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Abstract

Background. Hippocampal disruptions represent potential neuropathological biomarkers in
depressed adolescents with cognitive dysfunctions. Given heterogeneous outcomes of whole-
hippocampus analyses, we investigated subregional abnormalities in depressed adolescents and
their associations with symptom severity and cognitive dysfunctions.
Methods. MethodsSeventy-nine first-episode depressive patients (ag = 15.54 ± 1.83) and 71
healthy controls (age = 16.18 ± 2.85) were included. All participants underwent T1 and T2
imaging, completed depressive severity assessments, and performed cognitive assessments on
memory, emotional recognition, cognitive control, and attention. Freesurfer was used to
segment each hippocampus into 12 subfields. Multivariable analyses of variance were performed
to identify overall and disease severity-related abnormalities in patients. LASSO regression was
also conducted to explore the associations between hippocampal subfields and patients’ cogni-
tive abilities.
Results. Depressed adolescents showed decreases in dentate gyrus, CA1, CA2/3, CA4, fimbria,
tail, and molecular layer. Analyses of overall symptom severity, duration, self-harm behavior,
and suicidality suggested that severity-related decreases mainly manifested in CA regions and
involved surrounding subfields with disease severity increases. LASSO regression indicated that
hippocampal subfield abnormalities had the strongest associations with memory impairments,
with CA regions and dentate gyrus showing the highest weights.
Conclusions. Hippocampal abnormalities are widespread in depressed adolescents and such
abnormalities may spread from CA regions to surrounding areas as the disease progresses.
Abnormalities in CA regions and dentate gyrus among these subfields primarily link with
memory impairments in patients. These results demonstrate that hippocampal subsections may
serve as useful biomarkers of depression progression in adolescents, offering new directions for
early clinical intervention.

Introduction

Major depressive disorder (MDD) during adolescence is a critical global mental health challenge
that affects approximately 25% of all adolescents worldwide [1]. When depression manifests
during adolescence, it may have far-researching implications, leading to substantial disruptions
in school performance and interpersonal relationships, and affecting later life [2, 3]. These
adverse outcomes can be mainly attributed to the cognitive impairments and neuroanatomical
irregularities associated with depression. Prior research has shown that adolescents with MDD
experience cognitive impairments inmany domains, includingmemory [4], emotion recognition
[5], attention, and cognitive control [6]. At the neuroanatomical level, substantial evidence from
adolescent patients has implicated abnormalities of the hippocampus [7], a core region of the
limbic system that is intricately linked to cognitive abilities. However, studies examining the
global hippocampus volume in adolescent patients with MDD have revealed heterogeneous
findings, with some indicating decreased volume and others reporting no significant changes
[8-11]. The multifaceted nature of the hippocampus may have contributed to these mixed
outcomes, pointing to the importance of examining distinct structural subfields. Additionally,
variability in the severity of patients’ symptoms and subtypes of depressionmay have contributed
to the discrepancies in prior volumetric findings [12, 13]. Hence, there is an urgent need to
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identify hippocampal subfield abnormalities in adolescent MDD
patients and to investigate their associations with disease severity
and cognitive dysfunctions.

The hippocampus exhibits cytoarchitectural differences among
subfields [14], which may lead to functional distinctions across
them. Connectomic and neurophysiological studies have shown
differences in the regions they connect to and the directions of
connections [15, 16]. These differences may be due to genetic
determinants, as hippocampal subfields have unique genetic cor-
relates that are associated with specific biological processes
[17, 18]. This suggests that analyzing the hippocampus at a subfield
level could crucially enhance the sensitivity in detecting diagnostic
effects as compared to whole-structure analyses [19]. In vivo,
segmentation of the hippocampus into subfields has been made
possible based on structural T1 weighted scans. Volumetric meas-
ures of different subfields have already been extensively examined
in relation to various neurodegenerative and psychiatric diseases,
such as Alzheimer’s disease, schizophrenia, and depression
[20, 21]. However, the hippocampus is a subcortical nucleus, which
is located at a deep location and is susceptible to imaging artifacts.
Studies have suggested that adding T2-weighted images can aid in
the identification of different subfields, as T2 images show lower
signal intensity in this area, contributing to specific subfield dis-
tinctions [22]. Thus, we suggest utilizing both T1 and T2 images to
increase the accuracy of subfield segmentation.

MDD is a highly heterogeneous condition and patients could
differ in symptom manifestations, severity, duration of the illness,
and comorbidities. Heterogeneity in patient groups has signifi-
cantly contributed to the inconsistency in neuroimaging findings
[23]. Indeed, early studies examining hippocampal subfields have
predominantly examined depression as a unitary disease entity [21,
24-26]. Few studies have started to pay attention to the hippocam-
pal differences in relation to MDD heterogeneity. For instance,
Roddy et al. (2019) reported the progressive patterns of hippocam-
pal subfields by comparing first-episode and recurrent adult
patients [27]. Kraus et al. (2019) examined the effects of disease
status (acute versus remitted patients) and found that remitted
adult patients had larger volumes compared with acute patients
[28]. A growing number of studies have focused on the heterogen-
eity in MDD, especially in adolescent patients [29-32]. Although
research from the Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA) consortium found adult patients with
early-onset MDD (<21 years) showed reduced hippocampus vol-
ume when compared to controls [10], it did not provide direct
evidence on adolescent patients. Additionally, features such as
overall symptom severity, self-harm behavior, and suicidality
should also be considered to draw a fuller picture of hippocampal
abnormalities in relation to MDD heterogeneity.

The hippocampus has been shown to be closely associated with
various cognitive domains. In addition to its well-established links
to working and spatial memory, the human hippocampus is also
involved in emotion recognition, attention [33], and cognitive
control [34]. These associations have been established in both adult
populations [35] and typically developing children and adolescents
[36]. In adolescents with MDD, associations between cognitive
disruption [37, 38] and hippocampal volume have also been
reported. Barch et al. [4] investigated cognitive control, memory,
attention, and language in adolescent MDD patients and found
reduced hippocampal volume being associated with worse episodic
memory and emotion recognition. However, it remains unknown
which hippocampal subfields have mainly contributed to such
associations.

In the current study, we used both T1 and T2 weighed high-
resolution structural images to identify the abnormalities of hippo-
campal subfields in first-episode depressed adolescents. We also
examined associations between subfield volumes and overall
depressive severity, illness duration, self-harm, and suicidality.
Given the role of the hippocampus in various cognitive functions,
we also investigated to which extent these subfields were linked to
MDD patients’ cognitive impairments in memory, attention, emo-
tion recognition, and cognitive control.

Methods

Participants

This study included a total of 150 participants from our ongoing
Shandong Adolescent Neuroimaging of Depression project. Among
them, 79 adolescents (62 females; mean age = 15.54 ± 1.83, ranging
from 11.69 to 20.11 years) were diagnosed with MDD by two
clinical psychiatrists from the Shandong Mental Health Center,
based on the standard DSM-V criteria. These patients also under-
went a comprehensive assessment at the time of enrollment, which
included an evaluation of their psychiatric history, confirming that
they were experiencing their first episode. All of them were also
administered antidepressant medication when being enrolled. The
other 71 age- and gender-matched healthy controls (48 females;
mean age = 16.18 ± 2.85, range from 9.24 to 19.36 years) were
recruited through social media advertisements.

Exclusion criteria for all participants included: (1) contraindi-
cations tomagnetic resonance imaging scan (e.g., metal implants or
claustrophobia); (2) current or past neurological or intellectual
disorders that may interfere with the cognitive assessments; and
(3) current or past use of addictive substances (e.g., marijuana or
heroin). All healthy controls completed the Children’s Depression
Inventory (CDI) and Multidimensional Anxiety Scale for Children
and scored below 12 for depression and below 48 for anxiety. This
study received approval from the local ethics committee at Shan-
dong Normal University and all participants and their parents
provided signed informed consent forms.

Clinical and cognitive assessments

Before the brain scanning, we conducted face-to-face interviews
with all participants to assess their clinical and cognitive character-
istics. Depressive severity was assessed using (Table 1): (a) overall
depressive severity, assessed with the total score of CDI scale [39];
(b) illness duration; (c) suicidal ideation, assessed by the total score of
Beck Scale for Suicide Ideation (BSI) scale [40]; (d) suicide risk,
quantified using the total score of nurses’ global assessment of suicide
risk (NGASR) scale [41]; (e) self-injury behavior, assessed with
Ottawa Self-injury Inventory (OSI) and quantified as the number
of self-harm incidents [42]. To identify disease severity-related
abnormalities of the hippocampus, we classified depressed patients
into two groups with relatively mild or severe symptoms based on
each of these five measures. Detailed information about the classifi-
cation criteria and severity of subgroups were shown in Table 2 and
Supplemental Methods.

Cognitive assessments including memory, emotional recogni-
tion, attention bias, and cognitive control abilities were performed
with a battery of widely used and validated tasks. Memory abilities
for all participants were tested on working memory using the digit
Nback test (1back and 2back) [43], spatial memory using the four
mountains test [44, 45], and short-term memory storage capacity
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using the digit span test [46]. Emotional recognition was examined
using the facial emotional recognition task where participants were
shown with positive (happiness) and negative (sadness) emotional
faces [47]. Attention bias was examined using the dot-probe task,
with positive, negative, and neutral facial emotions as attracting
stimuli [47, 48]. Finally, cognitive control abilities were tested
with classic and emotional Go/No-Go task (inhibition) [49], Erik-
sen Flanker task (cognitive monitoring) [50], Stroop color and
word task (response selection) [51], and task switching (target

selection) [52]. These tasks are described in detail in Table 3 and
Supplemental Methods.

Structural data acquisition, preprocessing, and segmentation of
hippocampal subfields

Both high-resolution T1 (voxel size = 0.875 × 0.875 × 0.90 mm3)
and T2 (voxel size = 0.438 × 0.438 × 0.90 mm3) weighted structural
images were scanned on a 3.0 T SIMENS scanner for each

Table 1. Demographic and clinical characteristics of adolescents with MDD and healthy controls

Variables
Adolescents with MDD

(N = 79)
Healthy controls

(N = 71) t/χ2 η2 p value

Age, years 15.54 (1.83) 16.18 (2.86) 2.69 0.05 0.10

Gender, male/female 17/62 23/48 2.26 – 0.13

Height, m 1.67 (0.08) 1.63 (0.09) 2.44 0.04 0.02

Weight, kg 62.24 (18.45) 53.61 (11.09) 3.42 0.07 <0.01*

BMI, kg/m2 22.31 (6.16) 19.94 (2.82) 2.97 0.06 <0.01*

eTIV, cm3 1560.70 (145.88) 1563.60 (156.82) 0.01 0.00 0.91

Age of onset, years 14.18 (1.51) – – – –

Illness duration, months 17.29 (12.51) – – – –

Antidepressant medication, % 100% – – – –

Depression scorea 23.2 (9.09) 7.56 (4.9) 336.22 1.00 <0.001*

Suicide riskb 5.18 (4.42) 0.49 (1.36) 328.60 1.00 <0.001*

Suicidal ideationc 9.38 (6.23) – – –

Self-injurious behaviord 8.89 (5.35) – – –

Note:MDD,major depressive disorder; BMI, bodymass index; eTIV, estimated total intracranial volume. For controls, we assessed their suicidal ideation and self-injurious behavior and found that
none of the participants had these behaviors. p values with “*” indicated the significance with <0.05.
aDepression score was assessed by the children’s depression inventory.
bSuicide risk was assessed by the nurses’ global assessment of suicide risk scale.
cSuicidal ideation was assessed by the Beck scale for suicide ideation.
dSelf-injurious behavior was assessed using the Ottawa self-injury inventory and expressed as the number of self-harm incidents.

Table 2. Assessments of depressive severity and characteristics for each level of severity

Depressive
severity
assessments

Group
name Criteria Mean (SD), range

Number of patients Age CDI score

N
(female) χ2 p value Mean (SD) t η2 p value Mean (SD) t η2 p value

Overall
depressive
severitya

Group 1 <25 16.50 (5.32), 4 ~ 24 42 (28) 7.41 0.006 15.78 (1.89) �1.27 0.02 0.208 16.50 (5.32) 11.32 0.62 <0.001

Group 2 ≥25 30.81 (5.92), 25 ~ 50 37 (34) 15.26 (1.75) 30.81 (5.92)

Illness
durationb

Group 1 <15.3 8.16 (4.37), 0.13 ~ 14.77 35 (28) 0.05 0.819 14.87 (1.60) 3.67 0.16 <0.001 22.63 (9.24) 0.16 0.00 0.876

Group 2 ≥15.3 26.17 (11.39), 15.30 ~ 70.37 36 (28) 16.30 (1.71) 22.94 (7.69)

Suicidal
ideationc

Group 1 <10 3.71 (3.27), 0 ~ 9 35 (26) 0.85 0.357 15.92 (2.04) �1.80 0.04 0.076 18.20 (7.75) 5.20 0.27 <0.001

Group 2 ≥10 14.22 (3.40), 10 ~ 20 41 (34) 15.17 (1.58) 27.49 (7.77)

Suicide riskd Group 1 ≤5 5.63 (5.55), 0 ~ 5 23 (14) 6.93 0.008 15.97 (1.91) �1.14 0.02 0.259 18.13 (9.42) 2.73 0.09 0.008

Group 2 >5 9.73 (5.04), 6 ~ 20 55 (48) 15.39 (1.91) 24.74 (8.45)

Self-injurious
behaviore

Group 1 <1 0 (0), 0 22 (15) 0.91 0.340 15.06 (2.01) 1.38 0.02 0.171 21.71 (9.21) 0.90 0.01 0.370

Group 2 ≥1 7.06 (3.63), 1 ~ 15 57 (44) 15.71 (1.77) 23.83 (9.11)

Abbreviations: CDI, children’s depression inventory; SD, standard deviation.
aGeneral depressive severity was assessed using the total score of CDI scale and classified into two groups, as suggested by Bang et al. [39].
bThese patients were classified into two groups based on the median duration of illness.
cSuicidal ideation was quantified using the total score of BSI scale and classified into two groups with the mediation score of 10.
dSuicide risk was assessed using the total score of the NGASR scale and classified into two groups, following the findings of Cutcliffe et al. [41].
eWe classified these patients into two groups: self-injurious and non-injurious individuals.
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participant. Detailed acquisition parameters for these images were
described in the Supplemental Methods. Both T1 and T2 images
were preprocessed using the automated recon-all pipeline of Free-
Surfer v6.0. This involved motion correction, skull stripping,
Talairach transform, segmentation of white and gray matter volu-
metric regions, and surface extraction [53]. The images were regis-
tered to a spherical atlas and the cerebral cortex was then
parcellated. The T2 images were particularly useful in improving
pial surfaces, as they provided a different contrast compared to T1
data [54]. Next, the hippocampus was segmented and volumes of
bilateral 12 subfields were measured [21], as shown in Figure 1.
These 12 subfields consisted of Cornu Ammonis region 1 (CA1),
CA2/3, CA4, dentate gyrus, subiculum, presubiculum, parasubicu-
lum, fimbria, fissure, molecular layer, tail, and hippocampus-
amygdala transition area (HATA). The volumes of these hippo-
campal subfields were extracted for subsequent statistical analyses.

Before preprocessing, we visually inspected both T1 and T2
images for the presence of encephalopathy, motion artifacts, and
issues with full brain coverage. After completing the preprocessing,
we carefully examined the registration, pial and white surface, and
segmentation of subcortical structures to ensure accuracy against
the structural image. Additionally, all hippocampal subfield vol-
umes were within five standard deviations from the mean. We also
repeated the analyses using the ENIGMA quality control protocol

[55], excluding participants with values that exceeded three stand-
ard deviations from the mean (Figures S1 and S2, Table S3).

Statistical analysis

To investigate the overall effect of depression on hippocampal sub-
field volumes,mixed-model analyses of covariance (ANCOVA)were
performed to compare volume differences between the MDD group
and healthy controls. Diagnosis (MDD, healthy controls) was
regarded as the between-subject factor; hemisphere (left, right) was
included as the within-subject factor, and age, gender, and estimated
total intracranial volume (eTIV) were included as covariates. Mul-
tiple comparison correction was performed using the false discovery
rate (FDR) method (p.adjust function from R) separately for the
main effects (diagnosis, hemisphere) and the interaction effects
involving these 12 subfields.

The groups with mild and severe symptoms were then com-
pared to identify severity-related abnormalities (Table 2). For each
symptom severity measure, mixed ANCOVA analyses were per-
formed to compare the two groups with healthy controls. The same
covariates were included in these analyses. To correct for multiple
comparisons, we also used the FDR method across the 12 subfields
for the main effects (diagnosis, hemisphere) and the interaction
effects.

Table 3. Profiles of cognitive performances of depressed adolescents and healthy controls

Cognitive
domains Cognitive tests Cognitive measures

Adolescents with MDD
(N = 79)

Healthy controls
(N = 71) t η2 p value

Memory Nback test Nback (1back), ACC 0.73 (0.21) 0.88 (0.13) �5.14 0.15 <0.001*

Nback (2back), ACC 0.61 (0.19) 0.79 (0.14) �6.22 0.21 <0.001*

4 mountain test Spatial memory (direction),
ACC

0.71 (0.13) 0.76 (0.11) �2.70 0.05 0.008**

Spatial memory (position),
ACC

0.73 (0.16) 0.84 (0.11) �4.77 0.13 <0.001*

Spatial memory
(arrangement), ACC

0.68 (0.17) 0.83 (0.12) �6.25 0.21 <0.001*

Digit span test Digit span memory, length 14.20 (2.26) 14.77 (1.68) �1.74 0.02 0.083

Emotion
recognition

Facial emotion
recognition task

Emotion recognition
(sadness), RT

3.30 (0.73) 2.85 (0.60) 4.03 0.10 <0.001*

Emotion recognition
(happiness), RT

3.28 (0.78) 2.71 (0.66) 4.79 0.13 <0.001*

Attention Dot probe task Attentive selection (S-H), RT 0.54 (0.17) 0.48 (0.15) 2.21 0.03 0.029*

Attentive selection (H-S), RT 0.50 (0.15) 0.49 (0.19) 0.25 <0.01 0.801

Attentive selection (S-N), RT 0.52 (0.14) 0.47 (0.13) 2.03 0.03 0.044*

Attentive selection (N-S), RT 0.53 (0.15) 0.47 (0.12) 2.86 0.05 0.005*

Attentive selection (H-N), RT 0.54 (0.17) 0.47 (0.12) 2.79 0.05 0.006*

Attentive selection (N-H), RT 0.53 (0.16) 0.48 (0.14) 2.00 0.03 0.048*

Cognitive control Go/No-Go task Emotional Go/No-Go, ACC 0.93 (0.05) 0.96 (0.03) �4.46 0.12 <0.001*

Classic Go/No-Go, ACC 0.97 (0.03) 0.99 (0.01) �3.78 0.09 <0.001*

Flanker task Flanker, RT 0.08 (0.17) 0.07 (0.05) 0.12 < 0.01 0.906

Stroop task Stroop, RT 0.13 (0.14) 0.12 (0.11) 0.91 0.01 0.363

Task switching Task switching, RT �0.08 (0.14) �0.05 (0.18) �1.12 0.01 0.266

Note: Cognitive performances were shown with mean ± SD values. p values with “*” indicated the significance with <0.05.
Abbreviations: MDD, major depressive disorder; RT, reaction time (s); ACC, accuracy; S-H, sad (attractive emotion)-happy; H-S, happy (attractive emotion)-sad; S-N, sad (attractive emotion)-
neutral; N-S, neutral (attractive emotion)-sad; H-N, happy (attractive emotion)-neutral; N-H, neutral (attractive emotion)-happy.
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To assess the robustness, we performed sensitivity analyses
including (1) measuring subfield volumes using only the
T1-weighted image (Supplemental Methods), (2) excluding age
and gender as covariates (only including eTIV as a covariate),
and (3) adding body mass index (BMI) as an additional covariate
(age, gender, eTIV, and BMI).

To examine the extent to which specific hippocampal substruc-
tures have effects on cognitive impairments in adolescents with
MDD, we conducted a Least Absolute Shrinkage and Selection
Operator (LASSO) regression. LASSO is ideal here to avoid multi-
collinearity, as it selects variables using sparse solutions. The L1
penalty in LASSO could set coefficients of non-relevant predictors
to 0, rather than just shrinking the coefficients. It has therefore
widely been employed in recent research on between brain and
behavior associations [56]. The analysis was performed in R, using
the “cv.glmnet” function from the “glmnet” package and setting
α = 1, as suggested in a prior study [57]. All cognitive indices were
regarded as “y” variables, and all hippocampus subregion volumes
were included as “x” variables. Age, gender, and eTIV were entered
as covariates. To estimate the coefficient weights for each predictor
in themodel, we performed 10-fold cross-validation to optimize the
regularization parameter (λ). This λ parameter controls the
strength of the penalty and L1 influences the minimization of mean
squared error (MSE). Finally, we summed the absolute values of the
weights of each subfield to represent its overall associations with
cognition and also summed the absolute values for each cognitive
measure to identify its overall link with hippocampal subfields.

Results

Descriptive statistics

Demographics, clinical characteristics, and depression severity
scores for all participants are presented in Table 1. There were no
significant differences in age (t = 2.69, η2 = 0.05, p = 0.10), gender
(χ2 = 2.26, p = 0.13), or eTIV (t = 0.01, η2 = 0.00, p = 0.91) between
the MDD group and healthy controls. When compared to healthy
controls, adolescents with MDD scored higher on depression
(t = 336.22, η2 = 1.00, p < 0.001, Table 1), suicide risk (t = 328.60,
η2 = 1.00, p < 0.001), and BMI (t = 2.97, η2 = 0.06, p < 0.01) and
scored lower on working (ps < 0.001, Table 3) and spatial memory
(ps < 0.008), facial emotional recognition (ps < 0.001), attentive
selection (ps < 0.05) and cognitive control (Go/No-Go, ps < 0.001,
Table 3). Descriptive values of bilateral hippocampus subfields for
the MDD group and healthy controls are shown in Table S1.

The group with severe symptoms scored higher than the group
withmild symptoms on all fivemeasures (Table 2, ps < 0.001; illness
duration, t = 8.75, η2 = 0.53; CDI score, t = 11.32, η2 = 0.62; suicidal
ideation, t = 13.66, η2 = 0.72; suicide risk, t = 12.61, η2 = 0.68; self-
injury behavior, t = 8.87, η2 = 0.51).

Abnormalities of hippocampal subfields in patients and their
associations with depressive severity

Compared to healthy controls, depressed adolescents had smaller
dentate gyrus (F = 20.62, η2 = 0.07, p < 0.001), CA1 (F = 15.28,

Figure 1. Volumetric differences in 12 hippocampal subfields between all adolescents withMDD and healthy controls. The significances (after FDR correction) of these substructure
volume changes in depression were presented graphically on a Freesurfer hippocampus segmentation schematic. Raincloud plots were also created for those eight significant
subfields with volume sizes of substructures in both depressive patients and healthy controls. Of them, patients showed significantly decreased volumes in seven subfields and
increased volume in only fissure subfield. MDD, major depressive disorder; CA, cornu ammonis; HATA, hippocampal amygdalar transition area; FDR, false discovery rate.
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η2 = 0.05, p < 0.001), CA2/3 (F = 8.51, η2 = 0.03, p < 0.010), CA4
(F = 14.10, η2 = 0.05, p < 0.001), molecular layer (F = 15.39,
η2 = 0.05, p < 0.001), fimbria (F = 4.77, η2 = 0.02, p < 0.045), tail
(F = 13.80, η2 = 0.05, p < 0.001) and larger fissure (F = 19.33,
η2 = 0.06, p < 0.001) (Figure 1 and Table 4). Significant main effects
of the hemisphere were found in the tail, presubiculum, parasubi-
culum, molecular layer, dentate gyrus, CA1, CA2/3, CA4, fimbria,
and HATA (ps < 0.05, Table S2). No significant interactions were
observed between the diagnosis and hemisphere.

When the mild and severe groups were compared to healthy
controls separately, we found those with greater overall depressive
severity (ps < 0.001), illness duration over 15.3 months (ps < 0.003),
higher suicidal ideation (ps < 0.012), higher suicidal risk (ps < 0.006)
or more self-injury behaviors (ps < 0.018) had more significant
reductions in the CA regions and such abnormalities trended to
extend to surrounding subfields (Figure 2 and Table 4). Consistent
patterns were observed for all five severity measures, suggesting
heterogeneity of hippocampal abnormalities in MDD patients.

We also analyzed the hippocampal volumes that were segmented
using T1 images only. Similar abnormalities in these subfields in
depressed adolescents were observed (Figure S3), and these abnor-
malities were associated with depressive severities (Figure S4,
Table S4). Additionally, we also identified abnormalities in these
subfields and their relations with depressive severities when includ-
ing eTIV only as the covariate (Figures S5 and S6, Table S5). Fur-
thermore, adding the BMI as an additional covariate did not change
these findings in subfields (Figures S7 and S8, Table S6).

Associations between hippocampal subfield volumes and
cognitive abnormalities

Using 10-fold cross-validation, LASSO regression analysis revealed
the optimal regularization parameter with minimizedMSE (1 back,
λmin = 0; 2 back, λmin = 0.04; spatial memory, λmin = 0.03 ~ 0.18;
digit span memory, λmin = 0.14; emotion recognition,
λmin = 0.06 ~ 0.21; attentive selection, λmin = 0.07 ~ 1.00; cognitive
control, λmin = 0.17 ~ 1.00) and created sparse models. The coef-
ficient weights of hippocampal substructures on predicting cogni-
tive measurements are shown in Figure 3. Hippocampal subfields
showed the strongest associations with working memory and spa-
tial memory, withmany coefficients for subfields not being 0. Then,
we summed absolute coefficient weights for eachmemorymeasure.
We found that hippocampal subfield volumes had the largest
magnitude in predicting n back (1back) score, which was followed
by two back and spatial memory. For attentive selection, emotion
recognition, and cognitive control, hippocampal subfield volumes
showed relatively low magnitude in prediction.

Additionally, we also summed coefficient weights for each of the
hippocampal subfields and found that dentate gyrus and CA4
showed the largest magnitude, followed by presubiculum, tail,
molecular layer, CA2/3, CA1, parasubiculum, HATA, and subicu-
lum (Figure 3B).

Discussion

This study investigated the hippocampal subfield abnormalities in
adolescents with depression using high-resolution T1 and T2
structural images. We found significant hippocampal decreases in
CA1–4, dentate gyrus, and fimbria in adolescent MDD patients. As
depression severity increased, such abnormalities showed an
extending pattern that spread from the CA regions to peripheral

subfields. The groups with severe symptoms showed more exten-
sive abnormalities and the patternwas similar across all five severity
assessments. Moreover, hippocampal abnormalities had the stron-
gest associations with short-term memory deficits. Within all the
subfields, CA4 and dentate gyrus showed the strongest links with
cognitive functions. These results may reflect the progressive
deterioration of the hippocampus in adolescents with MDD, indi-
cating potential early biomarkers for adolescent depression and
providing guidance on early clinical intervention.

Our primary findings demonstrate that hippocampal abnormal-
ities are widespread in depressed adolescents, involving the dentate
gyrus, CA regions, and surrounding fimbria and molecular layer.
These results are consistent with some studies in adult patients with
MDD [10, 27] and adolescents [58]. For instance, first-episode
adult MDD patients have been found to show CA1 to CA4 volume
reduction [27]. Research from the ENIGMA consortium also found
that adult patients with early-onset MDD had lower thickness and
surface area in hippocampal subfields [59]. In adolescent patients,
reduced hippocampal subfields have also been reported [58], even
though some studies did not observe any differences [21]. Such
mixed findings were probably due to differences in methodology
and the sample sizes. Most studies have segmented the hippocam-
pus based on T1 images only [21, 58]. However, as we did here,
including both T1 and T2 weighted images could take advantage of
both image contrasts and produce smoother and more accurate
segmentation of the hippocampus [22]. Additionally, we recruited a
relatively large sample consisting of a homogeneous group of
clinically depressed patients, in which the hippocampal abnor-
malities might be more extensive as compared to smaller sample
sizes [60] and individuals with subthreshold/high-risk depres-
sion [61-63]. Hence, our results extend previous findings by
directly examining hippocampal subfield volumes in adolescent
patients, suggesting that depressed adolescents may exhibit
atypical brain development.

Hippocampal changes in depressed adolescents may depend
on symptom severity. We found the volumetric reductions to be
more pronounced and more extensive from CA regions to per-
ipheral subregions in patients with greater depressive severity,
longer illness duration, higher suicide risk, more suicidal ideation,
ormore self-injury behaviors. Subiculum regionsmay be recruited
later as MDD progresses further. These results are in line with
another study that found a similar extension of hippocampal
abnormalities from first presentation to recurrent episodes in
adult MDD patients [27]. Our results in first-episode adolescent
patients replicate such progressive patterns of hippocampal
abnormalities, which may represent disease severity-related
changes. The progressive patterns from CA regions to peripheral
subregions are also consistent with neural circuits of the hippo-
campus [64, 65], in which neurons in the dentate gyrus receive
afferent inputs from the medial temporal cortex, then project to
CA2/3 and CA1 through fibers, and finally goes to subiculum
regions. Our findings highlight the need for early intervention
during the early stage of MDD [66], so to mitigate the progression
of MDD and hippocampal abnormalities.

Hippocampal abnormalities may contribute to cognitive dis-
ruption, particularly in memory. The associations with memory
were more pronounced as compared to emotion recognition,
attention, and cognitive control abilities. The cognitive model
theory of depression posits that biased memory could interact
with other cognitive functions to directly contribute to the devel-
opment of depressive symptoms in at-risk individuals [67]. Hence,
it is important to understand what may underlie biased cognition
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Table 4. Abnormalities of hippocampal subfield volumes in adolescents with MDD and its associations with severity

Overall
differences Overall severity Illness duration Suicidal ideation Suicide risk Self-injurious behavior

All patients
versus HC

Patients with
CDI score (<25)

versus HC

Patients with
CDI score
(≥25)

versus HC

Patients with
illness duration
(< 15.3 months)

versus HC

Patients with
illness duration
(≥ 15.3 months)

versus HC

Patients with
BSI score (<10)

versus HC

Patients with
BSI score (≥10)

versus HC

Patients with
NGASR score
(≤5) versus HC

Patients with
NGASR score
(>5) versus HC

Patients with
NSSI time (<1)
versus HC

Patients with
NSSI time (≥1)
versus HC

Hippocampal subfields p value η2 p value η2 p value η2 p value η2 p value η2 p value η2 p value η2 p value η2 p value η2 p value η2 p value η2

Tail <0.001* 0.05 0.022* 0.03 0.001* 0.05 0.002* 0.06 0.003* 0.05 0.089 0.02 0.003* 0.05 0.202 0.01 0.002* 0.05 0.159 0.01 0.002* 0.05

Dentate gyrus <0.001* 0.07 0.006* 0.05 0.001* 0.08 0.050* 0.03 <0.001* 0.12 0.003* 0.06 0.003* 0.06 0.002* 0.07 0.002* 0.05 0.004* 0.06 0.002* 0.05

CA1 <0.001* 0.05 0.018* 0.03 0.001* 0.07 0.061 0.02 <0.01* 0.08 0.014* 0.04 0.005* 0.04 0.064 0.03 0.002* 0.05 0.077 0.02 0.002* 0.05

CA2/3 0.007* 0.03 0.165 0.01 0.001* 0.06 0.167 0.01 0.001* 0.05 0.089 0.02 0.012* 0.03 0.293 0.01 0.005* 0.05 0.130 0.02 0.018* 0.03

CA4 <0.001* 0.05 0.019* 0.03 0.001* 0.06 0.129 0.02 <0.001* 0.10 0.019* 0.04 0.006* 0.04 0.013* 0.05 0.006* 0.04 0.052 0.03 0.004* 0.04

Molecular layer <0.001* 0.05 0.018* 0.03 0.001* 0.07 0.037* 0.03 <0.01* 0.08 0.038* 0.03 0.003* 0.06 0.163 0.02 0.001* 0.06 0.052 0.03 0.002* 0.05

Presubiculum 0.802 <0.01 0.958 <0.01 0.753 0.00 0.485 <0.01 0.990 <0.01 0.824 <0.01 0.775 <0.01 0.502 <0.01 0.764 <0.01 0.552 <0.01 0.782 <0.01

Parasubiculum 0.272 <0.01 0.745 <0.01 0.024* 0.03 0.107 0.02 0.726 <0.01 0.808 <0.01 0.041* 0.02 0.828 <0.01 0.173 0.01 0.552 <0.01 0.271 0.01

Subiculum 0.205 0.01 0.165 0.01 0.598 0.00 0.683 <0.01 0.049* 0.02 0.349 0.01 0.492 <0.01 0.502 <0.01 0.293 0.01 0.552 <0.01 0.273 0.01

Fimbria 0.045* 0.02 0.018* 0.04 0.725 0.00 0.129 0.01 0.073 0.02 0.038* 0.03 0.314 0.01 0.293 0.01 0.069 0.03 0.071 0.03 0.244 0.01

HATA 0.122 0.01 0.508 0.00 0.099 0.02 0.867 <0.01 0.049* 0.02 0.122 0.01 0.400 <0.01 0.502 <0.01 0.173 0.02 0.144 0.02 0.273 0.01

Fissure <0.001* 0.06 <0.001* 0.09 0.015* 0.03 0.002* 0.06 <0.01* 0.07 <0.001* 0.08 0.004* 0.05 <0.001* 0.11 0.005* 0.04 <0.001* 0.11 0.008* 0.03

Note: η2 describes effect size; the p value is corrected with FDR method and “*” indicated the significance with <0.05.
Abbreviations: MDD, major depressive disorder; HC, healthy controls; CDI, children’s depression inventory; NSSI, non-suicidal self-injury; BSI, beck scale for suicide ideation; NGASR, nurses’ global assessment of suicide risk scale; CA, cornu ammonis; HATA,
hippocampal amygdalar transition area.
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Figure 2. Abnormalities of hippocampal subfield volumes extend fromCA regions to surrounding areas as depressive severity increases. We assessed depressive severities from five
perspectives, including overall depressive severity (A), illness duration (B), suicidal ideation (C), suicide risk (D), and self-injury behavior (E). Regardless of themethods used to assess
severity, hippocampal substructures consistently demonstrated a tendency to exhibit progressive decrease, starting from the CA regions and extending towards the peripheral
regions. CA, cornu ammonis; HATA, hippocampal amygdalar transition area; NGASR, nurses’ global assessment of suicide risk; NSSI, nonsuicidal self-injury; FDR, false discovery rate.
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during the development of MDD [68, 69]. Here, we provided
evidence for the potential contribution of hippocampal subfields,
especially the dentate gyrus and CA regions, to memory deficits in
early-onset adolescent patients. Interventions aimed at improving
memory may target these subfields or the functional circuits
involving them. Considering that memory impairment is not

regarded as a core symptom of MDD, it is important to determine
whether such abnormalities are specific to depressed patients or
common in other disorders, such as autism and anxiety disorders
[70, 71]. Furthermore, given that the hippocampus is a deep
structure within the subcortex, it is challenging to utilize neuro-
interventional methods to modulate its activity [72]. Therefore,

Figure 3. Associations between hippocampal subfield volumes and cognitive abnormalities in adolescents with MDD.We identified the optimal regularization parameters from the
LASSO regression analysis using 10-fold cross-validataion. The coefficient weights of core CA region volumes (B) had the relatively largest magnitudes in associations with memory
(working and spatialmemory, A), following by attentive selection, emotional recognition and cognitive control abilities. For the different cognition and hippocampus substructures,
coefficient weights were summed by the corresponding absolute values. CA, cornu ammonis; HATA, hippocampal amygdalar transition area; attentive selection (N), neutral
emotion; attentive selection (H), positive emotion; attentive selection (S), negative emotion; in dot probe task, left stimuli was defined as the attractive one.
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future research should also explore the disruption of effective
functional circuits in different subfields in these patients [73],
and consider utilizing other cortical targets to exert interventions
to hippocampal subfields [74].

There are several limitations in this study. Firstly, although the
severity of MDD was assessed using five different measures, all of
them were cross-sectional. We thus cannot determine the caus-
ality between depression and volume reductions in the hippocam-
pus. Volumetric changes in the hippocampus have been found to
predict the later onset of depression from early to mid-
adolescence [75]. Future longitudinal studies are warranted to
reveal to which extent hippocampal subregions could predict
the onset and development of MDD. Secondly, despite the high-
resolution images and robust segment method, we only focused
on the substructure volumes and ignored the long-axis special-
ization of the hippocampus [76, 77]. Noval shape analyses may
provide more morphometric and quantitative brain measures and
greater power to detect disease effects [78, 79]. Thirdly, consid-
ering this study focused on the hippocampus and its associations
with cognition, particularly in relation to multifaceted memory,
future research should consider other tests for declarative mem-
ory, delayed recall, and recognition memory. Fourthly, adolescent
depression is significantly influenced by adverse childhood envir-
onments [80]. Early-life stress may contribute to hippocampal
abnormalities [81] by inducing alterations in epigenetic program-
ming such as DNA methylation progression [62]. However, it is
still unclear whether the abnormal hippocampal tissues in
depressed adolescents are a result of adverse environments and
abnormal DNA expression processes [82, 83].

In conclusion, this study has focused on hippocampal subfields
in adolescent MDD patients and successfully identified significant
volumetric reductions in several subregions. The results on the
severity of the symptoms supported the importance of core hippo-
campal structures in the pathophysiology of depression. Hippocam-
pal subfields also showed associations with cognition impairments in
MDD patients, especially in the cognitive domain of memory. These
findings underscore the necessity of effective early therapeutic inter-
ventions in adolescent depression to potentially mitigate progressive
hippocampal damage.
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