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Bilinear and Quadratic Forms on Rational
Modules of Split Reductive Groups

Skip Garibaldi and Daniel K. Nakano

Abstract. _e representation theory of semisimple algebraic groups over the complex numbers
(equivalently, semisimple complex Lie algebras or Lie groups, or real compact Lie groups) and the
questions of whether a given complex representation is symplectic or orthogonal have been solved
since at least the 1950s. Similar results for Weyl modules of split reductive groups over ûelds of
characteristic diòerent from 2 hold by using similar proofs. _is paper considers analogues of these
results for simple, induced, and tilting modules of split reductive groups over ûelds of prime char-
acteristic as well as a complete answer for Weyl modules over ûelds of characteristic 2.

1 Introduction

_e representation theory of semisimple algebraic groups over the complex numbers
(equivalently, semisimple complex Lie algebras or Lie groups) is well known. _e set
of isomorphism classes of irreducible representations of the simply connected cover
of a group G is in bijection with the cone of dominant weights of the root system of
G.
Classifying representations ofG overC is the same as classifying homomorphisms

from G into a group of type A. One can equally well ask about homomorphisms into
other groups, forwhich homomorphisms into groups of type B or D (orthogonal rep-
resentations) and groups of type C (symplectic representations) play a distinguished
role. _e basics of this theory were laid out in [Mal], were known to Dynkin [Dy],
and a complete solution is clearly described in [GW09, §3.2.4], [St, pp. 226, 227], or
[Bou L7, §VIII.7.5]. One reduces the problem to studying irreducible representations,
then giving an algorithm in terms of the dominantweight λ for determiningwhether
the irreducible representation L(λ) has a nonzero G-invariant symmetric or skew-
symmetric bilinear form. _e algorithm is proved via restricting the representation
to a principal A1 subgroup of G. _is material is now a plank in the foundations
of representation theory, where it has applications to determining the subalgebras of
semisimple complex Lie algebras [Dy] and distinguishing real and quaternionic rep-
resentations of compact real Lie groups [Bou L7, Ch. IX, App. II.2, Prop. 3]. For gen-
eral k, invariant bilinear forms are used to provide information about the groups, for
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example throughout the book [KMRT], or for bounding the essential dimension ofG
as in [CS] or [BaC], or for controlling Lie subalgebras as in [SF, §5.8, Exercise 1].

_is paper concerns the generalization of the above theory of symplectic and or-
thogonal representations to the case of a ûeld k of prime characteristic. _e situation
is more complicated. _ere are four classes of representations (each of which is in
bijection with the cone of dominant weights) that have a claim to being the natural
generalization of the irreducible representation overCwith highestweight λ: the irre-
ducible representation L(λ), the inducedmoduleH0(λ), theWeyl moduleV(λ), and
the tilting module T(λ). _e four representations are related by nonzero maps

(1.1)

V(λ)
surjective
ÐÐÐÐÐ→ L(λ)

injective
×
×
×
Ö

×
×
×
Ö

injective

T(λ)
surjective
ÐÐÐÐÐ→ H0(λ),

where all four maps are unique up to multiplication by an element of k× (and the dia-
gram commutes up tomultiplication by a scalar). _e deûnitionsmake sense for every
ûeld k, andwhen char k = 0 or λ is minuscule, all themaps in (1.1) are isomorphisms.
We refer to [Jan] for information on this subject. In extending the theory of orthog-
onal and symplectic representations to include the case where the characteristic of k
is prime, two complications arise.
First, although the theory of bilinear forms on irreducible representations over

C translates easily to irreducible representations andWeyl modules over any k (see
Lemma 4.3), it does not directly translate to the representations H0(λ) and T(λ). For
example, when V is irreducible or Weyl, the space of G-invariant bilinear forms is at
most 1-dimensional, but for V = H0(λ) or T(λ) it can be larger. We give a formula
for this dimension in the case of T(λ) in _eorem 6.2 and relate it to B-cohomology
in the case of H0(λ) in _eorem 5.5.

Second, when char k = 2, the theory ofG-invariant bilinear forms is insuõcient to
treat homomorphisms of G into groups of type B and D, because such groups are re-
lated to the existence ofG-invariant quadratic forms. _e question of the existence of
G-invariant quadratic forms on irreducible representations has previously been stud-
ied (cf. [W,GowW, SinW]), and there is no known, straightforward necessary and
suõcient condition (cf. Section 10). In contrast to this, we completely solve the ques-
tion of which Weyl modules have a G-invariant quadratic form; see_eorem 9.5.
Ad hoc constructions in the literature show that the half-spin representations

of Spin4m for m odd, the representation Λr(k2r) of SL2r for r odd, and the 56-
dimensional minuscule representation of E7 are all examples of groups G and irre-
ducible representations V such that V has a G-invariant quadratic form if and only
if char k = 2 (see [KMRT, p. 150 and 10.12], and in the case of E7, one notes that the
invariant quartic—in [Brown, p. 87], for example—is deûned over Z and becomes a
square a�er reduction mod 2). _ese irreducible representations are also Weyl mod-
ules, because their highest weight is minuscule, so our _eorem 9.5 may be viewed
as a generalization of these examples, as it gives a necessary and suõcient condition
for the existence of such a G-invariant quadratic form. Proposition 8.5 gives a new
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explicit example of such a G-invariant quadratic form that does not seem to be in the
literature.

Onemajor feature throughout our paper is the interplay with the admissibility of
variousG-invariant bilinear forms and the rational cohomology ofG. In the ûnal sec-
tion (Section 11), as a byproduct of our results, we are able to calculateH1(G ,Λ2(V))
for many cases where V is L(λ), T(λ), or H0(λ).

_is paper treats the case where G is split reductive. A sequel work will extend
these results to the case where G need not be split.

2 Background: Representations of Split Reductive Groups

2.1 Notation

We will follow the notation from [Jan] and [Bou L4]. _roughout, we consider a ûeld
k of characteristic p ≥ 0 and an algebraic group G over k (i.e., a smooth aõne group
scheme of ûnite type over k) that is reductive and split. If k is separably closed, then
every reductive algebraic k-group is split. We ûx in G a pinning, which includes the
following data:

● T : a k-split maximal torus in G.
● Φ: the root system of G with respect to T . When referring to short and long roots,
when a root system has roots of only one length, all roots shall be considered as
both short and long.

● Π = {α1 , . . . , αn}: the set of simple roots. We adhere to the ordering of the simple
roots as given in [Jan] (following Bourbaki); see (8.3) for the numbering for type C.

● α̃: themaximal root.
● B: a Borel subgroup containing T corresponding to the negative roots.
● W = NG(T)/T : theWeyl group.
● w0: longest element in W , relative to the choice of simple roots Π.
● P ∶= Zω1 ⊕ ⋅ ⋅ ⋅ ⊕Zωn : the weight lattice, where the fundamental dominant weights

ω i are deûned by ⟨ω i , α j⟩ = δ i j , 1 ≤ i , j ≤ n.
● X(T) = Hom(T ,Gm) ⊆ P.
● ≤ on P: a partial ordering of weights, for λ, µ ∈ P, µ ≤ λ if and only if λ − µ is in
Nα1 + ⋅ ⋅ ⋅ +Nαn .

● P+ ∶= Nω1 + ⋅ ⋅ ⋅ +Nωn : the dominant weights.
● X(T)+ ∶= X(T) ∩ P+.
● Q ∶= ZΦ: the root lattice.

We further deûne the following:

● F∶G → G: the Frobenius morphism.
● Gr = ker F r : the r-th Frobenius kernel of G.
● M[r]: the module obtained by composing the underlying representation for a ra-

tional G-module M with F r .
● H0(λ) ∶= indG

B λ, λ ∈ X(T)+: the inducedmodule whose character is provided by
Weyl’s character formula.

● V(λ) ∶= H0(−w0λ)∗: theWeyl module.
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● L(λ): the irreducible ûnite dimensionalG-modulewith highestweight λ ∈ X(T)+.
Its dual is L(−w0λ).

● T(λ): Ringel’s indecomposable tilting module corresponding to λ ∈ X(T)+, as
deûned in [Jan, Prop. E.6]. Its dual is T(−w0λ).

Example 2.1 In the case when G is a torus, Φ = ∅, Q = 0, and P = X(T) = X(T)+.
For each λ ∈ X(T)+, L(λ) = H0(λ) = V(λ) = T(λ) is one-dimensional.

2.2 Direct Products

Suppose G = T0 ×∏
n
i=1 G i for T0 a split torus and G i simple and simply connected.

Let Ti be a maximal split torus in G i and take T = ∏
n
i=0 Ti ; a pinning of G relative

to T is equivalent to ûxing a pinning of each G i relative to Ti . _en Φ is the union
of the root systems of the G i . Setting Pi to be the weight lattice of G i , i.e., X(Ti), we
ûnd that X(T)+ = P0 ⊕⊕i(Pi)+ = P+.

Lemma 2.2 With the notation of the previous paragraph, for λ i ∈ X(Ti)+, we have

L(∑ λ i) =⊗ L(λ i), V(∑ λ i) =⊗V(λ i), and H0(∑ λ i) =⊗H0(λ i).

Proof _e claim for H0 is [Jan, Lemma I.3.8]. Dualizing gives the claim for V . For
L, an irreducible representation ofG is a tensor product of irreducible representations
of T0 and of the G i , and inspecting highest weights yields the claim.

For an arbitrary split reductive group G, there exists a split torus T0 and split, sim-
ple, simply connected groupsG1 , . . . ,Gn as above and a central isogeny π∶T0×∏G i →
G, all ofwhich are in some sense unique. _e quotient π relates the chosen pinning of
G relative to T to a pinning of T0 ×∏G i relative to the split maximal torus π−1(T)○

such that π∗X(T)+ = ∏X(Ti)+, and representations of G induce representations of
T0×∏G i . In thisway,when proving the results in this paper, it is harmless to assume
that G is a direct product T0 ×∏G i as at the beginning of this subsection.

In later parts of the paper, G1 will be used to denote the ûrst Frobenius kernel of
G; the diòerence will be clear from context.

3 Symmetric Tensors and Symmetric Powers

3.1 Symmetric Tensors

Let V be a k-vector space.

Deûnition 3.1 _e symmetric group Σn on n letters acts on ⊗n V by permuting
the indices of a tensor v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn . Deûne S′n(V) ⊆⊗n V via

S′n(V) = {x ∈
n
⊗V ∣ σx = x for all σ ∈ Σn};

it is the space of symmetric tensors. _e symmetrization map s∶⊗n V → ⊗n V is
deûned by s(x) = ∑σ∈Σn σx and

S′′n (V) ∶= im s ⊆ S′n(V);
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elements of S′′n (V) are symmetrized tensors. Evidently, if n! is not zero in k, then
S′′n (V) = S′n(V).

Example 3.2 (Bilinear forms) _e space BilV ∶= V∗ ⊗ V∗ is the vector space of
bilinear forms on V , and S′2(V∗) is the subspace of symmetric bilinear forms. If
char k = 2, then S′′2 (V∗) is the span of elements x ⊗ y − y ⊗ x for x , y ∈ V∗, i.e.,
S′′2 (V∗) is the space of alternating bilinear forms.

Regardless of the characteristic of k, we identify⊗2 V∗
∼

Ð→ Hom(V ,V∗) denoted
b ↦ b̂, where b̂ is deûned by b̂v ∶= b(v , ⋅ ). Note that, as our vector spaces are ûnite-
dimensional, the canonical inclusion ⊗n(V∗) ⊆ (⊗n V)∗ is an equality by dimen-
sion count, so we omit the unnecessary parentheses from this expression. _e (le�)
radical of b is rad b ∶= ker b̂.

3.2 Symmetric Powers

_e n-th symmetric power Sn(V) of V is the image of ⊗n V in the quotient of
⊕i≥0⊗

i V by the two-sided ideal generated by all elements of the form v⊗ v′ − v′⊗ v
for v , v′ ∈ V ; we write ρ∶⊗n V ↠ Sn(V) for the quotient map. One typically omits
the symbol ⊗ when writing elements of Sn(V). If we ûx a basis v1 , . . . , vd of V , then
Sn(V) has basis {ve11 v

e2
2 ⋅ ⋅ ⋅ vedd ∣ ∑ e i = n}.

We obtain a commutative diagram (cf. [BouA4, §IV.5.8]) of linear maps

n
⊗V

ρ

��

s

##

n
⊗V

ρ

��
Sn(V)

ϕ // S′′n (V) ⊆ S′n(V)

;;

ψ // Sn(V).

_emap ϕ is themultilinearization map ϕ(v1 ⋅ ⋅ ⋅ vn) = ∑σ∈Σn vσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ vσ(n). _e
compositions ϕψ∶ S′′n (V) → S′′n (V) and ψϕ∶ Sn(V) → Sn(V) are multiplications
by n!.

Example 3.3 (Quadratic forms) _e elements of the vector space

QuadV ∶= S2(V∗)

are the quadratic forms on V . _e multilinearization map ϕ sends a quadratic form
q to its polar bilinear form bq ∶= ϕ(q) given by

bq(v , v′) = q(v + v′) − q(v) − q(v′).

If bq = 0, then q is said to be totally singular. _e radical of q is

rad q ∶= {v ∈ V ∣ v ∈ rad bq and q(v) = 0}.

Evidently rad q is a vector space, and for each extension K of k,

rad(q ⊗ K) ⊇ (rad q)⊗ K .

If char k ≠ 2, then rad q = rad bq , and the only totally singular quadratic form is the
zero form.
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We refer to [EKM] for background concerning quadratic forms over a ûeld, in-
cluding the case char k = 2.

3.3 Alternating Tensors

Deûnition 3.4 We deûne subspaces A′′n(V) ⊆ A′n(V) ⊆⊗n V via setting

A′n(V) ∶= {x ∈
n
⊗V ∣ σx = (sign σ)x for all σ ∈ Σn}

and A′′n(V) to be the image of the skew-symmetrization map α∶⊗n V → A′n(V) de-
ûned via α(x) = ∑σ∈Σn(sign σ) ⋅ σx. _ese subspaces are analogous to the symmetric
tensors in Deûnition 3.1.
Evidently, the restriction of α to A′n(V) acts as multiplication by n!. We can iden-

tify Λ2(V) with A′′2(V) and Λ2(V∗) with the space of alternating bilinear forms on
V (as Λ2(V∗) = Λ2(V)∗), i.e., the forms b ∈ V∗ ⊗ V∗ such that b(v , v) = 0 for all
v ∈ V . If char k = 2, then A′2(V∗) = S′2(V∗) is the space of symmetric bilinear forms
on V and A′′2(V∗) is a proper subspace of A′2(V∗) for nonzero V .

_e sequences

0Ð→ S′2(V)Ð→ V ⊗ V α
Ð→ Λ2(V)Ð→ 0(3.1)

and

0Ð→ Λ2(V)Ð→ V ⊗ V
ρ
Ð→ S2(V)Ð→ 0(3.2)

are exact. If char k ≠ 2, then both sequences split and encode the direct sum decom-
position: V ⊗ V ≅ Λ2(V)⊕ S2(V).

3.4 Representations

If V is a representation of a group G, then so are the vector spaces deduced from V
such as S′′2 (V∗).

If char k ≠ 2, then replacing V with V∗ in (3.2) gives a direct sum decomposition
(BilV)G ≅ (Λ2V∗)G⊕(QuadV)G . Furthermore, if (BilV)G = kb for some nonzero
b, then b is either symmetric or alternating.

However, when char k = 2, the situation is slightly diòerent.

Lemma 3.5 Suppose char k = 2 and V is a representation of a group G such that
(BilV)G = kb for some nonzero b. _en b is symmetric and the quadratic form ψ(b)
is totally singular.

Proof _e exact sequence (3.1) yields an exact sequence

0Ð→ S′2(V∗)G Ð→ (BilV)G α
Ð→ Λ2(V∗)G

and α(b) = mb for somem ∈ k. Writing aGram matrix M for b with respect to some
basis of V , the equation α(b) = mb says that M − M t = mM, hence m = 0, i.e., b is
symmetric.
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For the second claim, suppose ϕψ(b) ≠ 0. _en the alternating form ϕψ(b) equals
nb for some n ∈ k×, thus b is alternating and ψ(b) = 0. _is is a contradiction, hence
ϕψ(b) = 0.

3.5 Symmetric p-linear Forms Versus Symmetric Powers of Degree p

We now return to the notions introduced in this section in the special case where k
has characteristic p ≠ 0, and compare the symmetrized p-linear tensors, S′′p (V), and
the symmetric powers of degree p, S p(V).
Consider, for example, the casewhere V has basis v1 , v2, and p = 3. _en S′′3 (V) is

2-dimensional with basis v i ⊗ v i ⊗ v3−i + v i ⊗ v3−i ⊗ v i + v3−i ⊗ v i ⊗ v i = ϕ(v2
i v3−i)/2

for i = 1, 2. _is contradicts the (erroneous) formula for dim S′′p (V) given in [BouA1,
Exercise 5b, Chapter III, §6]; a correct formula is implicit in the following result.

Proposition 3.6 Suppose char k = p. _en the sequence

(3.3) 0Ð→ V [1] Ð→ S p(V)
ϕ
Ð→ S′′p (V)Ð→ 0

is exact, and S′p(V) is a direct sum of S′′p (V) and the k-span of {⊗p v ∣ v ∈ V}.

Proof For exactness, the only thing to check is exactness at themiddle term S p(V).
Fix a basis v1 , . . . , vd of V and form the corresponding basis

B = {ve11 v
e2
2 ⋅ ⋅ ⋅ vedd ∣∑ e i = p}

of S p(V). We partition B as X = {v p
i ∣ 1 ≤ i ≤ d} and Y = B ∖ X. Wemay identify

V [1] with the k-span of X, because, for any v = ∑ c iv i ∈ V , we have v p = ∑ cpi v
p
i .

For an element ve11 v
e2
2 ⋅ ⋅ ⋅ vedd , we deûne

h ∶= (
e1
⊗ v1) ⊗ (

e2
⊗ v2) ⊗ ⋅ ⋅ ⋅ ⊗ (

ed
⊗ vd) ∈

p
⊗V

and H to be the stabilizer in Σp of h. Clearly,

ϕ(ve11 v
e2
2 ⋅ ⋅ ⋅ vedd ) = ∣H∣ ⋅ ∑

σ∈Σp/H
σh.

_erefore, for v p
i ∈ X,we haveH = Σp , so ϕ(v p

i ) = p!⋅h = 0. For h = ve11 ⋅ ⋅ ⋅ vedd ∈ Y , the
size of H is e1!e2! ⋅ ⋅ ⋅ ed !, which is not divisible by p, hence ϕ(h) is in k× ⋅∑σ∈Σp/H σh.
For distinct cosets σH and σ ′H of H, the elements σH ⋅ h and σ ′H ⋅ h are linearly
independent in⊗p V , so it follows that ker ϕ = span(X) = imV [1].
From this argument, the ûnal claim is clear.

Replacing V with V∗, wemay view sequence (3.3) as relating homogeneous poly-
nomials of degree p and symmetric p-linear forms.

Deûnition 3.7 For k a ûeld of characteristic p, a symmetric p-linear form f is
characteristic if f (v , v , . . . , v) = 0 for all v ∈ V . For p = 2, a characteristic symmetric
2-linear form is nothing but an alternating bilinear form.
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Corollary 3.8 For every vector space V over a ûeld of characteristic p, S′′p (V∗) is the
space of symmetric p-linear forms on V that are characteristic.

Proof For f ∈ S′p(V∗), f is not characteristic if and only if f (v1 , v1 , . . . , v1) ≠ 0 for
some v1 ∈ V if and only if with respect to some basis v1 , . . . , vn of V with dual basis
x1 , . . . , xn , when we write f in terms of the dual basis, we ûnd a nonzero multiple of
⊗p x1. Proposition 3.6 gives the claim.

For a diòerent view on Proposition 3.6 and Corollary 3.8, see [DV, Section 3,
esp. _eorem 3.4].

Corollary 3.9 Suppose char k = p and V is a representation of an algebraic group G.
(i) If V has no codimension-1 G-submodules, then ϕ∶ S p(V∗)G → S′′p (V∗)G is injec-

tive.
(ii) IfH1(G ,V∗[1]) = 0, then ϕ∶ S p(V∗)G → S′′p (V∗)G is surjective.

Part (ii), in the special case p = 2, can be found in [W, Satz 2.5].

Proof Taking the exact sequence (3.3), replacing V with V∗, and taking ûxed sub-
modules gives the exact sequence

(V∗[1])G Ð→ S p(V∗)G ϕ
Ð→ S′′p (V∗)G Ð→ H1(G ,V∗[1])

From this, (ii) is clear. For (i), if (V∗)G = 0, then (V∗[1])G = 0.

4 Bilinear Forms on Irreducible and Weyl Modules

4.1 Bilinear Forms on Irreducible Modules

_e proof in the case k = C given in [GW09, _. 3.2.13, 3.2.14] shows that for every
ûeld k and every λ ∈ X(T)+, (Bil L(λ))G is nonzero if and only if λ = −w0λ, if and
only if (Bil L(λ))G = kb for some nondegenerate b.

Suppose these conditions hold. If char k ≠ 2, then the splitting of sequence (3.2)
shows that b is symmetric or skew-symmetric. If char k = 2 and λ ≠ 0, then b is alter-
nating. Indeed, in that case b is symmetric with ψ(b) totally singular by Lemma 3.5,
butψ(b) is the zero quadratic form byCorollary 3.9(i), i.e., b is alternating, as claimed.

4.2 Reducible Modules

_ematerial in the preceding subsection is enough to determine (BilV)G when V is
semisimple. We now consider arbitrary (ûnite-dimensional) representations V . Re-
call that the socle, denoted by socV , is the largest semisimple submodule of V . _e
head of V , denoted by headV , is themaximal semisimple quotient; the kernel of the
map V → headV is the radical of V , denoted by radV . _e following observation
has many applications.

Lemma 4.1 Let U ⊆ radV . If U and (headV)∗ have no common composition
factors, then the pullback (BilV/U)G → (BilV)G is an isomorphism.
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Proof Suppose ûrst that U is simple. _e induced map Bil(V/U) → BilV is obvi-
ously injective and G-equivariant. For every b̂ ∈ HomG(V ,V∗), we have

b̂(U) ⊆ soc(V∗) = (headV)∗ ,

so by hypothesis b̂ vanishes on U . Furthermore, b̂ induces a homomorphism
headV → head(V∗) → U∗, which must also vanish by the hypothesis, hence every
element of b̂(V) vanishes on U , and b̂ is in the image of HomG(V/U , (V/U)∗) →
HomG(V ,V∗), as claimed.

_e general case follows by induction on the length of a composition series for U ,
because for simpleU0 ⊆ radV we have rad(V)/U0 = rad(V/U0) and head(V/U0) =
head(V).

4.3 Weyl Modules

For each λ ∈ X(T)+, theWeyl module V(λ) has head L(λ), and therefore radV(λ)
is the kernel of themap V(λ) → L(λ) from (1.1). Note that radV(λ) = 0 if and only
if V(λ) is irreducible if and only if all maps in (1.1) are isomorphisms.

Example 4.2 LetG be an adjoint group of type Bn over a ûeld k, hence it is SO(V , q)
for a quadratic form q on a (2n + 1)-dimensional vector space V by [KMRT, p. 364].
_e G-module V can be identiûed with theWeyl module V(ω1). If char k = 2, the
radical of the bilinear form rad bq (whose deûnition is recalled in Example 3.2) is
1-dimensional, the irreducible representation L(ω1) is V(ω1)/ rad bq , and H0(λ) =
V∗ has a unique proper submodule, L(ω1).

Lemma 4.3 For λ ∈ X(T)+, the surjection V(λ) → L(λ) induces an isomorphism
(Bil L(λ))G ∼

Ð→ (BilV(λ))G .

Proof #1 (BilV(λ))G = HomG(V(λ),H0(−w0λ)), which is k (if and only if λ =
−w0λ) or 0. _us, the inducedmap (Bil L(λ))G → (BilV(λ))G is onto.

Proof #2 Apply Lemma 4.1 with U = radV(λ), using Lemma 5.1 to see that
L(−w0λ) is not a composition factor of U .

Deûnition 4.4 We say a representation V of G is symplectic if there is a nonzero
G-invariant alternating bilinear form on V (i.e., Λ2(V∗)G ≠ 0) and V is orthogonal if
(QuadV)G ≠ 0. Clearly, if char k ≠ 2, a representationV(λ) or L(λ) can be symplec-
tic or orthogonal or neither, but not both. If char k = 2 and λ ≠ 0, it can be symplectic,
both orthogonal and symplectic, or neither.

4.4 Integral Models

As G is a split reductive group, there is a split reductive group schemeGZ overZ such
that GZ × k is isomorphic to G [Gro11]. Moreover, for each λ ∈ X(T)+ there is a
representation V(λ,Z) of GZ such that base change identiûes V(λ,Z) × k with the
Weyl module V(λ) of G over k. Consequently, it makes sense to write V(λ,K) for
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theWeyl moduleV(λ,Z)×K ofGZ×K, for any ûeld K. We use this conventionwhen
we want to emphasize the ûeld of deûnition.

Suppose that λ = −w0λ, so V(λ,C) is orthogonal or symplectic; the recipe de-
scribed in [GW09]will tellwhich. BecauseV(λ,Q) is also self-dual, there is anonzero
(GZ ×Q)-invariant bilinear form on V(λ,Q), and by clearing denominators we as-
sume it is indivisible and deûned on V(λ,Z) with values in Z. From this we ûnd that
when char k ≠ 2, V(λ, k) is orthogonal (resp., symplectic) if and only if V(λ,C) is
orthogonal (resp., symplectic).
For any k, if V(λ,C) is orthogonal, thenwe can similarly use the symmetric bilin-

ear formonV(λ,Q) to construct a (GZ×Q)-invariant quadratic form that is nonzero
and indivisible on V(λ,Z) and so conclude that V(λ, k) is orthogonal. _e converse
of this is false; see, for example, Proposition 8.5.
Entirely parallel remarks hold for the inducedmodule, H0(λ).

4.5 Reduced Killing Form

Let G be a split quasi-simple group deûned over Z. _e highest root α̃ is in X(T)+,
and theWeyl module V(α̃,Z) is the Lie algebra g̃ of the simply connected cover G̃ of
G [Ga, 2.5]. Dividing theKilling formof g̃ by twice the dualCoxeter number h∨ gives
an even and indivisible symmetric bilinear form (cf. [GN, p. 633] or [SpSt, pp. 180–
181]) so there exists a unique indivisible quadratic form s so that 2h∨ ⋅ bs is the Killing
form κ. It is called the reduced Killing quadratic form on g̃.

We now sketch how to determine the isomorphism class of s over any ûeld k. It
is harmless to assume that G is simply connected. _e roots Φ and simple roots Π
index a basis {hδ ∣ δ ∈ Π} ∪ {xα , x−α ∣ α ∈ Φ} for Lie(G). As s is invariant under
T , it vanishes on each x±α , and it quickly follows that s is an orthogonal sum of its
restrictions to Lie(T) and Zxα + Zx−α for each α ∈ Φ. Put r for the square-length
ratio of long roots to short roots, so r ∈ {1, 2, 3}. _e calculations in [SpSt, pp. 180,
181] show that Zxα + Zx−α contributes a zero form to s ⊗ k if α is short and r is zero
in k; otherwise, it contributes a hyperbolic plane.
As for the restriction to Lie(T), recall that there is a unique positive-deûnite qua-

dratic form q∨ on the coroot lattice Q∨ (for the simple root system Φ of G) that takes
the value 1 on short coroots and r on long coroots. Since s restricts to aWeyl-invariant
form on Lie(T), the formulas in [SpSt] show that the restriction of s to Lie(T) is q∨.
In summary, s⊗k is an orthogonal sumof hyperbolic planes, a zero form (if char k ∣ r)
and q∨ ⊗ k.

To calculate q∨ ⊗ k, ûx a basis α∨1 , . . . , α∨n of simple coroots and set C to be the
Cartan matrix with respect to the basis α1 , . . . , αn of simple roots. For D the diagonal
matrix whose i-th diagonal entry is the square-length q∨(α∨i ) of α∨i , the product DC
is a symmetric integer matrix with even entries on the diagonal, and

(4.1) q∨(v) = 1
2v

TDCv for v ∈ Q∨ .

In case char k = 2, formulas for the isometry class of s can be found in [BaC, §3].
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4.6 A Uniserial Example

Let λ, µ ∈ X(T)+ such that µ = −w0µ, and let V be a uniserial G-module with com-
position factors L(µ), L(λ), L(µ). Note that V does not satisfy the hypotheses of
Lemma 4.1.

Example 4.5 If λ = −w0λ and Ext1G(L(λ), L(µ)) = k, then dim(BilV)G = 2.
To see why this is so, note that V∗ is also uniserial with the same composition fac-
tors, and that the corresponding module diagrams in the sense of [BC] are “rigid”
by the hypothesis on Ext, so by Proposition 6.5 of ibid. we can read oò the elements
of HomG(V ,V∗) from the diagrams; clearly HomG(V ,V∗) is 2-dimensional with a
basis consisting of an isomorphism and amap that sends V onto soc(V∗).

_e following provides a tool to check the Ext hypothesis in the example.

Lemma 4.6 If V(λ2) has two composition factors L(λ2) and L(λ1) (with L(λ1) as
the socle) and H0(λ1) = L(λ1), then Ext1G(L(λ1), L(λ2)) ≅ k.

Proof Apply HomG( ⋅ , L(λ1)) to the exact sequence

0Ð→ L(λ1)Ð→ V(λ2)Ð→ L(λ2)Ð→ 0

to get

HomG(V(λ2), L(λ1)) Ð→ HomG(L(λ1), L(λ1)) Ð→

Ð→ Ext1G(L(λ2), L(λ1)) Ð→ Ext1G(V(λ2), L(λ1)) .

_e ûrst term is zero because λ1 ≠ λ2. _e last term is zero by [Jan, Prop. II.4.16]
because L(λ1) has a good ûltration.

5 Bilinear Forms on Induced Modules

5.1 Induced Modules

_e theory of bilinear forms on an induced module H0(λ) is notably diòerent from
that for irreducible andWeyl modules, and in general the forms on H0(λ) need not
havemuch to do with L(λ). We start with the following basic lemma.

Lemma 5.1 If λ ∈ P+ and −w0λ are comparable in the partial ordering on P, then
λ = −w0λ.

Proof We have that −w0λ = λ + σ for σ a sum of positive roots or a sum of negative
roots. Applying −w0 to both sides and subtracting, we ûnd that σ = w0σ , but w0
interchanges positive and negative roots, hence σ = 0, i.e., λ = −w0λ.

_en we ûnd the following lemma.

Lemma 5.2 If H0(λ) is reducible, then the pullback

(BilH0(λ)/L(λ))G
→ (BilH0(λ))G
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is an isomorphism.

Proof _e dual of headH0(λ) is the socle of H0(λ)∗ = V(−w0λ). By Lemma 5.1,
λ cannot be less than −w0λ, and therefore L(λ) cannot be a component of the socle.
_e conclusion follows by Lemma 4.1.

Example 5.3 Let G be a quasi-simple group. _en

dim(BilH0(α̃))G =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4 if char k = 2 and G has type Dn for n ≥ 4 and even,
2 if char k = 2 and G has type Bn or Cn with n ≥ 2,
1 otherwise.

Note that the dimension can be bigger than 1, unlike for irreducible andWeyl mod-
ules. To see the claim, we combine Lemma 5.2 with the preceding discussion and
with the G-module structure of V(α̃) = H0(α̃)∗ given in [Hiss]. Put α0 for the high-
est short root.

Suppose G has type Bn or Cn for n ≥ 2 and char k = 2. _en H0(α̃)/L(α̃) is either
k ⊕ L(α0) or is uniserial with composition factors k, L(α0), k as in Section 4.6. In
the latter case, V(α0) has socle k by [Hiss], so Lemma 4.6 applies, and in both cases
we ûnd dim(BilH0(α̃))G = 2, as claimed.

If G has type F4 and char k = 2, or if G has type G2 and char k = 3, then
H0(α̃)/L(α̃) is L(α0), so dim(BilH0(α̃))G = 1.

In the remaining cases, writing Z for the scheme-theoretic center of the simply
connected cover of G, H0(α̃)/L(α̃) ≅ Lie(Z)∗, on which G acts trivially. If Z is not
étale, then dim(BilH0(α̃))G = (dimLie(Z))2, whence the claim.

Note that, in calculating the dimension of (BilH0(α̃))G , we implicitly gave for-
mulas for all of the G-invariant bilinear forms.

We remark that for G of type A, D, or E, H0(α̃) is the Lie algebra of the adjoint
group [Ga, 3.5(2)].

5.2 A Necessary Condition

Lemma 5.4 If there is a nonzero G-invariant bilinear form on H0(λ) or T(λ), then
2λ is in the root lattice Q.

Proof On the one hand, the action of the torus T on the representation V = H0(λ)
or T(λ) turns V∗ ⊗V∗ = Bil(V) into a graded vector space with grade group X(T),
and the hypothesis gives that 0 is a weight. On the other hand, all weights of V are
congruent to λ mod the root lattice Q, hence all weights of Bil(V) are congruent to
−2w0λ mod Q, so −2w0λ ∈ Q. As −w0 normalizes Q, the conclusion follows.

Note that −w0 acts on P/Q as −1, hence the condition λ = −w0λ (for the existence
of a nonzero G-invariant bilinear form on V(λ) or L(λ)) implies that 2λ ∈ Q.
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5.3 Connections with Cohomology

_e following result demonstrates that the number of G-invariant bilinear forms on
the induced module H0(λ) is related to the rational B-cohomology. In [HN], it was
shown that similar B-cohomology calculations for GLn(k) are related to the coho-
mology of Specht modules for the symmetric group on n letters.

_eorem 5.5 Let λ ∈ X(T)+. _en for N = ∣Φ∣/2,

dim(BilH0(λ))G = dimExtNB (H0(λ),−λ − 2ρ)

= dimHN(B,V(−w0λ)⊗ (−λ − 2ρ)).

Proof Recall that H0(λ)∗ = V(−w0λ). Furthermore, by using Serre duality [Jan, II
4.2(9)],

V(−w0λ) ≅ HN(w0 ⋅ (−w0λ)) ≅ HN(−λ − 2ρ).

Consider the following spectral sequence [Jan, I.4.5]

E i , j
2 = ExtiG(H0(λ), R jindG

B (w0 ⋅ (−w0λ))) ⇒ Exti+ j
B (H0(λ),w0 ⋅ (−w0λ)) .

According to Serre duality [Jan, II.4.2(9)],

R i indG
B (w0 ⋅ (−w0λ)) ≅ [RN−i indG

B (−(w0 ⋅ (−w0λ) + 2ρ))]∗

≅ [RN−i indG
B (λ)]∗ .

By assumption, λ ∈ X(T)+, so by Kempf ’s vanishing theorem, RN−i indG
B (λ) = 0

when N − i > 0 (or N > i).
_is shows that there is only one non-zero row in the spectral sequence; thus, the

spectral sequence collapses and for all i > 0:

ExtiG(H0(λ), RN indG
B (w0 ⋅ (−w0λ))) ≅ Exti+N

B (H0(λ),w0 ⋅ (−w0λ))

≅ Exti+N
B (H0(λ), λ − 2ρ) .

_e result now follows by specializing to the case when i = 0.

5.4 SLn Examples; Symmetric Powers

Let G = SLn and consider H0(dω1), where ω1 is the ûrst fundamental weight. We
have H0(dω1) ≅ Sd(V) where V is the natural n-dimensional representation.

Example 5.6 For G = SL2, H0(dω1)
∗ ≅ V(dω1) has a simple socle [Jan, II.5.16

Corollary] and H0(dω1) is multiplicity-free as a G-module (note the weight spaces
are all one-dimensional). So taking U = radH0(dω1) in Lemma 4.1 gives

(BilH0(dω1))
G
= (Bil headH0(dω1))

G
≅ k.

_at is, base change from the integral model as in Section 4.4 provides a nonzero
SL2-invariant bilinear form on Sd(k2), and it is the only one up to a factor in k×.
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Example 5.7 Let G = SLn where n ≥ 3. _e G-modules H0(dω1) can have compli-
cated submodule structures. However, one can employ the weight criterion in Corol-
lary 5.4 to deduce the following: If n ∤ 2d, then 2dω1 ∉ ZΦ, and

dim(BilH0(dω1))
G = 0.

5.5 SL3 Examples

Example 5.8 Let G = SL3 and let λ be a generic weight in the lowest p2-alcove (see
[DS]). _en the following are true: (i) the composition factors ofH0(λ) aremultiplic-
ity free and (ii) the head of H0(λ) is a single irreducible representation. Moreover, if
λ ≠ −w0λ, then the head ofH0(λ) is not a composition factor ofV(−w0λ). _erefore,
in this case, dim(BilH0(λ))G = 0.

Suppose p = char k ≥ 3 and consider the following weights of G = SL3 expressed
in terms of the fundamental weights:

λ1 = (0, 0),
λ2 = sα1+α2 ,p(α1+α2) ⋅ λ1 = (p − 2, p − 2),
λ3 = sα1 ,pα1 ⋅ λ2 = (p, p − 3),
λ4 = sα2 ,pα2 ⋅ λ2 = (p − 3, p) = −w0λ3 .

We have indicated how λ j , for j = 1, 2, 3 are linked to (0, 0) under the dot action of
the aõneWeyl group Wp .
By using the standard translation functor arguments [Jan, II.7.19, II.7.20] or em-

ploying [DS] we can deduce the following facts. _e representation H0(λ2) is unis-
erial with two composition factors (from head to socle): L(0, 0), L(λ2) For j = 3, 4,
H0(λ j) is uniserialwith two composition factors (from head to socle): L(λ2), L(λ j).

Example 5.9 For j = 2, 3, 4,

(BilH0(λ j))
G
= (Bil headH0(λ j))

G
≅ k

by Lemma 4.1. Pulling back along the surjection T(λ3) → H0(λ3) from (1.1) gives a
nonzero G-invariant bilinear form on the tilting module T(λ3) also. (In fact it gen-
erates (BilT(λ3))

G by Example 6.4 below.) _at is, H0(λ3) and T(λ3) each have a
nonzero G-invariant bilinear form, yet λ3 ≠ −w0λ3, in contrast with the situation for
simple andWeyl modules described in Section 4.

6 Bilinear Forms on Tilting Modules

6.1 Tilting Modules

_e tilting module T(λ) has both a good and Weyl ûltration, and the composition
factor of highest weight in T(λ) is L(λ). We brie�y discuss the maps induced by
applying the functor V ↦ (BilV)G to (1.1).
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Lemma 6.1 For all λ ∈ X(T)+, the pullback map (BilT(λ))G → (BilV(λ))G is
surjective. If T(λ) is reducible, then the composition

(BilH0(λ))G Ð→ (BilT(λ))G Ð→ (BilV(λ))G

is zero.

Proof Assume (BilV(λ))G ≠ 0, so λ = −w0λ and there exists an isomorphism
f ∶T(λ) ∼

Ð→ T(−w0λ) = T(λ)∗. As λ and −w0λ are weights of T(λ) (and V(λ)) of
multiplicity 1, the pullback of f to V(λ) is nonzero, proving the ûrst claim. Commu-
tativity of (1.1) and Lemma 5.2 give the second claim.

_e lemma shows that when T(λ) is reducible:

(6.1) dim(BilT(λ))G ≥ dim(BilH0(λ))G + dim(BilV(λ))G .

6.2 Dimensions and Filtration Multiplicities

We now compute the dimension of the space of G-invariant bilinear forms on T(λ)
in terms of the good ûltration multiplicities. Deûne [T(λ) ∶H0(µ)] to be the number
of times H0(µ) appears in a good ûltration for T(λ); it equals HomG(V(µ), T(λ))
by [Jan, Prop. II.4.16(a)], so it is independent of the choice of good ûltration.

_eorem 6.2 Let G be a reductive algebraic group. _en for each λ ∈ X(T)+,
(i) dim(BilT(λ))G = ∑µ∈X(T)+

[T(−w0λ) ∶H0(µ)][T(λ) ∶H0(µ)];
(ii) if λ = −w0λ, then dim(BilT(λ))G = ∑µ∈X(T)+

[T(λ) ∶H0(µ)]2.

Proof (i) According to [Jan, II 4.13 Proposition], Ext1G(V(σ1),H0(σ2)) = 0 for all
σ1 , σ2 ∈ X(T)+. Since T(λ) has aWeyl ûltration, it follows that

Ext1G(T(λ),H0(σ)) = 0 for all λ, σ ∈ X(T)+ .

_erefore, the functor HomG(T(λ),−) is exact on short exact sequences ofmodules
that admit good ûltrations. Now T(−w0λ) admits a good ûltration, thus

dim(BilT(λ))G = dimHomG(T(λ), T(−w0λ))

= ∑
µ∈X(T)+

[T(−w0λ) ∶H0(µ)] dimHomG(T(λ),H0(µ)) .

Because T(λ) = T(λ)τ and H0(λ) = V(λ)τ under the duality τ deûned in [Jan, II
2.12, 2.13], HomG(T(λ),H0(µ)) = HomG(V(µ), T(λ)) and (i) follows. Part (ii)
follows immediately from (i).

In the sums in _eorem 6.2, the µ = λ term contributes 0 if λ ≠ −w0λ (by
Lemma 5.1) and 1 if λ = −w0λ. In either case, the sum restricted to µ ≠ λ gives
the dimension of the kernel of the pullback (BilT(λ))G → (BilV(λ))G .
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6.3 SL3 Examples

Let G = SL3 with p ≥ 3 and let λ j for j = 1, 2, 3, 4 be as in Section 5.5.

Example 6.3 _e tilting module T(λ2) is uniserialwith composition factors (from
the head to the socle):

L(0, 0), L(λ2), L(0, 0).
As in Section 4.6, we ûnd that dim(BilT(λ2))

G = 2, which agrees with the 12 + 12 = 2
provided by _eorem 6.2(ii), and we ûnd equality in (6.1).

Example 6.4 _e structure of the tilting module T(λ j) for j = 3, 4 is given by the
following diagrams in the style of [BC], with the head on top and the socle on the
bottom:

L(λ2)

L(λ j) L(0, 0)

L(λ2)

_erefore, dim(BilT(λ j))
G = 1, which agrees with _eorem 6.2(i) by looking at the

structure of the tilting module above with its good ûltration factors H0(λ j), H0(λ2).

Remark 6.5 Andersen, Stoppel, and Tubbenhaur [AST, _. 4.11] have recently
proved that Aλ ∶= EndG(T(λ)) for λ ∈ X(T)+ is a cellular algebra. Under com-
position, BilT(λ) becomes a Aλ-A−w0λ bimodule. As a le� Aλ-module, BilT(λ)
admits a ûltration of cell modules, and as a right A−w0λ-module, it admits a ûltration
of dual cell modules. _e reader is referred to [AST, Def. 5.1] for the deûnitions of
thesemodules.

7 Quadratic Forms on Tilting Modules

7.1 Modules with a Good Filtration

We characterize symmetric G-invariant p-linear forms for tilting modules andWeyl
modules via cohomological vanishing.

Proposition 7.1 Let G be a simple split algebraic group and let V be a ûnite-dimen-
sional G-module such thatV∗ admits a good ûltration. Assume further that if p = 2 and
G is of type C then [V∗ ∶ H0(ω1)] = 0. _en every G-invariant characteristic symmet-
ric p-linear form on V is the polarization of a G-invariant homogeneous polynomial of
degree p on V .

Proof By Corollary 3.9(ii), it suõces to prove that E1 ∶= H1(G , (V∗)[1]) = 0. Apply
the Lyndon-Hochschild-Serre spectral sequence:

E i , j
2 = Hi(G/G1 ,H j(G1 , k)⊗ (V∗)[1])⇒ Hi+ j(G , (V∗)[1]).

with the ûve term exact sequence 0→ E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2.
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Since V∗ admits a good ûltration, it follows that E i ,0
2 = 0 for i ≥ 1. _erefore,

H1(G , (V∗)[1]) ≅ HomG/G1(k, Ext
1
G1
(k, k)⊗ (V∗)[1])

≅ HomG(k, Ext1G1
(k, k)(−1) ⊗ V∗).

Now by [BNP,_eorem 3.1(C)(f)],

Ext1G1
(k, k)(−1) ≅

⎧⎪⎪
⎨
⎪⎪⎩

H0(ω1) p = 2 and Φ = Cn

0 else,

hence the claim holds apart from the exceptional case. In the exceptional case,

(H0(ω1)⊗ V∗)G = HomG(V ,H0(ω1)) = HomG(V(ω1),V∗),

whose dimension equals [V∗ ∶H0(ω1)], so again the claim follows.

7.2 Tilting Modules

Taking p = 2 in the proposition and specializing to tiltingmodules gives the following
corollary.

Corollary 7.2 Let G be a simple split algebraic group over a ûeld k of characteristic 2,
and let λ ∈ X(T)+. Assume further, in the case that G has type C, that

[T(λ)∗ ∶H0(ω1)] = 0.

_en every G-invariant alternating bilinear form on T(λ) is the polarization of a G-
invariant quadratic form on V .

Proof T(λ)∗ = T(−w0λ) has a good ûltration, so Proposition 7.1 yields the result.

8 Exterior Powers of Alternating Forms

8.1 Existence of Quadratic Forms

In this section, b denotes a nondegenerate alternating form on a vector space V of
ûnite dimension 2n over a ûeld k. We analyze quadratic forms on Λr(V) induced by
b for various r. _is is related to quadratic forms on the fundamental representations
of the group Sp(V , b) of type C.

It is well known that there is a bilinear form b(r) on Λr(V) deûned by

(8.1) b(r)(x1 ∧ ⋅ ⋅ ⋅ ∧ xr , y1 ∧ ⋅ ⋅ ⋅ ∧ yr) ∶= det(b(x i , y j)1≤i , j≤r),

and that b(r) is non-degenerate, since b is [BouA9, Prop. IX.1.9.10]. If k has character-
istic diòerent from 2, then evidently b(r) is symmetric for even r and skew-symmetric
for odd r. If k has characteristic 2, we consider quadratic forms.

Proposition 8.1 Let char k = 2 and let r be odd. For a ûxed symplectic basis B
of V , there is a quadratic form q(r) on Λr(V) with polar bilinear form b(r) such that
q(r)(v1 ∧ ⋅ ⋅ ⋅ ∧ vr) = 0 for v1 , . . . , vr ∈ B.
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Proof As char k = 2, we can write out B as e1 , . . . , en , f1 , . . . , fn such that

(8.2) b(e i , e j) = b( f i , f j) = 0 for all i , j and b(e i , f j) = δ i j .

WriteVZ for a freeZ-module of rank 2n whose basiswe denote also byB by abuse
of notation;wemay equally deûne a symmetric bilinear form bZ onVZ by (8.2) so that
wemay identify b with bZ⊗ k. _en (bZ)(r) is a symmetric bilinear form on Λr(VZ)
and themap f ∶ x ↦ (bZ)(r)(x , x) is a quadratic form on Λr(VZ).

We claim that f always takes even values. As Λr(VZ) is generated as an abelian
group by symbolswhose entries are taken from the symplectic basis, it suõces to ver-
ify that f (x) is even when x is such a symbol. But (bZ)(r)(x , x) can only be nonzero
for such an x if for every e i in x there is also a corresponding f i and vice versa. As r
is odd, this is impossible and the claim is proved.
As f is a homogeneous polynomial of degree 2 (with integer coeõcients) in the

basis dual to the bases of ∧rVZ consisting of symbols with entries from B, it follows
that f is divisible by 2. _e desired quadratic form on Λr(V) = Λr(VZ) ⊗ k is then
q(r) ∶= ( 1

2 f ) ⊗ k. By construction, q(r) has polar bilinear form (bZ)(r) ⊗ k = b(r),
and by the preceding paragraph q(r) vanishes on symbols with entries from B as
desired.

Remark 8.2 In the case where r is even and 2 ≤ r ≤ dimV , the bilinear form b(r)
is symmetric, but it is not alternating because for s = r/2 and x = e1 ∧ f1 ∧ e2 ∧ f2 ∧
⋅ ⋅ ⋅ ∧ es ∧ fs we have b(r)(x , x) = ±1. _erefore x ↦ b(r)(x , x) is a nonzero quadratic
form on Λr(V) which is obviously invariant under Sp(V , b).

Remark 8.3 When char k = 2, q is a quadratic form on V , and r is odd, [MR,
_. 1.6.2] deûnes a quadratic form Λrq on ΛrV . Taking b to be the polar form of
q, we ûnd that Λrq equals the form q(r) from Proposition (8.1). In particular, the
isomorphism class of Λrq depends only on the bilinear form b and not on the choice
of q such that b = ϕ(q).

8.2 Fundamental Weyl Modules for Type C

As in [Bou L4],wewriteωr for the fundamental dominantweight such that ⟨ωr , α j⟩ =
δr j , where α j is the simple root numbered j in the diagram

(8.3) 1 2 3 n − 2

n − 1

n
p p p <r r r r r r

We can see explicitly which of the fundamentalWeyl modules V(ωr) of Sp(V , b) are
orthogonal. Some of these are easy: for r even, V(ωr ,C) is orthogonal, hence so is
V(ωr , k) for every k.

Example 8.4 V(ω1) is the tautological representationV of Sp(V , b), and Sp(V , b)
acts transitively on the nonzero vectors. It follows that the only Sp(V , b)-invariant
polynomials are constant, hence V(ω1 , k) is not orthogonal for any k.
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For the remaining cases, where r is odd and 3 ≤ r ≤ n, we identify V(ωr) with the
subspace of Λr(V) generated by symbols v1 ∧ ⋅ ⋅ ⋅ ∧ vr such that v1 , . . . , vr generate a
totally isotropic subspace of V as in [GowK, §1] or [De B]. We call such symbols of
generator type.

Proposition 8.5 If char k = 2, r is odd, and 3 ≤ r ≤ n, then the quadratic form
q(r) deûned in Lemma 8.1 restricts to be Sp(V , b)-invariant and nonzero on theWeyl
module V(ωr).

Proof Let x be a symbol of generator type, where each entry in the symbol belongs
to B. _e basis B deûnes a pinning of Sp(V , b) as in [Bou L7, §VIII.13.3] of a root
subgroup relative to the pinning, so we can decompose V as an orthogonal sum V =
U ⊥ U ′ relative to b where g(U) = U , g is the identity on U ′, and U consists of s = 1
or 2 of the hyperbolic planes deûned by B. We write x = y ∧ y′, where y ∈ Λt(U)
and y′ ∈ Λr−t(U ′) are symbols of generator type and t ≤ s, because x has generator
type. Writing g y = ∑ y i where the y i are symbols in Λt(U) with entries from B, we
ûnd

q(r)(gx) = q(r)(∑ y i ∧ y′) =∑
i< j
b(r)(y i ∧ y′ , y j ∧ y′).

As r ≥ 3, r − t ≥ 1, and (8.1) shows that b(r)(y i ∧ y′ , y j ∧ y′) = 0. _at is, q(gx) = 0.
Furthermore, if g is instead taken to be in themaximal torus of Sp(V , b) deûned by
the pinning, then it scales x and again q(gx) = 0. It follows from these two calcula-
tions that q(gx) = 0 for all g ∈ Sp(V , b), hence q(r) vanishes on symbols of generator
type, regardless of whether their entries are drawn from B.
Any element z of V(ωr) can be written as z = ∑ z i for z i symbols of generator

type. For any g ∈ Sp(V , b), we have

q(r)(gz) =∑
i

q(r)(gz i) +∑
i< j
b(r)(gz i , gz j).

As gz i also has generator type, q(r)(gz i) = 0. Furthermore, b(r) is canonically deter-
mined by b and so is Sp(V , b)-invariant, so it follows that

q(r)(gz) =∑
i< j
b(r)(z i , z j) = q(r)(z),

as desired.

9 Which Weyl Modules are Orthogonal when char k = 2?

_e goal of this section is to prove_eorem 9.5, which determines, in case char k = 2,
which Weyl modules have nonzero G-invariant quadratic forms. In case char k ≠ 2,
quadratic forms are equivalent to symmetric bilinear forms and the answer is given
by thematerial in Section 4 and the recipe described in [GW09] or [Bou L7].
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9.1 Alternating Forms

Composing linear maps deûned in Section 3, we obtain, for vector spaces V1 ,V2, a
linear map,

ϖ∶ (
2
⊗V1) ⊗ (

2
⊗V2)

Id⊗α
ÐÐÐ→ (

2
⊗V1) ⊗ (

2
⊗V2)

∼

Ð→
2
⊗(V1 ⊗ V2)

ρ
Ð→ S2(V1 ⊗ V2),

where the middle isomorphism is v1 ⊗ v′1 ⊗ v2 ⊗ v′2 ↦ v1 ⊗ v2 ⊗ v′1 ⊗ v′2. Replacing
the ûrst map Id⊗α with α ⊗ Id does not change ϖ. Put e i ∶⊗2 Vi ↠ Λ2(Vi) for the
quotient map.

Lemma 9.1 (Tignol’s product) _e map ϖ vanishes on ker(e1 ⊗ e2) and induces a
linear map Λ2(V1)⊗ Λ2(V2)→ S2(V1 ⊗ V2).

Proof For i = 1, 2, themap α vanishes on the subspaceI ′′

2 (Vi) of⊗2 Vi spanned by
elements v⊗v for v ∈ Vi , so ϖ vanishes on (⊗2 V1)⊗I ′′

2 (V2) = ker(Id⊗e2). Because
replacing the ûrst map in the deûnition of ϖ does not change ϖ, ϖ also vanishes on
I ′′

2 (V1)⊗ (⊗2 V2), and we conclude that ϖ vanishes on the kernel of e1 ⊗ e2.

_e following proposition in the case char k = 2 can be found in [SinW, §3], or see
[KMRT, p. 67, Ex. 21]. Our proof invokes Tignol’s product from Lemma 9.1.

Proposition 9.2 If V1, V2 are k-vector spaces with alternating bilinear forms b1 , b2,
then there is a unique quadratic form q on V1 ⊗ V2 so that

(9.1) q(∑
i
v1i ⊗ v2i) =∑

i< j
b1(v1i , v1 j) b2(v2i , v2 j) for vℓ i ∈ Vℓ .

If b1 and b2 are nondegenerate, then so is q. If b i is invariant under a group G i , then q
is invariant under G1 ×G2.

Proof _e alternating form b i determines an element of Λ2(V∗

i ). Plugging b1 ⊗ b2
into Tignol’s product gives an element q ∈ S2(V∗

1 ⊗ V∗

2 ) = S2((V1 ⊗ V2)
∗), i.e., with

a quadratic form on V1 ⊗ V2.

Corollary 9.3 Let λ, µ ∈ X(T)+. If the Weyl modules V(λ),V(µ) have nonzero
G-invariant alternating bilinear forms, then V(λ + µ) is orthogonal.

Proof _e tensor product V(λ) ⊗ V(µ) has λ + µ as an extreme weight, and so
there is a nonzero G-equivariant map π∶V(λ + µ) → V(λ)⊗ V(µ). _e hypothesis
on V(λ) and V(µ) gives a G-invariant quadratic form q on the tensor product by
Proposition 9.2, hence qπ is aG-invariant quadratic formonV(λ+µ), and it suõces
to check that qπ is nonzero.
Fix highest weight vectors x+ , y+ and lowest weight vectors x− , y− of V(λ),V(µ)

respectively; note that the bilinear forms are nonzero on the pairs (x+ , x−) and
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(y+ , y−) as in Lemma 4.3. _e sumof thehighest and lowestweight spaces ofV(λ+µ)
is identiûed via π with k(x+⊗ y+)+ k(x−⊗ y−), and q(x+⊗ y++x−⊗ y−) is nonzero
by (9.1).

9.2 Orthogonality and Weyl Modules

We continue by providing below some examples for symplectic groups.

Example 9.4 Let G be a quotient of T0 ×∏i G i as in 2.2 such that G j ≅ Sp2n for
some n ≥ 1 and some j, and λ ∈ X(T)+ such that λ restricts to be zero on T0 and G i
for i ≠ j, but on G j it is ω1. _en by Lemma 2.2, the restriction of V(λ) to G j is the
tautological representation as in Example 8.4 and the restriction to T0 and to G i for
i ≠ j is a trivial representation. _erefore, k[V(λ)]G = k[V(ω1)]

Sp2n = k and V(λ)
is symplectic (i.e., Λ2(V(λ)∗)G ≠ 0) and not orthogonal (i.e., (QuadV(λ))G = 0).

_eorem 9.5 Let G be a split reductive group over a ûeld k of characteristic 2 and let
λ ∈ X(T)+ be nonzero. _en exactly one of the following holds:
(i) V(λ) is orthogonal (i.e., (QuadV(λ))G ≠ 0), or
(ii) G and V(λ) are as in Example 9.4, or
(iii) λ ≠ −w0λ.
Furthermore, if (i) occurs, then (QuadV(λ))G = kq for a quadratic from q with
rad bq = radV(λ) and one of the following holds:
(a) rad q = radV(λ), (Quad L(λ))G is 1-dimensional and spanned by the quadratic

form q induced by q, and rad bq = 0; or
(b) (Quad L(λ))G = 0, and rad q is a codimension-1 G-submodule of radV(λ).

Proof Suppose ûrst that (ii) and (iii) are false;we prove (i). As in Section 2.2,without
loss of generality we can assume that G is of the form T0 ×∏

n
i=1 G i where T0 is a split

torus and theG i are simple, split, simply connected algebraic groups over k, andwrite
λ = ∑

n
i=0 λ i . As λ = −w0λ and w0 is the product of the longest element in theWeyl

groups for each of the G i , it follows that λ i has the same property for all i and in
particular that λ0 = 0. If λ i ≠ 0, then V(λ i) has a nonzero alternating bilinear form
by Lemma 4.3. Hence, if two or more λ i ’s are nonzero, Corollary 9.3 and Lemma 2.2
combine to give (i).

So assume λ = λ1. As T0 and G i for i ≠ 1 act trivially on V(λ), we may assume
that G = G1, i.e., that G is simple. By hypothesis, (BilV(λ))G ≠ 0, and Proposition 7.1
completes the proof of (i).

Now suppose that (i) holds. Because λ ≠ 0, for V = V(λ) or L(λ), V lacks
a codimension-1 submodule, hence polarization gives an injection (QuadV)G ↪
Λ2(V∗)G byCorollary 3.9(i), thus (i) implies not (iii) completing the proof of the ûrst
claim, and dim(QuadV)G ≤ 1. Let q ∈ (QuadV(λ))G be nonzero. If rad bq = rad q,
then the remaining claims in (a) are obvious, so suppose q∣rad V(λ) is not identically
zero. Recall from Section 4.4 that G and V(λ) are deûned over F2. _e natural map
F2[V(λ,F2)]

G ⊗ k → k[V(λ, k)]G is an isomorphism [Se], so q is the base change
from F2 of a G-invariant quadratic form q0 on V(λ,F2). We take X0 to be the kernel
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of q0 restricted to the radical of V(λ,F2); it has codimension at most one because
F2 is perfect. _en the radical X of q is a proper subspace of radV(λ) and contains
X0 ⊗ k, hence dim(radV(λ)/X) = 1, and the claim is proved.

9.3 Meaning of Orthogonality for Weyl Modules

If L(λ) is orthogonal, then the action of G on L(λ) is a homomorphism G → SO(q)
for someG-invariant quadratic form q, and SO(q) is a semisimple group of type B or
D. We now describe the relevant group schemes in the case of aG-invariant quadratic
form q on theWeyl module V(λ).

Suppose for themoment that f is a polynomial function on a vector space V over
an inûnite ûeld and U < V is a subspace such that f (u + v) = f (v) for all u ∈ U and
v ∈ V . _en f induces canonically a polynomial function f on V ∶= V/U , and we
deûne O( f ) to be the closed subgroup scheme of GL(V) stabilizing f . Similarly, set
O( f ,U) to be the sub-group-scheme of GL(V) leaving both f and U invariant.

Lemma 9.6 In the notation of the preceding paragraph, there is a short exact sequence
of group schemes

1Ð→ Hom(V/U ,U)Ð→ O( f ,U)Ð→ O( f ) ×GL(U)Ð→ 1.

Proof Choosing any complement U ′ of U in V and writing linear transformations
of V in terms of a basis adapted to the decomposition V = U ⊕ U ′, we ûnd that for
every k-algebra S,

O( f ,U)(S) = (
GL(U)(S) Hom(U ′ ⊗ S ,U ⊗ S)

0 O( f )(S) ) .

Now suppose that q is a quadratic formonV , and that dim(rad bq/ rad q) ≤ 1. _is
holds if char k ≠ 2, or if k is perfect, or by_eorem9.5 ifV is aWeyl module for a split
reductive group G and q is G-invariant. _en we take U ∶= rad q; the hypothesis on
the dimension assures us that for every extension K of k, rad(q⊗K) = (rad q)⊗K =
U ⊗ K, and we ûnd that O(q) = O(q,U) as group schemes. _erefore, for q the
induced quadratic from on V/U , we have an exact sequence

1Ð→ Hom(V/U ,U)Ð→ O(q)Ð→ O(q) ×GL(U)Ð→ 1.

We deûne SO(q) to be the ûber of SO(q) × SL(U) in O(q). Clearly, the action of
G on V preserving q gives homomorphisms G → SO(q) → SO(q), where SO(q) is
semisimple of type B or D.

10 Quadratic Forms on Irreducible Representations

10.1 Orthogonality and Irreducible Representations

For what λ ∈ X(T)+ is L(λ) orthogonal? By _eorem 9.5, L(λ) of G is orthogonal
if and only if (a) theWeyl module V(λ) is orthogonal and (b) a nonzero G-invariant
quadratic form q on V(λ) vanishes on radV(λ). As the case where char k ≠ 2 is
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treated by Lemma 4.3, we assume here that char k = 2, andwe know the answer to (a)
by _eorem 9.5.
For question (b), we have the following suõcient conditions. Let Wp = W ⋉ pZΦ

be the aõne Weyl group, which acts on X(T) via the dot action. For w ∈ Wp and
λ ∈ X(T), the action is denoted by w ⋅ λ. _e following result provides suõcient
conditions to guarantee that L(λ) is orthogonal.

Proposition 10.1 Suppose char k = 2, λ ≠ 0, and V(λ) is orthogonal.
(i) λ is not a sum of positive roots;
(ii) λ ∉W2 ⋅ 0;
(iii) H1(G , L(λ)) = 0;
(iv) L(λ) is orthogonal,
_e following implications hold: (i)⇒ (ii)⇒ (iii)⇒ (iv).

Proof Using [Jan, II.2.14, II.2.12(4)] we have

H1(G , L(λ)) = Ext1G( k, L(λ)) = HomG( radV(λ), k) .

If (iv) fails, then by _eorem 9.5(b) HomG(radV(λ), k) ≠ 0, i.e., (iii) fails. If (iii)
fails, then L(0) is a factor in the composition series for V(λ), hence λ ∈ W2 ⋅ 0 and
(ii) fails. If λ is in W2 ⋅ 0, then λ is in the root lattice; since λ is a dominant weight, it
is a sum of positive roots, so (i) implies (ii).

It is not hard to ûnd λ ∈ Q but λ /∈ Wp ⋅ 0, i.e., an example to show that (ii) /⇒ (i).
_e examples in Section 10.2 show that the converses of each of the other implications
can fail. Also, note that Proposition 10.1(ii) can be replaced by the statement that “0
is not strongly linked to λ”, for strong linkage as described in [Jan, II Chapter 6].

Example 10.2 Let ω be a dominant weight of Sp2n that is neither a sum of positive
roots nor ω1. For every ûeld of characteristic 2, theWeyl module V(ω) of Sp2n is or-
thogonal by_eorem9.5, and Proposition 10.1 says that the irreducible representation
L(ω) is orthogonal.

10.2 Adjoint Representations

Suppose now that G is a split simple group over a ûeld k of characteristic 2. _e
highest weight of the adjoint representation is α̃. We illustrate the proposition by
determining whether the irreducible representation L(α̃) is orthogonal, i.e., whether
the reduced Killing form s deûned in Example 4.5 vanishes on radV(α̃). According
to the description of s in that example, it suõces to ûrst ûnd the radicalU of the polar
bilinear formof q∨⊗ k,which is the kernel of the linear transformation DC, and then
to check if q∨ ⊗ k as given by (4.1) is identically zero on U . _ese steps involve linear
algebra with explicit matrices over F2, and explicit formulas can be found in [BaC],
so wemerely summarize the results in Table 1.
For types other thanC, the orthogonality of L(α̃) has been determined in [GowW,

§3] by a somewhat diòerent argument. Although for typeC,we ûnd that L(α̃) isnever
orthogonal, which appears to contradict the ûnal sentence of [GowW].
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Φ restrictions L(α̃) orthogonal? dimH1(G , L(α̃))
n ≡ 0, 2 mod 4 yes 0

An n ≡ 1 mod 4 no 1
n ≡ 3 mod 4 yes 1
n ≡ 0 mod 4 yes 1

Bn (n ≥ 3) n ≡ 1, 3 mod 4 yes 0
n ≡ 2 mod 4 no 1
n ≡ 0 mod 4 yes 2

Dn (n ≥ 4) n ≡ 1, 3 mod 4 yes 1
n ≡ 2 mod 4 no 2

Cn or E7 no 1
E6, E8, F4, or G2 yes 0

Table 1: Orthogonality of L(α̃) for a Simple Group G over a Field of Characteristic 2

In the table, for the convenience of the reader, we also give dimH1(G , L(α̃)). _is
amounts to identifying the cohomology groupwithHomG(radV(α̃), k) and consult-
ing the description of the G-module structure of V(α̃, k) given in [Hiss]. Note that
the case of An with n ≡ 0 mod 4 shows that (iii) /⇒ (ii) in Proposition 10.1 and with
n ≡ 3 mod 4 shows that (iv) /⇒ (iii).

11 Cohomology of Λ2 of Irreducible and Weyl Modules

11.1 Vanishing of the First Cohomology

We begin with a lemma that gives conditions on V that guaranteeH1(G ,V ⊗V) = 0.
Recall that G is assumed to be split reductive.

Lemma 11.1 Let V be a module admitting a good ûltration or V = L(λ) with λ ∈
X(T)+. _en H1(G ,V ⊗ V) = 0.

Proof If V has a good ûltration, then V ⊗ V has a good ûltration and the result
follows, because H1(G ,H0(σ1) ⊗ H0(σ2)) = 0 for all σ1 , σ2 ∈ X(T)+ by [Jan, II 4.13
Proposition].

Now suppose that V = L(λ), and suppose that H1(G ,V ⊗ V), i.e.,

Ext1G(L(−w0λ), L(λ)) ,

is not zero. According to [Jan, II 2.14 Remark], one has either −w0λ < λ or λ < −w0λ,
contradicting Lemma 5.1.

11.2 First Cohomology with Coefficients in the Exterior Square

We now calculateH1(G ,Λ2(V)) for some of themodules V we have studied.
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_eorem 11.2 Let G be a split reductive group and λ ∈ X(T)+. _en

H1(G ,Λ2(V)) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if char k ≠ 2 and V = T(λ), L(λ), or H0(λ),
(QuadV∗)G if char k = 2, V = L(λ) or H0(λ), and λ ≠ 0.

Evidently, if λ = 0, then for V = L(λ) = H0(λ) = k, we have (QuadV)G = k but
Λ2(V) = 0, so H1(G ,Λ2(V)) = 0.

Proof Taking G-ûxed points in (3.2) gives an exact sequence

Λ2(V)G αG

Ð→ Bil(V∗)G ρG

Ð→ Quad(V∗)G Ð→ H1(G ,Λ2(V))Ð→ H1(G ,V ⊗ V),

where the last term is zero forV = H0(λ), T(λ), or L(λ) by Lemma 11.1. If char k ≠ 2,
then ρG is surjective and the claims follow.

So suppose char k = 2 and V = H0(λ) or L(λ) with λ ≠ 0. If (QuadV∗)G = 0, we
are done, so assume otherwise. _en Lemma 4.3 implies that ρG is the zero map, and
again we are done.

Example 11.3 SupposeV = L(λ) for some λ ∈ X(T)+;we claim that (QuadV∗)G ≅
(QuadV)G . Indeed, if λ ≠ −w0λ, then (BilV)G = 0, hence (QuadV)G consists of
totally singular quadratic forms, which are necessarily zero (by _eorem 9.5 because
λ ≠ 0); the same applies to V∗ = L(−w0λ).

In the case where char k = 2 and V = L(λ), Sin andWillems [SinW, Proposition
2.7] showed that H1(G ,Λ2(V)) = 0 implies (QuadV)G = 0. We are able to saymore
in _eorem 11.2 thanks to Lemma 11.1.

11.3 Application to Induced Modules

By combining _eorem 11.2with _eorem 9.5,we obtain the following ûrst cohomol-
ogy calculation for all inducedmodules.

Corollary 11.4 Let G be a split reductive group and λ ∈ X(T)+. _en

H1(G ,Λ2(H0(λ))) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

k if char k = 2 and 0 ≠ λ = −w0λ, but
G and V(λ) are not as in Example 9.4,

0 otherwise.

Acknowledgments Wewish to thank GeorgeMcNinch, AnneQuéguiner-Mathieu,
and Jean-Pierre Tignol for helpful discussions.

References
[AST] H. H. Andersen, C. Stroppel, and D. Tubbenhaur, Cellular structures using Uq-tilting

modules. arxiv:1503.0022
[BaC] A. Babic and V. Chernousov, Lower bounds for essential dimensions in characteristic 2 via

orthogonal representations. Paciûc J. Math. 279(2015), 37–63. doi=10.2140/pjm.2015.279.37

https://doi.org/10.4153/CJM-2015-042-5 Published online by Cambridge University Press

http://arxiv.org/abs/1503.0022
https://doi.org/10.4153/CJM-2015-042-5


420 S. Garibaldi and D. K. Nakano

[BC] D. J. Benson and J. F. Carlson, Diagrammaticmethods for modular representations and
cohomology. Comm. Algebra 15(1987), no. 1–2, 53–121.
http://dx.doi.org/10.1080/00927878708823414

[BNP] C. P. Bendel, D. K. Nakano, and C. Pillen, Extensions for Frobenius kernels. J. Algebra
272(2004), no. 2, 476–511. http://dx.doi.org/10.1016/j.jalgebra.2003.04.003

[Bor] A. Borel, Linear algebraic groups. Second ed., Graduate Texts in Mathematics, 126,
Springer-Verlag, New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0941-6

[BouA1] N. Bourbaki, Algebra I: Chapters 1–3. Elements ofMathematics, Springer-Verlag, Berlin,
1989.

[BouA4] , Algebra II: Chapters 4–7, Springer-Verlag, 1988.
[BouA9] , Algèbre IX, Hermann, Paris, 1959.
[Bou L4] , Lie groups and Lie algebras: Chapters 4–6. Springer-Verlag, Berlin, 2002.
[Bou L7] , Lie groups and Lie algebras: Chapters 7–9. Springer-Verlag, Berlin, 2005.
[Brown] R. B. Brown, Groups of type E7 . J. Reine Angew. Math. 236(1969), 79–102.
[CS] V. Chernousov and J-P. Serre, Lower bounds for essential dimensions via orthogonal

representations. J. Algebra 305(2006), 1055–1070.
http://dx.doi.org/10.1016/j.jalgebra.2005.10.032

[De B] B. De Bruyn, On the Grassmann modules for the symplectic groups. J. Algebra 324(2010),
218–230. http://dx.doi.org/10.1016/j.jalgebra.2010.03.033

[DS] S. R. Doty and J. B. Sullivan,_e submodule structure ofWeyl modules for SL3 . J. Algebra
96(1985), no. 1, 78–93. http://dx.doi.org/10.1016/0021-8693(85)90040-7

[DV] A. Drápal and P. Vojtěchovský, Symmetricmultilinear forms and polarization of
polynomials. Linear Algebra Appl. 431(2009), no. 5–7, 998–1012.
http://dx.doi.org/10.1016/j.laa.2009.03.052

[Dy] E. B. Dynkin,Maximal subgroups of the classical groups. Amer. Math. Soc. Transl. (2)
6(1957), 245–378 ; (Russian) Trudy Moskov. Mat. Obšč. 1(1952), 39–166.

[EKM] R. S. Elman, N. Karpenko, and A. Merkurjev,_e algebraic and geometric theory of
quadratic forms. American Mathematical Society Colloquium Publications, 56, American
Mathematical Society, Providence, RI, 2008.

[Ga] S. Garibaldi, Vanishing of trace forms in low characteristic. Algebra Number _eory
3(2009), no. 5, 543–566. http://dx.doi.org/10.2140/ant.2009.3.543

[GN] B. H. Gross and G. Nebe, Globally maximal arithmetic groups. J. Algebra 272(2004), no. 2,
625–642. http://dx.doi.org/10.1016/j.jalgebra.2003.09.033

[GowK] R. Gow and A. Kleshchev, Connections between representations of the symmetric group and
the symplectic group in characteristic 2. J. Algebra 221(1999), no. 1, 60–89.
http://dx.doi.org/10.1006/jabr.1999.7943

[GowW] R. Gow andW. Willems,Methods to decide if simple self-dual modules over ûelds of
characteristic 2 are of quadratic type. J. Algebra 175(1995), 1067–1081.
http://dx.doi.org/10.1006/jabr.1995.1227

[Gro11] A. Grothendieck, Schémas en groupes III. SociétéMathématique de France, 2011.
[GW09] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Graduate

Texts in Mathematics, 255, Springer, Dordrecht, 2009.
http://dx.doi.org/10.1007/978-0-387-79852-3

[Hiss] G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen. Arch. Math. (Basel)
42(1984), no. 5, 408–416. http://dx.doi.org/10.1007/BF01190689

[HN] D. J. Hemmer and D. K. Nakano, On the cohomology of Specht modules. J. Algebra
306(2006), no. 1, 191–200. http://dx.doi.org/10.1016/j.jalgebra.2006.03.044

[Jan] J. C. Jantzen, Representations of algebraic groups. Second ed.,Mathematical Surveys and
Monographs, 107, American Mathematical Society, Providence, RI, 2003.

[KMRT] M.-A. Knus, A. S. Merkurjev,M. Rost, and J.-P. Tignol,_e book of involutions. American
Mathematical Society Colloquium Publications, 44, American Mathematical Society,
Providence, RI, 1998.

[Mal] A. I. Mal’cev, On semi-simple subgroups of Lie groups. Amer. Math. Soc. Translation
9(1950), no. 33, 43; (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 8(1944), 143–174.

[MR] A. Micali and Ph. Revoy,Modules quadratiques. Bull. Soc. Math. FranceMém. (1979),
no. 63, 144 pp.

[Se] C. S. Seshadri, Geometric reductivity over arbitrary base. Advances in Math. 26(1977),
no. 3, 225–274. http://dx.doi.org/10.1016/0001-8708(77)90041-X

[SF] H. Strade and R. Farnsteiner,Modular Lie algebras and their representations. Monographs
and Textbooks in Pure and AppliedMathematics, 116,Marcel Dekker, New York, 1988.

https://doi.org/10.4153/CJM-2015-042-5 Published online by Cambridge University Press

http://dx.doi.org/10.1080/00927878708823414
http://dx.doi.org/10.1016/j.jalgebra.2003.04.003
http://dx.doi.org/10.1007/978-1-4612-0941-6
http://dx.doi.org/10.1016/j.jalgebra.2005.10.032
http://dx.doi.org/10.1016/j.jalgebra.2010.03.033
http://dx.doi.org/10.1016/0021-8693(85)90040-7
http://dx.doi.org/10.1016/j.laa.2009.03.052
http://dx.doi.org/10.2140/ant.2009.3.543
http://dx.doi.org/10.1016/j.jalgebra.2003.09.033
http://dx.doi.org/10.1006/jabr.1999.7943
http://dx.doi.org/10.1006/jabr.1995.1227
http://dx.doi.org/10.1007/978-0-387-79852-3
http://dx.doi.org/10.1007/BF01190689
http://dx.doi.org/10.1016/j.jalgebra.2006.03.044
http://dx.doi.org/10.1016/0001-8708(77)90041-X
https://doi.org/10.4153/CJM-2015-042-5


Bilinear and Quadratic Forms on Rational Modules of Split Reductive Groups 421

[SpSt] T. A. Springer and R. Steinberg, Conjugacy classes. Seminar on Algebraic Groups and
Related Finite Groups (_e Institute for Advanced Study, Princeton, N.J., 1968/69),
Lecture Notes in Mathematics, 131, Springer, Berlin, 1970, pp. 167–266.

[St] R. Steinberg, Lectures on Chevalley groups. Yale University, New Haven, Conn., 1968.
[SinW] P. Sin andW. Willems, G-invariant quadratic forms. J. Reine Angew. Math. 420(1991),

45–59. http://dx.doi.org/10.1515/crll.1991.420.45
[W] W. Willems,Metrische G-Moduln über Körpern der Charakteristik 2. Math. Z. 157(1977),

no. 2, 131–139. http://dx.doi.org/10.1007/BF01215147

Institute for Pure and Applied Mathematics, UCLA, 460 Portola Plaza, Box 957121, Los Angeles, CA
90095-7121, USA
and
Center for Communications Research, San Diego, CA 92121, USA
e-mail: skip@garibaldibros.com

Department ofMathematics, University of Georgia, Athens, Georgia 30602, USA
e-mail: nakano@uga.edu

https://doi.org/10.4153/CJM-2015-042-5 Published online by Cambridge University Press

http://dx.doi.org/10.1515/crll.1991.420.45
http://dx.doi.org/10.1007/BF01215147
mailto:skip@garibaldibros.com
mailto:nakano@uga.edu
https://doi.org/10.4153/CJM-2015-042-5

