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MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS

BARNABÁS FARKAS, LUKAS DANIEL KLAUSNER , AND MARC LISCHKA

Abstract. We continue investigating variants of the splitting and reaping numbers introduced in
[4]. In particular, answering a question raised there, we prove the consistency of cof(M) < s1/2 and of
r1/2 < add(M). Moreover, we discuss their natural generalisations s� and r� for � ∈ (0, 1), and show that
r� does not depend on �.

§1. Introduction. Let us recall the classical splitting number: Given S,R ∈ [�]�

we say that S splits R, in notation S | R, if |S ∩R| = |R \ S| = �; and the splitting
number is defined as

s = min{|S| | S ⊆ [�]� and ∀R ∈ [�]� ∃S ∈ S : S | R}.
In [4], among many other new cardinal invariants, the following variant of s was
introduced: For S,R ∈ [�]� we say that S bisects R, written as S |1/2 R, if

|S ∩R ∩ n|
|R ∩ n|

n→∞−−−→ 1
2

,

and s1/2 is defined by replacing | with |1/2 in the definition of s,

s1/2 = min{|S| | S ⊆ [�]� and ∀R ∈ [�]� ∃S ∈ S : S |1/2 R}.
As S |1/2 R implies S | R, s ≤ s1/2 immediately follows. It also turned out that
cov(M) ≤ s1/2 ≤ non(N ), where cov(M) stands for the covering number of the
meagre ideal and non(N ) for the uniformity of the null ideal (see below). Moreover,
two of these inequalities are consistently strict (see [4, end of Section 2]): s < s1/2

in the Cohen model and cov(M) < s1/2 in the Mathias model. One of the most
interesting remaining open questions is the following:

Question A. Is s1/2 < non(N ) consistent?

Of course, similar questions were raised regarding separations of s1/2 and other
classical invariants. For example (see [4, Question A (Q2)]), motivated by the fact
that s ≤ d, where d stands for the dominating number (see below), it is natural to
ask the following:

Question B. Is d < s1/2 consistent?
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2 BARNABÁS FARKAS, LUKAS DANIEL KLAUSNER, AND MARC LISCHKA

In Section 2, we present a short overview on the relevant cardinal invariants (from
[4]) and recall the inequalities and consistently strict inequalities between variants
of s and other classical cardinal characteristics.

In Section 3, by dualising the results from Section 2, we outline the inequalities
between the variants of the reaping number r and show the consistency of almost
all possible strict inequalities in the dual diagram.

In Section 4, answering Question B positively, we present two models of cof(M) <
s1/2: (1) the�2-stage countable support iteration of a modified infinitely equal forcing
and (2) the dual Hechler model, that is, the �1-stage finite support iteration of the
Hechler forcing over a model of ma + c ≥ �2.

In Section 5, we define natural generalisations of s1/2 and r1/2, namely s� and r�

for � ∈ (0, 1). We discuss their lower and upper bounds and show that r� does not
depend on �.

§2. Variants of s and r. When studying cardinal characteristics the following
framework can come handy, especially when dualising inequalities and in the context
of forcing. For a general overview on this framework, see, e.g., [2] or [5, Section 512].
(Here, we mostly follow the notation of the second reference.)

Definition 2.1. A relational system is a triplet R = (X,�, Y ) where (i) � is a
relation on X × Y , (ii) dom(�) = X , and (iii) there is no single y ∈ Y such that
x � y for every x ∈ X .

A set U ⊆ X is R-unbounded if there is no single y ∈ Y �-above all elements of
U ; a setD ⊆ Y is R-dominating if for every x ∈ X , there is a y ∈ D �-above x. The
(un)bounding and dominating numbers of R are

b(R) = b(�) = min {|U | | U ⊆ X is R-unbounded},

d(R) = d(�) = min {|D| | D ⊆ Y is R-dominating}.

The dual of R is the relational system R⊥ = (Y, 
�, X ) (which satisfies conditions
(i)–(iii) automatically). Clearly, b(R⊥) = d(R) and d(R⊥) = b(R).

Example 2.2. We recall all relational systems and cardinal characteristics we
need in the first four sections:

(1) Let Dom = (��,≤∗, ��), where f ≤∗ g if {n | g(n) < f(n)} is finite. Then
b = b(Dom) and d = d(Dom).

(2) Let I be an ideal on an infinite set X, that is, [X ]<� ⊆ I and C ∈ I whenever
C ⊆ A ∪ B for some A,B ∈ I; we will always assume that X /∈ I. Consider
the relational systems Cof(I) = (I,⊆, I) and Cov(I) = (X,∈, I). The four
classical cardinal invariants of I are the following cardinals:

add(I) = b(Cof(I)), cof(I) = d(Cof(I)),

non(I) = b(Cov(I)), cov(I) = d(Cov(I)).

We know that add(I) ≤ cov(I), non(I) ≤ cof(I) always holds. We are
particularly interested in two specific ideals, namely M = {meagre subsets
of 2�} and N = {null subsets of 2�}. The well-known Cichoń’s diagram can
be summarised in the following Tukey connections (see below): Cov(M) �
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MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS 3

Dom � Cof(M) � Cof(N ) and Cov(N ) � Cov(M)⊥ (and the facts that
add(M) = min{b, cov(M)} and cof(M) = max{non(M), d}).

(3) Let Reap = ([�]�,
 |, [�]�) where S | X (“S splits X”) if |S ∩ X | = |X \ S| =
�. Then s = b(Reap) and r = d(Reap).

(4) Let Reap1/2 = ([�]�,
 |1/2, [�]�), where S |1/2 X (“S bisects X”) if

|S ∩ X ∩ n|
|X ∩ n|

n→∞−−−→ 1
2

.

Then s1/2 = b(Reap1/2) and r1/2 = d(Reap1/2).
(5) For ε ∈ (0, 1/2) let Reap1/2±ε = ([�]�,
 |1/2±ε , [�]�), where S |1/2±ε X (“S ε-

almost bisects X”) if for all but finitely many n

1
2

– ε <
|S ∩ X ∩ n|
|X ∩ n| <

1
2

+ ε.

Then s1/2±ε = b(Reap1/2±ε) and r1/2±ε = d(Reap1/2±ε).

Unfortunately, it is still unclear whether s1/2±ε depends on ε (see [4, Question A
(Q3)]). Whenever we claim anything about Reap1/2±ε or its invariants, we mean that
our claim holds for every ε ∈ (0, 1/2).

Theorem 2.3 (see [4, Theorem 2.4]). The following relations hold, where a −→ b
means “a ≤ b, consistently a < b” and a ��� b means “a ≤ b, possibly a = b”:

�1 s

cov(M) s1/2±ε s1/2 non(N )

d

non(M)

2�

Regarding further inequalities between these cardinals (apart from separating s1/2

from s1/2±ε and/or non(N )), there was only one question left open, namely, if
s1/2 ≤ d or s1/2±ε ≤ d hold. To show that this inequality does not hold, in Section 4
we will present a construction based on countable support iteration as well as one
based on finite support iteration.

§3. The dual diagram. Although in the proof of Theorem 2.3 it was not stated
explicitly, all inequalities were proved (or could have easily been proved) via Tukey
connections.

Definition 3.1. Let R0 = (X0,�0, Y0) and R1 = (X1,�1, Y1) be relational
systems. A pair (F,G) of functions F : X0 → X1 and G : Y1 → Y0, in short
(F,G) : R0 → R1, is a (Galois–)Tukey connection from R0 to R1 if for anyx0 ∈ X0 and
y1 ∈ Y1, F (x0) �1 y1 implies x0 �0 G(y1). This is commonly visualised as follows:
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4 BARNABÁS FARKAS, LUKAS DANIEL KLAUSNER, AND MARC LISCHKA

G(y1)∈ Y0 � G
Y1 
 y1

�
0 ⇐=== �
1

x0 ∈ X0
F

� X1 
F (x0)

If there is a Tukey connection from R0 to R1, we say that R0 is Tukey-below R1 and
write R0 � R1. Note that (F,G) : R0 → R1 is a Tukey connection iff (G,F ) : R⊥

1 →
R⊥

0 is a Tukey connection. We say that R0 and R1 are Tukey-equivalent, denoted by
R0 ≡ R1, when R0 � R1 and R1 � R0 both hold.

Recall that R0 � R1 implies that b(R0) ≥ b(R1) and d(R0) ≤ d(R1). For example,
the proof of s1/2 ≤ non(N ) in Theorem 2.3 actually shows Cov(N ) � Reap1/2 etc.,
and hence the dual inequalities (e.g., cov(N ) ≤ r1/2) hold as well.

Let us point out that, after appropriate coding, all relational systems and Tukey
connections we discuss in this paper are Borel in the following sense: R = (X,�, Y )
is Borel if X and Y are Polish spaces and � is a Borel subset of X × Y ; a Tukey
reduction (F,G) : (X0,�0, Y0) → (X1 �1, Y1) between Borel systems is Borel if both
F and G are Borel functions. This can be particularly useful in the context of forcing:
If R is Borel, then we say that a forcing notion P is R-dominating if

V P � ∃ y ∈ Y ∀x ∈ X ∩ V : x � y.

It follows that if there is a Borel Tukey connection R0 → R1 and P is R1-dominating,
thenP is R0-dominating as well. Instead of “R-dominating,” we will use the common
more specific terms, e.g., “P adds a dominating real (over V)” means that P is Dom-
dominating, “P adds a random real” means that P is Cov(N )⊥-dominating, etc.;
we can talk about adding splitting, bisecting or ε-almost bisecting reals (over V)
analogously.

To dualise Theorem 2.3, we hence have to check the consistency of the strict
inequalities. Before stating the dual form of Theorem 2.3, let us take a closer look
at r1/2. The Borel reducibility Reap⊥

1/2 � Cov(N )⊥ (because Cov(N ) � Reap1/2, see
above) implies that if we add random reals, we also add bisecting reals over V. The
next two lemmas illustrate that “too tame” forcing notions cannot increase r1/2. We
assume that all forcing notions are atomless and separative; in particular, we assume
that every condition p in a forcing notion P has incompatible extensions.

Lemma 3.2. If P is �-centred, then it cannot add ε-almost bisecting reals.

Proof. Let P =
⋃
n∈� Cn, where each Cn is centred, let Ḃ be a P-name for an

element of [�]� , and assume towards a contradiction that

p � “Ḃ ε-almost bisects every X ∈ [�]� ∩ V ”

for some p ∈ P and ε ∈ (0, 1/2), that is,

p � “
1
2

– ε <
|Ḃ ∩ X ∩ n|
|X ∩ n| <

1
2

+ ε for almost all n”
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MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS 5

for every X ∈ [�]� ∩ V . Fix an interval partition (In) of � such that |I0| ≥ 2 and
|In| > 2n|I<n| for every n (where I<n =

⋃
k<n Ik and I<0 = ∅). First of all, we show

that

p � “
1
2

– ε′ <
|Ḃ ∩ In|
|In|

<
1
2

+ ε′ for almost all n”

holds for every ε′ ∈ (ε, 1/2). To see this, fix such an ε′; then, as p �“Ḃ ε-almost
bisects �,” p forces that for every sufficiently large n,

|Ḃ ∩ In|
|In|

≤ (1 + 2–n)|Ḃ ∩ I≤n|
(1 + 2–n)|In|

<
(1 + 2–n)|Ḃ ∩ I≤n|

|I≤n|

< (1 + 2–n)
(

1
2

+ ε
)
<

1
2

+ ε′,

where the second inequality follows from |In| + 2–n|In| > |In| + |I<n|. The lower
bound can be established similarly: p forces that for every sufficiently large n,

|Ḃ ∩ In|
|In|

>
|Ḃ ∩ In|
|In|

+
|I<n|
|In|

– 2–n ≥ |Ḃ ∩ I≤n|
|I≤n|

– 2–n >
1
2

– ε – 2–n >
1
2

– ε′.

Fix an ε′ as above. Then there is a p′ ≤ p and an N ∈ � such that

p′ � “
1
2

– ε′ <
|Ḃ ∩ In|
|In|

<
1
2

+ ε′ for every n ≥ N .”

By modifying Ḃ on I<N (which does not affect the property of being ε-almost
bisecting), we can assume that p′ forces these inequalities for every n; in particular,
Ḃ ∩ In 
= ∅ for every n (as ε′ can be very small, we assume that |In| is even for every
n). In the rest of the proof we assume that p′ = 1P, that is,

� “
1
2

– ε′ <
|Ḃ ∩ In|
|In|

<
1
2

+ ε′ for every n.” (∗1)

Let En = {E ⊆ In | ∀p ∈ Cn ∃ q ≤ p : q � Ḃ ∩ In = E}. Note that En 
= ∅: Oth-
erwise, for every E ⊆ In we can fix pE ∈ Cn such that pE � Ḃ ∩ In 
= E, but
these pE have a common extension, which is a contradiction. Fix an arbitrary
sequence (En)n∈� ∈ V such that En ∈ En for every n (we know that En 
= ∅), and
let X =

⋃
n∈� En ∈ [�]� ∩ V .

Since Ḃ ε-almost bisects X, we can fix some p ∈ P andM ∈ � such that

p � “
|Ḃ ∩ X ∩m|
|X ∩m| <

1
2

+ ε for all m ≥M .” (∗2)

Now fix a k such that

min(Ik+1) ≥M and
1

2–k

1/2–ε′ + 1
≥ 1

2
+ ε.

As each condition has incompatible extensions, there are extensions of p in infinitely
many Cn; hence for some n ≥ k, we can fix a p′ ∈ Cn below p. By the definition of
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6 BARNABÁS FARKAS, LUKAS DANIEL KLAUSNER, AND MARC LISCHKA

En, there is a q ≤ p′ which forces that Ḃ ∩ In = En = X ∩ In; in particular, q forces
that

|Ḃ ∩ X ∩ I≤n|
|X ∩ I≤n|

≥ |Ḃ ∩ X ∩ In|
|I<n| + |X ∩ In|

=
|En|

|I<n| + |En|
=

1
|I<n |
|En | + 1

>
1

|I<n |
(1/2–ε′)|In | + 1

>
1

2–n

1/2–ε′ + 1
≥ 1

2
+ ε,

where the second inequality follows from Equation (∗1) and the third inequality
follows from |I<n| < 2–n|In|. This contradicts Equation (∗2), because I≤n =
min(In+1) ≥ min(Ik+1) ≥M . �

Before the next lemma, let us recall the Laver property. A forcing notion P has
the Laver property (see [1, Definition 6.3.27]) if for every sequence (Hn)n∈� of non-
empty finite sets and every P-name ḟ ∈

∏
n∈� Hn, there is an S ∈

∏
n∈�[Hn]2n (in

V) such that �P“ḟ(n) ∈ S(n) for almost all n.”

Lemma 3.3. If P has the Laver property, then it cannot add ε-almost bisecting reals.

Proof. Assume towards a contradiction that a p ∈ P forces that Ḃ ∈ V P ε-
almost bisects everyX ∈ [�]� ∩ V . As in the proof of Lemma 3.2, we fix an interval
partition (In) in V such that |I0| ≥ 2 and |In| > 2n|I<n| for every n as well as an
ε′ ∈ (ε, 1/2), and just like above, we can assume that

p � “
1
2

– ε′ <
|Ḃ ∩ In|
|In|

<
1
2

+ ε′ for every n.” (∗3)

Let Q0 = I1, Q1 = I2 ∪ I3, ..., Qm =
⋃
m′<2m I2m+m′ be the union of the next 2m

many intervals in the partition. Applying the Laver property, there are an S ∈∏
m∈�[P(Qm)]2m in V, S(m) = {Sm

m′ | m′ < 2m}, a p′ ≤ p, and a P-name ḃ for an
element of

∏
m∈� 2m such that p′ �“Ḃ ∩Qm = Sm

ḃ(m)
∈ S(m) for every m.” Define

X =
⋃
m∈�

⋃
m′<2m

Smm′ ∩ I2m+m′ ∈ V .

Then X is infinite because X ∩ I2m+ḃ(m) = Sm
ḃ(m)

∩ I2m+ḃ(m) = Ḃ ∩ I2m+ḃ(m) 
= ∅ for

every m. We claim that p′ �“Ḃ does not ε-almost bisect X.” To see this, let m be
sufficiently large such that

1
2–2m

1/2–ε′ + 1
≥ 1

2
+ ε.

Then p′ forces that

|Ḃ ∩ X ∩ I≤2m+ḃ(m)|
|X ∩ I≤2m+ḃ(m)|

≥
|Ḃ ∩ I2m+ḃ(m)|

|I<2m+ḃ(m)| + |Ḃ ∩ I2m+ḃ(m)|
=

1
|I
<2m+ḃ(m)|

|Ḃ∩I2m+ḃ(m)|
+ 1

>
1

|I
<2m+ḃ(m)|

(1/2–ε′)|I2m+ḃ(m)|
+ 1
>

1
2–2m–ḃ(m)

1/2–ε′ + 1
≥ 1

2
+ ε,
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MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS 7

where we used Equation (∗3) in the second inequality and |I<n|/|In| < 2–n in the
third one. �

Theorem 3.4. The following relations hold, where a −→ b means “a ≤ b,
consistently a < b” and a ��� b means “a ≤ b, possibly a = b,” and there are no
further provable inequalities between these cardinals:

�1 b

cov(N ) r1/2 r1/2±ε non(M)

r

cov(M)

2�

Proof. The inequalities follow by dualising the ones in Theorem 2.3. To show
the consistency of the strict inequalities and that there are no further inequalities in
ZFC, keeping in mind the consistent cuts of the Cichoń’s diagram, it is enough to
show that the following are consistent: r < non(M) and r1/2±ε < b (separately, of
course).

r < non(M) holds in the model presented in [3, Section 5], because it is a model
of u < s and we know that r ≤ u and s ≤ non(M) (for more details on the ultrafilter
number u, see [2, Section 9]).

We show that r1/2±ε < add(M) ≤ b holds after the c+ stage finite support
iteration Dc+ of the Hechler forcing D. We know that if κ ≥ c is regular, then
V Dκ � add(M) = min{b, cov(M)} = κ = c because D adds both dominating and
Cohen reals. Recall (folklore, see [7]) that if � ≤ c (hence also if � < c+) and
(Pα, Q̇	)α≤�,	<� is a finite support iteration of �-centred forcing notions (that is,
�α “Q̇α is �-centred” for every α < �), then P� is also �-centred. Applying Lemma
3.2, it follows that if � ≤ c+ and (Pα, Q̇	)α≤�,	<� is a finite support iteration of
�-centred forcing notions, then

�� “no S ∈ [�]� can ε-almost bisect all elements of [�]� ∩ V ”;

in particular, V D
c+ � r1/2±ε ≤ cV < add(M) = c. �

Probably the most interesting remaining open question is the following:

Question C. Is cov(N ) < r1/2 consistent?

§4. Models of cof(M) < s1/2. Let us recall the infinitely equal forcing EE (see
[1, Definition 7.4.11]): p ∈ EE if p is a function, dom(p) ⊆ � is coinfinite, and
p(n) : n → 2 is a function for every n; if p and q are conditions, q ≤ p if q ⊇ p.
We know (see [1, Lemmas 7.4.12 and 7.4.14]) that EE and its countable support
iterations are proper and ��-bounding and preserve non-meagre sets (see also [1,
Lemma 6.3.21 and Theorems 6.1.13 and 6.3.5]).
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8 BARNABÁS FARKAS, LUKAS DANIEL KLAUSNER, AND MARC LISCHKA

We will work with a variant of EE. Basically, we do the following: (i) We
allow longer characteristic functions in the n-th coordinate (but still below a
common bound); and to adapt the forcing notion to our needs, (ii) we switch
from characteristic functions to subsets and (iii) by shifting the underlying set in
the n-th coordinate, we make sure that in the generic sequence, these finite sets are
ordered consecutively.

More precisely, we fix an interval partition (In) of� as in Lemma 3.2 and Lemma
3.3, that is, |I0| ≥ 2 and |In| > 2n|I<n| for every n, and define P = P(In) as follows:
p ∈ P if p is function such that:

(a) dom(p) ⊆ � is coinfinite and
(b) p(n) ⊆ In for every n ∈ dom(p);

q ≤ p if q ⊇ p. The very same proofs that work for EE show that P and its countable
support iterations are proper and ��-bounding and preserve non-meagre sets. It
follows that if ch holds in the ground model, then P�2 (the �2-stage countable
support iteration of P) forces that cof(M) = max{non(M), d} = �1.

Lemma 4.1. Let Ġ be the canonical P-name of the P-generic filter and let Ẋ be a
P-name such that

�P Ẋ =
⋃

ran
(⋃
Ġ

)
=

⋃ {
p(n)

∣∣ p ∈ Ġ and n ∈ dom(p)
}

(∈ [�]�).

Then no S ∈ [�]� ∩ V can ε-almost bisect Ẋ .

Proof. Fix an S ∈ [�]� , an ε ∈ (0, 1/2), and a p ∈ P. Pick an n in � \ dom(p)
such that

2–n+1 ≤ 1
2

– ε and hence
1

2–n+1 + 1
≥ 1

2
+ ε.

We distinguish two cases:

Case 1: |S ∩ In| > |In|/2. Define qn ∈ P, dom(qn) = dom(p) ∪ {n}, qn�dom(p) =
p, and qn(n) = S ∩ In. Then qn ≤ p and qn forces that

|S ∩ Ẋ ∩ I≤n|
|Ẋ ∩ I≤n|

≥ |S ∩ In|
|I<n| + |S ∩ In|

=
1

|I<n |
|S∩In | + 1

>
1

|I<n |
|In |/2 + 1

>
1

2–n+1 + 1
≥ 1

2
+ ε.

As n can be arbitrarily large, p cannot force that S ε-almost bisects Ẋ .

Case 2: |S ∩ In| ≤ |In|/2. Define rn ∈ P, dom(rn) = dom(p) ∪ {n}, rn�dom(p) = p,
and rn(n) = In \ S. Then rn ≤ p and rn forces that

|S ∩ Ẋ ∩ I≤n|
|Ẋ ∩ I≤n|

≤ |I<n|
|In \ S|

≤ |I<n|
|In|/2

< 2–n+1 ≤ 1
2

– ε.

As n can be arbitrarily large, p cannot force that S ε-almost bisects Ẋ . �

Applying this lemma and the aforementioned properties of P�2 , we obtain the
following:
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MORE ON HALFWAY NEW CARDINAL CHARACTERISTICS 9

Theorem 4.2. If V � ch, then V P�2 � �1 = cof(M) < s1/2±ε = s1/2 = �2.

We show that this strict inequality can be obtained via a finite support iteration
as well, namely, we can dualise (now in the forcing sense) the result saying that
r1/2±ε < add(M) in the Hechler model (see Theorem 3.4). Consider the dual Hechler
model, that is, every model of the form V D�1 where V � “ma + c ≥ �2.” We
know (see, e.g., [1, Model 7.6.10]) that cof(M) = �1 holds in these models. We
interpret D as the filter-based Laver forcing for the Fréchet filter over �↑<� = {s ∈
�<� | s is strictly increasing}, that is, T ∈ D if T ⊆ �↑<� is a tree (i.e., T is closed
with regard to taking initial segments) with a fixed element stem(T ) ∈ T such
that:

(a) either t ⊆ stem(T ) or stem(T ) ⊆ t for every t ∈ T and
(b) extT (t) = {n ∈ � | t
(n) ∈ T} is cofinite in � for every t ∈ T with

stem(T ) ⊆ t.
IfT ∈ D and s ∈ T , then letT �s = {t ∈ T | t ⊆ s or t ⊇ s} ∈ D. Let ḋ be aD-name
for the generic dominating real, i.e., ḋ =

⋃
{stem(T ) | T belongs to the generic

filter} ∈ �↑� = {f ∈ �� | f is strictly increasing}.
We recall a classical preservation theorem we will apply (see, e.g., [6] or [1, Section

6.4]). Fix a sequence (�n)n∈� of increasing closed relations on �� such that

(�n)g = {f ∈ �� | f �n g} is nowhere dense

for every n and g. Let�=
⋃
n∈� �n. We will use terminology compatible with the one

we use when working with relational systems: If κ = cof(κ) > �, then a U ⊆ ��
is κ-�-unbounded if for every C ⊆ �� of size < κ, there is an f ∈ U which is not
�-below any element of C. In this case we will write f 
� C .

Definition 4.3. Let κ = cof(κ) > � and let P be a κ-cc forcing notion. We
say that P is κ-�-good if for every P-name ḣ for an element of �� , there exists a
non-empty Y ⊆ �� of size <κ such that �P f 
� ḣ whenever f 
� Y . Say that P is
�-good if it is �1-�-good.1

It is straightforward to show that if P is κ-�-good, then P preserves (a) “F is
κ-�-unbounded” for F ⊆ �� and (b) “d(�) ≥ �” for cardinals � ≥ κ (see [9]).

Theorem 4.4 (see [8] or [1, Lemma 6.4.12]). Let κ = cof(κ) > � and assume
that (Pα, Q̇	)α≤�,	<� is a finite support iteration of κ-cc forcing notions such that
�α “ Q̇α is κ- � -good” for every α < �. Then P� is κ-�-good as well.

We are going to apply this theorem with Q̇α = D, but first we define our relation
�. Fix an ε ∈ (0, 1/2) and an interval partition (Ik) as we already did above, that is,
|I0| ≥ 2 and |Ik | > 2k |I<k | for every k. Let

O = {(H, (Ek)k∈�) | H ∈ [�]�,Ek ⊆ Ik and |Ek |/|Ik | > 1/4 for every k}
and define the relation �=

⋃
n∈� �n on [�]� ×O by

X �n (H, (Ek)k∈�) ⇐⇒ ∀ k ∈ H \ n : |X ∩ Ek | < (1/2 + ε)
(
|X ∩ Ik | + |I<k |

)
.

1See [9] for the proof that this variant of κ-�-goodness is equivalent (under the assumption that P is
κ-cc) to the classical definition from [8] or [1, Definition 6.4.4].
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First of all, notice that [�]� as a subspace of P(�) is canonically homeomorphic
(denoted by �) to �↑� ⊆ �� and hence to �� itself. To code O as �� as well, let

Qk =
{
E ⊆ Ik

∣∣∣∣ |E|
|Ik |
>

1
4

}
;

if we consider Qk as a discrete space, then
∏
k∈� Qk is a compact metric space and

O = [�]� ×
∏
k∈�

Qk � �� ×
∏
k∈�

Qk �
∏
k∈�

(� ×Qk) � �� .

Lemma 4.5. The following statements hold:
(1) dom(�) = [�]� and ran(�) = O.
(2) The relation �n is closed in [�]� ×O.
(3) The set (�n)(H,(Ek )) is nowhere dense in [�]� for every (H, (Ek)) ∈ O.
(4) cov(M) ≤ d(�) ≤ s1/2±ε .

Proof. (1): First let X ∈ [�]� . If there is an infinite H ⊆ � such that |X ∩
Ik |/|Ik | < 3/4 for every k ∈ H , then X �1 (H, (Ik \ X )k∈�). If there is no such H,
then |X ∩ Ik |/|Ik | ≥ 3/4 for every k ≥ K for some K ∈ �, and if we choose some
Ek ⊆ Ik with |Ek |/|Ik | ∈ (1/4, 3/8) for every k ≥ K(≥ 2), then

|X ∩ Ek | ≤ |Ek | <
3
8
|Ik | <

(1
2

+ ε
)
|X ∩ Ik | for every k ≥ K ,

hence X �0 (� \K, (Ek)k∈�).
Now let (H, (Ek)k∈�) ∈ O. IfX = � \

⋃
k∈H Ek is infinite, thenX �1 (H, (Ek)).

If this set is finite, however, then there is a K such that � \K ⊆ H and Ek = Ik for
every k ≥ K . If Y ∈ [�]� such that |Y ∩ Ik | = 1 for every k, then

|Y ∩ Ek | ≤ 1 <
(1

2
+ ε

)(
1 + |I<k |

)
holds for every k ∈ H \ 1,

and so Y �1 (H, (Ek)).
(2): If X 
�n (H, (Ek)), then this is witnessed by a k0 ∈ H \ n, that is,

|X ∩ Ek0 | ≥
(1

2
+ ε

)(
|X ∩ Ik0 | + |I<k0 |

)
.

Then X ′ 
�n (H ′, (E ′
k)) for all X ′ ∈ [�]� and (H ′, (E ′

k)) ∈ O such that X ′ ∩ Ik0 =
X ∩ Ik0 , k0 ∈ H ′, and E ′

k0
= Ek0 ; these pairs (X ′, (H ′, (E ′

k))) ∈ [�]� ×O form an
open neighbourhood of (X, (H, (Ek))) in [�]� ×O.

(3): Fix an X ∈ [�]� with X �n (H, (Ek)) and a basic open neighbourhood
Um = {Y ∈ [�]� | Y ∩m = X ∩m} of X (for an m ∈ �). If k ∈ H \ n such that
min(Ik) ≥ m (and k is sufficiently large, see below), andY ∈ Um such thatY ∩ Ik =
Ek , then k witnesses Y 
�n (H, (Ek)), that is, |Y ∩ Ek | = |Ek | > (1/2 + ε)(|Ek | +
|I<k |) because

|Ek |
|Ik |
>

(1
2

+ ε
)( |Ek |

|Ik |
+ 2–k

)

holds if k is sufficiently large.
(4): cov(M) ≤ d(�) follows from (1) and (3). Now let S ∈ [�]� , define S ′ = S if

|S ∩ Ik |/|Ik | > 1/4 for infinitely many k and S ′ = � \ S otherwise, and letHS = {k |
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|S ′ ∩ Ik |/|Ik | > 1/4} ∈ [�]� . For k ∈ HS , let ESk = S ′ ∩ Ik , and for k ∈ � \HS , let
Ek = Ik . It is enough to show that if S ε-almost bisects X, then X � (HS, (ESk )),
i.e., that

(
id, S �−→ (HS, (ESk ))

)
: ([�]�,�,O) → Reap⊥

1/2±ε is a Tukey connection.
Clearly, S |1/2±ε X iff S ′ |1/2±ε X ; therefore if k ∈ HS is sufficiently large, then X ∩
I≤k 
= ∅ and

|X ∩ ESk |
|X ∩ Ik | + |I<k |

≤ |S ′ ∩ X ∩ I≤k |
|X ∩ I≤k |

<
1
2

+ ε,

finishing the proof. �

Lemma 4.6. D is �-good.

Proof. Let (Ḣ , (Ėk)) be a D-name for an element of O. We will construct
a countable family O′ ⊆ O such that whenever X ∈ [�]� ∩ V and X 
� O′, then
� X 
� (Ḣ , (Ėk)).

Let Ḣ = {k̇0 < k̇1 < ··· } be an enumeration in V D. Recall that we denote the
generic real of D by ḋ . By thinning out Ḣ , we can assume that ḋ (n) < k̇n for every
n. (Note that if � X 
� (J̇ , (Ėk)) for some infinite J̇ ⊆ Ḣ , then this holds for Ḣ as
well.)

We define a rank function �n on �<↑� for every fixed n ∈ � as follows: We
set �n(s) = 0 if there are kn,s ∈ � and En,s ⊆ Ikn,s such that whenever T ∈ D and
stem(T ) = s , then there is a T ′ ≤ T which forces that “k̇n = kn,s and Ėkn,s = En,s .”
Then we proceed by recursion: At the αth stage, after already having defined {s ∈
�<� | �n(s) = 	} for every 	 < α, we set �n(s) = α if

Yn,s =
{
m

∣∣ �n(s
(m)
)
< α

}
is infinite.

We show that dom(�n) = �<↑� for every n. Assume towards a contradiction that
�n(s) is not defined. Then {m | �n(s
(m)) is not defined} is cofinite; hence we can
construct a T ∈ D with stem s such that �n(t) is not defined for every t ∈ T above
s. There are a T ′ ≤ T , k ∈ �, and E ⊆ Ik such that T ′ � “k̇n = k and Ėk = E”; in
particular, k and E witness that �n(stem(T ′)) = 0, a contradiction.

Also, we will need the fact that if n ≥ |s |, then �n(s) > 0. To see this, let (for k ∈
�) Tk ∈ D such that stem(Tk) = s and extTk (s) = � \ k. Then Tk � k ≤ ḋ (|s |) ≤
ḋ (n) < k̇n. If �n(s) = 0, then we could pick kn,s such that T � k̇n = kn,s whenever
T ∈ D with stem s; but in that case, T = Tkn,s � kn,s < k̇n, a contradiction.

Now, if �n(s) = 1 and m ∈ Yn,s , then �n(s
(m)) = 0 and hence we have defined
kn,s
(m) and En,s
(m). Note that

{
m ∈ Yn,s

∣∣ kn,s
(m) = k
}

is finite

for each k. Otherwise, there are k ∈ � and E ⊆ Ik such that X = {m ∈ Yn,s |
kn,s
(m) = k and En,s
(m) = E} is also infinite, and hence if T ∈ D with stem(T ) =
s , then there is an m ∈ X ∩ extT (s), and so there is a T ′ ≤ T �s
(m) ≤ T such that
T ′ � “k̇n = k and Ėk = E,” in other words, �n(s) = 0, a contradiction.

For such n and s we can thus fix an infinite Zn,s ⊆ Yn,s such that

if m,m′ ∈ Zn,s and m < m′, then kn,s
(m) < kn,s
(m′).
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We let Kn,s = {kn,s
(m) | m ∈ Zn,s}, En,sk = En,s
(m) if m ∈ Zn,s and kn,s
(m) = k
and En,sk = Ik otherwise, and

O′ =
{
(Kn,s , (E

n,s
k )k∈�)

∣∣ n ∈ �, s ∈ �↑<�, �n(s) = 1
}
⊆ O.

To finish the proof, fix an X ∈ [�]� ∩ V and assume that X 
� O′, i.e., X 
�
(Kn,s , (E

n,s
k )) whenever �n(s) = 1, or more explicitly, for infinitely many k ∈ Kn,s

|X ∩ En,sk | ≥
(1

2
+ ε

)(
|X ∩ Ik | + |I<k |

)
. (•k,X,(Ek

n,s))

To show that � X 
� (Ḣ , (Ėk)), we fix T ∈ D and n ∈ �. We will find a
T ′ ≤ T and a k ≥ n such that T ′ � “k ∈ Ḣ and (•k,X,(Ėk )).” We can assume
that n ≥ |stem(T )| and hence �n(stem(T )) > 0. By induction on this rank, one
can easily show that there is an s ∈ T above the stem such that �n(s) = 1.
Pick a k = kn,s
(m) ∈ Kn,s ∩ extT (s) \ n such that (•k,X,(En,s

k
)). By the definition

of �n(s
(m)) = 0, there is a T ′ ≤ T �s
(m) ≤ T which forces that k̇n = k and
Ėk = En,s
(m) = En,sk ; in particular,T ′ also forces that k ∈ Ḣ \ n and (•k,X,(Ėk )). �

Applying Lemma 4.6 and Theorem 4.4, we obtain that D� preserves s1/2±ε ≥
d(�) ≥ cov(M)V , and hence the following:

Theorem 4.7. If V � ma + c ≥ �2, then V D�1 � �1 = cof(M) < s1/2±ε =
s1/2 = c.

§5. Further generalisations: s� and r�. In this last section, we take a look at
generalisations of s1/2 and r1/2, in the following sense: For � ∈ (0, 1), let Reap� =
([�]�,
 |�, [�]�) where S |� X (“S �-splits X”) if

|S ∩ X ∩ n|
|X ∩ n|

n→∞−−−→ �.

We write s� = b(Reap�) and r� = d(Reap�).
Obviously, Reap1–� ≡ Reap� � Reap and hence s� = s1–� ≥ s and r� = r1–� ≤ r

for all � ∈ (0, 1). We will need the following easy observation:

Fact 5.1. Let �0, �1 ∈ (0, 1) and A,B,X ∈ [�]� . Then the following statements
hold:

(1) If A |�0 X and B |�1 A ∩ X , then A ∩ B |�0�1 X ; hence max{s�0 , s�1} ≥ s�0�1

and min{r�0 , r�1} ≤ r�0�1 .
(2) If A |�0 X and B |�1 X \ A, then A ∪ B |�0+�1–�0�1 X ; hence max{s�0 , s�1} ≥

s�0+�1–�0�1 and min{r�0 , r�1} ≤ r�0+�1–�0�1 .

Proof. (1) follows from

|(A ∩ B) ∩ X ∩ n|
|X ∩ n| =

|B ∩ (A ∩ X ) ∩ n|
|(A ∩ X ) ∩ n| · |A ∩ X ∩ n|

|X ∩ n| ,
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and (2) follows from

|(A ∪ B) ∩ X ∩ n|
|X ∩ n| =

|A ∩ X ∩ n| + |B ∩ (X \ A) ∩ n|
|X ∩ n|

=
|A ∩ X ∩ n|
|X ∩ n| +

|B ∩ (X \ A) ∩ n|
|(X \ A) ∩ n| · |(X \ A) ∩ n|

|X ∩ n| . �

Also, we recall a classical construction:

Fact 5.2 (Non-integer bases). Let b > 1 be a real number. Then every x > 0 can
be written as x =

∑N
n=–∞ cnb

n where N ≥ 0 is an integer and 0 ≤ cn < b are also
integers for all n.

Theorem 5.3. r� does not depend on �.

Proof. Fix a � ∈ (1/2, 1). We show that r� = r1/2.
To show that r� ≥ r1/2, let R ⊆ [�]� such that |R| < r1/2. We will construct an

S ∈ [�]� such that S |� R (that is, such that S |� X for every X ∈ R).
By recursion on n ∈ �, one can easily construct Sn ∈ [�]� and Rn ⊆ [�]� such

that S0 = �, R0 = R, Sn+1 |1/2 Rn and

Rn+1 = {Sn+1 ∩ X | X ∈ Rn}.

For m ≥ 1, define

Im =
⋂
n≤m
Sn and Dm = Im–1 \ Im = Im–1 \ Sm.

It follows that Rm = {Im ∩ X | X ∈ R} and hence that Im,Dm ∈ [�]� for every
m ≥ 1. First of all, we show that Im |1/2m R and Dm |1/2m R for every m ≥ 1. This
holds form = 1 by the definitions above. We proceed by induction on m; assume that
the claim holds for a fixed m. IfX ∈ R, then Im ∩ X ∈ Rm and thusSm+1 |1/2 Im ∩ X .
Since Im |1/2m X holds as well, we can apply Fact 5.1(1) with �0 = 1/2m, �1 = 1/2,
A = Im, B = Sm+1, and X, and obtain that Im+1 = Sm+1 ∩ Im |1/2m+1 X . It follows
that Dm+1 = Im \ Sm+1 |1/2m+1 X (because 1/2m – 1/2m+1 = 1/2m+1).

Now let P ⊆ � \ {0} be such that
∑
m∈P 2–m = � (a representation of � < 1 in

base 2) and S =
⋃
m∈P Dm. We show that S |� R. Fix an X ∈ R and define the

lower and upper relative density of S ∈ [�]� in X ∈ [�]� as follows:

dX (S) = lim sup
n→∞

|S ∩ X ∩ n|
|X ∩ n| ,

dX (S) = lim inf
n→∞

|S ∩ X ∩ n|
|X ∩ n| .

Clearly, dX and dX are monotone, dX (� \ S) = 1 – dX (S) and dX (� \ S) = 1 –
dX (S), and S |� X iff dX (S) = dX (S) = �; in this case we write dX (S) = �. Also,
notice that dX is finitely additive. It follows that it is enough to show that dX (S) ≥ �
and dX (� \ S) ≥ 1 – �. For k ∈ �, let Ak =

⋃
m∈P∩k Dm (and

⋃
∅ = ∅), then

dX (Ak) ≤ dX (S), and at the same time dX (Ak) = dX (Ak) =
∑
m∈P∩k dX (Dm) =∑

m∈P∩k 2–m k→∞−−−→ �, hence � ≤ dX (S). To show that dX (� \ S) ≥ 1 – �, write
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� \ S as
⋃
m∈�\P Dm. (Since finite modifications ofSn do not affect the above, we can

assume without loss of generality that
⋂
n∈� Sn = ∅ and hence that � =

⋃
m≥1Dm

is a partition.)
The proof of the converse inequality is similar but with a little twist: We start

with a family R′ ⊆ [�]� such that |R′| < r� and have to construct an S ′ ∈ [�]�

such that S ′ |1/2 R′. By recursion on n ∈ �, we define S ′
n ∈ [�]� and R′

n ⊆ [�]�

such that S ′
0 = �, R′

0 = R′, S ′
n+1 |� R′

n, and R′
n+1 = {S ′

n+1 ∩ X | X ∈ R′
n}. For

m ≥ 1, define I ′m =
⋂
n≤m Sn and D′

m = Im–1 \ Im. It follows (by induction) that
I ′m |�m R′ and D′

m |�m–1(1–�) R′ for every m ≥ 1. If we can find a P′ ⊆ � \ {0} such
that

∑
m∈P′ �

m–1(1 – �) = 1/2, then, just like above, S ′ =
⋃
m∈P′ D

′
m |1/2 R′. The

problem is that when writing �/2–2� in the non-integer base 1 < b = �–1 < 2, i.e.,
�/2–2� =

∑N
n=–∞(�–1)n, we may have to use non-zero coefficients for at least some

0 ≤ n ≤ N . Therefore, we have two cases:

Case 1: If �/2–2� < 1, i.e., � < 2/3, then N < 0 and we can pick an appropriate P′

and hence conclude that r� ≤ r1/2.

Case 2: If 2/3 ≤ � < 1 then, applying Fact 5.1(1), r� = min{r�, r�} ≤ r�2 =
min{r�2 , r�2} ≤ r�4 ≤ ··· ; in other words, r� ≤ r�2 ≤ r�4 ≤ r�8 ≤ ··· . There is an

n such that 1/3 < �2n < 2/3 (because 1/3 < (2/3)2), and hence r� ≤ r�2n = r1–�2n ≤
r1/2. �

Note that we did not make use of Tukey connections in the proof above. Therefore,
the dual equality of �-splitting numbers for different parameters � does not follow.
In fact, we only showed that a family too small to be 1/2-reaping is not �-reaping and
vice versa—which does not, in any obvious way, yield a method to turn a 1/2-reaping
family into a �-reaping family or vice versa.

Question D. Is it consistent that s� 
= s� for some �, � ∈ (0, 1)?

The next natural question is if we can generalise Cov(N ) � Reap1/2 � Cov(M)⊥,
that is, the inequalities non(N ) ≥ s1/2 ≥ cov(M) and cov(N ) ≤ r1/2 ≤ non(M) for
arbitrary � ∈ (0, 1).

Cov(N ) � Reap� is problematic because in the case of � = 1/2, the proof uses the
law of large numbers to show that {S ∈ [�]� | S |1/2 R} is of measure 1 for every
fixed R ∈ [�]� .

Question E. Does Cov(N ) � Reap�, or at least non(N ) ≥ s� and cov(N ) ≤ r�,
hold?

However, Reap� � Cov(M)⊥ and hence s� ≥ cov(M) and r� ≤ non(M) hold
because it is easy to see that {X ∈ [�]� | S |� X} =⋂
ε>0

⋃
N∈�

⋂
n≥N

{X ∈ [�]� | (� – ε)|X ∩ n| ≤ |S ∩ X ∩ n| ≤ (� + ε)|X ∩ n|} ∈ M

and hence, identifying P(�) and 2� , (F,G) : ([�]�,
 |�, [�]�) → (M, 

,P(�)) with
F (S) = [�]<� ∪ {X ∈ [�]� | S |� X} andG(X ) = X if X is infinite andG(X ) = �
if X is finite is a (Borel) Tukey connection.

We can define s0, r0, s1, and r1 as well. To avoid the trivial case s1 = 1 and
to maintain the duality s1 = s0 and r1 = r0, we say that S |0 R (“S 0-splits
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R”) if S is infinite and coinfinite, R is infinite, and |S ∩R ∩ n|/|R ∩ n| → 0;
we define S |1 R similarly. Hence let Reap0 = ({S ∈ [�]� | |� \ S| = �}, |0, [�]�),
Reap1 = ({S ∈ [�]� | |� \ S| = �}, |1, [�]�), s0 = b(Reap0) = s1 = b(Reap1), and
r0 = d(Reap0) = r1 = d(Reap1).

Just like for � ∈ (0, 1), if S ∈ [�]� and |� \ S| = �, then {X ∈ [�]� | S |0 X} ∈
M and hence Reap0 � Cov(M)⊥; in particular, s0 ≥ cov(M) and r0 ≤ non(M).

Fact 5.4. Dom⊥ � Reap0 and hence d ≥ s0 and b ≤ r0.

Proof. Instead of �� , we work with X = {x ∈ �↑� | |� \ ran(x)| = �}. It
is trivial to show that (X ,≤∗,X ) ≡ (��,≤∗, ��) = Dom. We define a Tukey
connection (F,G) : Reap⊥

0 → Dom, that is, an

(F,G) :
(
[�]�, “is 0-split by,” {S ∈ [�]� | |� \ S| = �}

)
→ (X ,≤∗,X )

as follows: Let F : [�]� → X be defined by F (R)(n) = r2n where R = {r0 <
r1 < ··· } ∈ [�]� and let G : X → {S ∈ [�]� | |� \ S| = �} be defined by G(x) =
ran(x). If F (R) ≤∗ x, r2n ≤ x(n) for every n ≥ N for some N and r2n < k ≤ r2n+1 ,
then

|ran(x) ∩R ∩ k|
|R ∩ k| ≤ N + n

2n
n→∞−−−→ 0,

and hence G(x) = ran(x) 0-splits R. �

Question F. Does Dom⊥ ≡ Reap0, and hence d = s0 and b = r0, hold? Or do at
least s0 ≥ s and r0 ≤ r hold?
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