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Abstract

We approximate the distribution of the sum of independent but not necessarily identically
distributed Bernoulli random variables using a shifted binomial distribution, where the
three parameters (the number of trials, the probability of success, and the shift amount)
are chosen to match the first three moments of the two distributions. We give a bound
on the approximation error in terms of the total variation metric using Stein’s method.
A numerical study is discussed that shows shifted binomial approximations are typically
more accurate than Poisson or standard binomial approximations. The application of the
approximation to solving a problem arising in Bayesian hierarchical modeling is also
discussed.
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1. Introduction

A common method for improving the accuracy of an approximation is the construction of an
asymptotic expansion. In practice, however, this can be more time consuming and much less
convenient than calculating the values of a known distribution. An alternative approach is thus
to modify a common approximating distribution by introducing some new parameters which
then can be used to achieve a better fit. The use of common distributions can make it easy to
avoid the need for specialized programing when using standard statistical packages to model
data.

One of the simplest modifications is shifting, and this approach works well in the Poisson
case. For a large number of independent rare events, the distribution of the number of them that
occur is often well approximated by a Poisson distribution. If some of the events are not in fact
so rare, this approximation is likely to be poor: the expected number of events occurring may
not be close to the variance, but these are equal for the Poisson distribution. One easy way to
address this problem is to introduce a shift by adding or subtracting a constant from the Poisson
random variable. This then gives essentially two parameters that can be fitted to match the first
two moments (subject to the constraint that the shift is an integer). Shifted (also referred to
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as translated or centered) Poisson approximations have been studied in many papers; see, for
example, Čekanavičius and Vaı̆tkus (2001), Barbour and Čekanavičius (2002), Röllin (2005),
Barbour and Lindvall (2006), and the references therein.

One of the goals of this paper is to investigate the effect of shifting applied to a two-parameter
distribution. It is clear that shifting changes a distribution’s mean but not its variance and
higher centered moments. Can we expect by shifting to conveniently obtain a three-parameter
distribution and match three corresponding moments? In the case of the normal approximation,
the obvious answer is no. The normal distribution already has a parameter that can be treated as
shifting. Since both parameters of two-parameter distributions are usually closely related to their
first two moments, it seems important to show that there are natural cases where shifting can be
successfully applied. Below we use a shifted (centered, translated) binomial approximation for
the sum of Bernoulli variables. Our primary interest for the statistical application we consider
is in the case when the variables are independent.

In the literature, the distribution of the sum of independent Bernoulli random variables
with not necessarily identical probabilities is called a Poisson binomial distribution. This
distribution is widely applicable and widely studied, and bounds on approximation errors for
various approximations have been developed. See Chen and Liu (1997) for an overview of the
Poisson binomial distribution and Pitman (1997) for applications, as well as Le Cam (1960)
and Barbour et al. (1992b, pp. 33–40) for some Poisson approximation results. A number of
researchers have studied the binomial distribution as an approximation for the Poisson binomial
distribution. For example, Choi and Xia (2002) argued that binomial approximations are better
than Poisson approximations.

Before discussing some previously obtained results, we need to introduce some necessary
notation. Let X1, . . . , Xm be independent Bernoulli random variables with P(Xi = 1) = pi ,
W = ∑m

i=1 Xi . Let

λj =
m∑

i=1

p
j
i , j = 1, 2, . . . , σ 2 = var W = λ1 − λ2.

The total variation metric distance between two random variables X and Y is defined as

dTV(L(X), L(Y )) = sup
A

|P(X ∈ A) − P(Y ∈ A)|,

where the supremum is taken over all Borel sets. Note that if X and Y are integer valued then
dTV(X, Y ) = 1

2

∑
i∈Z

|P(X = i) − P(Y = i)|. We also define a local metric

dloc(L(X), L(Y )) = sup
j∈Z

|P(X = j) − P(Y = j)|.

The notation �·� and {·} are used for integral and fractional parts, respectively.
Ehm (1991) gave results for the binomial approximation where the number of trials equals the

number of Bernoulli variables and the success probability is chosen to match the first moment.
More precisely,

dTV(L(W), Bi(m, p)) ≤ 1 − pm+1 − (1 − p)m+1

(m + 1)p(1 − p)

m∑
i=1

(pi − p)2, (1.1)

where p = λ1/m. Thus, the binomial approximation here is a one-parameter approximation.
Ehm’s approach was later extended to a Krawtchouk asymptotic expansion in Roos (2000).
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Barbour et al. (1992b, p. 190) treated the binomial distribution as a two-parameter approxi-
mation. Their result was improved in Čekanavičius and Vaı̆tkus (2001, Section 4), who showed
that

dTV(L(W), Bi(n, p)) ≤ 4

1 − p
min

(
1,

√
e

σ

)(
λ3

λ1
− λ2

2

λ2
1

)
+ λ2{λ2

1/λ2}
λ1(1 − p)n

+P(W > n). (1.2)

Here n = �λ2
1/λ2� and p = λ1/n. Note that Čekanavičius and Vaı̆tkus (2001) (as well as

Barbour et al. (1992b) and Soon (1996)), in formulations of their results, overlooked the term
P(W > n), which is necessary because the support of W is typically larger than the support of
the approximating binomial distribution.

It is easy to see that both estimates (1.1) and (1.2) are small if all the pi are close to each
other. On the other hand, the second estimate can be sharper than the first one. Indeed, let
pi = 1

2 for i ≤ m/2 and pi = 1
3 otherwise. Then the right-hand side of (1.1) equals some

absolute constant C1, meanwhile the right-hand side of (1.2), after application of Chebyshev’s
inequality, becomes C2m

−1/2.
Note that two-parameter binomial approximations are also applied in settings with depen-

dence; see Soon (1996) and Čekanavičius and Roos (2007). Röllin (2008) used a shifted
Bi(n, 1

2 ) to approximate sums of locally dependent random variables.
In this paper we study the shifted binomial approximation where the shift, the number

of trials, and the success probability are selected to match the first three moments of the
shifted binomial and the Poisson binomial distributions. We then give an upper bound on the
approximation error by adapting Stein’s method to the shifted binomial distribution. This is, to
the best of the authors’ knowledge, the first time Stein’s method has been used to approximate
a distribution that fits the first three moments. We also discuss the results of a numerical study
showing that a shifted binomial approximation is typically more accurate than the Poisson or
other standard binomial approximations discussed in Soon (1996) and Ehm (1991).

At the end of the paper we describe the motivating statistical application in healthcare
provider profiling that led to the need for a more accurate approximation. See Peköz et al. (2009)
for more detail on the application. An introduction to the use of Bayesian hierarchical models
for healthcare provider profiling can be found in Ash et al. (2003).

Stein’s method was introduced in the context of a normal approximation in Stein (1972)
and developed for the Poisson distribution in Chen (1974) and Chen (1975). The method is
particularly interesting since results in the complex setting of dependent random variables are
often not much more difficult to obtain than results for independent variables. Barbour et
al. (1992b) detailed how the method can be applied to Poisson approximations, Ehm (1991)
and Loh (1992) respectively applied the method to binomial and multinomial approximations,
Barbour et al. (1992a) and Barbour and Chryssaphinou (2001) to the compound Poisson
approximation, Barbour and Brown (1992) to the Poisson process approximation, and Peköz
(1996) to the geometric approximation. A discussion of the many other distributions and settings
that the technique can be applied to can be found in, for example, Barbour and Chen (2005)
and Reinert (2005). An elementary introduction to Stein’s method can be found in Chapter 2
of Ross and Peköz (2007).

This paper is organized as follows. In Section 2 we give the main approximation theorems
by adapting Stein’s method to the shifted binomial distribution and in Section 3 we prove
these results. In Section 4 we discuss numerical results illustrating the accuracy of several
approximations, and in Section 5 we discuss the statistical application in Bayesian hierarchical
modeling that motivated our initial interest in this approximation.
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2. Main results

Let Y be a shifted binomial random variable with parameters n, p, and integer shift s, that
is,

Y ∼ Bi(n, p) ∗ δs, (2.1)

where ‘∗’ denotes convolution of measures and δs is the measure with mass 1 at s. In this
paper we study the approximation of W using Y with parameters n, p, and s chosen so that
the first three moments of W and Y are approximately equal. Due to the integer natures of n

and s, it will not always be possible to exactly match the three moments—so we match them
as closely as possible. We first estimate these parameters, and then give a theorem bounding
the approximation error. It is easy to check that

E Y = np + s, var Y = np(1 − p), E(Y − E Y )3 = (1 − 2p) var Y,

E W = λ1, var W = λ1 − λ2, E(W − E W)3 = λ1 − 3λ2 + 2λ3.

In order to find the values n, p, and s that match the moments best under the constraint that n

and s are integer valued, let us first solve the system of equations E W = E Y , var W = var Y ,
and E(W − E W)3 = E(Y − E Y )3 for real valued n∗, p∗, and s∗. The system of equations

s∗ + n∗p∗ = λ1,

n∗p∗(1 − p∗) = λ1 − λ2,

n∗p∗(1 − p∗)(1 − 2p∗) = λ1 − 3λ2 + 2λ3,

yields the solution

p∗ = λ2 − λ3

λ1 − λ2
, n∗ = λ1 − λ2

p∗(1 − p∗)
, s∗ = λ1 − n∗p∗. (2.2)

We now choose

n = �n∗�, s = �s∗�, p = n∗p∗ + {s∗}
n

= p∗ + {n∗}p∗ + {s∗}
n

(in the last expression we indeed divide by n and not by n∗), and then let Y be as in (2.1).
Although p is real valued and therefore does not need any rounding correction with respect
to p∗, a small perturbation is still necessary in order to fit the mean exactly, which is crucial
to obtain better rates of convergence. For convenience, whenever we use a variable p (or
pi , p∗, etc.) to denote a probability, the variable q (or qi , q∗, etc.) will denote the counter
probability 1 − p. Let v = ∑m

i=1(pi ∧ qi). Then our main result is the following.

Theorem 2.1. Suppose that X1, . . . , Xm are independent Bernoulli random variables with
P(Xi = 1) = pi . With the definitions above we have

dTV(L(W), Bi(n, p) ∗ δs) ≤ K(4A1 + 2A2) + η, (2.3)

where

K = 1 − pn+1 − qn+1

σ 2 , (2.4)

A1 = σ 2(λ3 − λ4) − (λ2 − λ3)
2

σ 2
(
1 ∨ (v/2 − 1)

) , A2 = λ1[{n∗} + {s∗}] + n{s∗}
n

,

η =
(
s max

i≤s
pi

)
∧ e−σ 2/4 + ((m − n − s) max

i>n+s
pi) ∧ e−σ 2/4+1.
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Furthermore,
dloc(L(W), Bi(n, p) ∗ δs) ≤ K(8A3 + 4A4) + η, (2.5)

where

A3 = σ 2(λ3 − λ4) − (λ2 − λ3)
2

σ 2(1 ∨ (v/3 − 2))3/2 , A4 = λ1[{n∗} + {s∗}] + n{s∗}
n(1 ∨ (v − 1))1/2 .

If p1, p2, . . . , pm are such that, for some fixed p, we have, for all i, either pi = p or pi = 1,
then W and Y have the same shifted binomial distribution and dTV(L(W), L(Y )) = 0. In
this case, after omitting η, the right-hand sides of (2.3) and (2.5) also both equal 0. Dropping
negative terms, using (λ3 − λ4) ≤ σ 2 ≤ v and 1 ∨ (av − b) ≥ av/(1 + b), and replacing all
fractional parts by unity, we obtain the following simplified bounds.

Corollary 2.1. Under the conditions of Theorem 2.1, we have

dTV(L(W), Bi(n, p) ∗ δs) ≤ 17 + 2λ1n
−1

σ 2 + 2e−σ 2/4+1

and

dloc(L(W), Bi(n, p) ∗ δs) ≤ 222 + 12λ1n
−1

σ 2v1/2 + 2e−σ 2/4+1.

It is clear from this corollary that, when c < pi < d for all i and some absolute constants
c and d, the order of the upper bound on dTV(L(W), Bi(n, p) ∗ δs) is O(n−1) while, for
dloc(L(W), Bi(n, p) ∗ δs), it is O(n−3/2). Thus, we obtain a significant improvement over
O(n−1/2), which can be obtained by a two-parameter binomial approximation (1.2) or by a
shifted Bi(n, 1

2 ) distribution as in Röllin (2008).

3. Proofs of the main results

If Stein’s method for a normal approximation N(0, σ 2) is applied to a random variable X,
we typically need to bound the quantity

E[σ 2f ′(X) − Xf (X)] (3.1)

for some specific functions f , where X is assumed to be centered and var X = σ 2. This
corresponds to fitting the first two moments. If three moments have to be matched, we need
a different approximating distribution and a canonical candidate would be a centered �(r, λ)

distribution. This would lead to bounding the quantity

E[(rλ−2 + λ−1X)f ′(X) − Xf (X)] (3.2)

(cf. Luk (1994, Equation (17))), where the parameters r and λ are chosen to fit the second
and third moments of W , that is, var W = rλ−2 and E W 3/ var W = 2λ−1 (this obviously is
only possible if W is skewed to the right, which we can always achieve by considering either
W or −W ). We can see that (3.2) is in some sense a more general form of (3.1), having an
additional parameter for skewness. On the integers, we can take a shifted binomial distribution
as in this paper. Not surprisingly, the Stein operator for a binomial distribution, shifted to have
expectation λ1 (ignoring rounding problems), can be written in a way similar to (3.2); see (3.3),
below. In the following lemma we give the basic arguments to show how to handle expressions
of type (3.2) in the discrete case for sums of independent indicators where all the involved
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parameters are allowed to be continuous. We will deal with the rounding problems in the main
proof of Theorem 2.1.

We need some notation first. For any function g, define the operators �kg(w) := �k−1g(w+
1) − �k−1g(w) with �0g := g and �g(w) := (g(w + 1) + g(w))/2. Note that �� = ��.
We introduce the operator � in order to present the Stein operator of the shifted binomial in
a symmetrized form, so that the connection with (3.2) should become more apparent. For the
choice p∗ = 1

2 , the linear part in the �g part will vanish, so that the operator indeed becomes
symmetric, and, hence, corresponds to the symmetric distribution Bi(n∗, 1

2 ) shifted by −n∗/2.

Lemma 3.1. Let W be defined as before, and let

B̂∗g(w) := (
n∗p∗q∗ + ( 1

2 − p∗)(w − λ1)
)
�g(w) − (w − λ1)�g(w). (3.3)

Then, for n∗ and p∗ defined as in (2.2), we have, for any bounded function g : Z → R,

E B̂∗g(W) =
m∑

i=1

(p∗ − pi)p
2
i qi E �3g(Wi)

= 1

2σ 2

m∑
i,j=1

pipjqiqj (pi − pj )
2 E �3g(Wij ),

where Wi := W − Xi and Wij := W − Xi − Xj .

Proof. It is easy to prove that, for any bounded function h : Z → R, the following identities
hold:

E[(Xi − pi)h(W)] = piqi E[�h(Wi)], (3.4)

E[h(W) − �h(Wi)] = −( 1
2 − pi

)
E �h(Wi), (3.5)

E[h(W) − h(Wi)] = pi E �h(Wi). (3.6)

In what follows summation is always assumed to range over i = 1, . . . , m. Using first (3.4)
and then (3.5), we obtain

E[(W − λ1)�g(W)] =
∑

(Xi − pi)�g(W)

=
∑

piqi E ��g(Wi)

=
∑

piqi E �g(W) +
∑

piqi

( 1
2 − pi

)
E �2g(Wi).

From (3.4) we also deduce that

E[(W − λ1)�g(W)] =
∑

piqi E �2g(Wi).

Combining these two identities and recalling that n∗p∗q∗ = λ1 − λ2,

E B̂∗g(W) =
∑

piqi(pi − p∗) E �2g(Wi).

Applying (3.6) and noting that
∑

piqi(pi − p∗) = 0 proves the first equality. For the second
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equality, we proceed with

m∑
i=1

(pi − p∗)p2
i qi E �3g(Wi)

= 1

σ 2

m∑
i,j=1

p2
i pj qiqj (pi − pj ) E �3g(Wi)

= 1

2σ 2

m∑
i,j=1

pipjqiqj (pi − pj )(pi E �3g(Wi) − pj E �3g(Wj ))

= 1

2σ 2

m∑
i,j=1

pipjqiqj (pi − pj )(pi E �3g(Wij ) + pipj E �4g(Wij )

− pj E �3g(Wij ) − pipj E �4g(Wij ))

= 1

2σ 2

m∑
i,j=1

pipjqiqj (pi − pj )
2 E �3g(Wij ).

The following fact was implicitly used in Röllin (2008). We give a quick proof here. It is a
simple extension of the result in Ehm (1991), and is necessary, as W may have a larger support
than Y . Below we use the notation IA to denote the indicator function for the event A.

Lemma 3.2. Let A ⊂ Z, and define the operator Bf (k) := p(n − k)f (k + 1) − qkf (k). Let
f : Z → R be the solution to

Bf (k) = Ik∈A − Bi(n, p){A} if 0 ≤ k ≤ n, (3.7)

and let f (k) = 0 for k /∈ {0, 1, . . . , n}. Then, with K as defined in (2.4),

‖�f ‖ ≤ K. (3.8)

Furthermore, if A = {k} for some k ∈ Z, we also have

‖f ‖ ≤ K. (3.9)

Proof. Note that, for 1 ≤ k ≤ n, f (k) coincides with the definition in Ehm (1991), who
showed that

sup
k∈{1,...,n−1}

|�f (k)| ≤ 1 − pn+1 − qn+1

(n + 1)pq
< K.

It remains to bound �f (0) = f (1) and �f (n) = −f (n) as, obviously, �f (k) = 0 if k < 0 or
k > n + 1.

Let µ := Bi(n, p) be the binomial probability measure. Then, from Barbour et al. (1992b,
p. 189) we have, for 1 ≤ k ≤ n and where Uk := {0, 1, . . . , k},

f (k) = µ{A ∩ Uk−1} − µ{A}µ{Uk−1}
kqµ{k}

= µ{A ∩ Uk−1}µ{U c
k−1} − µ{A ∩ U c

k−1}µ{Uk−1}
kqµ{k} .
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From this we have

|f (k)| ≤ µ{U c
k−1}µ{Uk−1}
kqµ{k} ;

in particular, for k = 1,

|f (1)| ≤ (1 − qn)q

npq
≤ K.

For the corresponding bound at the upper boundary, we have, again from Barbour et al. (1992b,
p. 189),

f (k) = −µ{A ∩ U c
k−1} − µ{A}µ{U c

k−1}
(n − k + 1)pµ{k − 1}

= −µ{A ∩ Uk−1}µ{U c
k−1} − µ{A ∩ U c

k−1}µ{Uk−1}
(n − k + 1)pµ{k − 1} ,

which, applying it for k = n, leads to the same bound on �f (n), so that (3.8) follows. The
bound in (3.9) is immediate from the proof of Ehm (1991, Lemma 1).

Proof of Theorem 2.1. We need to bound |P(W − s ∈ A)−Bi(n, p){A}| for any set A ⊂ Z.
Let f : Z → R be such that (3.7) holds. Then we can write

P(W − s ∈ A) − Bi(n, p){A} = P(W − s ∈ A \ {0, 1, . . . , n}) + E Bf (W − s), (3.10)

and note that this equation holds because f = 0 outside of {0, 1, . . . , n}.
Let the operator B∗ be defined as B in Lemma 3.2, but replacing n by n∗ and p by p∗. Let

g(w) := f (w − s), and recall that w − s = w − λ1 + n∗p∗ + {s∗}. Then,

Bf (w − s) = B∗f (w − s) + {s∗}g(w + 1) + (p∗ − p)(w − s)�g(w)

=: B∗f (w − s) + R1(w).

Note further that

B∗f (w − s) = (n∗p∗q∗ − p∗(w − s − n∗p∗))�f (w − s) − (w − s − n∗p∗)f (w − s)

= B̂∗g(w) − p∗{s∗}�g(w) − {s∗}g(w)

=: B̂∗g(w) + R2(w),

where B̂∗ is as in Lemma 3.1. Hence,

Bf (w − s) = B̂∗g(w) + R1(w) + R2(w). (3.11)

Let us first deal with the error terms R1 and R2 (which arise only due to the necessity that n

and s have to be integers). Now,

R1(w) + R2(w) = (p∗ − p)w�g(w) + ({s∗}(1 − p∗) − s(p∗ − p))�g(w).

Noting that E[W�g(W)] = ∑
i pi E �g(Wi + 1) and recalling (3.8), we have

|E[R1(W) + R2(W)]| ≤ 2K(λ1|p∗ − p| + {s∗})
≤ 2K

(
λ1({n∗} + {s∗})

n
+ {s∗}

)
, (3.12)
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where we have used

|{s∗}(1 − p∗) − s(p∗ − p)| = |s∗(1 − p∗) − s(1 − p)|
≤ |s − s∗| + |sp − s∗p∗|
≤ {s∗} + s∗|p − p∗| + |s − s∗|p
≤ 2{s∗} + s∗|p − p∗|
≤ 2{s∗} + λ1|p − p∗|.

To estimate E B̂∗(W), we use Lemma 3.1. Estimation of E �3g(Wi,j ) goes along the lines
given in Barbour and Čekanavičius (2002, pp. 521 and 541). For a random variable X, define
first

Dk(X) = ‖L(X) ∗ (δ0 − δ1)
∗k‖,

where ‖ · ‖ denotes the total variation norm when applied to measures. Note that D1(X) =
2dTV(L(X), L(X + 1)). We can decompose Wi,j = Si,j,1 + Si,j,2 in such a way that both
sums of the (pi ∧ qi) corresponding to Si,j,1 and Si,j,2 are greater than or equal to v/2 − v∗,
where v∗ = max1≤i≤m(pi ∧ qi). We have

|E�3g(Wi,j )| ≤ ‖�g‖D2(Wi,j )

≤ ‖�g‖D1(Si,j,1)D
1(Si,j,2)

≤ 4K

1 ∨ (v/2 − 1)
. (3.13)

In the last line we used Barbour and Xia (1999, Proposition 4.6) (later improved in Mattner and
Roos (2007, Corollary 1.6) by roughly a constant factor of 0.8 in our case) and Barbour and
Čekanavičius (2002, p. 521, Estimate (4.9)).

So, starting from (3.10), then using identity (3.11) along with Lemma 3.1 and estimate (3.13)
and also estimate (3.12), we obtain

|P(W − s ∈ A) − Bi(n, p){A}|
≤ 4K

2σ 2(1 ∨ (v/2 − 1))

∑
i,j

pipjqiqj (pi − pj )
2

+ 2K

(
λ1({n∗} + {s∗})

n
+ {s∗}

)
+ P(W < s) + P(W > n + s).

Note now that

1

2

∑
i,j

pipjqiqj (pi − pj )
2 = (λ1 − λ2)(λ3 − λ4) − (λ2 − λ3)

2.

Consequently, to complete the proof for the total variation distance, we need to estimate tails
of W . Note that Xi − pi satisfies Bernstein’s inequality with parameter τ = 1. Therefore,

P(W < s) = P(W − λ1 < s − λ1) ≤ exp

{
− σ 4

4
∑

pj (1 − pj )2

}
≤ exp

{
−σ 2

4

}
.

Similarly, by applying estimate

P(W − λ1 > x) ≤ exp

{
σ 2

4
− x

2

}
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(see Equation (4.3) of Arak and Zaı̆tsev (1988)), we obtain

P(W > n + s) ≤ exp

{
−σ 2

4
+ 1

}
.

Estimate P(W < s) ≤ s max i < spi is straightforward.
To obtain the result for the dloc metric, the proof is similar, except that we now have A = k for

some k ∈ Z and bound (3.9). We need some refinements of the estimates of E[R1(W)+R2(W)]
and E B̂∗(W). Similar to (3.13),

|E�g(Wi)| ≤ ‖g‖D1(Wi) ≤ 2K

(1 ∨ (v − 1))1/2 ,

and, choosing Si,j,k, k = 1, 2, 3, so that the corresponding (pi ∧ qi) sum up to at least (v/3 −
2v∗),

|E�3g(Wi,j )| ≤ ‖g‖D3(Wi,j ) ≤ ‖g‖
3∏

k=1

D1(Si,j,k) ≤ 8K

(1 ∨ (v/3 − 2))3/2 .

Substituting these estimates into the corresponding inequalities, the final estimate (2.5) is easily
obtained.

4. Numerical results

In this section we study the sum of Bernoulli random variables X1, . . . , X100 with uniformly
spread probabilities from 0 to some parameter M , so that pi = iM/101, i = 1, 2, . . . , 100.
We analytically compute the exact distribution of W = ∑100

i=1 Xi and then the exact total
variation distance between W and several different approximations for different values of M .
Figure 1 shows a graph of the exact total variation approximation error for several different
approximations versus M , referred to in the graph on the x-axis as the ‘maximum probability’.
In the graph ‘Poisson’ refers to the standard Poisson approximation where the parameter is
chosen to match the first moment. ‘Binomial’ refers to a binomial approximation where a
number of trials, n, is fixed to equal 100 but the probability of success, p, is chosen to match the
first moment (this is the approximation studied in Ehm (1991)). ‘Shifted Poisson’ refers to the
approximation where a constant is added to a Poisson random variable and the two parameters—
the constant and the Poisson rate—are chosen to match the first two moments (this is the
approximation studied in Čekanavičius and Vaı̆tkus (2001)). The ‘normal’ approximation is the
standard normal approximation to the binomial distribution using the continuity correction. ‘2
parameter binomial’ refers to the approximation where the two binomial parameters n and p

are chosen to match the first two moments (this is the approximation studied in Soon (1996)).
Finally, ‘shifted binomial’ refers to the approximation we propose in this paper—where the
shift, the number of trials, and the probability of success are chosen to match the first three
moments.

We see in Figure 1 that the normal approximation performs well when probabilities are
widely spread out but performs very poorly when probabilities are very small. We see that the
Poisson, shifted Poisson, and binomial approximations are best for small probabilities but not
otherwise. The two-parameter binomial approximation is quite good, but the shifted binomial
approximation performs the best over the widest range of values of M . Since the value of
M can be viewed as varying widely in our statistical application, this would be the preferred
approximation.
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Figure 1: Exact total variation distance error between W using pi = iM/101, i = 1, . . . , 100, and six
approximations as a function of the maximum probability M .

In summary, we see that over a range of different Poisson binomial random variables that the
shifted binomial approximation performs very well—usually better than the other two standard
binomial approximations studied previously in the literature. The advantage of the shifted
binomial approximation seems to increase as the spread among the Bernoulli probabilities
increases.

5. Application to Bayesian hierarchical modeling

The study of shifted binomial approximations is motivated by a statistical problem (see
Peköz et al. (2009)) of ranking a large number of hospitals with respect to quality as measured
by the risk of adverse events at the hospitals. Let Xij be a binary data variable that equals 1
if an adverse event of a particular type happens to patient i in hospital facility j , and equals 0
otherwise. We are interested in the following model where Xij are the data values, pij are
known constants, and θj and σ 2 are unknown parameters that we would like to estimate:

Xij | pij , θj ∼ Be(logit−1(logit(pij ) + θj )),

where
θj | σ 2 ∼ N(0, σ 2).

In this model pij is a risk-adjusted probability that has been previously calculated by taking
into account various patient specific indicators and it represents the chance that patient i has an
adverse event at a typical hospital. The parameter θj is a hospital specific factor that increases
or decreases the probability of an adverse event for its patients. Hospitals with a high value
of θj are poorly performing hospitals. Our goal is to rank hospitals by the values of θj . The
standard Bayesian hierarchical modeling approach is to put prior distributions on the unspecified
parameters and estimate the posterior means of all the parameters conditional on the data.

The difficulty in this situation is that the values of Xij and pij are both confidential and
are too numerous to conveniently transmit from each of the hospitals to the main research
facility that would be performing the analysis. We need a method for summarizing each of
these so that each facility need only report a few summary statistics. In our application we have
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thousands of hospitals, thousands of people in each hospital, and a number of different types of
adverse events. A rough approximation of 5000 hospitals with 1000 people each yields a total
of 5000 × 1000 = 5 000 000 random variables—too many to be conveniently computable by
standard software.

To circumvent this difficulty, we propose that each hospital aggregate its patients and compute
Yj = ∑

i Xij , the number of people in hospital j who have an adverse event. We then use the
shifted binomial approximation above for Yj . This will then yield a total of 5000 random
variables—much more easily manageable computationally.

To implement the approximation, in the preparation stage, hospital j also stores and submits
the values of λjm ≡ ∑

i pm
ij for m = 1, 2, 3 and all j . Then we can easily compute the shifted

binomial approximation to Yj from these as a function of θj . This results in the following
model:

θj | σ 2 ∼ N(0, σ 2), Yj − sj | θj , nj , pj ∼ Bi(nj , logit−1(logit(pj ) + θj ))

with

pj = λj2 − λj3

λj1 − λj2
, nj = λj1 − λj2

pj (1 − pj )
, sj = λj1 − njpj

being the parameters for the shifted binomial approximation designed to match three moments.

Remark 5.1. Though the binomial distribution is not defined for fractional values of the
parameter n, we can use a fractional parameter in the likelihood function for the data to obtain in
some sense an interpolation of the likelihood functions under the two closest binomial models
having integer parameters. For many statistical parameter estimation software packages using
likelihood-based approaches, such as maximum likelihood or the Metropolis algorithm, such
fractional values of the binomial parameter n can be used this way to yield better approximations.

For example, in the simple model for the dataX | n, p ∼ Bi(n, p), the likelihood function for
the data as a function of the unknown parameter p is L(p) ∝ pX(1−p)n−X. Under likelihood-
based approaches, this function is all that is used from the model to estimate the parameters,
and so with the use of noninteger n the function L(p) can be viewed as yielding an interpolation
of the likelihood functions L1(p) ∝ pX(1 − p)�n�−X and L2(p) ∝ pX(1 − p)�n�−X.
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