A(S) < n* + 1 = 26.
The equality holds if and only if there exists z,czn ' (p,), such that o
18 a Lie algebra isomorphism of a(S) onto g*(2,2) or g*(2).

(iii) Otherwise; We have dim. A(S) < n* + 1. The equality holds
if and only if there exists z,e x~'(p,) such that o is a Lie algebra iso-
morphism of a(S) onto g*(r).

VI. Model spaces.

We congider the analytic subgroups (i.e. connected Lie subgroups)
of G(r) corresponding to g(») and g*(r,8) (0 < s < 7). The identity com-
ponent G°(r) of G(r) corresponds to g(#). We denote by G*(r,s) the
analytic subgroup of G(r) corresponding to g*(r,s). In particular we
set G*(r) = G*(r, 0).

First we will characterize G*(r, s) geometrically. Let y be the natural
homomorphism of U(,) onto G(r) (= U{,)/UA)). We set G*(r,s) =
x~(G*(r,s)). Take the natural base {€}<i<, 0of C**' and set w;, = ¢; +
€n; 1=1,2,.-.,5). We denote by C,(r) the (s 4+ 1)-dimensional complex
vector subspace of C**! gspanned by the (s 4+ 1) vectors w,, w,, - - -, w, and
e,. Then Cy(r) is an (s + 1)-dimensional complex isotropic subspace of
the indefinite hermitian space (C**!,I,).

LEMMA 6.1.

G*(r,s) = {o e UI,) |a(Cy(r)) = C(1} .
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Proof. Since we are identifying a(r) with su(l,), , is identified with
the projection of u(f,) onto 3u(l,) corresponding to the decomposition
w(l,) = u@) @ su(l,), where u(l) is the center of u(f,). For Xeu(l,);

—a —=1wl, w,
X = ( & v w ) Enw,eR, E,weC* Y, veu(l,), we note
& V1%,
Wy =0
g*(r, 8) 3 14(X) if and only if{w e 5;*(c,(7)) ,
v(377(cs(r)) T 674(cs(n) .

On the other hand for (0,7, 2,) € Ci(r) we have
0 —&=Xw, p> + Wpzn
X( p | = vy + 2, W ) .
Hence we have

vy + 2, W € 87(cs(r))
for z,eC, ped;"(c(m) .

X(Cyr) < Cy(r) if and only if{

From the above g*(r, s) 2 y*(X) if and only if X(C,(r)) € C(r). We set
K={ce Ud,)|e(C,(1) = C(m}. From G*(r,s) = G*(r, 8)/UQ), we see
that G*(r, s) is connected. In fact, C*(r, s) is the analytic subgroup of
U(,) corresponding to xz'(@*(r, 8)). Therefore C*(r, s) coincides with the
identity component of K.

In order to prove é*(r, s) = K, we have only to show that K is
connected. For this we take a base {fi}igi<n 0f C**' such that {f;}<i<,
forms a base of C,(#) and with respect to this base the hermitian form
I, is represented as a matrix of the following form

0 Es+l 0
jr = Es+1 0 0}, I¥ = (_Er_s 0 ) .
0 0 I;k 0 En—(r+s+1)

(The existence of such a base is guaranteed by the Witt’s theorem).
Then each ¢ ¢ K is represented as a matrix of the form
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A —1ACC + ‘KI*K) —A'KI*B
0 t4-1 0 ;
0 K B
AeGL(s +1,0), BeUUI¥,'C+C=0.

From this we see that K is homeomorphic with GL(s + 1,C) X U(I¥) X
us+ 1) X Mmn—2s —1,s +1;C), where M(n — 28 — 1, s + 1; C) is the
set of all complex (n — 2s — 1) X (s 4+ 1) matrices. In particular K is
connected. Q.E.D.

Now we congider the orbit of G°(r) or G*(r,s) passing through o of
@, as the model space corresponding to g(r) or g*(s, s).

Since G%r) acts transitively on @,, the model space corresponding
to g(v) is @, itself. We denote by Q¥(s) the model space corresponding
to g*(7,s). In particular we set QF = Q¥(0).

LEMMA 6.2.
Q;k = {(zo’zu e 2n) € QT]ZO ¥ 0} ’
and

Q;k(s) = {(zo; 21yt 0y zn) € QerO' + lzl - zn—ll + e+ le - zﬂ—é‘, x 0}
s=1.

Proof. We consider the orbital decomposition of @, by G*(r,s). We
denote by (,) the indefinite hermitian inner product of C**' defined by
I,. And set (C,(m)* = {LeC"'|(,p) = 0 for pe Cy(r)}. Then from Lemma
6.1 we see that each se GA*(T, s) leaves (C (1)t invariant as well. On
the other hand we have Q, = {{ = (&, - -+, &) | (€, &) = 0} in homogeneous
coordinate. Then using the arguments in the proof of the Witt’s theorem
(1, p. 121]), we easily see that Q, is decomposed by G*(r,s) into the
following three orbits;

RYs) = {r(©) € Q,|C & (C(M)},
RY(s) = {x(D) € Q. |C e C,(M},
Ri(s) = {k(0) € Q,1C e (C(r)H\C(M)}

where r is the projection of C**'\{0} onto P*(C). From o = «(e), e, €
Cyr) and (e, ¢,) = +/—1% 0, we see oc R%(s). Hence we have Q¥(s) =
RY(s). Q.E.D.
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Remark 6.3. From the above we have the orbital decomposition of
Q. by G*(r,s);

Q, = Q¥() U Ri(s) U Ri(s) .

Note that
(1) RYs) = {0} if and only if s = 0, where ¢ = «(e,),
(2 Ris)=@ if and only if s = r.

Hence we have

Q, = Q¥ U {3} U RX(0) (1§fr§[“;1]),

Qo = Q:)k U {6} ’
Q, = QF(r) U Ry(7) .

From Lemma 6.2 we see that QF(s) is a connected open subset of
Q,, hence it is a connected non-degenerate (index r) homogeneous flat
hypersurface of P*(C).

Next we will determine the groups A(Q,), A(Q*(s)) of all pseudo-
conformal transformations of Q,, Q¥(s).

PROPOSITION 6.4 ([6]). A(Q,) = G().

Proof. Let us fix a frame z,¢ F(Q,, é(r)) at 0. For ze G(r) we

set I(r) = r,(@). Then [, is a bundle homomorphism of G(r) (Q,, G'(1))
onto F‘(Q,, G) corresponding to I, G'(r) — G(r), which preserves the
base space Q,. It is known ([6; Theorem 6]) that G(r) (Q,, G'(r)) together
with [, is the pseudo-conformal G’(r)-bundle over Q, and that the Maurer-
Cartan form on G(r) coincides with the normal pseudo-conformal connec-
tion form. Hence we have A(Q,) = G(r) as a Lie transformation group.
Q.E.D.

PROPOSITION 6.5

n—1
2

n—1
2

(1) In the case r x » AQF(8) = G*(r, 9),

(2) In the case r = (n; odd), A(Q*(s)) = G*(r, 8) U 7,(G*(r, 8)),

where t, = y(a,) ;

10 0 0 0 E,
as=(0 I* o), I;":(O I+ 0), 1;**:(0 E)

0 0 -1 E., 0 O
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Proof. Let =, be the projection of G(r) onto Q, (i.e. z.(r) = z(0)
for re¢G(r)). Since Q*(s) is an open subset of @,, the restriction
;Y (Q¥(s) (QF(s), G'() of G(r) (Q,, G () is the pseudo-conformal G'(r)-
bundle over Q*(s) and the restriction o, of the Maurer-Cartan form of
G(r) coincides with the normal pseudo-conformal connection form. Hence
we get A(QF(s)) = {r € G(1) |z(QF(s)) = Q¥(s)}. On the other hand we have
Q¥ ={{ =y -+, € Q,1C & (Co(m)*} and G*(r, 8) = {x(0) € G°(1) | a(C(7))
= Cy{(m}. From these we see eagily A(QF¥(s)) N G°(r) = G*(r,s). In case
-1

G(r) is not connected (i.e. in case r = ), we can find an element

7, € A(Q¥(s)) which does not belong to G°(7). Q.E.D.

From the above we have P(Q¥(s), G'(7) = #;Y(Q¥(s)) (Q*(s), G'(r)) and
AYQ¥(S)) = G*(r,s). Let ecxn;*(0) be the unit element of G(#). Then
the natural inclusion ¢, of G*(r,s) into G(r) induces the imbedding ¢, of
AYQF(s)) into P(Q*(s), G'(r)) in the sense of Proposition 8.2. In fact,
letting z, and p,, be the same as in Proposition 3.2 we may take e as
2, then p, coincides with the natural inclusion of the isotropy subgroup
of G*(r,s) at o into G’/(r). Moreover ¢*w, is just the Maurer-Cartan
form on G*(r,s). In particular we have §j, = g*(r, s), where the notation
b, is the same as in Proposition 3.4.

Now we will investigate in detail the model spaces Q,, @F(s) and
their groups G°(v), G*(r,s) of pseudo-conformal transformations.

First we have

PROPOSITION 6.6. Let us fix an integer v with 0 <7 < [” ; 1]
(m=2). Then P*"(C) D Q,, QFs) (0=s=7) are all simply connected.

Proof. (1) Simply connectedness of Q,; We consider

Q= {2 e PUO| S e + 3] 2k =0}

t=7+1

Then @, and @, are projectively equivalent (hence they are pseudo-
conformally equivalent). One should note that @ is the (2n — 1)-dimen-
sional unit sphere in C* = {(2y, - - -, 2,) € P"(C) |2, % 0}. We will show the
simply connectedness of Q. (r =1). From Proposition 6.4 we know
AQ)) =U@r +1,n —1r)/UQ). Moreover it is easily seen that the
maximal compact subgroup K =U(r +1) x Un —7r) of Ur+1,n— 1)
acts transitively on @, where
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K= {er(r+1,n—r)la=(g‘ ;’) o e Ur + 1), ozeU(n——r)}.

Let o' be a point of Q. with homogeneous coordinate (1,0, --.,0,1).
Then the isotropy subgroup L of K at o’ is given by

L= fo= (G )= (G ) o (0 pvmm)

HeUW, 6,eUn — r — 1)} .

Hence L is isomorphic with UQ) X U(r) X U(n — r — 1). From the above
Q. is homeomorphic with K/L. Then the following homotopy exact
sequence of the principal fibre bundle K(Q,,L) shows the simply con-
nectedness of @, ;

o (L ©) > (K, €) 25 1@, 0) —2> Ly €) .

In fact, the arcwise connectedness of L implies z(L, e) = {0}. Hence we
have only to check that 7, is onto. Since we suppose r = 1, we have

n(K,e) = m(U(r + 1),e) X ;(U(n — 1),) (22D L),
{ﬂl(L, e) = (U, e) X o(U(), &) X 1(U(n — 7 —1),e) (= ZOLZDZ) .

Moreover the generator of =, (U(7),e) C n(L,e) is also the generator of
m(U(r 4+ 1), e) C n,(K,e) and similarly the generator of z(U(n — r — 1, e))
C m(L, e) is also the generator of (U — 7),e) C z(K,e). Hence i, is
onto.

(2) Simply connectedness of Q¥; We identify C* with the set of
points of P*(C) for which 2z, 2 0. Then from QF = Q, N C”, we have

o = {G - mec|ma = H(-3ar+ 3 ar))
=1 i=r+1

where Im z, is the imaginary part of z,. Hence it is clear that QF is
diffeomorphic with R*-!, In particular Q¥ is simply connected.

(3) Simply connectedness of Q¥(s) 1 <s=<7); From Lemma 6.2
we have the orbital decomposition of @, by G*(r,3); Q, = Q¥(s) U RL(s)
U Ri(s). From dim.. Cy(r) = s + 1 we have dim. Ri(s) = 2s < 2r. More-
over from dim.; (C,(r)+ =n — s, we have dim. Ri(s) = 2(n — s) — 3 pro-
vided that s<7 (if s= 17, RX(r) = ). Hence if s =1, both R.(s) and
R%(s) are regular submanifolds of @, of codimension greater than or
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equal to 3. Obviously R;(s) is closed in Q, and R(s) is closed in Q,\RL(s).
Therefore the simply connectedness of Q¥*(s) follows from (1) and the
next proposition.

ProrosITION D (ef. [3; VII Proposition 9.6]). Let M be a connected
manifold, and let S be a closed submanifold of M with dim. S < dim. M
— 8. Then M\S is connected and =,(M) is isomorphic with =,(M\S).

Q.E.D.

Next we consider G°(r) and G*(r,s). We set Gi(r) = G°(») N G'(7).
Since Q, = G*(»)/G{(r) is simply connected, G{(r) is connected.

PROPOSITION 6.7. G%r) satisfies the following;

(1) There exists an element z, of G°(r) such that o is the only fixed
point of 7, in Q,.

(2) The center Z(G'(r)) of G°r) s reduced to the unit.

() The normalizer N g (Gi(r)) of Gi(r) in G(r) coincides with Gi(r).

Proof. (1) Let x be the projection of C"*'\{0} onto P"(C). Let
ceUU,) and p = () e @, (.e. (£, =0). Then for y(¢) e G(r) we have

x(@)(p) = p if and only if o) = A for some 1¢e C\{0} .

Hence y(¢) fixes a point p = (&) of @, if and only if { is an isotropic
eigenvector of ¢. Therefore finding an element of G°(r) having o = k(e,)
as the only fixed point in Q, is equivalent to finding an element of U(l,)
having <{e,>; as the only isotropic eigenline. Here we mean by an
eigenline of ¢ a 1-dimensional subspace invariant by ¢. Using the Witt’s
theorem one can easily construct such an element o e U(,).

(2) Let 7€ Z(G%r)) and let z, be as in (1). From z,-c =7¢-7, we
have z,(z(0)) = z(z,(0)) = z(0). Hence z(0) is a fixed point of z,, But 7,
fixes o alone. Therefore z(0) = 0. Since G°(r) acts transitively on @,,
we see easily r fixes every point of @,. Then since G°(r) acts effectively
on @,,r is the unit of G°r).

(3) Let reGr). Since Gy(r) is the isotropy subgroup of G%r) at
0eQ,, t(Gi(M)r* is the isotropy subgroup of G%r) at z(0). Hence each
element of z(Gi(r)z! fixes z(0). Now let 7, € Ngo,,(Gi(1)), and let z, be
as in (1). Since 7, (G{(M))zr* = Gi(r), each element of Gi(r) fixes r,(0). In
particular Gi(7) sz, fixes 7;(0). Hence we have 7,(0) = o, that is, 7, € Gi(7).
Therefore we get Ngo.,(Gi(r))C Gi(r). The opposite inclusion is obvious.

Q.E.D.
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Let G*(r,s) be the isotropy subgroup of G*(r,s) at oc Q¥(s). Since
Q*(s) = G*(r, 8)|G*(r, 8) is simply connected, G¥(r,s) is connected.

PROPOSITION 6.8. G*(7,8) (0 < s < ) satisfies the following

(1) There exists an element =5 of G*(r,s) such that o is the only
fixed point of 3§ in QF(s).

(2) The center Z(G*(r,8)) of G*(r,s) is reduced to the umnit.

(8) The normalizer Ng, (G¥(r,8)) of G¥(r,s) in G*(r,s) coincides
with G*(r, s).

Proof. (1) Since Q¥(s) = {{ = o -+ +»%n) € @1 & (C(m)1} and G*(r, 5)
= {o € U(I,)|a(Cy(1)) = Cy(r)}, we have only to find an element 4} of U(I,)
which satisfies

(1) a§(Cs(r)) = Cy()

(i) <e¢ is the only isotropic eigenline of ¢§ that is not included
in (Cy(r)-L.
(cf. the proof of (1) Proposition 6.7). Using the Witt’s theorem one can
easily construct such an element of e U{,).

Since G*(r, s) acts effectively and transitively on Q¥(s), in view of
@), (2 and (8) can be proved similarly as in Proposition 6.7. Q.E.D.

VII. Determination of (A(S), 4,,(S)).

In this section let g be g(r) or g*(r,s) (§=0,1,.-.,7). Let G be
the analytic subgroup of G(r) with Lie algebra g, and let @ be the model
space corresponding to g which is defined in VI. Moreover let G’ be
the isotropy subgroup of G at oe @, and let g’ be its Lie algebra. Hence
in the case g = g(r) (resp. g*(r,s)), we have G = G°(r) (resp. G*(r,9)),
Q = Q, (resp. Q¥(s)) and G’ = G|(r) (resp. G*(r,s)). From Propositions
6.6, 6.7 and 6.8 we have

1) @ = G/G is connected and simply connected.

(2) The center Z(G) of G is reduced to the unit.

(B) The normalizer Ng(G') of G’ in G coincides with G'.

(4) ¢ contains E, e g(r) which defines the grading of g(r). .

As we see in VI, Q is a connected non-degenerate (index 7) homo-
geneous flat hypersurface of P*(C) for which G is the identity component
of A(Q).

Now we have

https://doi.org/10.1017/50027763000024752 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024752

NON-DEGENERATE REAL HYPERSURFACES 91

ProPOSITION 7.1. Let g,9/,Q,G and G’ be as above. Let S be a
connected non-degenerate (index r) homogeneous hypersurface, and let
(P, w,l) be the normal pseudo-conformal connection over S. For p,eS
we suppose that there exists a point z € x~'(p,) such that §, =gq. Then
S is pseudo-conformally equivalent to Q.

Proof. Since g’ contains E,, we see from Lemma 5.5, Proposition
5.6 and Proposition 3.4 that there exists a point z,ez7'(p,) such that
o is a Lie algebra isomorphism of a(S) onto g. In particular we have
:0(a5,(S)) = g’.  On the other hand, from Lemma 3.1 we have (p,,). =
0(L0)es that is, o, = ¥o as a Lie algebra homomorphism. Let (4,,(9))°
be the identity component of 4,(S). Then p, is a group isomorphism
of (4,,8)) onto G'.

Next we compare A°(S) with G. Since G is connected and Z(G) =
{e}, the adjoint representation Ads; of G is an isomorphism of G onto
the adjoint group Int(g). Hence the adjoint representation ad, of g is
also faithful. On the other hand the adjoint representation Ad,s of
A'S) is a homomorphism of A°S) onto Int (a(S)). Set h = fw. Then
since & is a Lie algebra isomorphism of a(S) onto g, 2 naturally induces
a group isomorphism % of Int (a(S)) onto Int(g). More precisely we set
F@)X) = h-z-h(X) for zeInt(a(S)), Xeg. Then we have ﬁ*-ada(s)
= ad,-h.

Now we set ¢ = (Adg) -k -Ad 5. Then ¢ is a homomorphism of
A°S) onto G such that ¢, = h. Moreover we consider a mapping + of
A%S)/p~Y(G") onto @ which satisfies the following commutative diagram

AS) —2 5> @

l l

A%S) /oG 1> Q = G/G.

Then + is a C*-homeomorphism of A°(S)/¢™'(G’) onto Q. Since ¢, = h,
we have ¢,(a,,(S)) = g’. Hence the Lie algebra of ¢~'(G') coincides with
a,,(S). On the other hand ¢ '(G’) is connected since @ (therefore
A(S)/e~Y(G")) is simply connected. Hence we have ¢ '(G") = (4,,(9)".
From Ng4G’) = G’ and the connectedness of G’, we see that G’ is the
only Lie subgroup of G with Lie algebra g’. On the other hand ¢(A42,(S))
is a Lie subgroup of G with Lie algebra ¢.(a,,(S)) = g’. Hence we have
e(A%(8)) = G'. 1In particular A%(S) C ¢ (G)) = (4,,S))". Therefore we
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conclude AJ(S) = (4,,9)°, that is, A} (S) is connected. Moreover com-
paring the restriction of ¢ to A}(S) with p,, we have ¢, = p,, = b.
Hence we get ¢ 43,08 = Papr In particular o] 4348 is an isomorphism of
A (S) onto G.

Now from ¢ (G') = A}(S) and S = A%S)/A},(S), the above diagram
can be rewritten as follows

AW®) 2> @
|
S —Q.

Since  is a C°-homeomorphism of S onto @ and the restriction of ¢
to A} (S) is an isomorphism of A% (S) onto G’,¢ becomes a bundle iso-
morphism of A%S) (S, A%(S)) onto G(Q,G’). Hence ¢ is a group iso-
morphism of A%S) onto G.

Now we compare two (connected non-degenerate (index ) homo-
geneous) hypersurface S and Q. Let (z+Y(Q), wg, ) be the normal pseudo-
conformal connection over @ (for the notations see Proposition 6.5). If
we choose points z,¢ 77'(p,) and e e z;(0), then ¢ satisfies the assumption
of Proposition 3.5 since ¢(A%(S)) = G, ¢, = fo (as Lie algebra isomor-
phisms) and o, is the Maurer-Cartan form of G. Therefore ¢ is a
pseudo-conformal homeomorphism of S onto Q. Q.E.D.

From Theorem 5.8 and the above proposition, we have the main
theorem of this paper.

THEOREM 7.2. Let M be a complex manifold of dimension n. Let
S be a connected non-degenerate (index r) homogeneous hypersurface
of M.

@) If dim. A(S) = n? + 2n, then S is pseudo-conformally equivalent
to

r n-1
Qr = {(zm . ‘927&) € Pn(C) —N "_lzozn - ;zizi + leizi

i=r+

+ v —1z,%, = 0} .
@) If dim. A(S) < n? + 2n, we have the following three cases.

(i) thecasen=3andr=1; We have dim. A(S) £ n? 4+ 2 = 11.
The equality holds if and only if S is pseudo-conformally equivalent to
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QF) = {(2p, - - -5 29) € Qu]]20] + |21 — 2,] = O} .

(ii) thecasen =5bandr =2; We have dim. A(S) < n* + 1 = 26.
The equality holds if and only if S is pseudo-conformally equivalent to

Q¥2) = {(zo; <, %) € Qz“zol T2 — 2] + (2, — 2] = 0}

or

;k = {(zm ""za)eQzlzo x 0} .

(iii) otherwise; We have dim. A(S) < n®*+ 1. The equality holds
if and only if S is pseudo-conformally equivalent to

Qf :{(20""!zn)eQr|z0ﬁFO} .

In Theorem 7.2, if we specify the ambient space M, then the ques-
tion arises whether a hypersurface S with dim. A(S) = n? + 2n (or #n* + 1)
exists in M, in other words, whether @, (or @*) can be pseudo-conformally
imbedded in M or not. In general this is a very hard problem. Con-
cerning with this we observe

COROLLARY 7.3. Let C" be the complex number space of dimension
n. Let S be a connected non-degenerate (index r) homogeneous hyper-
surface of C*. Then we have

1) In the case r = 0 (i.e. in the case S is strongly pseudo-convex)
A(S) has the largest dimension n* + 2n, if and only if S is pseudo-con-
formally equivalent to the unit sphere S*™'. And A(S) has the second
largest dimension n? + 1, if and only if S is pseudo-conformally equivalent
to the hyperconic

§ = {(zl,---,zn)ecn

1 n—1
Imz, = L5 w} :
2 in1

2 In the case 1 <r < [ngl]

A(S) has the largest dimension n®* + 1, if and only if S is pseudo-con-
formally equivalent to

QF = {(21,---,zn)eC”

Imz, = 2 (-3 /s + 5 laF)} -

i=7r+

1

) In the case r = [n; ], we hove the following three cases.
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(i) n=3 We have dim. A(S) < n? + 2 = 11.

(ii) n=5 We have dim. A(S) < n* + 1 = 26.

(iii) otherwise; A(S) has the largest dimension n* + 1, if and only
if S is pseudo-conformally equivalent to QF.

Before the proof, recall the following

ProPOSITION E (cf. [6; VII Proposition 4.6], [6; Corollary to Theo-
rem 5]). Let S be a compact hypersurface of C*. Then there exists a
point p, of S such that S is strongly pseudo-convex at p,.

Proof of Corollary 7.3. If dim.A(S) =n?+ 2n, S is pseudo-con-
formally equivalent to @, from Theorem 7.2. Hence S is compact. Then
r must be zero as the above proposition shows. In other words, if r >
1, Q, cannot be realized as a hypersurface of C*. On the other hand
from the proof of Proposition 6.6, we know that Q, is projectively
equivalent to S-!. Other assertions of the corollary is obvious from
Theorem 17.2. Q.E.D.

We don’t know whether Q¥(1) (resp. Q¥(2)) can be pseudo-conformally
imbedded into C® (resp. C9).

Finally we will see that in the case dim. A(S) = »? + 2n, the homo-
geneity assumption is. dispensable. In fact we have

THEOREM 7.4. Let M be a complex manifold of dimension n. Let
S be a connected hypersurface of M which is non-degenerate of index
r at a point p,eS. If dim. A(S) = n? + 2n, then S is pseudo-conformally
equivalent to Q,.

Proof. We denote by a(S) the Lie algebra of all infinitesimal pseudo-
conformal transformations of S which generate global 1-parameter groups
of transformations. Then a(S) is naturally isomorphic with the Lie
algebra of A(S). Let S* be the set of points of S at which S is non-
degenerate of index ». Obviously S* is an open subset of S containing
p,. Hence S* is a non-degenerate (index 7) hypersurface. Let (P*, o*, [*)
be the normal pseudo-conformal connection over S*. We consider the
Lie algebra a(S*) of all infinitesimal pseudo-conformal transformations
of S*. Since S* is an open subset of S and each element of a(S) is a
real analytic vector field on S, the restriction map res of a(S) into a(S*)
is an injective homomorphism. Set &(P*) = {X ¢ X(P*)|Ly0o* = 0, R, X
=X aeG'(r)}. Since (z*), is an isomorphism of a(P*) onto a(S*), we
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have dim. &(S*) < n? + 2n. On the other hand from the assumption we
have dim. a(S) = n* + 2n. Hence 7res is an isomorphism of a(S) onto
@(S*). In particular res maps the isotropy subalgebra a,,(S) of a(S) at
p, onto the isotropy subalgebra a,(S*) of a(S*) at p,. Then from
dim. d,,(S*) = n* + 1, we have dim. a,,(S) = n* + 1.

Now we consider the orbit S** of A%S) passing through p,. Then
as is easily seen from dim. a(S) = »? + 2n and dim. a,(S) = n* + 1, S**
= A%S)/A},(S) is an open submanifold of S. Hence S** is a connected
non-degenerate (index 7) homogeneous hypersurface. Moreover we have
dim. A(S**) = n? + 2n. In fact we have only to show that A°S) acts
effectively on S**, which is clear since S** is an open subset of S and
pseudo-conformal transformations of S are C°-homeomorphisms of S.
Therefore from Theorem 7.2 S** is pseudo-conformally equivalent to @,.
In particular S** is compact. On the other hand S** is an open subset
of a connected hypersurface S. Hence we must have S = S**. There-
fore S is pseudo-conformally equivalent to Q,. Q.E.D.

COROLLARY 7.5. Let S be a compact connected hypersurface of C™.
If dim. A(S) = n* + 2n, then S is pseudo-conformally equivalent to the
unit sphere S**1,

This is clear from the above theorem and Proposition E.

Remark 7.6. In the case of second largest dimension (r = 1), the
homogeneity assumption is indispensable. In fact Q,\{6} = QFf U RX(0)
(r = 1) is a connected (inhomogeneous) hypersurface of P*(C) for which
G*(r) is the identity component of A(Q,\{6}). We will treat the inhomo-
geneous second largest dimension case in a forthcoming paper.
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